System and Method for Providing Health Safety in a Wireless Power Transmission System

Embodiments in the present disclosure may be directed to a system and method for providing health safety in a wireless power transmission system. The wireless power transmission system disclosed here may include one or more wireless power transmitters, one or more wireless power receivers, one or more mobile client devices each running GUI system management software, one or more remote information service servers, and one or more active or inactive system management servers. The presently active system management server may host web service for system management GUI. The servers may be local or located remotely within a cloud. The method may include a checklist of proscribed circumstances or criteria that may allow the user to specify the circumstances when wireless power should not be transmitted to the client device in use by the user.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present disclosure is related to U.S. non-provisional patent application DWV-3DPF-010 entitled “Methodology for Pocket-forming”; and DWV-3DPF-028 entitled “Methodology for Multiple Pocket-Forming”; DWV-3DPF-015 entitled “Method for 3 Dimensional Pocket-forming”; DWV-3DPF-027 entitled “Receivers for Wireless Power Transmission”; DWV-3DPF-029 entitled “Transmitters for Wireless Power Transmission” invented by Michael Leabman, each of which are incorporated by reference in their entirety herein.

N/A

BACKGROUND

1. Field of the Disclosure

The present disclosure relates generally to wireless power transmission systems, and more specifically to a system and method for providing health safety in a wireless energy system.

2. Background Information

Electronic devices such as laptop computers, smartphones, portable gaming devices, tablets and so forth may require power for performing their intended functions. This may require having to charge electronic equipment at least once a day, or in high-demand electronic devices more than once a day. Such an activity may be tedious and may represent a burden to users. For example, a user may be required to carry chargers in case his electronic equipment is lacking power. In addition, users have to find available power sources to connect to. Lastly, users must plugin to a wall power socket or other power supply to be able to charge his or her electronic device.

An approach to mitigate this issue may include using RF waves through suitable power transmission techniques such as pocket-forming. This approach may provide wireless power transmission while eliminating the use of wires or pads for charging devices. In addition, electronic equipment may require less components as typical wall chargers may not be required. In some cases, even batteries may be eliminated as a device may fully be powered wirelessly.

The approach may enable the creation of wireless power networks similar in structure to regular wireless local area networks (WLAN) where a wireless access point is used to provide internet or intranet access to different wireless devices. A wireless power transmitter may provide wireless power charging to a plurality of wireless power receivers that may be embedded in covers for smartphones, tablets, or the like. However, there are certain circumstances where wireless energy exposure may be harmful for the person that is using the device being charged.

For the foregoing reasons, there is a need for a method for providing health safety within a wireless power transmission system.

SUMMARY

Embodiments in the present disclosure may be directed to a system and method for providing health safety in a wireless power transmission system. The wireless power transmission system disclosed here may include one or more system computers, GUI system management software running on client devices, one or more remote information service servers, and one or more system management servers.

According to an embodiment, a method for proscribing client devices from receiving power from a wireless power transmission system, based on proscribed circumstances of health safety, may include the steps of downloading and installing a system management software app (GUI app) for the wireless power transmission system on client devices; enabling proscriptions for wireless power transmission to one or more client devices; displaying a checklist to user and allowing the user to specify proscribed circumstances or criteria when wireless power should not be transmitted to the client device; reading and verifying said proscriptions in the wireless power transmission system; applying proscribed circumstances policy throughout the system; and updating client device data records in WPTS's database. User may also specify said proscribed circumstances or criteria by using the system management web page GUI hosted by a system management server or cloud-based service.

GUI app running on said client device may continually monitor the client device to detect if the present operation of said client device matches any of the proscribed circumstances of health safety. Monitoring the client device may include, but is not limited to, reading measurement hardware within said device that determines device's present velocity, yaw, pitch, or roll, or attitude by using accelerometers or gyroscopes internal to said client device.

The health safety determination, of whether or not the client device is presently in a circumstance proscribed from receiving power from said transmission system, may be stored by the GUI app within the data record that describes control and configuration of said client device. Said record may be part of the WPTS's distributed database, a copy of which resides within said client device's memory. GUI app and other computers within the wireless power transmission system then automatically distribute said updated record throughout said system to keep all copies of said database, throughout the WPTS, identical. Updated record may also be communicated to other system computers by messages, or other methods.

Numerous other aspects, features and benefits of the present disclosure may be made apparent from the following detailed description taken together with the drawing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure can be better understood by referring to the following figures. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure. In the figures, reference numerals designate corresponding parts throughout the different views.

FIG. 1 illustrates a wireless power transmission example situation using pocket-forming.

FIG. 2 illustrates a component level embodiment for a transmitter, according to an embodiment.

FIG. 3 illustrates a component level embodiment for a receiver, according to an embodiment.

FIG. 4 illustrates an exemplary embodiment of a wireless power network including a transmitter and wireless receivers.

FIG. 5 shows a flowchart of a method for proscribing client devices from receiving power from a wireless power transmission system, based on proscribed circumstances of health safety.

DETAILED DESCRIPTION

The present disclosure is here described in detail with reference to embodiments illustrated in the drawings, which form a part here. Other embodiments may be used and/or other changes may be made without departing from the spirit or scope of the present disclosure. The illustrative embodiments described in the detailed description are not meant to be limiting of the subject matter presented here.

DEFINITIONS

As used here, the following terms may have the following definitions:

“Adaptive pocket-forming” may refer to dynamically adjusting pocket-forming to regulate power on one or more targeted receivers.

“APP” may refer to a software application that is run on a mobile, laptop, desktop, or server computer.

“BTLE”, or “BLE”, may refer to Bluetooth Low Energy communication hardware and/or software.

“Charge or charging” may refer to the conversion of RF energy into electrical energy by a receiver, using an antenna, where the electrical energy may be transmitted through an electrical circuit connection from the receiver to an electrically connected client device, where the transmitted energy may be used by the device to charge its battery, to power its functions, or any suitable combination.

“Network computer” may refer to any system computer, or the active remote information server, that is online and has a connection to the network of a particular wireless power transmission system.

“Null-space” may refer to areas or regions of space where pockets of energy do not form because of destructive interference patterns of RF waves.

“Operator” may refer to a person who installs or operates the wireless power transmission system. Operator may also be a system user.

“Pocket-forming” may refer to generating two or more RF waves which converge in 3-D space, forming controlled constructive and destructive interference patterns.

“Pockets of energy” may refer to areas or regions of space where energy or power may accumulate in the form of constructive interference patterns of RF waves.

“Pairing” may refer to the association, within the wireless power transmission system's distributed system database, of a single electronic client device with a single power receiver. In one or more embodiments, this may allow a system to determine from said association which power receiver to transmit power to in order to charge said client device upon receiving a command, from a user or automatic system process, that a client device is to be charged.

“Power” may refer to electrical energy, where “wireless power transmission” may be synonymous of “wireless energy transmission”, and “wireless power transmission” may be synonymous of “wireless energy transmission”.

“Receive Identification” may refer to an identification number or alphanumeric code or credential that is unique to a specific receiver.

“Receiver” may refer to a device including at least one antenna element, at least one rectifying circuit and at least one power converter, which may utilize pockets of energy for powering, or charging an electronic device.

“Remote information service” may refer to an Internet cloud-based product which may include a distributed system database, one or more servers and one or more software modules responsible for communicating information across all computers (or a specified subset) on the wireless power transmission system.

“System” may refer to a wireless power transmission system that transmits power from a transmitter to a receiver.

“System computer” may refer to a wireless power transmitter unit's embedded computer, a client device capable of running the system GUI, or a system management computer.

“System database” may refer to an exact copy of the system database of an installed product, or an exact copy of a subset of said database, stored within and accessible by any system computer.

“Transmitter” may refer to a device, including a chip which may generate two or more RF signals, at least one RF signal being phase shifted and gain adjusted with respect to other RF signals, substantially all of which pass through one or more RF antenna such that focused RF signals are directed to a target.

“User” may refer to a person using the system to provide wireless power transmission to a client device. User may be an operator.

“Wireless power transmission system” may refer to a discreet, installed product that includes wireless power receivers, wireless power transmitters, GUI system management software running on client devices, and management servers; all of which communicate together, share a common distributed system database, and do not communicate to any other wireless power transmission installed product, but do communicate with an Internet cloud-based remote information distribution service.

DESCRIPTION OF THE DRAWINGS

Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used here to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated here, and additional applications of the principles of the inventions as illustrated here, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.

Wireless Power Transmission System Including Disclosed Concepts:

Methods disclosed here may be part of a wireless power transmission system including two or more wireless power transmitters, one or more wireless power receivers, one or more optional system management servers, and one or more optional mobile or hand-held computers, smart phones, or the like, that run the system management GUI app. This app may be made available at, downloaded, and installed from a public software app store or digital application distribution platform, such as Apple's iTunes, Google's Play Store, Amazon's Appstore, and the like.

The system computers may all communicate with each other through a distributed system database or by exchange of messages between said system computers, and may also communicate present status and any status change to a remote information service that may be located in the Internet cloud. System computers may be power transmitters, smart client devices running the system app, and local or cloud-based management servers.

One or more wireless power transmitters may automatically transmit power to any single wireless power receiver that is close enough for it to establish a communication connection with, using a suitable communication technology, including Bluetooth Low Energy or the like. Said receiver may then power or charge an electrically connected client device, such as mobile device, toy, remote control, lighting device, and the like. A single wireless power transmitter may also power multiple wireless power receivers simultaneously.

Alternately, the system can be configured by the system management GUI to automatically only transmit power to specific wireless power receivers depending on specific system criteria or conditions, such as the time or hour of the day for automatic time-based scheduled power transmission, power receiver physical location, owner of client device, or other any other suitable conditions and/or criteria.

The wireless power receiver is connected electrically to a client device, such a mobile phone, portable light, TV remote control, or any device that would otherwise require a battery or connection to wall power. In one or more embodiments, devices requiring batteries can have traditional batteries replaced by wireless power receiver batteries. The wireless power receiver then receives energy transmitted from the power transmitter, into receiver's antenna, rectifies, conditions, and sends the resulting electrical energy, through an electrical relay switch, to the electrically connected client device to power it or charge it.

A wireless power transmitter can transmit power to a wireless power receiver, which, in response, can power or charge its associated client device while device is in use or in motion anywhere within the power transmission range of the wireless power transmitter. The wireless power transmitter can power multiple devices at the same time.

The wireless power transmitter establishes a real-time communication connection with each receiver for the purpose of receiving feedback in real-time (such as 100 samples per second). This feedback from each receiver includes the measurement of energy presently being received, which is used by the transmitter to control the direction of the transmitter's antenna array so that it stays aimed at the receiver, even if the receiver moves to a different physical 3-D location or is in 3-D motion that changes its physical 3-D location.

Multiple wireless power transmitters can power a given, single receiver, in order to substantially increase power to it.

When a transmitter is done transmitting power to a receiver, it may communicate to the receiver that power transmission has ended, and disconnect communication. The wireless power transmitter may then examine its copy of the distributed system database to determine which, if any, receivers in power range it should next transmit power to.

FIG. 1 illustrates wireless power transmission 100 using pocket-forming. A transmitter 102 may transmit controlled Radio Frequency (RF) waves 104 which may converge in 3-D space. RF waves 104 may be controlled through phase and/or relative amplitude adjustments to form constructive and destructive interference patterns (pocket-forming). Pockets of Energy 106 may form at constructive interference patterns and may be 3-Dimensional in shape, whereas null-spaces may be generated at destructive interference patterns. A Receiver 108 may then utilize Pockets of Energy 106 produced by pocket-forming for charging or powering an electronic device, for example a laptop computer 110, and thus providing wireless power transmission 100. In embodiments disclosed here, there may be two or more transmitters 102 and one or more receivers 108 for powering various electronic devices. Examples of suitable electronic devices may include smartphones, tablets, music players, and toys, amongst others. In other embodiments, adaptive pocket-forming may be used to regulate power on suitable electronic devices.

FIG. 2 illustrates a component level embodiment for a transmitter 202 which may be utilized to provide wireless power transmission 100 as described in FIG. 1. Transmitter 202 may include a housing 204 where at least two or more antenna elements 206, at least one RF integrated circuit (RFIC 208), at least one digital signal processor (DSP) or micro-controller 210, and one optional communications component 212 may be included. Housing 204 can be made of any suitable material which may allow for signal or wave transmission and/or reception, for example plastic or hard rubber. Antenna elements 206 may include suitable antenna types for operating in suitable frequency bands, such as 900 MHz, 2.5 GHz, or 5.8 GHz, and any other frequency bands that may conform to Federal Communications Commission (FCC) regulations part 18 (Industrial, Scientific and Medical equipment) or any other suitable regulations. Antenna elements 206 may include vertical or horizontal polarization, right hand or left hand polarization, elliptical polarization, or other suitable polarizations as well as suitable polarization combinations. Suitable antenna types may include, for example, patch antennas with heights from about ⅛ inches to about 6 inch and widths from about ⅛ inches to about 6 inch. Other antenna elements 206 types may be used, including meta-materials, dipole antennas, and others. RFIC 208 may include a chip for adjusting phases and/or relative magnitudes of RF signals, which may serve as inputs for antenna elements 206 for controlling pocket-forming. These RF signals may be produced using an external power supply 214 and a local oscillator chip (not shown) using a suitable piezoelectric materials. Micro-controller 210 may then process information sent by a receiver through its own antenna elements for determining optimum times and locations for pocket-forming. In some embodiments, the foregoing may be achieved through communications component 212. Communications component 212 may be based on standard wireless communication protocols which may include Bluetooth, Bluetooth Low Energy, Wi-Fi, and/or ZigBee, amongst others. In addition, communications component 212 may be used to transfer other information, including identifiers for the device or user, battery level, location or other such information. The micro-controller may determine the position of a device using any suitable technology capable of triangulation in communications component 212, including radar, infrared cameras, and sound devices, amongst others.

Multiple transmitter 202 units may be placed together in the same area to deliver more power to individual power receivers or to power more receivers at the same time, said power receivers being within power reception range of two or more of multiple power transmitters 202.

FIG. 3 illustrates a component level embodiment for a receiver 300 which may be used for powering or charging an electronic device as exemplified in wireless power transmission 100. Receiver 300 may include a housing 302 where at least one antenna element 304, one rectifier 306, one power converter 308 and an optional communications component 312 may be included. Housing 302 can be made of any suitable material which may allow for signal or wave transmission and/or reception, for example plastic or hard rubber. Housing 302 may be an external hardware that may be added to different electronic equipment, for example in the form of cases, or may be embedded within electronic equipment as well. Antenna element 304 may include suitable antenna types for operating in frequency bands similar to the bands described for transmitter 202 from FIG. 2. Antenna element 304 may include vertical or horizontal polarization, right hand or left hand polarization, elliptical polarization, or other suitable polarizations as well as suitable polarization combinations. Using multiple polarizations can be beneficial in devices where there may not be a preferred orientation during usage or whose orientation may vary continuously through time, for example a smartphone or portable gaming system. On the contrary, for devices with well-defined orientations, for example a two-handed video game controller, there might be a preferred polarization for antennas which may dictate a ratio for the number of antennas of a given polarization. Suitable antenna types may include patch antennas with heights from about ⅛ inches to about 6 inch and widths from about ⅛ inches to about 6 inch. Patch antennas may have the advantage that polarization may depend on connectivity, i.e. depending on which side the patch is fed, the polarization may change. This may further prove advantageous as a receiver, such as receiver 300, may dynamically modify its antenna polarization to optimize wireless power transmission. Rectifier 306 may include diodes or resistors, inductors or capacitors to rectify the alternating current (AC) voltage generated by antenna element 304 to direct current (DC) voltage. Rectifier 306 may be placed as close as is technically possible to antenna element 304 to minimize losses. After rectifying AC voltage, DC voltage may be regulated using power converter 308. Power converter 308 can be a DC-DC converter which may help provide a constant voltage output, regardless of input, to an electronic device, or as in this embodiment to a battery 314. Typical voltage outputs can be from about 5 volts to about 10 volts. Lastly, communications component 312, similar to that of transmitter 202 from FIG. 2, may be included in receiver 300 to communicate with a transmitter 202 or to other electronic equipment.

FIG. 4 shows an exemplary embodiment of a wireless power transmission system 400 (WPTS) in which one or more embodiments of the present disclosure may operate. Wireless power transmission system 400 may include communication between one or more wireless power transmitters 402 and one or more wireless powered receivers 406 and within client device 438. Client device 404 may be paired with an adaptable paired receiver 406 that may enable wireless power transmission to the client device 404. In another embodiment, a client device 438 may include a wireless power receiver built in as part of the hardware of the device. Client device 404 or 438 may be any device which uses an energy power source, such as, laptop computers, stationary computers, mobile phones, tablets, mobile gaming devices, televisions, radios and/or any set of appliances that may require or benefit from an electrical power source.

In one embodiment, one or more wireless power transmitters 402 may include a microprocessor that integrates a power transmitter manager app 408 (PWR TX MGR APP) as embedded software, and a third party application programming interface 410 (Third Party API) for a Bluetooth Low Energy chip 412 (BTLE CHIP HW). Bluetooth Low Energy chip 412 may enable communication between wireless power transmitter 402 and other devices, including power receiver 406, client device 404 and 438, and others. Wireless power transmitter 402 may also include an antenna manager software 414 (Antenna MGR Software) to control an RF antenna array 416 that may be used to form controlled RF waves which may converge in 3-D space and create pockets of energy on wireless powered receivers. In some embodiments, one or more Bluetooth Low Energy chips 412 may utilize other wireless communication protocols, including WiFi, Bluetooth, LTE direct, or the like.

Power transmitter manager app 408 may call third party application programming interface 410 for running a plurality of functions, including the establishing of a connection, ending a connection, and sending data, among others. Third party application programming interface 410 may issue commands to Bluetooth Low Energy chip 412 according to the functions called by power transmitter manager app 408.

Power transmitter manager app 408 may also include a distributed system database 418, which may store relevant information associated with client device 404 or 438, such as their identifiers for a client device 404 or 438, voltage ranges for power receiver 406, location of a client device 404 or 438, signal strength and/or any other relevant information associated with a client device 404 or 438. Database 418 may also store information relevant to the wireless power network, including receiver ID's, transmitter ID's, end-user handheld devices, system management servers, charging schedules, charging priorities and/or any other data relevant to a wireless power network.

Third party application programming interface 410 at the same time may call power transmitter manager app 408 through a callback function which may be registered in the power transmitter manager app 408 at boot time. Third party application programming interface 410 may have a timer callback that may go for ten times a second, and may send callbacks every time a connection begins, a connection ends, a connection is attempted, or a message is received.

Client device 438 may include a power receiver app 420 (PWR RX APP), a third party application programming interface 422 (Third party API) for a Bluetooth Low Energy chip 424 (BTLE CHIP HW), and an RF antenna array 426 which may be used to receive and utilize the pockets of energy sent from wireless power transmitter 402.

Power receiver app 420 may call third party application programming interface 422 for running a plurality of functions, including establishing a connection, ending a connection, and sending data, among others. Third party application programming interface 422 may have a timer callback that may go for ten times a second, and may send callbacks every time a connection begins, a connection ends, a connection is attempted, or message is received.

Client device 404 may be paired to an adaptable power receiver 406 via a BTLE connection 428. A graphical user interface (GUI 430) may be used to manage the wireless power network from a client device 404. GUI 430 may be a software module that may be downloaded from any suitable application store and may run on any suitable operating system, including iOS and Android, amongst others. Client device 404 may also communicate with wireless power transmitter 402 via a BTLE connection 428 to send important data, such as an identifier for the device, battery level information, geographic location data, or any other information that may be of use for wireless power transmitter 402.

A wireless power manager 432 software may be used in order to manage wireless power transmission system 400. Wireless power manager 432 may be a software module hosted in memory and executed by a processor inside a computing device 434. The wireless power manager 432 may include a local application GUI, or host a web page GUI, from where a user 436 may see options and statuses, as well as execute commands to manage the wireless power transmission system 400. The computing device 434, which may be cloud-based, may be connected to the wireless power transmitter 402 through standard communication protocols, including Bluetooth, Bluetooth Low Energy, Wi-Fi, or ZigBee, amongst others. Power transmitter manager app 408 may exchange information with wireless power manager 432 in order to control access by and power transmission to client devices 404. Functions controlled by wireless power manager 432 may include scheduling power transmission for individual devices, prioritizing between different client devices, accessing credentials for each client, tracking physical locations of power receivers relative to power transmitter areas, broadcasting messages, and/or any functions required to manage the wireless power transmission system 400.

FIG. 5 shows a flowchart of a method 500 for proscribing client devices from receiving power from a wireless power transmission system, based on proscribed circumstances of heath safety. The disclosed method may operate in one or more components of a wireless power transmission system. The wireless power transmission system may include one or more system computers, GUI system management software running on client devices, one or more remote information service servers, and one or more system management servers, among others.

The remote information service server may be coupled to a system database which may be duplicated or distributed across all network computers operating in the wireless power transmission system. Said distributed system database along with the database distribution management software operating within all network computers may allow instant communication in the wireless power transmission system.

Examples of system computers may include wireless power receivers, wireless power transmitters, and system management servers, among others. Examples of client devices may include smartphones, tablets, and music players, among others.

The process may start at step 502 when the wireless power transmission system (WPTS) boots up and runs a system checkup to make sure all communication channels work properly. Subsequently, at step 504 the user may download and install the system management software app (GUI App) in client device for the WPTS, if this step has not already been done. This app may be made available at, downloaded, and installed from a public software app store or digital application distribution platform, such as Apple's iTunes, Google's Play Store, Amazon's Appstore, and the like. In other embodiments, the user may browse to a web page hosted by a computer or server where the user may command, control, or configure the WPTS. The app or web page may have a user interface that includes, but is not limited to, industry standard checkmark controls, or any other user interface control for specifying or controlling health safety operational parameters, displayed and described on the viewscreen of a client device, or web page served by a computer that manages the wireless power transmission system.

Following the process, at decision 506, the GUI app verifies if there are any proscriptions for power transmission enabled in the WPTS. If proscriptions for power transmission have been enabled, continues to step 518 below, otherwise proscriptions for power transmission have not yet been enabled, then at decision 508, GUI may display a message to the user asking if the user desires to enable health safety operational parameters for wireless power transmission. If the user does not accept to enable proscriptions, then WPTS allows power delivery without proscriptions, at step 526, and the process ends. If at decision 508 the user accepts to enable proscriptions, then at step 510, the GUI app may display a check list to user where he or she may specify the circumstances when wireless power should not be transmitted to the device in use by the user. Then, at step 512, the user specifies the proscribed circumstances which may include, but are not limited to, the following criteria:

1) If the client device is presently in movement, indicating that the user has the device on the user's person or is holding or wearing the device.

2) If the client device is presently physically oriented in any attitude that is an indication that it is in use. For example, if the device is a mobile cell phone that is presently vertically oriented.

3) If the client device presently detects that it is within proximity to a user, such as if the device is being held to the user's face.

4) If the client device presently is placing a telephone call.

5) If the user is presently touching, tapping, or making finger gestures such as swiping, pinching, twirling, or interacting with the client device in any way.

6) If the client device is presently connected with a headset or any other external device.

Subsequently, at step 514, after the user specifies proscribed circumstances or criteria, applies proscribed circumstances policy throughout all system computers. Then, at step 516, WPTS updates Client Device data records in its distributed database. the WPTS reads and verifies proscribed circumstances associated with the client device. Subsequently, at step 518, the WPTS reads and verifies proscribed circumstances associated with the client device. Next, at decision 520, if proscribed circumstances are present, then at step 522, power delivery is disabled, or if at decision 520, proscribed circumstances are not present, then power delivery is enabled at step 524. The process ends.

GUI app running on said client device may continually monitor the client device to detect if the present operation of said client device matches any of the proscribed circumstances of health safety. Monitoring the client device may include, but is not limited to, reading measurement hardware within said device that determines device's present velocity, yaw, pitch, or roll, or attitude by using accelerometers or gyroscopes internal to said client device, or a sensor that indices if device is help to face, or sensing any other aspect of the device that indicates if a proscribed circumstance is present

The health safety determination, of whether or not the client device is presently in a circumstance proscribed from receiving power from said transmission system, may be stored by the GUI app within the data record that describes control and configuration of said client device. Said record may be part of the WPTS's distributed database, a copy of which resides within said client device's memory. GUI app and other computers within the wireless power transmission system then automatically distribute said updated record throughout said system to keep all copies of said database, throughout the WPTS, identical.

Examples

Example #1 describes how a decision is made to transmit power to a client device. Within the system database, the record of a paired client device is associated with the record of the wireless power receiver attached or built within said client device.

If the user uses any user interface (GUI or web page) of a WPTS to manually command said client device be charged (from power received by said wireless power receiver), or if the user has used said user interface to configure the record of said wireless power receiver to automatically charge said client device, such as by time, name, or physical location, or other method, then, the record of said wireless power receiver will be updated by the wireless power transmitter that has present control of the database record of said wireless power receiver because it is the nearest wireless power transmitter to said wireless power receiver, to indicate that said wireless power receiver should presently close its output switch to allow power to output to said client device. Said record of said wireless power receiver is also distributed, by said wireless power transmitter, throughout said system for other wireless power transmitters to read.

Once said wireless power transmitter that controls said wireless power receiver determines it should transmit power to said wireless power receiver, it next examines the record of the client device associated or paired with said wireless power receiver, and will only transmit power to said wireless power receiver if said health safety determination does not presently proscribe transmission of power to said client device. If power transmission is not proscribed, then power transmitter may take the following actions:

A) Begins real-time communication with said receiver to get continuous feedback of amount of power received, in order to keep transmission antennas aimed at said receiver.

B) Begins power transmission to said receiver.

C) Commands receiver to close its electrical relay switch to connect and transmit electrical energy to client device.

If user changes said safety proscriptions, then said wireless power transmitter will re-determine if said wireless power receiver should receive power or not.

The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the steps of the various embodiments must be performed in the order presented. As will be appreciated by one of skill in the art the steps in the foregoing embodiments may be performed in any order. Words such as “then,” “next,” etc. are not intended to limit the order of the steps; these words are simply used to guide the reader through the description of the methods. Although process flow diagrams may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination may correspond to a return of the function to the calling function or the main function.

The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed here may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.

Embodiments implemented in computer software may be implemented in software, firmware, middleware, microcode, hardware description languages, or any combination thereof. A code segment or machine-executable instructions may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.

The actual software code or specialized control hardware used to implement these systems and methods is not limiting of the invention. Thus, the operation and behavior of the systems and methods were described without reference to the specific software code being understood that software and control hardware can be designed to implement the systems and methods based on the description here.

When implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable or processor-readable storage medium. The steps of a method or algorithm disclosed here may be embodied in a processor-executable software module which may reside on a computer-readable or processor-readable storage medium. A non-transitory computer-readable or processor-readable media includes both computer storage media and tangible storage media that facilitate transfer of a computer program from one place to another. A non-transitory processor-readable storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such non-transitory processor-readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other tangible storage medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer or processor. Disk and disc, as used here, include compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable medium and/or computer-readable medium, which may be incorporated into a computer program product.

The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined here may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown here but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed here.

Claims

1. A system for controlling wireless transmission of three-dimensional pockets of energy using pocket forming, comprising:

a processing apparatus;
a storage, operatively coupled to the processing apparatus; and
one or more wireless power transmitters, communicatively coupled to the processing apparatus, the wireless power transmitters being configured to transmit the three-dimensional pockets of energy;
wherein the processing apparatus is configured to receive and process wireless power proscribing data relating to a device, wherein the proscribing data comprises at least one of (i) a device characteristic and (ii) time data,
and wherein the processing apparatus is configured to transmit an operational command to the one or more power transmitter in response to processing the wireless power proscribing data.

2. The system of claim 1, wherein the device characteristic comprises data relating to one of (a) movement of the device and (b) an orientation of the device.

3. The system of claim 1, wherein the device characteristic comprises data relating to proximity of the device to a user.

4. The system of claim 1, wherein the device characteristic comprises data relating to device usage by a user.

5. The system of claim 1, wherein the device characteristic comprises data relating to a peripheral device being connected to the device.

6. The system of claim 1, wherein the proscribing data comprises at least one of device sensor data and schedule data.

7. The system of claim 1, wherein the processing apparatus is configured to receive and process further wireless power proscribing data relating to the device and to transmit an updated operational command to the one or more power transmitter in response to processing the further wireless power proscribing data.

8. A method for controlling wireless transmission of three-dimensional pockets of energy using pocket forming, comprising:

receiving and processing, in a processing device, wireless power proscribing data relating to a user device, wherein the proscribing data comprises at least one of (i) a user device characteristic and (ii) time data; and
transmitting an operational command from the processing device to one or more power transmitters, configured to transmit the three-dimensional pockets of energy, in response to processing the wireless power proscribing data.

9. The method of claim 8, wherein the device characteristic comprises data relating to one of (a) movement of the device and (b) an orientation of the device.

10. The method of claim 8, wherein the device characteristic comprises data relating to proximity of the device to a user.

11. The method of claim 8, wherein the device characteristic comprises data relating to device usage by a user.

12. The method of claim 8, wherein the device characteristic comprises data relating to a peripheral device being connected to the device.

13. The method of claim 8, wherein the proscribing data comprises at least one of device sensor data and schedule data.

14. The method of claim 8, further comprising the steps of receiving and processing further wireless power proscribing data relating to the user device and transmitting an updated operational command to the one or more power transmitter in response to processing the further wireless power proscribing data.

15. A processor-based method for controlling wireless reception of three-dimensional pockets of energy using pocket forming, comprising:

generating proscribing data in a user device, wherein the proscribing data comprises at least one of (i) a user device characteristic and (ii) time data;
transmitting the proscribing data from the user device to a wireless power system;
receiving charging instructions from the wireless power system, wherein the charging instructions include control data for controlling a manner in which the user device receives three-dimensional pockets of energy from the wireless power system.

16. The method of claim 15, wherein the user device characteristic comprises data relating to one of (a) movement of the device and (b) an orientation of the device.

17. The method of claim 15, wherein the user device characteristic comprises data relating to proximity of the device to a user.

18. The method of claim 15, wherein the user device characteristic comprises data relating to device usage by a user.

19. The method of claim 15, wherein the user device characteristic comprises data relating to a peripheral device being connected to the device.

20. The method of claim 15, wherein the proscribing data comprises at least one of user device sensor data and schedule data.

Patent History
Publication number: 20160013656
Type: Application
Filed: Jul 14, 2014
Publication Date: Jan 14, 2016
Patent Grant number: 10128693
Inventors: Douglas Bell (Pleasanton, CA), Michael Leabman (San Ramon, CA)
Application Number: 14/330,939
Classifications
International Classification: H02J 5/00 (20060101); H04W 4/02 (20060101); H04B 1/3827 (20060101);