COPPER-ZINC ALLOY FOR A PLUMBING FITTING AND METHOD FOR THE PRODUCTION THEREOF

- Grohe AG

A copper-zinc alloy, in particular for providing components for a plumbing fitting. The alloy includes (in % by weight): between 63.5 and 63.8% Cu, between 35.2 and 35.6 Zn, between 0.17 ans 0.20% Pb, between 0.32 and 0.4% Al, between 0.11 and 0.13% As, between 0.16 and 0.2% Fe, between 0.0 and 0.2% Sn, between 0.0 and 0.2% Mn, and residual constituents in respective maximum quantities of 0.02%. A method for producing a cast component is provided that includes a copper-zinc alloy of this type. The copper-zinc alloy and the components produced therewith permit a particularly environmentally-friendly, cost-effective production of plumbing fittings.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This nonprovisional application is a continuation of International Application No. PCT/EP2013/001976, filed Jul. 5, 2013, and which claims priority to German Patent Application No. 10 2013 003 817.0 filed on Mar. 7, 2013, both of which are herein incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a copper-zinc alloy (or brass alloy) for a plumbing fitting as well as a method for the production thereof. In particular, it concerns a cast alloy, with the aid of which water-conducting components and/or water-contacting components of a plumbing fixture may be produced.

2. Description of the Background Art

When producing components of a plumbing fitting, a wide range of requirements must be taken into account. In general, the material must be suitable for producing the components of a plumbing fitting, which may have, in part, a highly complex design. This applies to good castability or deformability, on the one hand, as well as to machineability in the event that these components must be post-processed with the aid of machining methods. It goes without saying that cost aspects play a key role here.

The fact that these components are also used for delivering drinking water must also be taken into account. In this regard, different legal requirements exist worldwide, which are intended to ensure a long-lasting use of such components without contaminating the drinking water.

One particularly important requirement in this regard is the dezincification resistance, which is determined, in particular, by a material test according to ISO 6509. The material here is immersed in a 75° C. copper chloride bath (CUCl2) with a concentration of 12.7 grams of CuCl2 to one liter of water (H2O) for a period of 24 hours. The depth to which the zinc ions are discharged is then determined. The shallower this dezincification depth, the better suited this material is for delivering drinking water.

Another requirement is that the different components of a plumbing fitting may preferably be recycled together. For this purpose, it is considered to be advantageous that a copper-zinc alloy of this type has a preferably small proportion of silicon (Si). It may thus be ensured that the alloy may be mixed with the standard brass alloys in the standard production process and thus be recycled.

It may be inferred therefrom that, when selecting a suitable material for components of a plumbing fitting, a large number of different objectives are present, which also conflict with each other to some extent.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention is to provide a copper-zinc alloy, which at least partially solves the problems illustrated at the outset. In particular, a copper-zinc alloy should be suitable for use in a plumbing fitting. Furthermore, an advantageous plumbing fitting as well as a method for the production thereof are to be provided.

Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

BRIEF DESCRIPTION OF THE DRAWING

The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and the sole FIGURE illustrates a plumbing fixture.

DETAILED DESCRIPTION

According to an exemplary embodiment of the invention, the copper-zinc alloy comprises:

63.5 to 63.8 wt % copper (Cu),

35.2 to 35.6 wt % zinc (Zn),

0.17 to 0.20 wt % lead (Pb),

0.32 to 0.40 wt % aluminum (Al),

0.11 to 0.13 wt % arsenic (As),

0.16 to 0.20 wt % iron (Fe),

0.0 to 0.20 wt % tin (Sn),

0.0 to 0.02 wt % manganese (Mn),

and residual constituents in maximum quantities of 0.02 wt % each.

It is noted that the specified lead content (Pb) of this copper-zinc alloy is very small. It should furthermore be noted that the copper content (Cu) is also low compared to known alloys. It should likewise be pointed out that the copper-zinc alloy has only a (negligible) content of silicon (Si). It has surprisingly turned out that this copper-zinc alloy is more cost-effective, on the one hand, due to the composition selected herein, and also has an excellent dezincification resistance, namely to a dezincification depth of less than 200 μm (micrometers), in particular even less than 100 μm.

The copper-zinc alloy specified herein is, in particular, a so-called cast alloy.

With regard to the lead proportion (Pb), it should be noted that this proportion causes an adequate improvement in the machineability of the cast alloy. It is furthermore known that lead has a positive effect on the dezincification resistance. It was determined that a noteworthy grain-refining effect exists. The grain refinement causes the proportion of the less acid-resistant beta brass contained in the brass to be distributed in the dezincification-resistant alpha brass matrix in a fine and isolated, island-shaped manner. It is preferred for the lead proportion to be in a partial range which is close to the upper limit, for example in a range from 0.19 to 0.2 wt %.

The aluminum (Al) increases the strength of the alpha phase and the beta phase, in particular due to solid-solution hardening, without significantly influencing the hot workability. It furthermore improves the resistance to erosion corrosion as well as the tarnish and weather resistance. Aluminum also increases the strength in order to achieve a high surface quality, especially in cast products. In test series, aluminum demonstrated a negative effect on the dezincification resistance. The relatively small aluminum proportion induces a formation of the less acid-resistant beta brass proportionate to surface area. The beta brass solid solution proportion reduced in this way is better distributed in the dezincification-resistant alpha brass matrix in an isolated island-shaped manner. Above the specified upper limit, the dezincification resistance values deteriorated significantly. If the specified lower limit fails to be reached, the physically and economically positive effects of the aluminum are no long extensively used.

In the small amounts specified here, arsenic (As) promotes the fact that the copper zinc alloy does not undergo significant zincification with the standard (alpha) phase. In test series, arsenic also had a positive effect on the characteristic of dezincification resistance. The increased arsenic proportion, compared to the conventional standard brass, causes a lesser formation of the less acid-resistant beta brass proportionate to surface area. One explanation for the positive effects of arsenic on dezincification resistance may be its action as an inhibitor with respect to the chemical attack of the acids used in the dezincification test. The upper limit of 0.13 wt % was also selected, in particular, by taking into account the target parameters mentioned at the outset. The lower limit of 0.11 wt % is the result of test series. A significant deterioration of the dezincification resistance occurred below this limit. It is preferred for the arsenic proportion to be in a partial range which is close to the upper limit, for example in a range from 0.12 to 0.13 wt %.

The proposed iron content (Fe) supports, in particular, a grain refinement, due to primarily precipitated iron crystals, and thus improves the mechanical properties of the components. In test series, iron had a positive effect on the characteristic of dezincification resistance. This may be explained by the proven grain-refining effect. The grain refinement causes the iron proportion of the less acid-resistant beta brass contained in the brass to be distributed in the dezincification-resistant alpha brass matrix in a fine and isolated, island-shaped manner. The upper limit of 0.2 wt % was set because higher iron values may induce the formation of hard inclusions. The explanation therefor lies in the relatively high melting point of iron. Hard inclusions result in surface defects which are not accepted for surface-mounted fittings. The lower limit of 0.16 wt % is the result of test series. A significant deterioration with regard to dezincification resistance occurred below this limit. It is preferred for the iron proportion to be in a partial range which is close to the upper limit, for example in a range from 0.18 to 0.20 wt %.

The tin content (Sn) increases the corrosion resistance (by forming a cover layer), in particular in single-phase (alpha) copper-zinc alloys, and improves, in particular, the strength and/or antifriction properties. The upper limit of 0.2 wt % was set because, in addition, no positive effects on the corrosion resistance could be established. The lower limit of 0.0 wt % is the result of test series and the fact that, depending on the input material, very little or no tin may be contained therein.

The manganese content proposed here improves the mechanical properties and corrosion resistance, in particular, to weather influences or moisture. The upper limit of 0.02 wt % was set to avoid any problems involving hard inclusions that may occur. This limit was also set on the basis of the content that experience has shown will set in during melting.

In addition, residual constituents may also be provided, it being possible for these constituents to comprise specific alloy elements as well as (unavoidable) impurities. Each of these residual constituents is permitted with a maximum content of 0.02 wt %. The total quantity of all residual constituents should not exceed, in particular, the value of 0.2 wt %.

It is clear that the copper-zinc alloy having the content ranges specified here should be selected in such a way that the total quantity of the alloy constituents results in 100 wt %.

According to an embodiment, it is proposed that the copper-zinc alloy contains no silicon (Si).

In addition to cost advantages, this results in the fact that this silicon-free alloy may possibly be recycled together with other copper-zinc alloys after use.

The proposed copper-zinc alloy is used, in particular, for a plumbing fitting. In particular, in this area, water-conducting components and/or components exposed to water, may be provided with a copper-zinc alloy of this type. The components may be, in particular, cast components. Examples of components of this type are housing components, rings, sleeves and the like.

Accordingly, it is also proposed that a plumbing fitting, which includes a housing component that forms at least one outer surface or which comprises an inner surface for a water channel, is designed in such a way that at least the outer surface or the inner surface is formed with the aid of the copper-zinc alloy. The surfaces of the housing component which are moistened by water and/or which conduct water are addressed hereby. It is also possible that the outer surface as well as the inner surface of the housing component are formed with the aid of the copper-zinc alloy, for example, if the housing component is cast as a single piece. Irrespective thereof, it is possible to also provide a protective layer on the outer surface and/or the inner surface, in particular with regard to the visual design and/or the additional improvement of the corrosion protection.

A method is furthermore proposed for producing a cast component from a copper-zinc alloy, comprising at least the following steps:

providing a copper-zinc alloy according to the invention,

heating the copper-zinc alloy so that it is present in liquid form,

casting the copper-zinc alloy into a predetermined shape,

cooling the copper-zinc alloy so that it solidifies,

heating the solidified copper-zinc alloy to a temperature from 430° C. to 470° C. for a predetermined holding time,

cooling the copper-zinc alloy.

In particular, a casting method is specified hereby, wherein the cast component is subsequently subjected to another heat treatment.

The holding time is exceptionally preferably in a range from 40 minutes to 70 minutes, exceptionally preferably in a range from 50 minutes to 65 minutes.

Using the subsequent heat treatment proposed herein, a structural change, in particular, is achieved, in which a large part of the beta brass present in the cast part is transformed into dezincification-resistant alpha brass.

The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawing which is given by way of illustration only, and thus, is not limitive of the present invention, and wherein the sole FIGURE illustrates an example embodiment, showing a cross-sectional view of an adjustment fitting with sealing of the eccentric receiving space.

To illustrate the invention, an example of a specific copper-zinc alloy is specified below. The materials CuZn21Si3P and MS63 are also discussed as comparison examples, on the basis of which the differences from the copper-zinc alloy according to the invention are illustrated.

Exemplary Embodiment 1.

63.60 wt % Cu; 35.50 wt % Zn; 0.177 wt % Pb;

0.382 wt % Al; 0.128 wt % As; 0.187 wt % Fe;

0.017 wt % Sn; 0.001 wt % Mn; 0.008 wt % residual constituents

The specified example is characterized by an excellent dezincification resistance, a composition being simultaneously present, which may be easily recycled with other brass components.

Comparison Materials:

CuZn21Si3P:

This alloy has a very high copper content (approximately 76 wt %) and is therefore very expensive. The equally high silicon content of approximately 4 wt % results in enormous problems when mixed with conventional alloys; in particular, the danger of inclusion-comprising silicon oxide arises. The recyclable material must therefore be strictly separated, and only input materials of one type may be used. In practice, a foundry must used either separate furnaces or crucible melting furnaces which have removable inserts for mixtures of CuZn21Si3P and other materials.

MS 63

This brass has a lead content of up to 1.6 wt % and may therefore not be classified as lead-free brass.

One preferred area of application, to which the invention is, however, not to be limited, is illustrated in the attached FIG. 1. The FIGURE shows a housing component 2, formed in a single piece, for a plumbing fitting. Housing component 2 forms an outer surface 3, which is visible, for example, to the operator. Housing component 2 furthermore forms an inner surface 4, with the aid of which water channel 5 is formed. Housing component 2 is exceptionally preferably a cast component made of the copper-zinc alloy according to the invention.

The copper-zinc alloy as well as components produced therewith allow a particularly environmentally friendly and cost-effective provision of plumbing fittings.

The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.

Claims

1. A copper-zinc alloy comprising:

63.5 to 63.8 wt % Cu;
35.2 to 35.6 wt % Zn;
0.17 to 0.20 wt % Pb;
0.32 to 0.40 wt % Al;
0.11 to 0.13 wt % As;
0.16 to 0.20 wt % Fe;
0.0 to 0.20 wt % Sn;
0.0 to 0.02 wt % Mn; and
residual constituents in maximum quantities of 0.02% each.

2. The copper-zinc alloy according to claim 1, wherein no Si is included.

3. A use of a copper-zinc alloy according to claim 1 for a plumbing fitting.

4. A plumbing fitting comprising a housing component, which forms at least one outer surface or comprises an inner surface for a water channel, wherein at least the outer surface or the inner surface is formed with the copper-zinc alloy according to claim 1.

5. A method for producing a cast component from a copper-zinc alloy, the method comprising:

providing a copper-zinc alloy according to claim 1;
heating the copper-zinc alloy so that it is present in liquid form;
casting the copper-zinc alloy into a predetermined shape;
cooling the copper-zinc alloy so that it solidifies;
heating the solidified copper-zinc alloy to a temperature from 430° C. to 470° C. for a predetermined holding time; and
cooling the copper-zinc alloy.

6. The method according to claim 5, wherein the holding time is in the range from 40 minutes to 70 minutes.

Patent History
Publication number: 20150376737
Type: Application
Filed: Sep 8, 2015
Publication Date: Dec 31, 2015
Applicant: Grohe AG (Hemer)
Inventors: Thomas SCHROEDER (Menden), Olaf PETZOLDT (Wernigerode)
Application Number: 14/847,645
Classifications
International Classification: C22C 9/04 (20060101); E03C 1/02 (20060101); C22F 1/08 (20060101);