SPOUT FITMENT FOR COLLAPSIBLE PACKAGE FOR FOOD PRODUCTS

Embodiments disclosed herein are directed to a spout fitment for a collapsible food package. The spout fitment includes a flange and a spout extending from the flange. A frangible membrane is disposed internal of the spout. The frangible membrane is configured to tear away from the spout along a tear path that is defined by a reduced thickness of the frangible membrane. A pull ring is coupled to the frangible membrane. The tear path defines at least one stress concentrator curve that is configured to reduce a pull force applied to the pull ring required to create an initial tear of the frangible membrane.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

The present invention relates generally to containment and delivery of food items, and more particularly to an improved spout fitment for a collapsible food package.

BACKGROUND

Food packaging serves a variety of functions, such as, for example, safe and generally sterile storage of food product. Of course, packages also function to contain the food product such that it remains fresh and tasty for consumption. In addition to containment of food product, a consumer must also be able to easily dispense the food product conveniently and cleanly. However, different food products present different challenges for its respective packaging. For example, liquid commonly forms in voids or spaces inside sour cream packaging primarily due to “fracturing” or breaking apart of the sour cream, either from transport or use. Thus, when dispensing the sour cream, such liquid is dispensed with or in lieu of the sour cream making the sour cream oftentimes less desirable. Conventional sour cream cup containers, for example, account for such liquid buildup by allowing a user access to the cup container to gently stir the product to blend the sour cream and liquid together before serving; however, such mixing is burdensome and can reduce the freshness of the sour cream.

Dairy products, such as sour cream, must be properly sealed to ensure that the product can be sterilized and remains fresh when the consumer is ready to consume the product. Reference is made to FIGS. 1A and 1B in connection with U.S. Pat. No. 5,810,184 to Adams et al. (“Adams”), which is hereby incorporated by reference and discloses a fitment 50 for use as a pour spout for a paper carton or flexible bag for liquids and powders. The fitment 50 includes a flange 52 which may be welded around a hole in the carton. A spout 54 projects from the flange 52 and includes threads 56 for receiving corresponding threads of a replaceable cap. The fitment 50 includes a removable membrane 58 disposed interior to the spout 54. An outer top surface of the membrane 58 is concave. A horizontally disposed pull ring 60 is attached to the membrane 58 by a vertically extending portion 62 that is reinforced with a vertically extending gusset 64.

To access the contents of the carton or flexible bag, a user pulls the pull ring 60 which begins fracturing the membrane 58 at a tear line 66. The tear line 66 is circular, and therefore the tear propagates from an area proximate the connection of the vertically extending portion 62 clockwise 180 degrees and counterclockwise 180 degrees. Once the propagating tears reach a rear portion of the membrane 58 that is disposed opposite the vertically extending portion 62, the two tear propagations meet and the membrane 58 is completely separated from the fitment 50. An initial force of about 6 lbs is required to initiate the initial tearing of the membrane 58.

Reference is made to U.S. Patent Application Publication No. 2005/0205618 by Mabee et al., which discloses a fitment with a frangible membrane, a pull tab, and an open-ended conduit or spout. The opening and the conduit are intended to accommodate inflow of ambient air as the contents are poured from the container. The conduit and opening are ellipsoidal in shape such that they have a major portion and a minor portion that is smaller than the major portion. The tear path of the frangible membrane follows the shape of the conduit, and the initial tear is initiated at the minor portion, which minimizes the force required to initiate the tearing away of the membrane.

Reference is made to U.S. Pat. No. 4,838,429 to Fabisiewicz et al. (“Fabisiewicz”), which discloses a flexible thermoplastic pouch having an easy-open tear strip. When a user grasps and pulls the tear strip, a tear is initiated at two points of high stress concentration formed by a W-shaped portion of the pouch. Fabisiewicz counsels against causing a rupture along a thinned score line to avoid unintended fracturing where the thermoplastic material is thinner than the rest of the thermoplastic pouch.

The membrane of the prior art can be improved, particularly when applied to flexible and collapsible packaging.

SUMMARY

Embodiments disclosed herein are directed to a spout fitment for a collapsible food package. The spout fitment includes a flange and a cylindrical spout extending from the flange. A frangible membrane is disposed internal of the spout. The frangible membrane is configured to tear away from the spout along a tear path that is defined by a reduced thickness of the frangible membrane. A pull ring is coupled to the frangible membrane. The tear path includes a stress concentrator curve that reduces the pull force applied to the pull ring required to create an initial tear of the frangible membrane.

According to certain embodiments, the flange of the spout fitment is secured to an interior surface of a collapsible pouch that is configured to be supported by a cap assembly in a cap-down orientation. The spout portion of the spout fitment includes threads that are configured to receive corresponding threads of the cap assembly. When a user desires to access a dairy product contained in the collapsible pouch, the user removes the cap assembly to expose the spout fitment. The user may then grasp the pull ring and pull upward and rearward to initiate a tear of the frangible membrane. Continued pulling of the pull ring will completely separate the frangible membrane from the spout fitment.

When pulling the frangible membrane, the user exerts a pull force that is opposed in order to tear the frangible membrane. According to the teaching of the present disclosure, the user exerts this opposing force by gripping the collapsible pouch that is filled with a diary product, such as sour cream. In order to reduce the incidence of, or prevent unintentional dispensing of the diary product, the pull force required to initiate tearing of the frangible membrane, and thus the gripping force opposing this pull force, is significantly reduced from the force applied to a conventional pull ring to initiate a tear of a frangible membrane.

Other technical advantages will be readily apparent to one of ordinary skill in the art from the following figures, descriptions, and claims. Moreover, while specific advantages have been enumerated above, various embodiments may include all, some, or none of the enumerated advantages.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts, in which:

FIGS. 1A and 1B are a top plan view and a cross section respectively of a prior art spout fitment with a frangible membrane;

FIG. 2 is an isometric view of a collapsible package for a food product according to an embodiment of the present disclosure;

FIG. 3 is a top view of the collapsible package of FIG. 1;

FIG. 4 is an isometric exploded view of the collapsible package of FIG. 1 illustrating a spout fitment according to an embodiment of the present disclosure;

FIG. 5 is a section view of the collapsible package of FIGS. 1 and 2 taken along the line 5-5 of FIG. 3;

FIG. 6 is an isometric view of a collapsible package with a cap configured in an open position and a valve in a closed position;

FIG. 7 is a detailed view of the valve of FIG. 6 in an open position;

FIG. 8 is a top plan view of the spout fitment of FIG. 4 illustrating a tear path of a frangible membrane;

FIG. 9 is a section view of the spout fitment of FIG. 8 taken along the line 9-9;

FIG. 10 is a top plan view of an alternate embodiment of a spout fitment with a frangible membrane; and

FIG. 11 is a top plan view of a further alternate embodiment of a spout fitment with a frangible membrane.

DETAILED DESCRIPTION OF THE DRAWINGS

Reference is made to FIG. 2, which shows a food containment and delivery system or collapsible package 10 according to an embodiment of the present disclosure. The food containment and delivery system 10 includes a collapsible pouch 12 and a cap 14 at a dispensing end 15a. In the embodiment illustrated in FIG. 2, the collapsible pouch 12 is generally wedge-shaped with a thin non-dispensing end 15b disposed opposite the dispensing end 15a. Preferably, the collapsible pouch 12 is formed of a metalized film; however, it should be understood that the collapsible pouch 12 may be otherwise formed of any other type of material, such as a foil laminate, a laminar band or sheet of aluminum type foil, a monolayer extruded film, a multi-layered extruded film, a multi-layered laminated film, or a co-extruded film, as examples. When forming the collapsible pouch 12, as explained in greater detail below, a spout fitment 24 (best illustrated in FIG. 4) is secured to the metalized film, which may then be appropriately folded to form the collapsible pouch 12, as shown for example, in FIG. 2.

In the embodiment illustrated in FIG. 2, a plurality of seals are formed on the edges of the foil to form the collapsible pouch 12, which is suitable to contain a food item, such as, but not limited to, sour cream, cottage cheese or whip cream. In FIG. 2, a single horizontal top seal 16 seals the non-dispensing end 15b of the collapsible pouch 12 opposite the dispensing end 15a. Each end of the top seal 16 intersects a respective longitudinal seal 18 each of which extend from the top seal 16 toward the dispensing end 15a of the pouch 12. In the embodiment illustrated in FIG. 2, the longitudinal seals 18 merge into respective pairs of angled seals 20 (best seen in FIGS. 4 and 6). Each of the seals 16, 18 and/or 20 described herein may be formed by heat or by ultrasonically welding portions of the folded foil edges.

In the embodiments disclosed herein, the cap 14 includes a support surface 22 to enable the food containment and delivery system 10, and in particular, the collapsible pouch 12, to be inverted (i.e., the non-dispensing end 15b being disposed above the dispensing end 15a with the cap facing downward as illustrated in FIG. 2) and supported on a support surface (i.e., a table, shelf, box, etc.). In this manner, gravity causes the contents of the food containment and delivery system 10 (i.e., the product) to remain stable and proximal to the dispensing cap 14 and not be disturbed by repeatedly inverting the system 10. Thus, when it is desired to deliver sour cream or other food product from within collapsible pouch 12, the cap 14 is opened and the collapsible pouch 12 is squeezed to deliver the food product through a valve 40 disposed at the dispensing end 15a. Squeezing the collapsible pouch 12 causes it to deform and otherwise collapse. In use, the collapsible pouch 12 provides an indicator of the quantity of dairy product remaining in the container 10 (i.e., when the collapsible pouch 12 is fully collapsed, no food product remains in the collapsible pouch 12). The collapsing action of the collapsible pouch also allows product to be dispensed without creating negative pressure inside the pouch 12, thereby preventing the entry of ambient, unsterile air inside the pouch 12 through the valve 40.

Reference is now made to FIG. 3, which shows the dispensing end 15a of the food containment and delivery system 10 of FIG. 2. Although not illustrated, an embodiment of the cap 14 may generally cover the surface area of the dispensing end 15a, including two opposed angled portions 30, which provides sufficient surface area of a support surface 22 of the cap 14 to allow the system 10 to remain upright in its inverted orientation, even if the collapsible pouch 12 were to sag or otherwise become displaced away from being aligned with the center of gravity of the system.

In certain embodiments, the support surface 22 may be generally flat, and in an alternate embodiment a perimeter of the support surface may be slightly contoured (i.e., concave). Regardless, the cap 14 and the support surface 22 are sufficiently sized to provide a suitable surface for supporting the food containment and delivery system 10 in an inverted orientation, whether the pouch 12 is completely full, partially full, or even empty.

FIG. 4 illustrates an exploded view of the food containment and delivery system 10 of FIGS. 2 and 3. The spout fitment 24 is disposed at least partially within the collapsible pouch 12 and extends through an opening in the collapsible pouch to receive and secure the cap 14 thereto (see FIG. 5). The spout fitment 24 includes a spout 34, a pull ring 35, and a flange 32, which provides a surface to enable fastening to the collapsible pouch 12. The spout 34 also includes spout threads 36, which receive or are received by corresponding threads on the cap 14 to secure the cap 14 to the spout 34.

The collapsible pouch 12 generally comprises a wedge portion 26, a horizontal portion 28, and two opposed angled portions 30. The width of the collapsible foil pouch 12 generally corresponds to the flange 32. According to embodiments disclosed herein, a spout side 34a of the flange 32 is heat or ultrasonically welded or otherwise secured to the inside surface of the horizontal portion 28 of the collapsible pouch 12 (best illustrated in FIG. 5). Subsequently, the sheet of foil is folded and sealed to form the collapsible pouch 12 around the spout fitment 24.

In certain embodiments, the spout 34 may initially be sealed to allow the pouch 12 and the spout fitment 24 to be filled and sterilized. The closed spout 34 facilitates filling the pouch 12 through non-dispensing end 15b. To that end, after substantially forming the collapsible pouch 12, the top seal 16 may be left open at the non-dispensing end 15b. That is, the top seal 16 may be only partially formed or not formed at all. Thus, the product to be stored within the collapsible pouch 12 may be filled through the open edges of the pouch 12 that ultimately form the top seal 12. Once the collapsible pouch 12 is filled, the top seal 16 is preferably formed by heat or ultrasonic welding to otherwise secure the edges together. Accordingly, the food containment and delivery system 10 may be formed, filled, stored, and transported all while maintaining system 10 in the inverted orientation, which as previously explained, enables the content of the product stored therein to remain stable with minimal disturbance.

FIG. 5 is a section view of the collapsible pouch 12 illustrating its generally wedged shape. Collapsible pouch 12 is sealed as shown and described herein to form a pouch cavity or storage area 38. The pouch 12 may be formed such that the cavity 38 is any desired volume. For example, the pouch cavity 38 may be configured to contain 14 ounces of dairy product in certain embodiments. In other embodiments, the pouch cavity 38 may be sized to contain 16 ounces of product. In other embodiments, for example, the pouch cavity may be sized to contain an amount of product that is less than 14 ounces.

Reference is now made to FIG. 6, which illustrates the food containment and delivery system 10 with the cap 14 in an open position thereby exposing the valve 40. The spout fitment 24 is not visible, but it is disposed beneath and supports the cap 14. The valve 40, when in a closed position, prevents the contents of the containment and delivery system 10 from inadvertently being delivered or otherwise leaking from the cavity 38. The valve 40 is preferably a perforated membrane of flexible and resilient material. In certain embodiments, the valve 40 may be a silicone membrane with perforations 42. The perforations 42 allow the silicone membrane to configure in an open position as best illustrated in FIG. 7. In its closed position, the valve 40 may be generally recessed into a raised annular portion 44 with perforations generally adjacent each other to seal the cavity 38. When squeezing the collapsible pouch 12 to deliver product from within the cavity 38, a force acts to separate the perforations 42, which opens the valve 40 thereby enabling delivery of the product from the collapsible pouch 12. As the pressure on the pouch 12 is released, the opening force on the valve 40 is removed causing the valve 40, and in particular, the perforations 42, to return to the closed position to seal cavity 38. The valve 40 in turn returns to its recessed position within the raised annular portion 44. In this manner, the valve 40 closes and prevents the product from draining out through the dispensing opening when there is no pressure applied to the collapsible pouch 12.

In operation, the collapsibility of the pouch 12 enables the food product to be dispensed through the valve 40 without creating a negative pressure within the pouch. In particular, because the packaging collapses when dispensing product and such packaging does not have sufficient rigidity to return to its original non-collapsed state, the pouch 12 maintains a positive pressure condition at all times. This prevents the “suck-back” of air and other unwanted contaminants into the cavity 38, thereby reducing the formation of liquid within the cavity 38.

In the embodiments illustrated herein, the cap 40 includes a living hinge 46. The living hinge 46 allows the cap 40 to be flipped open so that the product may be delivered through the valve 40. When the product has been delivered, the cap 40 may be closed and snapped shut via frictional engagement. Thus, the product remains fresh and the containment and delivery system 10 may rest on the horizontal support surface 22 in a generally inverted orientation.

Reference is now made to FIGS. 8 and 9, which are a top plan view and a section view respectively of the spout fitment 24 shown in FIG. 4. The spout fitment 24 includes a flange 32 about its perimeter. As described above, the flange 32 provides a surface to attach the spout fitment 24 to an inner surface of the collapsible pouch 12. The attaching surface of the flange 32 may include ribs or other features to facilitate welding or other suitable attachment to the collapsible pouch 12. The flange 32 may be nonsymmetrical in that it includes a generally flat edge 33 at a portion of its perimeter. This flat edge 33 facilitates securing the spout fitment 24 in the correct orientation with respect to the collapsible pouch 12 and the cap assembly 14.

The spout 34 extends upward from the flange 32 and has a cylindrical shape and includes threads 36 formed in an exterior surface. The threads 36 receive corresponding threads of the cap assembly 14 when the cap assembly 14 is rotated to be secured to the threads 36 of the spout 34. The threads 36 may be configured such that the cap assembly 14 has a predetermined orientation with respect to the collapsible pouch 12 when rotated onto the spout 34.

Disposed generally in the center of the spout fitment 24 is a frangible membrane 70. The frangible membrane 70 is removably attached internal to the spout 34. A pull ring 35 is also attached to the frangible membrane 70 and is sized sufficiently to allow insertion of an average sized finger of a user, and by grasping and pulling the pull ring 35 rearward and upward, the frangible membrane 70 separates from the spout 34. Removal of the frangible membrane 70 allows the contents of the collapsible pouch 12, such as sour cream or other dairy product, to be dispensed as described herein. Prior to removal of the frangible membrane 70, the food product is sealed in the collapsible pouch 12 and remains fresh. The spout fitment 24 also allows the food containment and delivery system 10 along with the food product contained therein to be sterilized or otherwise made suitable for consumption as a food product.

The pull ring 35 may be annular in shape such that its shape is generally concentric with the spout 34. In an alternate embodiment, the pull ring 35 may follow the shape of a tear path 74. In one embodiment in which the spout fitment 24 is fabricated by injection molding, the outer surface of the pull ring 35 is within the tear path 74 to accommodate certain constraints associated with the injection molding process.

A junction portion 72 of the spout fitment 24 extends downward from the pull ring 35 and joins the frangible membrane 70. As such, pulling the pull ring 35 exerts a pulling force on the frangible membrane 70 and tears the frangible membrane 70 along the tear path 74 such that it can be removed from the spout 34. The tear path 74 defines the opening through which the product will be dispensed, so a wider opening facilitates efficient dispensing of the product. According to the teachings of the present disclosure, the tear path 74 does not follow the cylindrical spout.

It is desirable to reduce the pull force required to separate the frangible membrane 70. A conventional fitment with a completely circular tear path requires approximately 6 pounds of pull force to initiate a tear in the frangible membrane. However, according to embodiments of the present disclosure, the required pulling force is significantly reduced. In certain embodiments, the required pulling force is reduced to half the required pulling force of conventional fitments. In one embodiment, a user may apply approximately 3 pounds of pulling force to cause the frangible membrane 70 to begin to separate from the spout 34.

When a user grips the collapsible pouch 12 to oppose the pulling force exerted on the pull ring 35, the user may apply a gripping force, which may unintentionally cause the product to spill or otherwise be forced out of the opening that is created by tearing the frangible membrane 70. However, if the pull force required to initiate tearing of the frangible membrane 70 is reduced, then the required gripping force opposing the pull force may likewise be reduced, which in turn reduces the likelihood that product will be unintentionally squirted or otherwise dispensed by the user. Moreover, the rigid portions of the system 10 are part of the cap assembly 14, which allows the user to maintain the system 10 in an inverted orientation. However, in accessing the pull ring 35 of the spout fitment 24, the cap assembly 14 is removed. Thus, the user is primarily left with the collapsible pouch 12 for gripping in order to oppose the pulling force.

According to an embodiment of the present disclosure, a tear stress concentrator curve 76 is provided proximate the junction 72 of the frangible membrane 70 and the pull ring 35. The tear stress concentrator curve 76 concentrates the pull force applied to the pull ring 35 over a specific portion of the tear path 74 and allows a tear to be initiated at the tear stress concentrator curve 76 with less pulling force. The initial tear stress concentrator curve 76 provides a reduced area over which the pull force exerted on the pull ring 35 is applied. According to one embodiment the stress concentrator curve 76 has a radius between 0.05 and 0.20 inches, for example 0.10 inches. The reduced radius creates a reduced area over a conventional completely circular tear path, which may have a radius of 0.4 to 0.6 inches. The tear path 74 deviates from the circular shape of the spout 34. For example, the initial stress concentrator curve 76 arcs toward the cylindrical spout 34. An apex 77 of the stress concentrator curve 76 may be generally aligned with a center portion of the junction 72 and with the rearward direction of the pull force applied to the pull ring 35 in order to concentrate the pull force on the tear stress concentrator curve 76. The initial tear stress concentrator curve 76 is delimited on each side by inwardly curved arcs 79a, 79b of the tear path 74.

The tear path 74 is a thinned region of the frangible membrane 70. In certain embodiments, the tear path may be approximately 12% to 20% of the wall thickness of the spout fitment 24, which may range in thickness 0.03 to 0.05 inches. For example, the reference dimension for the wall thickness of the spout fitment may be 0.045 inches and the thickness of the tear path 74 may be approximately 0.0055 inches.

The spout fitment 24 is a thin-walled polymeric part. The spout fitment 24 may be molded from a polymer material, however, it should be understood that any other type of material may be utilized. According to one embodiment, the spout fitment 24 is molded from a suitable polymeric material, such as linear low-density polyethylene. It may be manufactured using any suitable method for molding polymers, such as injection molding.

Once the tear is initiated, the tear will propagate along the tear path 74, first through tear stress concentrator curve 76, specifically the curved portions on each side of the apex 77 that are more aligned with the rearward pull force. The tear will propagate to each of the inwardly curved arcs 79a, 79b and on around each side of the tear path 74. Generally, the tear will propagate clockwise and counter-clockwise in each direction approximately 180 degrees. Tear propagation after the tear has already been initiated generally requires less pull force than the force required to initiate the tear. The two tear propagations will meet at a location 86 on the tear path approximately 180 degrees from the initial tear stress concentrator curve 76 and the frangible membrane 70 will completely separate from the fitment 24.

Reference is now made to FIG. 10, which is a top plan view of an alternate embodiment of a spout fitment 82. The spout fitment 82 includes a cylindrical spout 34 extending from a flange 32, which includes a flat 33 similar to the features shown and described with respect to the embodiment shown in FIGS. 8 and 9.

In this embodiment, at the location the two tear propagations approach each other, approximately 180° from the junction 72, a final stress concentrator curve 87 is disposed. The final tear of the tear path 74 that completely separates the frangible membrane from the spout 34 typically requires more pull force than the force required to continue the tear propagation. In some embodiments, the pull force required to complete the final tear may be more than the pull force required to make the initial tear. Similar to the initial tear stress concentrator curve 76, the final tear stress concentrator curve 87 provides a reduced area for the pull force to act on and thereby reduces the amount of pull force required to create the final tear. Reducing the pulling force required to completely separate the frangible membrane 70 reduces the likelihood that the collapsible package will be abruptly moved or shaken by the user immediately after the frangible membrane 70 is completely separated and the user continues to apply the gripping force even though the pulling force has been removed from the package due to the complete separation of the frangible membrane 70.

As the tear propagates, the frangible membrane 70 begins to separate from the spout 34 and the pull force will urge the separated portion of the frangible membrane 70 upward and rearward in the direction of arrow 79 (see FIG. 9). To that end, clearance zones 78a, 78b provide clearance between the frangible membrane 70 and an inner surface 80 of the spout 34. The clearance zones 78 are portions of the spout fitment 24 disposed on each side of the final tear concentrator curve 77 between the tear path 74 and the spout inner surface 80. Thus, as a rear portion of the frangible membrane 70 is separated along the tear path 74, any interference or contact between the separated frangible membrane 70 and the inner surface 80 is reduced or eliminated. By reducing such contact, no additional pulling force is required to overcome this frictional contact, and thus the frangible membrane 70 is free to separate more easily. The clearance zones 78 are created by disposing the tear path 74 spaced apart from the inner spout surface 80. In some embodiments, this may be a generally straight portion of the tear path 74. In other embodiments, the tear path 74 may curve or arc slightly toward the center of membrane 70. The tear path 74 including the portion of the tear path 74 that accommodates the clearance zones 78 continues to define a sufficient area to allow the product, such as sour cream, to flow through and thereby be dispensed by the consumer.

Reference is now made to FIG. 11, which is a top plan view of an alternate embodiment of a spout fitment 90. The spout fitment 90 includes a cylindrical spout 34 extending from a flange 32, which includes a flat 33 similar to the features shown and described with respect to the embodiment shown in FIGS. 8, 9, and 10. Specifically, it includes the initial tear stress concentrator curve 76, which reduces the pull force required to initiate the initial tear of the tear path 74. However, the tear path 84 of spout fitment 82 deviates from the embodiment shown in FIG. 10. In approaching the final stress concentrator curve 77 at tear path portions 85a and 85b, which begin approximately 90 degrees from the junction 72 of the pull ring 35 and the frangible membrane 70, the tear path 84 follows close to the spout 34. The tear path 84, and more specifically the tear path areas 85a and 85b allow for a wider opening than tear path 72 through which product is able to flow when being dispensed. In approaching the final stress concentrator curve 87, the tear path 84 provides clearance zones 81a, 81b from the spout 34. The clearance zones 81a, 81b result from inwardly arcuate portions 83a, 83b of the tear path 84.

Embodiments of the invention have been described and illustrated above. The invention is not limited to the disclosed embodiments. Numerous other changes, substitutions, variations, alterations, and modifications may be ascertained by those skilled in the art and it is intended that the present invention encompass all such changes, substitutions, variations, alterations, and modifications as falling within the spirit and scope of the appended claims.

Claims

1. A spout fitment for a food package, comprising:

a flange;
a cylindrical spout extending from the flange and having threads for coupling with a cap assembly;
a frangible membrane disposed internal of the spout, the frangible membrane configured to tear away from the spout along a tear path defined by a reduced thickness of the frangible membrane;
a pull ring coupled to the frangible membrane; and
wherein the tear path comprises a stress concentrator curve reducing a pull force applied to the pull ring required to create an initial tear of the frangible membrane.

2. The spout fitment of claim 1 wherein a junction of the pull ring and the frangible membrane is proximate the stress concentrator curve.

3. The spout fitment of claim 2 wherein a center of the junction is aligned with a center of the stress concentrator curve.

4. The spout fitment of claim 1 wherein the stress concentrator curve has a radius of between 0.05-0.2 inches.

5. The spout fitment of claim 4 wherein the stress concentrator curve has a radius of 0.1 inches.

6. The spout fitment of claim 1 wherein a shape of the pull ring generally follows the tear path.

7. The spout fitment of claim 1 wherein a shape of the pull ring is circular.

8. The spout fitment of claim 1 wherein the stress concentrator curve arcs toward the cylindrical spout.

9. A collapsible food package, comprising:

a collapsible pouch defining a cavity to contain a food product therein, the collapsible pouch having a dispensing end and a non-dispensing end;
a spout fitment coupled to the collapsible pouch, comprising:
a cylindrical spout;
a pull ring; and
a frangible membrane coupled to the pull ring and configured to separate along a tear path, the tear path defined by a reduced thickness of the frangible membrane and having a stress concentrator curve reducing a pull force applied to the pull ring required to create an initial tear of the frangible membrane; and
a cap assembly in threaded engagement with the cylindrical spout.

10. The collapsible food package of claim 9 wherein the spout fitment comprises a flange secured to an interior surface of the collapsible pouch.

11. The collapsible food package of claim 9 wherein a junction of the pull ring and the frangible membrane is proximate the stress concentrator curve.

12. The collapsible food package of claim 11 wherein a center of the junction is aligned with an apex of the stress concentrator curve.

13. The collapsible food package of claim 9 wherein the stress concentrator curve arcs toward the cylindrical spout.

14. A collapsible food containment and delivery system for a dairy product, the system comprising:

a collapsible pouch having a dispensing end and a non-dispensing end, the pouch forming a cavity to contain a dairy product therein;
a spout fitment, comprising:
a flange coupled to the collapsible pouch;
a cylindrical spout extending from the flange and at least partially through an opening proximate the dispensing end of the collapsible pouch;
a frangible membrane disposed internal of the cylindrical spout, the frangible membrane configured to tear away from the cylindrical spout along a tear path;
a pull ring coupled to the frangible membrane;
wherein the tear path is defined by a reduced thickness of the frangible membrane and has a stress concentrator curve reducing a pull force applied to the pull ring required to create an initial tear of the frangible membrane; and
a cap assembly in threaded engagement with the cylindrical spout.

15. The system of claim 14 wherein a junction of the pull ring and the frangible membrane is proximate an apex of the stress concentrator curve.

16. The system of claim 15 wherein the stress concentrator curve has a radius of between 0.05-0.2 inches.

17. The system of claim 14 wherein the stress concentrator curve arcs toward the cylindrical spout.

Patent History
Publication number: 20160023819
Type: Application
Filed: Jul 22, 2014
Publication Date: Jan 28, 2016
Inventor: Jorge Maldonado (Murphy, TX)
Application Number: 14/338,189
Classifications
International Classification: B65D 47/10 (20060101); B65D 47/12 (20060101);