CAPILLARY ELECTROPHORESIS SYSTEM
The invention is an improved multiplex capillary electrophoresis instrument or module with at least four and preferably six user-accessible vertically stacked drawers. An x-z stage moves samples from the user accessible drawers to the capillary array for analysis. A computer program allows users to add capillary electrophoresis jobs to a queue corresponding to the analysis of rows or plates of samples without stopping or interrupting runs in progress.
This application is a continuation of U.S. Ser. No. 13/470,870 filed May 14, 2012, which is a continuation in part of Ser. No. 29/421,549 filed Mar. 15, 2012, which claims priority of earlier filed provisional application U.S. Ser. No. 61/643,411 filed May 7, 2012, which applications are hereby incorporated by reference in their entirety.
BACKGROUND OF THE INVENTION1) Field of the Invention
This invention relates to a system and software for multi-channel capillary electrophoresis.
2) Description of Related Art
The current next-generation sequencing (NGS) platforms use a variety of technologies for sequencing, including pyrosequencing, ion-sequencing, sequencing by synthesis, or sequencing by ligation. Although these technologies have some minor variations, they all have a generally common DNA library preparation procedure, which includes genomic DNA quality & quality assessment, DNA fragmentation and sizing (involving mechanical shearing, sonication, nebulization, or enzyme digestion), DNA repair and end polishing, and a last step of platform-specific adaptor ligation. With a rapidly growing demand for DNA sequence information, there is a critical need to reduce the time required for the preparation of DNA libraries.
A labor-intensive step in DNA library preparation is the qualification (size determination) and quantification of both un-sheared genomic DNA and downstream fragmented DNA. Existing methods for DNA fragment analysis include agarose gel electrophoresis, capillary electrophoresis, and chip-based electrophoresis. Agarose gel electrophoresis is labor intensive, requiring gel preparation, sample transfer via pipetting, and image analysis. The images obtained by agarose electrophoresis are often distorted, resulting in questionable or unreliable data. It is impossible to use agarose gel electrophoresis for accurate quantification of DNA, which means that a separate, second method (UV or fluorescence spectroscopy) is required for quantification. Finally, agarose gel electrophoresis is difficult to automate. Chip or micro-chip based electrophoresis provides an improvement in data quality over agarose gel electrophoresis but is still labor intensive. For example, chip-based methods require manual steps to load gel, markers and samples. Even though these microchip or chip based electrophoresis units can run a single sample in seconds or minutes, the sample and gel loading are barriers to ease-of-use, especially when running hundreds or thousands of samples. Also, existing chip-based systems are unable to quantify genomic DNA. Capillary electrophoresis (CE) offers advantages over both agarose electrophoresis and microchip electrophoresis in that gel-fill and sample loading is automated.
Multiplex capillary electrophoresis is known. For example Kennedy and Kurt in U.S. Pat. No. 6,833,062 describe a multiplex absorbance based capillary electrophoresis system and method. Yeung et al. in U.S. Pat. No. 5,324,401 describe a multiplex fluorescent based capillary electrophoresis system. Although these systems offer the advantage of analyzing multiple samples simultaneously, and can run several plates sequentially, they lack the ability to load or change multiple sample plates while the system is running, and they also lack a simple workflow for efficient sample analysis.
While existing commercial CE systems can be automated with a robotic system, stand-alone systems are not fully automated or lack the sensitivity and data quality required for adequate DNA library analysis. An example of a CE instrument with a robot-capable interface is given by Kurt et al. in U.S. Pat. No. 7,118,659. For the construction of DNA libraries, as well as other applications such as mutation detection, it is often necessary to run thousands of samples per day, but the implementation of a robotic system for sample handling is prohibitively expensive, and many labs lack the expertise necessary for the maintenance and operation of sophisticated robotic systems. Automated forms of micro-slab-gel electrophoresis have been developed, such as those described in United States Patent Application number 20100126857. These allow for automatic analysis of multiple samples, but the techniques either still require significant human intervention, or they do not have the throughput required for high-volume applications. Amirkhanian et al. in U.S. Pat. No. 6,828,567 describe a 12-channel multiplex capillary electrophoresis system capable of measuring up 12 samples at a time using multiplex capillary electrophoresis. However, this system is not capable of measuring multiple 96-well plates, and does not have the workflow that allows the analysis of thousands of samples per day.
As can be seen, there a need for an automated capillary electrophoresis system that a) eliminates the complexity, cost, and required expertise of a robotic system b) enables users to run from one to several thousand samples per day and c) allows users to conveniently load several plates or samples onto a capillary electrophoresis system while the system is running other samples and d) has the small size and footprint of a stand-alone capillary electrophoresis unit.
This invention has as a primary objective the fulfillment of the above described needs.
BRIEF SUMMARY OF THE INVENTIONThe present invention is a multiplex capillary electrophoresis system and console with an improved sample handling and control method for the analysis of samples.
One embodiment of the invention is a console with a series of at least four and preferably at least six vertically stacked user-accessible drawers that can each hold a plate containing from 1 to 384 sample wells. Preferably, each user accessible drawer holds a sample plate containing 96 sample wells. The system is configured so that sample plates can be loaded onto the system at any time, including during the electrophoresis or analysis of samples. User “A” can walk up to the machine, load a row of 12 samples, enter loading and analysis instructions onto the computer and walk away. While user “A” samples are running, user “B” can walk up to the machine, load a tray of 96 samples, enter loading and analysis instructions and walk away. User “C” can walk up to the machine, load 12 samples, while either user “A” or user “B” samples are running, enter loading and analysis instructions, and walk away. Two of the preferred six user-accessible drawers are used to hold an electrophoresis run buffer and a waste tray.
Another embodiment of the invention is a mechanical stage that transports sample trays and/or buffer or waste trays from any one of the vertically stacked user-accessible drawers to the injection electrodes and capillary tips of the multiplex capillary array of the capillary electrophoresis subsystem.
Another embodiment of the invention is uses a computer program that enables a user to create a queue of jobs, with each job representing an analysis of a new set of samples. This computer system enables users to enter job data even when the system is running samples. For example, user “A” loads “sample plate 1” into the system into Drawer 3 and uses a computer program to add a job to a queue, the job representing the injection and capillary electrophoresis of samples in “sample plate 1” in Drawer 3. While the system is running user A's samples, user B loads plate 2 into Drawer 4 and uses the same computer program to add a job to a queue, the job representing the injection and capillary electrophoresis of samples in “sample plate 2” in Drawer 4. User C loads “sample plate 3” into Drawer 5 and uses the same computer program to add a job to the queue, the job representing the injection and capillary electrophoresis of samples in “sample plate 3” in Drawer 5.
A preferred embodiment of this invention is a system capable of allowing the user to enter 24 or more individual jobs to a queue, with each job representing an injection and analysis of a plurality of samples.
An even more preferred embodiment is a system capable of allowing the user to enter 48 or more individual jobs to a queue, with each job representing an injection and analysis of a plurality of samples.
Another embodiment is a system capable of allowing the user to enter 100 or more individual jobs to a queue, with each job representing an injection and analysis of a plurality of samples.
The invention is a multiplexed capillary electrophoresis system with enhanced workflow. The capillary electrophoresis system and apparatus of the present invention includes an absorbance or fluorescence-based capillary electrophoresis sub-system with a light source, a method for carrying light from the light source to the sample windows of a multiplex capillary array containing at least 12 capillaries (preferably 96 capillaries), and a method for detecting light emitted (fluorescence) or absorbed (absorbance) from the sample windows of a multiplex array. The sub-system also includes a method for pumping buffers and gels through the capillaries, as well as a method for application of an electric field for electrophoretic separation. The optics of the fluorescent-based sub system of the present invention are described by Pang in United States Patent Applications 20070131870 and 20100140505, herein incorporated by reference in their entirety. The optics of an applicable absorbance-based system, as well as the fluid handling, reservoir venting, application of electric field, and selection of fluids via a syringe pump and a 6-way distribution valve are discussed by Kennedy et al. in U.S. Pat. Nos. 7,534,335 and 6,833,062, herein incorporated by reference their entirety.
Referring to
The concepts and practical implementation of motion control systems are known. For example, Sabonovic and Ohnishi; “Motion Control” John Wiley and Sons, 2011, herein incorporated by reference in its entirety, discusses practical methods for the design and implementation of motion control. It does not, however, show an enhanced CE workflow console 16 as depicted here.
The reservoir body can be made of any solid material such as acrylic, Teflon, PETE, aluminum, polyethylene, ABS, or other common metals or plastics. The key criterion is that the material is durable and chemically resistant to the materials used. A preferred material is acrylic or Teflon.
A typical strategy for pumping fluids for capillary electrophoresis is as follows. Consider the following 6 positions of the six-way distribution valve (29,
Step A: The reservoir is first emptied by opening position 1 (reservoir), filling the syringe with fluid that is in the reservoir, closing position 1, opening position 6, and empting fluid to the waste. This is repeated until the reservoir is empty. Block valves 21 and 132 are kept open during this process to enable efficient draining of the reservoir.
Step B: The reservoir is then filled with conditioning solution by opening position 2, filling the syringe with conditioning solution, closing position 2, opening position 1, and filling the reservoir with conditioning solution. Block valve 21 is closed, but block valve 132 to waste is open, enabling the over-filling of the reservoir with conditioning solution.
Step C: The capillaries are filled by closing both vent block valve 21 and waste vent valve 132. The syringe is filled with capillary conditioning solution. Position 1 is opened, and fluid is pressure filled through the capillaries at a minimum of 100 psi for a pre-determined time, which may range from 1 minute to 20 minutes.
Step D: The reservoir is emptied by step A, and then re-filled with gel using the same process as in Step B, except that position 3 for the gel is used on the 6-way distribution valve.
Step E: The capillaries are filled with gel using a process analogous to Step C.
After steps A-E, the capillaries are ready for electrophoresis.
A general strategy and process for analyzing samples using electrophoresis is as follows.
Samples are placed into a 96-well plate for analysis. The user places the sample plate into a sample drawer (12,
A key embodiment of the invention is the workflow of the capillary electrophoresis system. Drawers (11,
An important embodiment of the present invention is a computer program that enables users to load a sample plate into the desired vertical drawer (12,
The graphical result of this computer program is shown in
As can be seen from the above description, the system eliminates the need for expensive robots, enables the user to run many samples per day, allows loading of new samples while running others, and yet has a small size footprint.
Claims
1. An electrophoresis console to enhance workflow, comprising;
- a console housing an operable multiplexed capillary electrophoresis system;
- a plurality of externally accessible drawers for holding sample plates or buffer plates in said console; and
- a motion control system built within said console to move said sample plates or buffer plates from said drawers to an injection position of said capillary electrophoresis system.
2. The console of claim 1 wherein the motion control system is a rotational encoder.
3. The console of claim 1 wherein the motion control system is a liner encoder.
4. The apparatus of claim 1 which includes as the externally accessible drawers at least four vertically stacked drawers.
5. The electrophoresis console according to claim 1 which includes as the externally accessible drawers at least six vertically stacked drawers.
6. The electrophoresis console of claim 1, wherein samples can be placed into at least some of said drawers while the instrument is running and collecting electrophoresis data.
7. The electrophoresis console of claim 1, which includes an operative computer program that enables multiple users to load multiple samples into said drawers, and to run said multiple samples sequentially while the system is performing electrophoresis.
8. In a multiplex capillary electrophoresis device, the improvement comprising;
- in combination with said electrophoresis device; a sample loader; and
- a sample transporter to allow loading and transporting while the device is performing electrophoresis.
9. The multiplex capillary electrophoresis device of claim 8, further comprising a computer controller.
10. In an electrophoresis console which includes a capillary array with a plurality of capillaries that can be filled with an electrophoresis medium; and a fluid handling system for injecting said capillaries with said electrophoresis medium or other fluids, the improvement comprising:
- a plurality of externally accessible vertically stacked drawers for holding sample plates or buffer plates in said electrophoresis console; and
- a motion control system built into the console that moves said sample plates or said buffer plates from said drawers to an injection position of said capillary array.
11. The console of claim 10 wherein the motion control system is a rotational encoder.
12. The console of claim 10 wherein the motion control system is a liner encoder.
Type: Application
Filed: Aug 11, 2015
Publication Date: Dec 3, 2015
Inventors: Bruce R. Boeke (AMES, IA), Martin Chris Foster (Nevada, IA), Thomas J. Kurt (Ames, IA), Scott Stueckradt (Huxley, IA)
Application Number: 14/822,956