COMPOUNDS AND USES THEREOF FOR THE MODULATION OF HEMOGLOBIN

Provide herein are compounds and pharmaceutical compositions suitable as modulators of hemoglobin, methods and intermediates for their preparation, and methods for their use in treating disorders mediated by hemoglobin and disorders that would benefit from tissue and/or cellular oxygenation.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

This invention provides compounds and pharmaceutical compositions suitable for use as allosteric modulators of hemoglobin, methods and intermediates for their preparation, and methods for their use in treating disorders mediated by hemoglobin and disorders that would benefit from tissue and/or cellular oxygenation.

STATE OF THE ART

Sickle cell disease is a disorder of the red blood cells, found particularly among those of African and Mediterranean descent. The basis for sickle cell disease is found in sickle hemoglobin (HbS), which contains a point mutation relative to the prevalent peptide sequence of hemoglobin (Hb).

Hemoglobin (Hb) transports oxygen molecules from the lungs to various tissues and organs throughout the body. Hemoglobin binds and releases oxygen through conformational changes. Sickle hemoglobin (HbS) contains a point mutation where glutamic acid is replaced with valine, allowing HbS to become susceptible to polymerization to give the HbS containing red blood cells their characteristic sickle shape. The sickled cells are also more rigid than normal red blood cells, and their lack of flexibility can lead to blockage of blood vessels. U.S. Pat. No. 7,160,910 discloses compounds that are allosteric modulators of hemoglobin. However, a need exists for additional therapeutics that can treat disorders that are mediated by Hb or by abnormal Hb such as HbS.

SUMMARY OF THE INVENTION

This invention relates generally to compounds and pharmaceutical compositions suitable as allosteric modulators of hemoglobin. In some aspects, this invention relates to methods for treating disorders mediated by hemoglobin and disorders that would benefit from tissue and/or cellular oxygenation.

In certain aspects of the invention, a compound of formula (I) is provided:

or an N oxide thereof, or a pharmaceutically acceptable salt of each thereof, wherein A is selected from the group consisting of:

wherein R1 is C1-C6 alkyl optionally substituted with 3-6 fluoro atoms;

R2 is hydrogen or C1-C6 alkyl;

R3 is C1-C6 alkyl;

each R4 independently is hydrogen or C1-C6 alkyl;

ring B is

or ring B together with A is:

and stereoisomers thereof;

X is oxygen, S, SO, or SO2;

ring C is selected from the group consisting of:

wherein R5 is selected from the group consisting of hydrogen; C1-C6 alkoxy, optionally substituted with a C1-C6 alkoxy group or with up to 3 fluoro atoms; C1-C6 alkyl; and halo;

R6 is hydrogen or halo;

R is hydrogen, a phosphate, a diphosphate, a phosphonate or a phosphoramidate containing moiety, or another promoiety;

provided that the compound of formula (I) comprises at least 1 OR group where R is not hydrogen.

In another aspect, this invention provides a compound of formula (II):

wherein

R is hydrogen, a phosphate or a diphosphate containing moiety, or another promoiety; and

R1 is C1-C6 alkyl optionally substituted with 3-6 fluoro atoms;

provided that the compound of formula (I) comprises at least 1 OR group where R is not hydrogen.

In further aspects, this invention provides a compound of formula (I) or formula (II),

wherein R is —COR31, C(O)OR31, or CONR13 R14.

each R31 is independently a C1-C6 alkyl; C3-C8 cycloalkyl, 4-9 membered heterocycle. or a 5-10 membered heteroaryl, containing at least 1 basic nitrogen moiety; and

R13 and R14 independently are C1-C6 alkyl; C3-C8 cycloalkyl, 4-9 membered heterocycle, or a 5-10 membered heteroaryl, containing at least 1 basic nitrogen moiety; or R13 and R14 together with the nitrogen atom they are bonded to for a 4-9 member heterocycle substituted with at least 1 amino, C1-C6 alkyl amino, or di C1-C6 alkylamino group,

In one embodiment, this invention provides a compound of formula (I) or formula (II), wherein R1 is isopropyl.

In certain aspects, this invention provides a compound of formula (II):

wherein R is phosphate, C(O)(CH2)mNR34R35, or C(O)O(CH2)mNR34R35; and
wherein m, R1, R34 and R35 are defined as tabulated below:

R m R34 R35 NR34R35 C(O)(CH2)mNR34R35 1 Me Me C(O)(CH2)mNR34R35 2 Me Me C(O)(CH2)mNR34R35 3 Me Me C(O)(CH2)mNR34R35 4 Me Me C(O)(CH2)mNR34R35 1 C(O)(CH2)mNR34R35 2 C(O)(CH2)mNR34R35 3 C(O)(CH2)mNR34R35 4 C(O)O(CH2)mNR34R35 2 Me Me C(O)O(CH2)mNR34R35 3 Me Me C(O)O(CH2)mNR34R35 4 Me Me C(O)O(CH2)mNR34R35 2 C(O)O(CH2)mNR34R35 3 C(O)O(CH2)mNR34R35 4 P(O)(OH)2

an N oxide thereof, or a pharmaceutically acceptable salt of each thereof.

This invention arises in part out of the discovery that a phosphate prodrug of a compound of formula (III):

provides enhanced aqueous solubility while providing a whole blood exposure equivalent to that of the compound of formula (III) upon oral administration. This invention relates generally to compounds and pharmaceutical compositions suitable for use as allosteric modulators of hemoglobin. In some aspects, this invention relates to methods for treating disorders mediated by hemoglobin and disorders that would benefit from tissue and/or cellular oxygenation.

In a further aspect of the invention, a compound of formula (IV) is provided:

or a salt, or a pharmaceutically acceptable salt thereof.

In further aspects of the invention, a composition is provided where the composition comprises any of the compounds disclosed herein, and at least one pharmaceutically acceptable excipient.

In further aspects of the invention, a method is provided for increasing oxygen affinity of hemoglobin S in a subject, the method comprising administering to a subject in need thereof a therapeutically effective amount of any of the compounds or compositions disclosed herein.

In further aspects of the invention, a method is provided for treating oxygen deficiency associated with sickle cell anemia, the method comprising administering to a subject in need thereof a therapeutically effective amount of any of the compounds or compositions disclosed herein. Methods for increasing oxygen affinity of hemoglobin S and methods for treating oxygen deficiency associated with sickle cell anemia are well known and/or will be apparent to the skilled artisan in view of this disclosure.

BRIEF DESCRIPTION OF THE FIGURE

FIG. 1 graphically illustrates the in vivo release of the compound of formula (III) from a monophosphate prodrug compound (V-B) of this invention, when administered at 10 mg/kg to a test subject.

DETAILED DESCRIPTION OF THE INVENTION

It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a solvent” includes a plurality of such solvents,

As used herein, the term “comprising” or “comprises” is intended to mean that the compositions and methods include the recited elements, but not excluding others. “Consisting essentially of” when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination for the stated purpose. Thus, a composition or process consisting essentially of the elements as defined herein would not exclude other materials or steps that do not materially affect the basic and novel characteristic(s) of the claimed invention. “Consisting of” shall mean excluding more than trace elements of other ingredients and substantial method steps. Embodiments defined by each of these transition terms are within the scope of this invention.

Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in ail instances by the term “about. ” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations. Each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. The term “about” when used before a numerical designation, e.g., temperature, time, amount, and concentration, including range, indicates approximations which may vary by (+) or (−) 10%, 5 % or 1%.

As used herein, Cm-Cn, such as C1-C12, C1-C8, or C1-C6 when used before a group refers to that group containing m to n carbon atoms.

The term “alkoxy” refers to O-alkyl.

The term “alkyl” refers to monovalent saturated aliphatic hydrocarbyl groups having from 1 to 12 carbon atoms (i.e., C1-C12 alkyl) or 1 to 8 carbon atoms (i.e., C1-C8 alkyl , or 1 to 4 carbon atoms. This term includes, by way of example, linear and branched hydrocarbyl groups such as methyl (CH3—), ethyl (CH3CH2—), n-propyl (CH3CH2CH2—), isopropyl ((CH3)2CH—), n-butyl (CH3CH2CH2CH2—), isobutyl ((CH3)2CHCH2—), sec-butyl ((CH3)CH3CH2)CH—), t-butyl (CH3)3C—), n-pentyl (CH3CH2CH2CH2CH2—), and neopentyl ((CH3)3CCH2—).

The term “aryl” refers to a monovalent, aromatic mono- or bicyclic ring having 6-10ring carbon atoms. Examples of aryl include phenyl and naphthyl. The condensed ring may or may not be aromatic provided that the point of attachment is at an aromatic carbon atom. For example, and without limitation, the following is an aryl group:

The term “—CO2H ester” refers to an ester formed between the —CO2H group and an alcohol, preferably an aliphatic alcohol. A preferred example included —CO2RE, wherein RE is alkyl or aryl group optionally substituted with an amino group.

The term “chiral moiety” refers to a moiety that is chiral. Such a moiety can possess one or more asymmetric centers. Preferably, the chiral moiety is enantiomerically enriched, and more preferably a single enantiomer. Non limiting examples of chiral moieties include chiral carboxylic acids, chiral amines, chiral amino acids, such as the naturally occurring amino acids, chiral alcohols including chiral steroids, and the likes.

The term “cycloalkyl;” refers to a monovalent, preferably saturated, hydrocarbyl mono-, bi-, or tricyclic ring having 3-12 ring carbon atoms. While cycloalkyl, refers preferably to saturated hydrocarbyl rings, as used herein, it also includes rings containing 1-2carbon-carbon double bonds. Nonlimiting examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl adamentyl, and the like. The condensed rings may or may not be non-aromatic hydrocarbyl rings provided that the point of attachment is at a cycloalkyl carbon atom. For example, and without limitation, the following is a cycloalkyl group:

The term “halo” refers to F, Cl, Br, and/or I.

The term “heteroaryl” refers to a monovalent, aromatic mono-, bi or tricyclic ring having 2-16 ring carbon atoms and 1-8 ring heteroatoms selected preferably from N, O, S, and P and oxidized forms of N, S, and P, provided that the ring contains at least 5 ring atoms. Nonlimiting examples of heteroaryl include furan, imidazole, oxadiazole, oxazole, pyridine, quinoline, and the like. The condensed rings may or may not be a heteroatom containing aromatic ring provided that the point of attachment is a heteroaryl atom. For example, and without limitation, the following is a heteroaryl group:

The term “heterocyclyl” or heterocycle refers to a non-aromatic, mono-, bi-, or tricyclic ring containing 2-12 ring carbon atoms and 1-8 ring heteroatoms selected preferably from N, O, S, and P and oxidized forms of N, S, and P, provided that the ring contains at least 3 ring atoms. While heterocyclyl preferably refers to saturated ring systems, it also includes ring systems containing 1-3 double bonds, provided that they ring is non-aromatic. Nonlimiting examples of heterocyclyl include, azaiactones, oxazoline, piperidinyl, piperazinyl, pyrrolidinyl, telrahydrofuranyl, and tetrahydropyranyl. The condensed rings may or may not contain a non-aromatic heteroatom containing ring provided that the point of attachment is a heterocyclyl group. For example, and without limitation, the following is a heterocyclyl group:

The term “hydrolyzing” refers to breaking an RH—CO—, RH—O—CS—, or an RH—O—SO2— moiety to an RH—OH, preferably by adding water across the broken bond. A hydrolyzing is performed using various methods well known to the skilled artisan, non limiting examples of which include acidic and basic hydrolysis.

The term “oxo” refers to a C—O group, and to a substitution of 2 geminal hydrogen atoms with a C═O group.

The term “optionally substituted” refers to a substituted or unsubstituted group. The group may be substituted with one or more substituents, such as e.g., 1, 2, 3, 4 or 5 substituents. Preferably, the substituents are selected from the group consisting of oxo, halo, —CN, NO2, —N2+, —CO2R100 , —OR100, —SR100, —SOR100, —SO2R100, —NR101R102, 13 CONR101R102, —SO2NR101R102, C1-C6 alkyl, C1-C6 alkoxy, —CR100═C(R100)2, —CCR100, C3-C10 cycloalkyl, C3-C10 heterocyclyl, C6-C12 aryl and C2-C12 heteroaryl, wherein each R100 independently is hydrogen or C1-C8 cycloalkyl; C3-C12 cycloalkyl; C3-C10 heterocyclyl; C6-C12 aryl; or C2-C12 heteroaryl; wherein each alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with 1-3 halo, 1-3 C1-C6 alkyl, 1-3 C1-C6 haloalkyl or 1-3 C1-C6 alkoxy groups. Preferably, the substituents are selected from the group consisting of chloro, fluoro. —OCH3, methyl, ethyl, iso-propyl, cyclopropyl, vinyl, ethynyl, —CO2H, —CO2CH3, —OCF3, —CF; and —OCHF2.

As used herein, R101 and R102 independently is hydrogen; C1-C8 alkyl, optionally substituted with —CO2H or an ester thereof C1-C6 alkoxy, oxo, —CR103═C(R103)2, —CCR, C3-C10 cycloalkyl, C3-C10 heterocyclyl, C6-C12 aryl, or C2-C12 heteroaryl, wherein each R103 independently is hydrogen or C1-C8 alkyl; C3-C12 cycloalkyl; C3-C10 heterocyclyl; C6-C12 aryl; or C2-C12 heteroaryl; wherein each cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with 1-3 alkyl groups or 1-3 halo groups, or R101 and R102 together with the nitrogen atom they are attached to form a 5-7 membered heterocycle.

The term “protecting group”as used herein, is well known in the art and includes those described in detail in Protecting Groups in Organic Synthesis. T. W. Greene and P. G. M. Wuts. 3rd edition, John Wiley & Sons, 1999, and subsequent revisions, the entirety of each of which is incorporated herein by reference. Suitable protecting groups include benzyl, methyl, methoxymethyl (MOM), methylthiomethyl (MTM), t-butylthiomethyl, (phenyldimethylsilyl)methoxymethyl (SMOM), benzyloxymethyl (BOM), p-methoxybenzyloxymethyl (PMBM), (4-memoxyphenoxy)methyl (p-AOM), guaiacolmethyl (GUM), t-butoxymethyl, 4-pentenyloxymethyl (POM), siloxymethyl, 2-methoxyethoxymethyl (MEM), 2,2,2-trichloroethoxymethyl, bis(2-chloroethoxy)methyl, 2(trimethylsilyl)ethoxymethyl (SEMOR), tetrahydropyranyl (THP), 3-bromotetrahydropyranyl, tetrahydrothiopyranyl, 1-methoxycyclohexyl, 4-methoxytetrahydropyranyl (MTHP), 4-methoxytetrahydrothiopyranyl, 4-methoxyetrahydrothiopyranyl S,S-dioxide, 1-[(2-chloro-4methyl)phenyl]4-methoxypiperidin-4-yl (CTMP), 1,4-dioxan 2-yl, tetrahydrofuranyl, tetrahydrothiofuranyl, 2,3,3a,4,5,6,7a octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl, 1-ethoxyethyl, 1(2-chloroethoxy)ethyl, 1-methyl-1-methoxyethyl, 1-methyl-1-benzyloxyethyl, 1-methyl-1-benzyloxy-2-fluoroethyl, 2,2,2-trichloroethyl, 2-trimethylsilylethyl, 2-(phenylselenyl)ethyl, t-butyl, allyl, p-chlorophenyl, p-methoxyphenyl, 2,4-dinitrophenyl, benzyl, p-methoxybenzyl, 3,4-dimethoxybenzyl, o-nitrobenzyl, p-nitrobenzyl, p-halobenzyl, 2,6-dichlorobenzyl, p-cyanobenzyl, p-phenylbenzyl, 2-picolyl, 4-picolyl, 3-methyl-2-picolyl N-oxido. diphenylmethyl, p,p′-dinitrobenzhydryl, 5-dibenzosuberyl, triphenylmethyl, α-naphthyldiphenylmethyl, p-methoxyphenyldiphenylmethyl, di(p-methoxyphenyl)phenylmethyl, tri(p-methoxyphenylmethyl, 4-(4′-bromophenacyloxyphenyl)diphenylmethyl, 4,4′,4″-tris(4,5-dichlorophthalimidophenyl)methyl, 4,4′,4″-tris(levulinoyloxyphenyl)methyl, 4,4′,4″-tris(benzoyloxyphenyl)methyl, 3-(imidazol-1-yl)bis(4′,4″-dimethoxyphenyl)methyl, 1,1-bis(4-methoxyphenyl)-1′-pyrenylmethyl, 9-anthryl, 9-(9-phenyl )xanthenyl, 9-(9-phenyl-10-oxo)anthryl, 1,3-benzodithiolan-2-yl, benzisothiazolyl S,S-dioxido, trimethylsilyl (TMS), triethylsilyl (TES), triisopropylsilyl (TIPS), dimethylisopropylsilyl (IPDMS), diethylisopropylsilyl (DEIPS), dimethylthexylsilyl, t-butyldimethylsilyl (TBDMS), t-butyldiphenylsilyl (TBDPS), tribenzysily, tri-p-xylylsilyl, triphenylsilyl, diphenylmethylsily (DPMS), t-butylmethoxyphenylsilyl (TBMPS), formate, benzoylformate, acetate, chloroacetate, dichloroacetate, trichloroacetate, trifluoroacetate, methoxyacetate, triphenylmethoxyacetate, phenoxyacetate, p-chlorophenoxyacetate, 3-phenylpropionate, 4-oxopentanoate (levulinate), 4,4-(ethylenedithio)pentanoate (levulinoyldithioacetal), pivaloate, adamantoate, crotonate, 4-methoxycrotonate, benzoate, p-phenylbenzoate, 2,4,6-trimethylbenzoate (mesitoate), alkyl methyl carbonate, 9-fluorenylmethyl carbonate (Fmoc), alkyl ethyl carbonate, alkyl 2,2,2-trichloroethyl carbonate (Troc), 2-(trimethylsilyl)ethyl carbonate (TMSEC), 2-(phenylsulfonyl) ethyl carbonate (Psec), 2-(triphenylphosphonio) ethyl carbonate (Peoc), alkyl isobutyl carbonate, alkyl vinyl carbonate alkyl allyl carbonate, alkyl p-nitrophenyl carbonate, alkyl benzyl carbonate, alkyl p-methoxybenzyl carbonate, alkyl 3,4-dimethoxybenzyl carbonate, alkyl o-nitrobenzyl carbonate, alkyl p-nitrobenzyl carbonate, alkyl S-benzyl thiocarbonate, 4-ethoxy-1-napththyl carbonate, methyl dithiocarbonate,2-iodobenzoate, 4-azidobutyiate, 4-nitro-4-methylpentanoate, o-dibromomethyl)benzoate, 2-formylbenzenesulfonate, 2-(methylthiomethoxy)ethyl, 4-( methylthiomethoxy)butyrate, 2-(methylthiomethoxymethyl)benzoate, 2,6-dichloro-4-methylphenoxyacetate, 2,6-dichloro-4-(1,1,3,3-tetramethylbutyl)phenoxyacetate, 2,4-bis(1,1-dimethylpropyl)phenoxyacetate, chlorodiphenylacetate, isobutyrate, monosuccinoate, (E)-2-methyl-2-butenoate, o-(methoxycarbonyl)benzoate, α-naphthoate, nitrate, alkyl N,N,N′,N′-tetramethylphosphorodiamidate, alkyl N-phenylcarbamate, borate, dimethylphosphinothioyl, alkyl 2,4-dinitrophenylsultenate, sulfate, methanesulfonate (mesylate), benzylsulfonate, and tosylate (Ts). For protecting 1,2- or 1,3-diols, the protecting groups include methylene acetal, ethylidene acetal, 1-t-butylethylidene ketal, 1-phenylethylidene ketal, (4-methoxyphenyl)ethylidene acetal, 2,2,2-trichloroethylidene acetal, acetonide, cyclopentylidene ketal, cyclohexylidene ketal, cycloheptylidene ketal, benzyl idene acetal, p-methoxybenzylidene acetal, 2,4-dimethoxybenzylidene ketal, 3,4-dimethoxybenzylidene acetal, 2-nitrobenzylidene acetal, melhoxymethylene acetal, ethoxymethylene acetal, dimethoxymethylene ortho ester, 1-methoxyethylidene ortho ester, 1-ethoxyethyfidine ortho ester, 1,2-dimethoxyethylidene ortho ester, α-methoxybenzylidene ortho ester, 1-(N,N-dimethylamino)ethylidene derivative, α-(N,N′-dimethylamino)benzylidene derivative, 2-oxacyclopentylidene ortho ester, di-t-butylsilylene group (DTBS), 1,3-(1,1,3,3-tetraisopropyldisiloxanylidene) derivative (TIPDS), tetra-t-butoxydisiloxane-1,3-diylidene derivative (TBDS), cyclic carbonates, cyclic boronates, ethyl boronate, and phenyl boronate.

The term “pharmaceutically acceptable” refers to safe and non-toxic for in vivo, preferably, human administration.

The term “pharmaceutically acceptable salt” refers to a salt that is pharmaceutically acceptable.

The term “salt” refers to an ionic compound formed between an acid and a base. When the compound provided herein contains an acidic functionality, such salts include, without limitation, alkali metal, alkaline earth metal, and ammonium salts. As used herein, ammonium salts include, salts containing protonated nitrogen bases and alkylated nitrogen bases. Exemplary, and non-limiting cations useful in pharmaceutically acceptable salts include Na, K, Rb, Cs, NH4, Ca, Ba, imidazolium, and ammonium cations based on naturally occurring amino acids. When the compounds utilized herein contain basic functionally, such salts include, without limitation, salts of organic acids, such as carboxylic acids and sulfonic acids, and mineral acids, such as hydrogen halides, sulfuric acid, phosphoric acid, and the likes. Exemplary and non-limiting anions useful in pharmaceutically acceptable salts include oxalate, maleate, acetate, propionate, succinate, tartrate, chloride, sulfate, bisalfate, mono-, di-, and tribasic phosphate, mesylate, tosylate, and the likes.

The terms “treat”, “treating” or “treatment”, as used herein, include alleviating, abating or ameliorating a disease or condition or one or more symptoms thereof, preventing additional symptoms, ameliorating or preventing the underlying metabolic causes of symptoms, inhibiting the disease or condition, e.g., arresting or suppressing the development of the disease or condition, relieving the disease or condition, causing regression of the disease or condition, relieving a condition caused by the disease or condition, or suppressing the symptoms of the disease or condition, and are intended to include prophylaxis. The terms also include relieving the disease or conditions, e.g., causing the regression of clinical symptoms. The terms further include achieving a therapeutic benefit and/or a prophylactic benefit. By therapeutic benefit is meant eradication or amelioration of the underlying disorder being treated. Also, a therapeutic benefit is achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the individual, notwithstanding that the individual is still be afflicted with the underlying disorder. For prophylactic benefit, the compositions are administered to an individual at risk of developing a particular disease, or to an individual reporting one or more of the physiological symptoms of a disease, even though a diagnosis of this disease has not been made.

The terms “preventing” or “prevention” refer to a reduction in risk of acquiring a disease or disorder (i.e., causing at least one of the clinical symptoms of the disease not to develop in a subject that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease). The terms further include causing the clinical symptoms not to develop, for example in a subject at risk of suffering from such a disease or disorder, thereby substantially averting onset of the disease or disorder.

The term “effective amount” refers to an amount that is effective for the treatment of a condition or disorder by an intranasal administration of a compound or composition described herein. In some embodiments, an effective amount of any of the compositions or dosage forms described herein is the amount used to treat a disorder mediated by hemoglobin or a disorder that would benefit from tissue and/or cellular oxygenation of any of the compositions or dosage forms described herein to a subject in need thereof.

The term “carrier” as used herein, refers to relatively nontoxic chemical compounds or agents that facilitate the incorporation of a compound into cells, e.g., red blood cells, in tissues.

As used herein, a “prodrug” is a compound that, after administration, is metabolized or otherwise converted to an active or more active form with respect to at least one property. To produce a prodrug, a pharmaceutically active compound can be modified chemically to render it less active or inactive, but the chemical modification is such that an active form of the compound is generated by metabolic or other biological processes. A prodrug may have, relative to the drug, altered metabolic stability or transport characteristics, fewer side effects or lower toxicity. For example, see the reference Nogrady, 1985, Medicinal Chemistry A Biochemical Approach, Oxford University Press, New York, pages 388-392. Prodrugs can also be prepared using compounds that are not drugs.

The invention provides prodrugs of substituted benzaldehyde compounds that increase oxygen affinity of hemoglobin S. The structures of the compounds, and derivatives thereof, as well as methods of their synthesis, pharmaceutical formulations thereof and methods of use are also provided.

Compounds

In certain aspects of the invention, a compound of formula (I) is provided:

or an N oxide thereof, or a pharmaceutically acceptable salt of each thereof, wherein

A is selected from the group consisting of:

wherein R1 is C1-C6 alkyl optionally substituted with 3-6 fluoro atoms;

R2 is hydrogen or C1-C6 alkyl;

R3 is C1-C6 alkyl;

each R4 independently is hydrogen or C1-C6 alkyl:

ring B is

or ring B together with A is:

X is oxygen, S, SO, or SO2;

ring C is selected from the group consisting of:

wherein R5 is selected from the group consisting of hydrogen; C1-C6 alkoxy, optionally substituted with a C1-C6 alkoxy group or with up to 3 fluoro atoms; C1-C6 alkyl; and halo;

R6 is hydrogen or halo;

R is hydrogen, a phosphate, a diphosphate, a phosphonate or a phosphoramidate containing moiety, or another promoiety;

provided that the compound of formula (I) comprises at least 1 OR group where R is not hydrogen; and

the promoieties are structurally and functionally defined herein.

In certain embodiments, a compound of formula (II) is provided:

wherein

R is hydrogen, a phosphate, a diphosphate, a phosphonate or a phosphoramidate containing moiety, or another promoiety;

R1 is C1-C6 alkyl optionally substituted with 3-6 fluoro atoms;

provided that the compound of formula (I) comprises at least 1 OR group where R is not hydrogen and

the promoieties are structurally and functionally defined herein.

In one aspect, R is hydrogen, a phosphate, a diphosphate, a phosphonate or a phosphoramidate containing moiety, or another promoiety or prodrug moiety. Preferably the prodrug moiety imparts at least a 2 fold, more preferably a 4 fold, enhanced solubility and/or bioavailability to the active moiety (where R is hydrogen), and more preferably is hydrolyzed in vivo. The promoieties are structurally and functionally defined herein.

In one embodiments, R is —COR90 , CO2R91, or CONR92R93 wherein

R90 and R91 independently are C1-C6 alkyl, C3-C8 cycloalkyl, 4-9 membered heterocycle, or a 5-10 membered heteroaryl, each containing at least 1 basic nitrogen moiety; and

R92 and R93 independently are C1-C6 alkyl; C3-8 cycloalkyl, 4-9 membered heterocycle, or a 5-10 membered heteroaryl, each containing at least 1 basic nitrogen moiety; or R92 and R93 together with the nitrogen atom they are bonded to for a 4-9 member heterocycle substituted with at least 1 amino, C1-C6 alkyl amino, or di C1-C6 alkylamino group.

In certain embodiments. R is —C(O)R31, C(O)31, or CONR13R14,

each R31 is independently a C1-C6 alkyl; C3-C8 cycloalkyl, 4-9 membered heterocycle, or a 5-10 membered heteroaryl, containing at least 1 basic nitrogen moiety; and

R13 and R14 independently are C1-C6 alkyl; C3-C8 cycloalkyl, 4-9 membered hetcrocycle, or a 5-10 membered heteroaryl, containing at least 1 basic nitrogen moiety; or R13 and R14 together with the nitrogen atom they are bonded to for a 4-9 member hetcrocycle substituted with at least 1 amino, C1-C6 alkyl amino, or di C1-C6 alkylamino group.

Preferably, R is isopropyl.

In one aspect, R is C(O)OR31, C(S)OR31, C(O)SR31 or COR31, wherein R31 is as defined herein,

In one embodiment, R31 is a group of the formula (CR32R33)eNR34R35, wherein

each R32 and R33 is independently H, a C1-C8 alkyl, C3C9 heterocyclyl, C3-C8 cycloalkyl, C6-C10 aryl, C3-C9 heteroaryl or R32 and R33 together with the carbon atom they are bond to form a C3-C8 cycloalkyl, C6-C10 aryl, C3-C9 heterocyclyl or C3-C9 heteroaryl ring system, or 2 adjacent R32 moieties or 2 adjacent R33 moieties together with the carbon atom they are bond to form a C3-C8 cycloalkyl, C6-C10 aryl, C3-C9 heterocyclyl or C3-C9 heteroaryl ring system;

each R34 and R35 is a C1-C8 alkyl, C3-C9 heterocyclyl, C3-C8 cycloalkyl, or R34 and R35 together with the nitrogen atom they are bond to form a C3-C8 cycloalkyl or C3C9 heterocyclyl ring system;

each heterocyclic and heteroaryl ring system is optionally substituted with C1-C3 alkyl, —OH, amino and carboxyl groups; and

e is an integer of from 1 to 4.

In some less preferred embodiments R34 and R35 can be hydrogen.

In one embodiment, the subscript e is preferably 2 and each R32 and R33 is preferably independently selected from the group, H, CH3, and a member in which R32 and R33 are joined together to form a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, or 1,1-dioxo-hexahydro-1A6-thiopyran-4-yl or tetrahydropyran-4-yl group.

With regard to the prodrug group, preferred embodiments are compounds wherein NR34R35 is morpholino.

In one embodiment, R is:

wherein

each R32 and R33 is independently H, C1-C8 alkyl, or optionally, if both present on the same substituent, may be joined together to form a C3-C8 cycloalkyl, C6-C10 aryl, C3-C9 heterocyclyl or C3-C9 heteroaryl ring system.

Within this embodiment, each R32 and R33 is independently, H, CH3, or are joined together to form a cyclopropyl, cyclopbutyl, cyclopentyl, cyclohexyl, 1,1-dioxo-hexahydro-1λ6-thiopyran-4-yl or tetrahydropyran-4-yl group,

In a preferred embodiment, linkage of the prodrug moiety to the rest of the active molecule is stable enough so that the serum half life of the prodrug is from about 8 to about 24 hours.

In an embodiment of the invention, the prodrug moiety comprises a tertiary amine having a pKa near the physiological pH of 7.5. Any amines having a pKa within 1 unit of 7.5 are suitable alternatives amines for this purpose. The amine may be provided by the amine of a morpholino group. This pKa range of 6.5 to 8.5 allows for significant concentrations of the basic neutral amine to be present in the mildly alkaline small intestine. The basic, neutral form of the amine prodrug is lipophilic and is absorbed through the wall of the small intestine into the blood. Following absorption into the bloodstream, the prodrug moiety is cleaved by esterases which are naturally present in the serum to release an active compound.

Examples of R include, without limitation:

In another embodiment, R is as tabulated below;

R m R34 R35 NR34R35 C(O)(CH2)mNR34R35 1 Me Me C(O)(CH2)mNR34R35 2 Me Me C(O)(CH2)mNR34R35 3 Me Me C(O)(CH2)mNR34R35 4 Me Me C(O)(CH2)mNR34R35 1 C(O)(CH2)mNR34R35 2 C(O)(CH2)mNR34R35 3 C(O)(CH2)mNR34R35 4 C(O)O(CH2)mNR34R35 2 Me Me C(O)O(CH2)mNR34R35 3 Me Me C(O)O(CH2)mNR34R35 4 Me Me C(O)O(CH2)mNR34R35 2 C(O)O(CH2)mNR34R35 3 C(O)O(CH2)mNR34R35 4 P(O)(OH)2

an N oxide thereof, or a pharmaceutically acceptable salt of each thereof.

In another aspect, R is,

wherein

R16 is lower alkyl (e.g. C1-C6 alkyl).

In yet another aspect, R is:

wherein X1, Y1 and X2 are as defined herein.

In one embodiment, X1 is selected from the group consisting O, S, and NR37 wherein R37 is hydrogen or C1-C6 alkyl;

Y1 is —C(R38)2 or a sugar moiety, wherein each R38 is independently hydrogen or C1-C6 alkyl, C3-C8 cycloalkyl, C3-C9 heterocyclyl, C6-C10 aryl, or C3-C9 heteroaryl;

X2 is selected from the group consisting of halogen, C1-C6 alkoxy, diacylglycerol, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkylthio, a PEG moiety, a bile acid moiety, a sugar moiety, an amino acid moiety, a di- or tri-peptide, a PEG carboxylic acid, and —U—V wherein

U is O or S; and

V is selected from the group consisting of C1-C6 alkyl, C3-C8 cycloalkyl, C3-C9 heterocyclyl, C6-C10 aryl, C3-C9 heteroaryl, C(W2)X3, PO(X3)2, and SO2X3;

wherein W2 isO or NR39

wherein R39 is hydrogen or C1-C6 alkyl, C3-C8 cycloalkyl, C3C9 hetrocyclyl, C6-C10 aryl, or C3-C9 heteroaryl; and

each X3 is independently amino, hydroxyl, mercapto, (C1-C6 alkyl, heteroalkyl, cycloalkyl, hetrocyclyl, aryl, or heteroaryl, C1-C6 alkoxy, C1-C6 alkylamino, C1-C6 dialkylamino. C1-C6 alkylthio, a bile acid based alkoxy group, a sugar moiety, a PEG moiety, and —O—CH2—CH(OR40)CH2X4R40.

wherein:

X4 is selected from the group consisting of O, S, S═O, and SO2; and

each R40 is independently C10-C22 alkyl, C3-C8 cycloalkyl, C3-C9 heterocyclyl, C6-C10 aryl, or C3-C9 heteroaryl, C1-C8 alkylene, or C1-C8 heteroalkylene.

Each heterocyclic and heteroaryl ring system is optionally substituted with C1-C3 alkyl, —OH, amino and carboxyl groups.

In one embodiment, the present invention utilizes the following Y1 groups: CH2, CHMe, CH(isopropyl), CH(tertiarybutyl), C(Me)2, C(Et)2 , C(isopropyl)2, and C(propyl)2.

In another embodiment, the present invention utilizes the following X2 groups:

—OMe, —OEt, —O-isopropyl, O-isobutyl, O-tertiarybutyl, —O—COMe, —O—C(═O)(isopropyl), —O—C(═O)(isobutyl), —O—C(═O)(tertiarybutyl), —O—C(═O)—NMe2, —O—C(═O)—NHMe, —O—C(═O)—NH2, —O—C(═O)—N(H)—CH(R41)—CO22Et wherein R41 is a side chain C1-C6 alkyl, or C3-C9 heterocyclyl group selected from the side chain groups present in essential amino acids; —O—P(═O)(OMe)2, —O—P(═O)(O-isopropyl)2, and —O—P(═O)(O-isobutyl)2. Each heterocyclic is optionally substituted with one or more, preferably, 1-3. C1-C3 alkyl, —OH, amino and/or carboxyl groups.

In another embodiment. In one embodiment. R is:

wherein

X3 is independently C1-C6 alkyl, C3-C8 cyloalkyl, C3-C9 heterocyclyl, C6-C10 aryl, or C3-C9 heteroaryl; and

R42 is independently hydrogen or C1-C6 alkyl, C3-C8 cycloalkyl, C3-C9 heterocyclyl, C6-C10 aryl, or C3-C9 heteroaryl.

Each heterocyclic is optionally substituted with one or more, preferably, 1-3, C1-C3 alkyl, —OH, amino and/or carboxyl groups.

In one embodiment, R is:

wherein

each X3 is independently amino, hydroxyl, mercapto, C1-C6 alkyl, C3-C8 cycloalkyl, C3-C9 heterocyclyl, C6-C10 aryl, or C3-C9 heteroaryl, C1-C6 alkoxy, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkylthio, a bile acid based alkoxy group, a sugar moiety, a PEG moiety, and —O—CH2—CH(OR40)CH2X4R40,

wherein:

X4 is selected from the group consisting of O, S, S═O, and SO2 ; and

each R40 is independently C10-C22 alkyl, C3-C8 cycloalkyl, C3-C9 heterocyclyl, C6-C10 aryl, C3-C9 heteroaryl, C1-C8 alkylene, or C1-C8 heteroalkylene; and

R42 is independently hydrogen or C1-C6 alkyl, C3-C8 cycloalkyl, C3-C9 heterocyclyl, C6-C10 aryl, or C3-C9 heteroaryl.

In some embodiments, R42 is independently hydrogen or C1-C6 alkyl, C3-C8 cycloalkyl, C3-C9 heterocyclyl, C6-C10 aryl, or C3-C9 heteroaryl; and each X3 independently is C1-C6 alkyl, C3-C8 cycloalkyl, C3-C9 heterocyclyl, C6-C10 aryl, or C3-C9 heteroaryl, C1-C6 alkoxy, C1-C6 alkylamino, C1-C6 dialkylamino, or C1-C6 alkylthio.

In some embodiments, R is represented by the following structures:

wherein, in the above examples, R43 is C10-C22 alkyl or alkylene, R44 is H or C1-C6 alkyl and R45 represents side chain alkyl groups present in naturally occurring alpha amino acids;

wherein R46 is (CH2)n, f=2-4, and CO—R47 —NH2 represents an aminoacyl group; or

wherein R46 is (CH2)n, n=2-4, R47 is (CH2)n, n=1-3 and R49 is O or NMe.

In one embodiment, R is:

In one aspect, R is —C(R200R201)O(R202R203)P(O)OR204NR205 R206 , wherein each R200, R201, R202, R203, R204 R205 and R206 is independently H, a C1-C8 alkyl, C3-C9 heterocyclyl, C3-C8 cycloalkyl, C6-C10 aryl, C3-C9 heteroaryl, wherein each alkyl, heterocyclyl, cycloalkyl, aryl, and heteroaryl is optionally substituted.

In some embodiments, R is —CH(R201)OCH2P(O)OR204NHR206, wherein R201 is C1-C8 alkyl, R204 is phenyl, optionally substituted. In one embodiment.R206 is —CHR207C(O)OR208 wherein R207 is selected from the group consisting of the naturally occurring amino acid side chains and —CO2H esters thereof and R208 is C1-C8 alkyl. In one embodiment, R206 is C1-c6 alkyl, optionally substituted with 1-3. CO2H, SH, NH2 , C6-C10 aryl, and C2-C10 heteroaryl.

In one embodiment, R is:

In one embodiment, R is:

wherein Y1 is —C(R38)2, wherein each R38 is independently hydrogen or C1-C6 alkyl, C3-C8 cycloalkyl, C3-C9 heterocyclyl, C6-C10 aryl, or C3-C9 heteroaryl.

Various polyethylene glycol (PEG) moieties and synthetic methods related to them that can be used or adapted to make compounds of the invention are described in U.S. Pat. Nos. 6,608,076; 6,395,266; 6,194,580; 6,153,655; 6,127,355; 6,111,107; 5,965,566; 5,880,131; 5,840,900; 6,011,042 and 5,681,567.

In one embodiment, R is

wherein

R50 is —OH or hydrogen;

R51 is —OH, or hydrogen;

W is —CH(CH3)W1;

wherein W1 is a substituted C1-C8 alkyl group containing a moiety which is optionally negatively charged at physiological pH,

said moiety is selected from the group consisting of CO2H, SO3H, SO2H, —P(O)(OR52)(OH), —OP(O)(OR52)(OH), and OSO3H,

wherein R52 is C1-C6 alkyl, C3-C8 cycloalkyl. C3C9 heterocyclyl, C6-C10 aryl, or C3-C9 heteroaryl.

Each heterocyclic and heteroaryl ring system is optionally substituted with one or more, preferably 1-3, C1-C3 , alkyl, —OH, amino and/or carboxyl groups.

In one embodiment, R is:

wherein R53 is H or C1-C6 alkyl.

In another aspect, R is SO3H.

In another aspect, R comprises a cleavable linker, wherein the term “cleavable linker” refers to a linker which has a short half life in vivo. The breakdown of the linker Z in a compound releases or generates the active compound. In one embodiment, the cleavable linker has a half life of less than ten hours. In one embodiment, the cleavable linker has a half life of less than an hour. In one embodiment, the half life of the cleavable linker is between one and fifteen minutes. In one embodiment, the cleavable linker has at least one connection with the structure: C*—C(═X*)X*—C* wherein C* is a substituted or unsubstituted methylene group, and X* is S or O. In one embodiment, the cleavable linker has at least one C*—C(—O)O—C* connection. In one embodiment, the cleavable linker has at least one (C*—C(═O)S—C* connection. In one embodiment, the cleavable linker has at least one —C(═O)N*—C*—SO2—N*-connection, wherein N* is —NH— or C1-C6 alkylamino. In one embodiment, the cleavable linker is hydrolyzed by an esterase enzyme.

In one embodiment, the linker is a self-immolating linker, such as that disclosed in U.S. patent publication 2002/0147138, to Firestone: PCT Appl. No. US05/08161 and PCT Pub. No. 2004/087075. In another embodiment, the linker is a substrate for enzymes. See generally Rooseboom et al., 2004, Pharmacol. Rev. 56:53-102.

In certain aspects of the invention, prodrugs of a compound of formula (III) are provided:

or a pharmaceutical acceptable salt thereof.

In further aspects of the invention, a compound of formula (IV) is provided:

or a pharmaceutically acceptable salt thereof, wherein

    • R11 and R12 are independently selected from the group consisting of hydrogen,
      • C1-C6 alkyl optionally substituted with 1-3 C6-C12 aryl groups, optionally substituted;
      • C6-C12 aryl, optionally substituted; and
      • a protecting group; and
    • z is 1, 2 or 3.

In some embodiments, z is 1. In some embodiments, z is 2. In some embodiments, z is 3.

In one embodiment, a compound of formula (V) is provided:

or a pharmaceutically acceptable salt thereof.

In some embodiments, R11 and R12 are independently C1-C6 alkyl. In some embodiments, R11 and R12 are selected from methyl, ethyl, or propyl. In some embodiments, R11 and R12 are methyl. In some embodiments, R11 and R12 are ethyl. In some embodiments, R11 and R12 are propyl. In some embodiments, R11 and R12 are C1-C6 alkyl substituted with 1-3 C6-C12 aryl groups, optionally substituted, in some embodiments. R11 and R12 are methyl substituted with 1-3 phenyl groups, optionally substituted. In some embodiments, R11 and R12 are methyl substituted with a phenyl group, optionally substituted with 1-3 groups selected from the group consisting of C1C6 alkyl, C1-C6 alkoxy, halo and nitro.

In some embodiments, R11 and R12 are independently C6-C12 aryl, optionally substituted with 1-3 groups selected from the group consisting of C1-C6 alkyl, C1-C6 alkoxy, halo and nitro. In some embodiments, R11 and R12 are phenyl substituted with 1-3 groups selected from the group consisting of C1-C6 alkyl, C1-C6 alkoxy, halo and nitro. In some embodiments, R11 and R12 are phenyl.

In some embodiments, R11 and R12 independently are protecting groups. In some embodiments, the protecting groups are selected independently from the group consisting of 2-cyanoethyl, 2-cyano-1,1-dimethylethyl, 2-Benzamidoethyl, allyl, 4-methylthio-1-butyl, 2-(trimethylsilyl)ethyl, 2-(triphenylsilyl)ethyl 2,2,2,-trichloroethyl, 4-methoxybenzyl, 4-nitrobenzyl, 2,4-dinitrobenzyl, 4-chlorobenzyl and fluorenyl-9-methyl.

In one aspect, provided herein is a compound of formula (V-A):

or a pharmaceutically acceptable salt thereof.

In one additional aspect, provided herein is a compound of formula (V-B)

or a pharmaceutically acceptable salt thereof.

Pharmaceutical Compositions

In another aspect, this invention provides a composition comprising any of the compounds described herein, and a pharmaceutically acceptable excipient.

Such compositions can be formulated for different routes of administration. Although compositions suitable for oral delivery will probably be used most frequently, other routes that may be used include transdermal, intravenous, intraarterial, pulmonary, rectal, nasal, vaginal, lingual, intramuscular, intraperitoneal, intracutaneous, intracranial, and subcutaneous routes. Suitable dosage forms for administering any of the compounds described herein include tablets, capsules, pills, powders, aerosols, suppositories, parenterals, and oral liquids, including suspensions, solutions and emulsions. Sustained release dosage forms may also be used, for example, in a transdermal patch form. All dosage forms may be prepared using methods that are standard in the art (see e.g., Remington's Pharmaceutical Sciences. 16th ed., A. Oslo editor. Easton Pa. 1980).

Pharmaceutically acceptable excipients are non-toxic, aid administration, and do not adversely affect the therapeutic benefit of the compound of this invention. Such excipients may be any solid, liquid, semi-solid or, in the case of an aerosol composition, gaseous excipient that is generally available to one of skill in the art. Pharmaceutical compositions in accordance with the invention are prepared by conventional means using methods known in the art.

The compositions disclosed herein may be used in conjunction with any of the vehicles and excipients commonly employed in pharmaceutical preparations, e.g., talc, gum arabic, lactose, starch, magnesium stearate, cocoa butter, aqueous or non-aqueous solvents, oils, paraffin derivatives, glycols, etc. Coloring and flavoring agents may also be added to preparations, particularly to those for oral administration. Solutions can be prepared using water or physiologically compatible organic solvents such as ethanol, 1,2,-propylene glycol, polyglycols, dimethylsuifoxide, fatty alcohols, triglycerides, partial esters of glycerin and the like.

Solid pharmaceutical excipients include starch, cellulose, hydroxypropyl cellulose, talc, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, magnesium stearate. sodium stearate, glycerol monostearate, sodium chloride, dried skim milk and the like. Liquid and semisolid excipients may be selected from glycerol, propylene glycol, water, ethanol and various oils, including those of petroleum, animal, vegetable or synthetic origin. e.g., peanut oil, soybean oil, mineral oil, sesame oil, etc. In certain embodiments, the compositions provided herein comprises one or more of α-tocopherol, gum arable, and/or hydroxypropyl cellulose.

In one embodiment, this invention provides sustained release formulations such as drug depots or patches comprising an effective amount of a compound provided herein. In another embodiment, the patch further comprises gum Arabic or hydroxy propyl cellulose separately or in combination, in the presence of alpha-tocopherol. Preferably, the hydroxypropyl cellulose has an average MW of from 10,000 to 100,000. In a more preferred embodiment, the hydroxypropyl cellulose has an average MW of from 5,000 to 50,000.

Compounds and pharmaceutical compositions of this invention maybe used alone or in combination with other compounds. When administered with another agent, the co-administration can be in any manner in which the pharmacological effects of both are manifest in the patient at the same time. Thus, co-administration does not require that a single pharmaceutical composition, the same dosage form, or even the same route of administration be used for administration of both the compound of this invention and the other agent or that the two agents be administered at precisely the same time. However, co-administration will be accomplished most conveniently by the same dosage form and the same route of administration, at substantially the same time. Obviously, such administration most advantageously proceeds by delivering both active ingredients simultaneously in a novel pharmaceutical composition in accordance with the present invention.

Methods of Treatment

In aspects of the invention, a method is provided for increasing tissue and/or cellular oxygenation, the method comprising administering to a subject in need thereof a therapeutically effective amount of any of the compounds or compositions described herein.

In aspects of the invention, a method is provided for increasing oxygen affinity of hemoglobin S in a subject, the method comprising administering to a subject in need thereof a therapeutically effective amount of any of the compounds or compositions described herein.

In aspects of the invention, a method is provided for treating a condition associated with oxygen deficiency, the method comprising administering to a subject in need thereof a therapeutically effective amount of any of the compounds or compositions described herein.

In further aspects of the invention, a method is provided for treating oxygen deficiency associated with sickle cell anemia, the method comprising administering to a subject in need thereof a therapeutically effective amount of any of the compounds or compositions described herein.

In further aspects of the invention, a method is provided for treating sickle cell disease, the method comprising administering to a subject in need thereof a therapeutically effective amount of a compound of any of the compounds or compositions described herein, in still further aspects of the invention, a method is provided for treating cancer, a pulmonary disorder, stroke, high altitude sickness, an ulcer, a pressure sore, Alzheimer's disease, acute respiratory disease syndrome, and a wound, the method comprising administering to a subject in need thereof a therapeutically effective amount of a compound of any of the compounds or compositions described herein.

Synthetic Methods

Certain methods for making the compounds described herein are also provided. The reactions are preferably carried out in a suitable inert solvent that will be apparent to the skilled artisan upon reading this disclosure, for a sufficient period of time to ensure substantial completion of the reaction as observed by thin layer chromatography, 1H-NMR, etc. If needed to speed up the reaction, the reaction mixture can be heated, as is well known to the skilled artisan. The final and the intermediate compounds are purified, if necessary, by various art known methods such as crystallization, precipitation, column chromatography, and the likes, as will be apparent to the skilled artisan upon reading this disclosure.

An illustrative and non-limiting method for synthesizing a compound of formula (I), is schematically shown below.

Throughout the application, the following abbreviations have the following meanings. If not defined, the terms have their generally accepted meanings.

    • ° C.=degrees Celsius
    • RT=Room temperature
    • min=minute(s)
    • h=hour(s)
    • μL=Microliter
    • ml=Milliliter
    • mmol=Millimole
    • eq=Equivalent
    • mg=Milligram
    • ppm=Parts per million
    • LC-MS=Liquid chromatography-mass spectrometry
    • HPLC=High performance liquid chromatography
    • NMR=Nuclear magnetic resonance
    • Ph3PBr2=Triphenlylphosphine dibromide
    • DMF=N,N-Dimethylformamide
    • DCM=Dichloromethane
    • THF=Tetrahydrofuran
    • DIAD=Diisopropyl azodicarboxylate
    • DEAD=Diethyl azodicarboxylate
    • PEG=Polyethylene glycol
    • HβCD=Hydroxy-propyl-β-cyclodextrin

In the following Schemes, “A” refers to substituent “A” as described herein. refers aryl or heteroaryl members of substituent “A” as described herein. and refer to rings B and C as described herein.

General method A (Scheme 1) for preparing aryloxy/heteroarylether analogs (4a/4b) from substituted methylene alcohol (1) and hydroxyl (hetero)aryl aldehyde derivatives (3a/3b). A hydroxyl (hetero)arylaldehyde derivatives (3a/3b) (0.1-2 mmol) mixture with substituted methylene alcohol (1) (0.8 to 1.2 eq) and PPh3 (1-1.5 eq) in anhydrous THF (1-1 OmL) was stirred under nitrogen until complete dissolution. The solution was cooled to 0° C. on ice bath and DIAD or DEAD (1.1 eq) in THF or toluene was added dropwise over a 1-20 min period. The ice cooling bath was allowed to expire over 90 min and the mixture was stirred at RT for 2-48 hours. The mixture was stirred for 10 min, then filtered through a pad of silica. The silica was washed with ethyl acetate 2-20 mL. The combined filtrates were evaporated and the residue was dried on highvac. The residue was purified by preparative HPLC or flash silica gel chromatography.

General method A (Scheme 1) for preparing aryloxy/heteroarylether analogs (4a/4b) from substituted methylene halide (2) and hydroxyl (hetero)aryl aldehyde derivatives (3a/3b). A mixture of hydroxyl (hetero)arylaldehyde derivatives (3a/3b) (0.1-2 mmol, 1-4 eq.), substituted methylene chloride or bromide (2) (1 eq), and K2CO3 (2-5 eq) (catalytic amount of NaI or Bu4NI may also be added) in DMF or acetonitrile (1 to 10 mL) was stirred at RT or heating up to 120° C. for 0.5-8 h under nitrogen atmosphere. In workup A, water was added to the reaction mixture, the precipitated product was collected, washed with water, and then subjected to preparative HPLC or flash silica gel chromatography purification. In workup B (for products that did not precipitate), diluted HCl or aqueous NH4Cl was added at 0° C. to adjusted the pH to ˜7, the reaction mixture was partitioned between ethyl acetate or dichloromethane and aqueous sodium chloride and the organic layer separated, dried, and solvent removed under vacuum to afford crude product which was purified by automated silica gel column chromatography using appropriate solvents mixture (e.g., ethyl acetate/hexanes).

General method C for preparing substituted methylene chloride (2a). To a solution of substituted methylene alcohol (1) (0.1 to 2 mmol) in DCM (1-10 mL) was added SOCl 2 dropwise (2 eq to 5 eq ) at 0° C. or RT, The reaction mixture was stirred at RT for 10 min to 6 h, or until reaction is judged complete (LC/MS). The reaction mixture is concentrated to dryness over a rotavap. The crude chloride residue was suspended in toluene, sonicated and concentrated to dryness. The process was repeated three times and dried under vacuum to give the substituted methylene chloride (2), usually as an off-white solid, which was used for next step without further purification. Alternatively, a solution of aqueous 1N Na2CO3 is then added to produce a solution of pH ˜8, the mixture was extracted with DCM (3×10-50 mL), dried over sodium sulfate, and concentrated to the crude substituted methylene chloride (2a), which is then purified by column chromatography on silica gel (0-100% ethyl acetate-hexanes).

General method D for preparing substituted methylene bromide (2b). To a solution of substituted methylene alcohol (1) (0.1 to 2 mmol) in DCM (1-10 mL) was added Ph3PBr2 dropwise (2 eq to 5 eq ) at 0° C. or RT. The reaction mixture was stirred at RT for 10 min to 2 h, or until reaction is judged complete (LC/MS). The reaction mixture is concentrated to dryness over a rotavap. The residue purified by column chromatography on silica gel (0-100% ethyl acetate-hexanes) to afford the pure bromide 2b.

Syntheses of the ester prodrugs start with the free carboxylic acid bearing the tertiary amine. The free acid is activated for ester formation in an aprotic solvent and then reacted with a free alcohol group in the presence of an inert base, such as triethyl amine, to provide the ester prodrug. Activating conditions for the carboxylic acid include forming the acid chloride using oxalyl chloride or thionyl chloride in an aprotic solvent, optionally with a catalytic amount of dimethyl formamide, followed by evaporation. Examples of aprotic solvents, include, but are not limited to methylene chloride, tetrahydrofuran, and the like. Alternatively, activations can be performed in situ by using reagents such as BOP (benzotriazol-1-yloxylris(dimethylamino) phosphonium hexafluorolphosphate, and the like (see Nagy et al, 1993. Proc. Natl. Acad. Sci. USA 90:6373-6376) followed by reaction with the free alcohol. Isolation of the ester products can be affected by extraction with an organic solvent, such as ethyl acetate or methylene chloride, against, a mildly acidic aqueous solution; followed by base treatment of the acidic aqueous phase so as to render it basic; followed by extraction with an organic solvent, for example ethyl acetate or methylene chroride; evaporation of the organic solvent layer; and recrystallization from a solvent, such as ethanol. Optionally, the solvent can be acidified with an acid, such as HCl or acetic acid to provide a pharmaceutically acceptable salt thereof. Alternatively the crude reaction can be passed over an ion exchange column bearing sulfonic acid groups in the protonated form, washed with deionized water, and eluted with aqueous ammonia; followed by evaporation.

Suitable free acids bearing the tertiary amine are commercially available, such as 2-(N-morpholino)-propionic acid, N,N-dimethyl-beta-alanine. and the like. Non-commercial acids can be synthesized in straightforward manner via standard literature procedures.

Carbonate and carbamate prodrugs can be prepared in an analogous way, for example, amino alcohols and diamines can be activated using activating agents such as phosgene or carbonyl diimidazole, to provide an activated carbonates, which in turn can react with the alcohol and/or the phenolic hydroxy group on the compounds utilized herein to provide carbonate and carbamate prodrugs.

Various protecting groups and synthetic methods related to them that can be used or adapted to make compounds of the invention can be adapted from the references Testa et al., Hydrolysis in Drug and Prodrug Metabolism, June 2003, Wiley-VCH. Zurich, 419-534 and Beaumont et al., Curr. Drug Metab. 2003. 4:461-85.

Scheme 2 below provides a method of synthesizing an acyloxymethyl version of a prodrug by adapting a method from the reference Sobolev et al., 2002, J. Org. Chem. 67:401-410.

wherein R51 is C1-C6 alkyl.

Scheme 3 below provides a method for synthesizing a phosphonooxymethyl version of a prodrug by adapting a method from Mantyla et al., 2004, J. Med. Chem. 47:188-195.

Scheme 4 below provides a method of synthesizing an alkyloxymethyl version of a prodrug

wherein R52 is C1-C6 alkyl, C3-C8 cycloalkyl, C3-C9 heterocyclyl, C6-C10 aryl, or C3-C9 heteroaryl.

The compound of formula (III) was synthesized as schematically described below and elaborated thereafter.

EXAMPLE 1 Synthesis of Compound 15

To a solution of 2-bromobenzene-1,3-diol (5 g, 26.45 mmol) in DCM (50 ml) at 0° C. was added DIPFEA ( 11.54 mL, 66.13 mmol) and MOMCl (4.42 ml, 58.19 mmol). The mixture was stirred at 0° C. for 1.5 h, and then warmed to room temperature. The solution was diluted with DCM, washed with sat. NaHCO3, brine, dried and concentrated to give crude product, which was purified by column (hexanes/EtOAc=4:1) to give desired product 15.58 g(90%).

EXAMPLE 2 Synthesis of Compound 13 from 15

To a solution of 2-bromo-1.3-bis(methoxymethoxy)benzene (15) (19.9 g, 71.8 mmol) in THF (150 mL) at −78° C. was added BuLi (2.5 M, 31.6 mL, 79.0 mmol) dropwise. The solution was stirred at −78° C. for 25 min (resulting white cloudy mixture), then it was warmed to 0° C. and stirred for 25 min. The reaction mixture slowly turns homogenous. To the solution was added DMF at 0° C. After 25 min. HPLC showed reaction completed. The mixture was quenched with sat. NH4Cl (150 mL), diluted with ether (300 mL). The organic layer was separated, aq. layer was further extracted with ether (2×200 mL), and organic layer was combined, washed with brine, dried and concentrated to give crude product, which was triturated to give 14.6 g desired product. The filtrate was then concentrated and purified by column to give additional 0.7 g, total mass is 15.3 g.

EXAMPLE 3 Synthesis of Compound 13 from Resorcinol 11

A three-necked round-bottom flask equipped with mechanical stirrer was charged with 0.22 mol of NaH (50 % suspension in mineral oil) under nitrogen atmosphere. NaH was washed with 2 portions (100 mL) of n-hexane and then with 300 mL of dry diethyl ether; then 80 mL of anhydrous DMF was added. Then 0.09 mol of resorcinol 11, dissolved in 100mL of diethyl ether was added dropwise and the mixture was left under stirring at it for 30min. Then 0.18 mol of MOMCl was slowly added. After 1 h under stirring at it, 250 mL of water was added and the organic layer was extracted with diethyl ether, The extracts were washed with brine, dried (Na2SO4)then concentrated to give the crude product that was purified by silica gel chromatography to give compound 12 (93 % yield).

A three-necked round-bottom flask was charged with 110 mL of n-hexane, 0.79 mol of BuLi and 9.4 mL of tetramethylethylendiamine (TMEDA) under nitrogen atmosphere, the mixture was cooled at −10° C. and 0.079 mol of bis-phenyl ether 12 was slowly added. The resulting mixture was left under magnetic stirring at −10° C. for 2 h. Then the temperature was raised to 0° C. and 0.067 mol of DMF was added dropwise. After 1 h, aqueous HCl was added until the pH was acidic; the mixture was then extracted with ethyl ether. The combined extracts were washed with brine, dried (Na2SO4), and concentrated to give aldehyde 13 (84%).

2.6-bis(methoxymethoxy )benzaldehyde (13); mp 58-59° C. (n-hexane); IR (KBr) n; 1685 (C═O) cm−1; 1H-NMR (400 MHz, CDCl) δ 3.51 (s, 6H, 2 OCH3), 5.28 (s, 4H, 2 OCH2O), 6.84 (d, 2H, J=8.40 Hz, H-3, H-5), 7.41 (t, 1H, J=8.40 Hz, H-4), 10.55 (s, 1H, CHO); MS, m/e (relative intensity) 226 (M+,3), 180 (4), 164 (14), 122 (2), 92 (2), 45 (100); Anal. Calc'd, for C11H14O5; C58.40; H. 6.24. Found: C, 57.98; H, 6.20.

EXAMPLE 4 The Synthesis of Compound 16

To a solution of 2,6-bis(methoxymethoxy)benzaldehyde (13) (1 5.3 g, 67.6 mmol) in THF (105 mL) (solvent was purged with N2) was added cone. HCl (12N, 7 mL) under N2, then it was further stirred under N2 for 1.5 h. To the solution was added brine (109 mL) and ether (150 ml). The organic layer was separated and the aqueous layer was further extracted with ether (2×200 mL). The organic layer was combined, washed with brine, dried and concentrated to give crude product, which was purified by column (300 g, hexanes/EtOAc=85:15) to give desired product 16 (9.9 g) as yellow liquid.

EXAMPLE 5 Synthesis of Compound 17

To a solution of 2-hydroxy-6-(methoxymethoxy)benzaldehyde (16) (10.88 g, 59.72 mmol) in DMF (120 mL) (DMF solution was purged with N2 for 10 min) was added K2CO3 (32.05 g. 231.92 mmol) and 3-(chloromethyl)-2-( 1-isopropyl-1H-pyrazol-5-yl)pyridine hydrochloride (10) (15.78 g, 57.98 mmol). The mixture was heated at 65° C. for 1.5 h, cooled to rt, poured into ice water (800 mL). The precipitated solids were isolated by filtration, dried and concentrated to give desired product (17, 18 g).

EXAMPLE 6 Synthesis of Compound (III)

To a solution of 2-((2-( 1-isopropyl -1H-pyrazol-5-yl)pyridin-3-yl)methoxy)-6-(methoxymethoxy)benzaldehyde (17) (18 g, 47.19 mmol) in THF (135 mL, solution was purged with N2) was added cone. HCl (12N, 20 mL). The solution was stirred at rt for 3 h when HPLC showed the reaction complete. The mixture was added to a solution of NaHCO3 (15 g) in water (1.2 L), and the resulting precipitate was collected by filtration, dried to give crude solid, which was further purified by column (DCM/EtOAc=60:40) to give pure product (15.3 g).

EXAMPLE 7 Synthesis of Compound III (Free Base) and its HCl Salt Form

Compound (III) free base (40 g) was obtained from the coupling of the alcohol intermediate 7 and 2,6-dihydroxybenzaldedhye 9 under Mitsunobu conditions. A procedure is also provided below:

EXAMPLE8 Synthesis of Compound (III) by Mitsunobu Coupling

Into a 2000-mL three neck round-bottom flask, which was purged and maintained with an inert atmosphere of nitrogen, was placed a solution of [2[1-(propan-2-yl)-1H-pyrazol-5-yl]pyridin-3-yl]methanol (7) (70 g, 322.18 mmol, 1.00 equiv) in tetrahydrofuran (1000 mL). 2,6-Dihydroxybenzaidehyde (9) (49.2 g, 356.21 mmol. 1.10 equiv) and PPh3 (101 g, 385.07 mmol, 1.20 equiv) were added to the reaction mixture. This was followed by the addition of a solution of DIAD (78.1 g, 386.23 mmol. 1.20 equiv) in tetrahydrofuran (200 ml) dropwise with stirring. The resulting solution was stirred overnight at room temperature. The resulting solution was diluted with 500 ml of H2O. The resulting solution was extracted with 3×500 ml of dichloromethane and the combined organic layers were dried over sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with EA:PE (1:50-1:3) as eluent to yield the crude product. The crude product was re-crystallized from i-propanol/H2O in the ratio of 1/1.5. This resulted in 40 g (37%) of 2-hydroxy-6-([2-[1-(propan-2-yl)-1H-pyrazol-5-yl]pyridin-3-yl]methoxy)benzaldehyde as a light yellow solid. The compound exhibited a melting point of 80-82° C. MS (ES, m/z); 338.1 [M+1], 1H NMR (300 MHz, DMSO-d6) δ 11.72(s, 1H), 10.21(s, 1H), 8.76(d, J=3.6 Hz, 1H), 8.24(d, J=2.7 Hz, 1H),7.55(m, 3H), 6.55(m,3H), 5.21 (s. 2H), 4.65 (m, 1H), 1.37(d, J=5.1 Hz, 6H), 1H NMR (400 MHz, CDCl3) δ 11.96 (s, 1H), 10.40 (s, 1H), 8.77 (dd, J=4.8, 1.5 Hz, 1H), 8.00 (d, J=7.8 Hz, 1H), 7.63 (d, J=1.8 Hz, 1H), 7.49-7.34 (m, 2H), 6.59 (d, J=8.5 Hz, 1H), 6.37 (d, J=1.8 Hz, 1H), 6.29 (d, J=8.2 Hz, 1H), 5.10 (s, 2H), 4.67 (sep, J=6.7 Hz, 1H), 1.50 (d, J=6.6 Hz, 6H).

In another approach, multiple batches of Compound (III) free base are prepared in multi gram quantities (20 g), The advantage of this route is the use of mono-protected 2,6-dihydroxybenzaldehyde (16), which effectively eliminates the possibility of bis-alkylation side product. The mono-MOM ether of 2,6-dihydroxybenzaldehyde (16) can be obtained from two starting points, bromoresorcinol (14) or resorcinol (11) [procedures described in the Journal of Organic Chemistry, 74(11), 4311-4317; 2009]. All steps and procedures are provided below. Due to the presence of phenolic aldehyde group, precautions (i.e., carry out all reactions under inert gas such as nitrogen) should be taken to avoid oxidation of the phenol and/or aldehyde group.

EXAMPLE 9 Monophosphate Prodrug Formation

To a solution of 2-hydroxy-6-((2-( 1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde (1.06 g, 3.13 mmol)in dry acetonitrile was added N-ethyl-N-isopropylpropan-2-amine (1.10 ml., 6.27 mmol), N,N-dimethylpyridin-4-amine (0.038 g, 0.31 mmol) and carbon tetrachloride (1.52 mL, 15.7 mmol). The resulting mixture was purged with argon gas (15 minutes), cooled (−10° C.) and dibenzyl phosphonate (0.73 mL, 3.3 mmol) was added dropwise over 10 minutes. After 1 h the reaction mixture was diluted with sat'd KH2PO4 and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4 and concentrated in vacuo. Purification by silica gel chromatography (10-100%-EtOAc/hexanes) provided dibenzyl (2-formyl-3-((2-( 1-isopropyl-1H-pyraol-5-yl)pyridin-3-yl)methoxy)phenyl) phosphate (1.2 g, 65% yield), 1H NMR (400 MHz, Chloroform-d) δ 10.39 (s, 1H), 8.72 (dd, J=4.8. 1.7 Hz, 1H), 8.17 (ddt, J=7.9, 1.5, 0.7 Hz, 1H), 7.61 (dd, J=1.9, 0.5 Hz, 1H), 7.44 (dd, J=7.9. 4.8 Hiz, 1H), 7.37 (t, J=8.4 Hz, 1H), 7.36-7.29 (m, 10H), 7.02 (dt, J=8.4, 1.0 Hz, 1H), 6.66 (dt., J=8.6, 0.8 Hz, 1H), 6.35 (d, J=1.9 Hz, 1H), 5.19 (d, J=1.5 Hz, 2H), 5.17 (d, J=1.3 Hz, 2H), 5.06 (s, 2H), 4.66-4.58 (m, 1H), 1.47 (d, J=6.6 Hz, 6H), 31P NMR (162 MHz, Chloroform-d) δ −7.09. MS (ES) for C33H32N3O6P: 598 (MH+).

To a solution of (2-formyl-3-((2-( 1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)phenyl) phosphate (0.600 g. 1.00 mmol) in MeOH (15 mL) was added Pd (10% on carbon, 50 mg). The reaction vessel was evacuated and then purged with an atmosphere of hydrogen three times. After 1 hour, the vessel was evacuated and purged with N2 three times and filtered over Celite. The filter cake was washed with MeOH and the combined filtrates were concentrated. The resulting residue was purified by preparatory HPLC to yield 2-formyl-3-((2-(1-isopropyl-1H-pyraol-5-yl)pyridin-3-yl)methoxy)phenyl dihydrogen phosphate (32 mg, 8% yield), 1H NMR (400 MHz, DMSO-d6) δ 10.29 (s, 1H), 8,71 (dd, J=4.7, 1.7 Hz, 1H), 8.27(dd, J=7.9. 1.7 Hz, 1H), 7.59-7.49 (m, 3H), 6.99 (d, J=8.3 Hz, 1H), 6.86 (d, J=8.5 Hz, 1H), 6.57 (d, J=1.8 Hz, 1H), 5,11 (s, 2H), 4.63 (p, J=6.6 Hz, 1H) 1.33 (d, J×6.6 Hz, 7H), 31P NMR (162 MHz, DMSO-d6) δ-6.46, MS (ES) for C19H20N3O6P; 418 (MH+).

EXAMPLE 10 Advantageous Pharinacokinetic Properties of the Monophosphate Prodrug

A sodium salt of the monophosphate prodrug compound (Formula (V-B)) was administered orally to rats in a dose of 10 mg/kg (5 mL/kg). The vehicle administered was dimethylacetamide:PEG400:30% HβCD (5:25:70). The pharmacokinetic results are tabulated below and graphically illustrated in FIG. 1.

Blood AUCall AUC(0-∞) Tmax Cmax Cmax (hr * ng/ (hr * ng/ B/P Animal_# (hr) (hr) (ng/mL) (uM) mL) mL) Ratio 7 12.5 3 27500 81.5 464873 668159 50.9 8 24.0 4 29700 88.0 577713 1190229 67.1 9 19.2 8 21200 62.8 411205 740923 28.3 Mean 18.6 6.67 26133 77.5 484597 866437 48.7 SD 5.78 2.31 4412 13.1 84988 282762 19.5 % CV 31.1 34.6 16.6 16.9 17.5 32.6 39.9

Plasma Tmax Cmax Cmax AUCall AUC(0-∞) Animal_# (hr) (hr) (ng/mL) (uM) (hr * ng/mL) (hr * ng/mL) 7 19.3 0.5 1170 3.47 11315 17405 8 26.4 1 1380 4.09 11355 22007 9 28.1 1 1920 5.69 17414 36253 Mean 24.6 0.833 1490 4.42 13361 25222 SD 4.67 0.289 387 1.15 3510 9827 % CV 19.0 34.6 26.0 26.0 26.3 39.0

The monophospate prodrug was efficiently con veiled to compound of formula (III). At the monophosphate dose administered, the whole blood Cmax of the compound of formula (III) was about 78 uM which is equivalent to the Cmax achieved following administration of the compound of formula (III) at the same dose.

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

Throughout the description of this invention, reference is made to various patent applications and publications, each of which are herein incorporated by reference in their entirety.

Claims

1. A compound of formula (I):

or an N oxide thereof, or a pharmaceutically acceptable salt of each thereof, wherein
A is selected from the group consisting of:
wherein R1 is C1-C6 alkyl optionally substituted with 3-6 fluoro atoms;
R2 is hydrogen or C1-C6 alkyl;
R3 is C1-C6 alkyl;
each R4 independently is hydrogen or C1-C6 alkyl;
ring B is
or ring B together with A is:
X is oxygen. S, SO, or SO2;
ring C is selected from the group consisting of;
wherein R5 is selected from the group consisting of hydrogen; C1-C6 alkoxy, optionally substituted with a C1-C6 alkoxy group or with up to 3 fluoro atoms; C1-C6 alkyl; and halo;
R6 is hydrogen or halo;
R is hydrogen, a phosphate, a diphosphate, a phosphonate or a phosphoramidate containing moiety, or another promoiety;
provided that the compound of formula (I) comprises at least 1 OR group where R is not hydrogen.

2. The compound of claim 1, of formula (II):

wherein R and R1 are defined as in claim 1.

3. The compound of claim 1 or 2, wherein R is —C(O)R31, C(O)OR31, or CONR13R14

wherein each R31 is independently a C1-C6 alkyl; C3-C8 cycloalkyl, 4-9 membered heterocycle, or a 5-10 membered heteroaryl, containing at least 1 basic nitrogen moiety; and R13 and R14 independently are C1-C6, alkyl; C3-C8 cycloalkyl, 4-9 membered heterocycle, or a 5-10 membered heteroaryl, containing at least 1 basic nitrogen moiety; or R13 and R14 together with the nitrogen atom they are bonded to for a 4-9 member heterocycle substituted with at least 1 amino, C1-C6 alkyl amino, or di C1-C6 alkylamino group.

4. The compound of claim 1 or 2, wherein R1 is isopropyl.

5. A compound of formula (II): R m R34 R35 NR34R35 C(O)(CH2)mNR34R35 1 Me Me C(O)(CH2)mNR34R35 2 Me Me C(O)(CH2)mNR34R35 3 Me Me C(O)(CH2)mNR34R35 4 Me Me C(O)(CH2)mNR34R35 1 C(O)(CH2)mNR34R35 2 C(O)(CH2)mNR34R35 3 C(O)(CH2)mNR34R35 4 C(O)O(CH2)mNR34R35 2 Me Me C(O)O(CH2)mNR34R35 3 Me Me C(O)O(CH2)mNR34R35 4 Me Me C(O)O(CH2)mNR34R35 2 C(O)O(CH2)mNR34R35 3 C(O)O(CH2)mNR34R35 4 P(O)(OH)2

wherein R is phosphate. C(O)(CH2)mNR34R35, or C(O)O(CH2)mNR34R35; and
wherein m, R1, R34 and R35 are defined as tabulated below:
an N oxide thereof, or a pharmaceutically acceptable salt of each thereof.

6. A compound of formula (IV):

or a pharmaceutically acceptable salt thereof, wherein R11 and R12 are independently selected from the group consisting of hydrogen, C1-C6 alkyl optionally substituted with 1-3 C6-C12 aryl groups, optionally substituted; C6-C12aryl, optionally substituted; and a protecting group; and z is 1, 2 or 3.

7. The compound of claim 6, wherein the compound is of formula (V-A):

or a pharmaceutically acceptable salt thereof.

8. The compound of claim 6 of formula (V-B)

or a pharmaceutically acceptable salt thereof.

9. A composition comprising a compound of any one of claims 1-5 and 7-8 and at least one pharmaceutically acceptable excipient.

10. A method for increasing oxygen affinity of hemoglobin S in a subject, the method comprising administering to a subject in need thereof a therapeutically effective amount of a compound of any one of claims 1-5 and 7-8 or the composition of claim 9.

11. A method for treating oxygen deficiency associated with sickle cell anemia, the method comprising administering to a subject in need thereof a therapeutically effective amount of a compound of any one of claims 1-5 and 7-8 or the composition of claim 9.

Patent History
Publication number: 20160024127
Type: Application
Filed: Mar 10, 2014
Publication Date: Jan 28, 2016
Applicant: Global Blood Therapeutics, Inc. (South San Francisco, CA)
Inventors: Jason R. HARRIS (South San Francisco, CA), Brian W. METCALF (South San Francisco, CA), Zhe LI (South San Francisco, CA), Stephen L. GWALTNEY, II (South San Francisco, CA)
Application Number: 14/776,713
Classifications
International Classification: C07F 9/6558 (20060101); C07D 401/04 (20060101);