MOLDING METHOD AND MOLD THEREFOR
A cap filled with fluid sealant is produced for subsequent attachment to an exposed portion of a fastener, such as a bolt head. The cap has a shell made of a synthetic resin formed in a generally hemispherical, hollow shape, and a recess defined by an inner surface of the shell in a generally hemispherical shape. The method includes filling the recess with a fluid sealant, which contains a mixture of a thermosetting substance and a curing agent that is freezable prior to curing, such that while the sealant is frozen, no curing takes place, and when the sealant is subsequently heated and thawed, its original fluidity is restored and curing of the thermosetting substance restarts. The sealant is then frozen while the sealant is filled in the cap. Subsequently the sealant is thawed and any condensation that forms on the sealant or the cap during the thawing is removed by drying.
This application claims priority to U.S. provisional patent application No. 61/325,976 filed on Apr. 20, 2010, the entire contents of which are incorporated herein by reference.
TECHNICAL FIELDThe invention relates to methods and molds for molding a synthetic resin product from a liquid mixture using a mold unit having a female mold and a male mold, which define a molding cavity therebetween when closely engaged with each other.
BACKGROUND ARTThere is a long-felt need in the art for molding methods and molds capable of manufacturing high-precision products (e.g., mechanical parts, electric parts, electronic parts, or the like). The liquid mixture used for molding can be a mixture of different liquid materials, i.e., a liquid mixture, and these liquid mixtures may include high-viscosity liquid materials.
However, when a molding method is performed using a mixture of high-viscosity liquid materials, an undesirable possibility exists that minute air bubbles will be trapped in the liquid mixture during the process of mixing and agitating the liquid materials, especially in case the liquid materials are mixed and agitated without any special care.
Further, an additional possibility exists that high-viscosity liquid materials will trap ambient air while being injected into a mold, and the trapped air will end up as air bubbles entrained in the molded material. Still further, when the molding is performed using high-viscosity liquid materials, the inner surface of a mold (that may have, e.g., very small gaps, undercuts, or the like) may not be completely filled and covered with the liquid mixture (i.e., the liquid mixture does not reach all portions of the entire inner surface of the mold), which may undesirably lead to surface imperfections on the final molded product.
It is possible to perform the degassing of the mixed material prior to injecting the mixed liquid material into the mold. However, when at least one of liquid components has a high viscosity, air bubbles can become undesirably entrained in the liquid mixture if the liquid mixture is degassed without any special care.
In any event, if air bubbles are contained in the liquid mixture in the mold or if the inner surface of the mold is not completely filled with the liquid mixture, then the final molded product will have defects. That is, the molded product will contain air bubbles (i.e., voids) within the interior of the final molded product or on the surface thereof.
For these reasons, there has been the need in the art to agitate the liquid mixture while effectively degassing the liquid mixture. One known technique comprises using a mixer to agitate and degas the liquid mixture by placing the liquid mixture in a container and then simultaneously rotating and orbiting the container under a vacuum (for example, see Japanese Patent Application Publication No. H11-104404).
SUMMARYThe agitating/degassing technique disclosed in JP H11-104404 may allow the liquid mixture to be effectively degassed before the liquid mixture is injected into a mold for molding, without any bubbles being entrained in the liquid mixture.
However, an undesirable possibility still exists that, when the liquid mixture is being injected into the mold for molding after it has been agitated/degassed, the liquid mixture will trap ambient air, and the trapped air will form air bubbles in the liquid mixture held in the mold. In addition or in the alternative, the molding process could undesirably proceed with the inner surface of the mold not completely filled and coated with the liquid mixture.
For these reasons, the above-described known technique does not adequately eliminate or minimize the risk that the final molded product will contain air bubbles within the interior of the product or on the surface thereof.
Therefore, in one aspect of the present teachings, a method of molding a synthetic resin product from a liquid mixture using a mold unit having a selectively engageable female mold and a male mold is disclosed. In certain aspects of the present teachings, the final product may be molded with greater ease, without air bubbles being trapped in the final product, and/or without damage to portions of the surface of the final product.
According to another aspect of the present teachings, a method is provided for molding a synthetic resin product from a liquid mixture using a mold unit. The mold unit preferably includes a female mold and a male mold, which are closely engaged with each other in a selective manner to define a cavity having a desired shape, and are disengaged from each other. The method preferably comprises:
filling the cavity with the liquid mixture;
simultaneously agitating and degassing the liquid mixture within the cavity by disposing at least the female mold of the mold unit in a mixer while the cavity is filled with the liquid mixture, and by orbiting at least the female mold under a vacuum around an orbital axis while rotating at least the female mold about a rotational axis that is eccentric to the orbital axis; and
curing the liquid mixture in the mold unit.
Advantageous objects and effects, such as noted above, may be achieved according to any one of the following modes of the present teachings. These modes will now be summarized and each mode will be given a number. One mode may depend from and include all steps of a preceding mode, as indicated. This organization is intended to facilitate a better understanding of at least some of the plurality of technical features and the plurality of combinations thereof disclosed in this specification, and is not intended to imply that the scope of these features and combinations should be interpreted to limit the scope of the following modes of the present teachings. That is to say, it should be understood that the technical features, which are stated in this specification but which are not stated in the following modes, may also be selected as technical features of a claimed invention.
Furthermore, although some of the selected modes will be recited in a dependent form so as to depend from the other mode(s), it does not exclude the possibility that technical features currently recited in the dependent-form mode may become independent of those in the corresponding dependent mode(s) and/or may be removed therefrom. It should be understood that the technical features in the dependent-form mode(s) may become independent according to the nature of the corresponding technical features, where appropriate.
(1) A method of molding a synthetic resin product from a liquid mixture using a mold unit having a female mold and a male mold, which are closely engaged with each other in a selective manner to define a cavity having a desired shape, and are disengaged from each other, the method comprising:
filling the cavity with the liquid mixture;
simultaneously agitating and degassing the liquid mixture within the cavity, by disposing at least the female mold of the mold unit, with the cavity filled with the liquid mixture, in a mixer, and by orbiting at least the female mold under a vacuum around an orbital axis while rotating at least the female mold about a rotational axis that is eccentric to the orbital axis; and
curing the liquid mixture in the mold unit.
According this molding method, at least the female mold of the mold unit can be orbited around the orbital axis under a vacuum, while the cavity is filled with the liquid mixture, while also being rotated about the rotational axis that is eccentric to the orbital axis. As a result, the liquid mixture is simultaneously agitated and degassed within the cavity of the mold unit in an effective manner.
Further, according to this molding method, at least the female mold is subjected to the combined motion (planetary motion) of the rotation and the orbiting by the mixer while the cavity is filled with the liquid mixture, to thereby facilitate the filling or coating of the entire surface of at least the female mold with the liquid mixture.
For these reasons, according to this molding method, it is easier to mold a final product without air bubbles being trapped in the final product or without damage to portions of the surface of the final product.
(2) The molding method according to mode (1), wherein the curing includes heating the entire mold unit, to thereby cure the liquid mixture within the cavity.
(3) The molding method according to mode (1) or (2), wherein the filling is performed when the female mold is not closely engaged with the male mold, to fill the female mold with the liquid mixture,
the agitating/degassing includes:
a primary or preliminary agitating/degassing sub-step of: disposing the female mold, which has been filled with the liquid mixture in the filling step, in the mixer with the female mold not closely engaged with the male mold, and orbiting the entire female mold around the orbital axis under a vacuum using the mixer while rotating the entire female mold about the rotational axis, to thereby simultaneously agitate and degas the liquid mixture within the female mold;
after performing the primary/preliminary agitating/degassing sub-step, performing an assembling sub-step of attaching the male mold to the female mold, to thereby assemble the mold unit; and
a main or subsequent agitating/degassing sub-step of simultaneously orbiting and rotating the entire assembled mold unit using the mixer, to thereby repeat the simultaneous agitating and degassing of the liquid mixture within the cavity in the mold unit.
According to the molding method of this aspect of the present teachings, prior to agitating/degassing the liquid mixture using the mixer with the female mold closely engaged with the male mold in the mold unit, the liquid mixture within the female mold is first agitated/degassed by the same mixer as the above-mentioned mixer or by a separate one. When the female mold is not in close engagement with the male mold, the material contained therein has a higher fluidity because the liquid mixture has a larger space in which it can flow than when the female mold is in close engagement with the male mold. As a result, the liquid mixture can be more efficiently and effectively agitated/degassed when the liquid mixture is agitated/degassed with the female mold not closely engaged with the male mold.
Therefore, according to this aspect of the present teachings, the liquid mixture can be agitate/degassed with higher efficiency than if the primary/preliminary agitating/degassing were to be omitted.
Incidentally, because the female mold forms the exterior surface of a molded product, it is possible that the exterior surface of a final molded product will have defects if the female mold is not adequately filled, coated or covered with the liquid mixture prior to the curing/hardening of the liquid mixture.
However, according to the molding method according to this aspect, the liquid mixture can be agitated within the female mold, not only by the main/subsequent agitating/degassing, but also by the primary/preliminary agitating/degassing that precedes the main agitating/degassing, to thereby facilitate an adequate filling, coating or covering of the entire surface of the female mold with the liquid mixture. As a result, the possibility is eliminated or at least substantially minimized that an inadequate filling of the female mold with the liquid mixture will cause defects to the exterior surface of the final molded product.
(4) The molding method according to mode (1) or (2), wherein the agitating/degassing includes:
performing an assembling sub-step of attaching the male mold to the female mold, which has been filled with the liquid mixture in the filling step, such that the male mold and the female mold are spaced apart from each other while being movable towards each other, to thereby assemble the mold unit;
disposing the assembled mold unit in the mixer;
performing a preventing sub-step of preventing the centrifugal force generated by the orbiting motion from forcing (allowing) the female mold and the male mold to move towards each other, which would bring the male mold into close engagement with the female mold, during a mold-closing prevention period that starts when the mixer initiates operation, and during which the male mold and the female mold are prevented from being brought into close engagement with each other;
performing a first agitating/degassing sub-step of agitating and degassing the liquid mixture within the female mold using the mixer during the mold-closing prevention period while the male mold is spaced apart from the female mold;
performing a permitting sub-step of permitting the centrifugal force generated by the orbiting to force (allow) the female mold and the male mold to move towards each other, thereby bringing the male mold into close engagement with the female mold, during a mold-closing permission period that follows the mold-closing prevention period, while the mixer is operating, and during which the male mold and the female mold are permitted to be brought into close engagement with each other; and
performing a subsequent agitating/degassing sub-step of agitating and degassing the liquid mixture within the cavity of the mold unit using the mixer during the mold-closing permission period, while the male mold is in close engagement with the female mold.
According to the molding method of this aspect of the present teachings, it is possible for first and second stages to be performed during a continuous period in which a composite motion of rotation and orbiting is imparted to the mold unit using the mixer. In the first stage, the liquid mixture exhibits a high fluidity, because it is being agitated/degassed within the female mold that is not in close engagement with the male mold. In the second stage, the liquid mixture is agitated/degassed within the female mold that is in close engagement with the male mold. Thus, during the first stage, only the female mold is filled with the liquid mixture while the agitating/degassing of the liquid mixture is performed, whereas in the second stage the female mold and the male mold are filled with the liquid mixture while the agitating/degassing of the liquid mixture is performed.
Therefore, according to the molding method of this aspect, the mixer is not required to be operated in two discontinuous periods for the agitating/degassing of the liquid mixture and the filling with the liquid mixture, resulting in an improved efficiency in the molding operation.
(5) The molding method according to mode (4), wherein the female mold and the male mold are supported so as to be movable relative to each other in the direction of a common axis, and so as to be rotatable relative to each other about the axis, in order to perform the prevention sub-step and the permission sub-step,
the mold unit is configured in order to perform the prevention sub-step and the permission sub-step so as to include:
a first member that moves integrally with the male mold; and
a second member that moves integrally with the female mold,
the first and second members are rotatable and axially movable relative to each other, and have a closest relative axial-position to each other that varies between a prevention position, in which the male mold is prevented from being brought into close engagement with the female mold, and a permission position, in which the male mold is permitted to be brought into close engagement with the female mold, depending on the relative rotational-position of the first and second members,
the relative rotational-position of the first and second members varies depending on an inertial force acting on the male mold in the rotational direction of the male mold as a function of acceleration or deceleration of the rotation, and
the relative axial-position of the first and second members varies depending on an axial centrifugal-force acting on the male mold as a function of an orbiting speed.
(6) The molding method according to mode (4), wherein the female mold and the male mold are supported so as to be movable relative to each other in the direction of a common axis, and so as to be rotatable relative to each other about the axis, in order to perform the prevention sub-step and the permission sub-step,
the mold unit is configured in order to perform the prevention sub-step and the permission sub-step so as to include:
a first member that moves integrally with the male mold; and
a second member that moves integrally with the female mold,
the first and second members are rotatable and axially movable relative to each other, and have a closest relative axial-position to each other that varies between a prevention position, in which the male mold is prevented from being brought into close engagement with the female mold, and a permission position, in which the male mold is permitted to be brought into close engagement with the female mold, depending on the relative rotational-position of the first and second members,
the mold unit further includes:
a movable member that is movable in the direction of an axis and is rotatable about the axis relative to the female mold;
an elastic member exerting an elastic force onto the movable member in an opposite direction to the direction in which a first axial centrifugal-force acts on the movable member as a function of an orbiting speed, wherein when it moves in the opposite direction it moves away from the female mold; and
an engagement portion that moves integrally with the movable member, which is selectively engaged with a predetermined at least one of the first and second members,
wherein a relative axial-position of the movable member and the female mold varies depending on an axial resultant-force of the first axis centrifugal-force and the elastic force,
a relative rotational-position of the movable member of the female mold varies depending on a rotational force, which is a partial force generated by decomposing the axial resultant force using a first slanted surface formed on at least one of the second member and the movable member,
a relative rotational-position of the first and second members varies depending on a rotational force, which is a partial force generated by decomposing a second axial centrifugal-force using a second slanted surface formed on at least one of the first and second members, the second axial centrifugal-force acting on the first member and the male mold as a function of the orbiting speed, and
a relative axial-position of the first and second members varies depending on a behavior of the engagement portion and the second axial centrifugal-force.
(7) A mold unit comprising:
a female mold and a male mold, which are closely engagable with each other in a selective manner to define a cavity having a desired shape, and are disengageable from each other, wherein the female and male molds are supported so as to be movable relative to each other in the direction of a common axis, and so as to be rotatable relative to each other about the axis;
a first member that moves integrally with the male mold; and
a second member that moves integrally with the female mold,
wherein the first and second members are rotatably and axially movable relative to each other, and have a closest relative axial-position to each other that varies between a prevention position, in which the male mold is prevented from being brought into close engagement with the female mold, and a permission position, in which the male mold is permitted to be brought into close engagement with the female mold, depending on a relative rotational-position of the first and second members,
the relative rotational-position of the first and second members varies depending on an inertial force acting on the male mold in the rotational direction of the male mold as a function of acceleration or deceleration of the rotation, and
the relative axial-position of the first and second members varies depending on an axial centrifugal-force acting on the male mold as a function of an orbiting speed,
to thereby allow the male mold to selectively take positions, in which the male mold is selectively prevented from being brought into close engagement with the female mold and is permitted to be brought into close engagement with the female mold.
(8) A mold unit comprising:
a female mold and a male mold, which are closely engagable with each other in a selective manner to define a cavity having a desired shape, and are disengageable from each other, wherein the female and male molds are supported so as to be movable relative to each other in a direction of a common axis, and so as to be rotatable relative to each other about the axis;
a first member that moves integrally with the male mold; and
a second member that moves integrally with the female mold,
wherein the first and second members are rotatably and axially movable relative to each other, and have a closest relative axial-position to each other that varies between a prevention position, in which the male mold is prevented from being brought into close engagement with the female mold, and a permission position, in which the male mold is permitted to be brought into close engagement with the female mold, depending on a relative rotational-position of the first and second members,
the mold unit further includes:
a movable member that is movable in a direction of an axis and is rotatable about the axis relative to the female mold;
an elastic member exerting an elastic force onto the movable member in an opposite direction to a direction in which a first axial centrifugal-force acts on the movable member as a function of an orbiting speed, wherein, as it moves in the opposite direction, it moves away from the female mold; and
an engagement portion that moves integrally with the movable member, and which is selectively engaged with a predetermined at least one of the first and second members,
a relative axial-position of the movable member and the female mold varies depending on an axial resultant-force of the first axis centrifugal-force and the elastic force,
a relative rotational-position of the movable member of the female mold varies depending on a rotational force, which is a partial force generated by decomposing the axial resultant force using a first slanted surface formed on at least one of the second member and the movable member,
a relative rotational-position of the first and second members varies depending on a rotational force, which is a partial force generated by decomposing a second axial centrifugal-force using a second slanted surface formed in at least one of the first and second members, the second axial centrifugal-force acting on the first member and the male mold as a function of an orbiting speed, and
a relative axial-position of the first and second members varies depending on a behavior of the engagement portion and the second axial centrifugal-force.
Some presently-preferred embodiments of the invention will be described in the following in more detail with reference to the drawings.
The cap 10 is made of synthetic resin and includes a shell 12 that forms a generally hemispherical, hollow shape. The shell 12 includes an outer surface and an inner surface, which both form a generally hemispherical shape, thereby defining a recess (hollow portion) 14, which forms a generally hemispherical shape, within the shell 12.
The cap 10 will be attached to a fastener, with which a fastened member is fastened, for the purpose of enclosing or covering an outside surface of at least a portion of the fastener, to thereby protect at least a portion of the fastener that would otherwise be exposed.
In the example illustrated in
In addition, when attached to the bolt 22, the cap 10 provides a substantially air-tight seal with the bolt 22. For providing the seal, the cap 10 is filled with a sealant prior to the attachment, and the sealant brings the cap 10 and the bolt 22 into air-tight contact with each other. The air-tight contact prevents ingress of foreign matter (i.e., gases, liquids or solids) between the cap 10 and the portion of the bolt 22 that is enclosed by the cap 10. The adhesion and/or air-tightness of the sealant prevent undesired removal of the cap 10 from the bolt 22.
The sealant is made of a synthetic resin which, in the present embodiment, is the same as that of the cap 10. Although the reason will be explained in further detail below, the commonly-used material for making the sealant and the cap 10 is a high-viscosity material and exhibits thermosetting properties, such that the liquid mixture cures when heated above a prescribed temperature (e.g., 50° C.), and once cured, the original properties of the liquid mixture will not be restored even if the temperature decreases. In addition, the liquid mixture also exhibits the property that, when the liquid mixture is cooled below a prescribed temperature (e.g., −20° C.) prior to curing and is thus frozen, the chemical reaction (curing) in the liquid mixture stops, and thereafter, when the liquid mixture is heated and thawed, the chemical reaction (curing) in the liquid mixture restarts.
In the present embodiment, the liquid mixture that may be used in both the sealant and the cap 10 is a two-part type that is prepared by mixing two solutions, i.e., “Solution A” (curing agent) and “Solution B” (major component). A representative, non-limiting example of “Solution A” is PR-1776 B-2, Part A (i.e., an accelerator component that is a manganese dioxide dispersion) sold by PRC-DeSoto International, U.S.A.; a representative, non-limiting example of “Solution B,” which is combined with Solution A, is PR-1776 B-2, Part B (i.e., a base component that is a filled modified polysulfide resin) also sold by PRC-DeSoto International, U.S.A.
In
Subsequently, a cap attaching process is performed at the worksite, wherein the cap 10 is filled with the sealant at the worksite and the cap 10 is attached to the bolt 22. In an alternative described in further detail below, the sealant may instead be filled into the cap 10 prior to shipping to the worksite.
The cap molding method according to the present embodiment will now be described in further detail with reference to
As illustrated in
A discharge passage 36 is formed in the bottom section of the chamber 34 for discharging the liquid mixture (i.e., the mixture of Solutions A and B), which has been dispensed into the chamber 34, after completing the agitating/degassing of the liquid mixture, and the discharge passage 36 is closed with a detachable plug (not shown) in a selective manner. The dispensing of the liquid mixture into the container 30 is performed while the discharge passage 36 is closed or sealed by the plug.
As illustrated in
A mixer 40 is used for performing the agitating/degassing process in step S2. The mixer 40 imparts a centrifugal force to the liquid mixture under vacuum, to thereby agitate the liquid mixture while degassing it. The agitating/degassing process is performed at a predetermined temperature (e.g., about 20° C. to about 30° C.) and at a predetermined humidity (e.g., 50% RH), which conditions depend upon the curing/hardening properties of the liquid mixture. These same conditions may also be used in the following steps. In step S2, the container 30 is subjected to a relatively weak (closer to atmospheric pressure) vacuum pressure (e.g., 40 kPa).
The mixer 40 includes a housing 42 having a hollow structure with a bottom (e.g., a hollow cylinder shape) and a lid (not shown) detachably attached to an opening end of the housing 42, so that it has an opening end that is closable or sealable in a substantially air-tight manner. Within the housing 42, a base frame 44 that is elastically suspended on the housing 42 is disposed so as to absorb possible vibrations.
A motor 50 is mounted on the base frame 44. A rotatable frame 54 having a hollow cylinder shape is coupled to the motor 50. The rotatable frame 54 is rotated about the orbital axis by the motor 50.
The rotational axis is defined in the rotatable frame 54 at a position eccentric to the orbital axis, and in an orientation in which the rotational axis is inclined relative to the orbital axis (e.g., at 45 degrees). The rotational axis is rotated together with the rotatable frame 54.
The container holder 56 is mounted on the rotatable frame 54 so as to be coaxial with the rotational axis and so as to be rotatable about the rotational axis. The container holder 56 is used to hold the container 30, or to hold a mold unit as will be described below. The container holder 56 is rotated about the rotational axis by the motor 50.
In the present embodiment, the motor 50 is directly coupled to the rotatable frame 54, while the motor 50 is indirectly coupled to the container holder 56 via a power transmission system 60 (e.g., a belt driven system, a chain driven system, a gear driven system, etc.).
In the example illustrated in
The power transmission system 60 further includes a second pulley 68 and a third pulley 70, which are coaxially affixed to the second rotatable shaft 66, and a rotor 74. The rotor 74 is coaxially attached to the first rotatable shaft 62 via a bearing 72, so as to be rotatable relative to the first rotatable shaft 62. A first belt 76 (a belt is an example of an endless transmission) is wound around the first pulley 64 and the second pulley 68. A fourth pulley 80 and a fifth pulley 82 are integrally formed on the rotor 74. A second belt 84 is wound around the third pulley 70 and the fourth pulley 80.
The power transmission system 60 still further includes a third rotatable shaft 86 that is positioned eccentric to and oriented parallel to the orbital axis. The third rotatable shaft 86 revolves together with the rotatable frame 54, while being rotated relative to the rotatable frame 54 via the bearing 87. The power transmission system 60 still further includes a sixth pulley 88 and a seventh pulley 89, each of which is coaxially affixed to the third rotatable shaft 86, and a third belt 90 that is wound around the fifth pulley 82 and the sixth pulley 88.
The power transmission system 60 further includes: an eighth pulley 91 that is rotated coaxially and integrally with the container holder 56, a fourth belt 92 that is wound around the eighth pulley 91 and the seventh pulley 89, and a pair of guide pulleys 93 (in a plan view) that guide (re-direct) a pair of straight portions (in a plan view) of the fourth belt 92 so as to bend the pair of straight portions.
In the present embodiment, the orbiting and the rotation of the container holder 56 are produced by the common motor 50; the orbiting and rotation of the container holder 56 kinetically depend on each other. Further, in the present embodiment, the ratio between the orbiting speed and the rotational speed of the container holder 56 is fixed.
In an exemplary modified version of the mixer 40, while the orbiting and the rotation of the container holder 56 are produced by the common motor 50, a clutch or a CVT (Continuous Velocity Transmission) may be utilized to allow the ratio between the orbiting speed and the rotational speed to vary. In another exemplary modified version, the orbiting and the rotation of the container holder 56 are produced by separate motors, respectively, to thereby allow the orbiting speed and the rotational speed of the container holder 56 to be independent of each other and to be pre-set separately.
As illustrated in
The brake 94 is configured and disposed so as to rapidly decelerate at least the rotational speed (from among the rotational speed and the orbiting speed) of the container holder 56. Although not limited thereto, the brake 94 of the present embodiment may be configured to enable an external force to be exerted onto a movable component (e.g., the rotatable frame 54) by friction, wherein the movable component rotates or linearly moves with the container holder 56.
As illustrated in
The brake 94 further includes a displacement mechanism 94c configured to displace the movable pad 94b from the illustrated retracted position, at which retracted position the movable pad 94b is radially spaced from the band 94a, to an active position, at which active position the movable pad 94b contacts the band 94a and generates friction between the movable pad 94b and the band 94a, and vice versa. The displacement mechanism 94c may be manually operated or automatically operated. For the displacement mechanism 94c to be automatically operated, the displacement mechanism 94c may be electrically connected with the controller 96, and an actuator (not shown) built in the displacement mechanism 94c is electrically controlled by the controller 96.
In the present embodiment, when the rotatable frame 54 is decelerated by the brake 94, the motor 50 is correspondingly decelerated. In response to the deceleration of the motor 50, the container holder 56 will also be decelerated. As a result, the brake 94 decelerates the container holder 56 in both of the rotational and orbital directions.
The console panel 95 is operated by the user to start/stop the mixer 40 and to pre-set a rotation/orbiting speed profile for controlling combined motion to be imparted to the container holder 56.
The controller 96 is electrically connected with the console panel 95 and the motor 50. The controller 96 principally comprises a computer 97; as is well-known, the computer 97 includes at least one processor 97a and storage (memory) 97b.
In response to a user's start command, the controller 96 causes the at least one processor 97a to execute one or more programs (not shown) stored in the storage 97b. As a result, the motor 50 is controlled to execute the pre-set rotational/orbiting speed profile (e.g., the profile shown by the graph in
More specifically, the controller 96 drives the motor 50 to change its speed using an inverter (not shown) for Variable Voltage Variable Frequency control, in accordance with the user's settings. The motor 50 is controlled by the inverter control to execute a selected one of an acceleration mode (e.g., including a rapid acceleration mode, a gradual acceleration mode, etc.), a constant speed mode, and a deceleration mode, to thereby allow each of the rotational speed and the orbiting speed of the container holder 56 to have a desired acceleration gradient and a desired deceleration gradient.
In the example illustrated in
As illustrated in
The liquid mixture is agitated due to the centrifugal force generated by the planetary motion, which is produced by the mixer 40. Consequently, air bubbles trapped or entrained in the liquid mixture are released from the liquid mixture due to the synergistic effect of the centrifugal force imparted by the mixer 40 and the negative pressure (partial vacuum) created by the suction pump, thereby resulting in the degassing of the liquid mixture.
After the agitating/degassing of the liquid mixture is finished, the container 30 is removed from the mixer 40, as illustrated in
Next, as illustrated in
As illustrated in
In the present embodiment, a pusher 98a is pushed into the chamber 34 of the container 30 in order to forcibly discharge the liquid mixture from the container 30, as illustrated in
In the present embodiment, while transferring the liquid mixture from the container 30 to the syringe 98, the container 30 is held in space, as illustrated in
Further, in the present embodiment, while transferring the liquid mixture from the container 30 to the syringe 98, the syringe 98 is held in space with the base end facing upward and the top end facing downward. In this orientation, the liquid mixture, which has been downwardly extruded from the container 30, is injected (transferred) into the syringe 98 via its base end.
Thereafter, the liquid mixture moves downwardly within the syringe 98 while displacing air within the syringe 98 and discharging the air from the opening of the tip end of the syringe 98. Because the tip end has a smaller diameter opening than the base end, the discharge of air will be impeded due to the smaller flow-through cross-section. As a result of the transfer of liquid mixture into the syringe 98, the liquid mixture will increasingly accumulate in the syringe 98, such that the uppermost level of the liquid mixture rises in the direction extending from the tip end towards the base end of the syringe 98.
In the present embodiment, step S3 is performed at atmospheric pressure; however, if it is alternatively performed at a sub-atmospheric pressure (i.e. a partial vacuum), then it becomes possible to more reliably prevent air bubbles from being trapped in the liquid mixture while it is being dispensed into the syringe 98.
Subsequently, as illustrated in
Both of the female mold 102 and the male mold 104 are made of a synthetic resin, e.g., a self-lubricating synthetic resin, more preferably PTFE (Teflon®).
The female mold 102 and the male mold 104 have a common centerline, along which the male mold 104 is linearly movable relative to the female mold 102. In the present embodiment, a plurality of parallel metal guide rods 112 are detachably affixed to the female mold 102 for achieving and guiding the linear movement. A plurality of through-holes are formed in the male mold 104 in a complimentary manner, so that the guide rods 112 can slidably fit into the through-holes.
In step S4 illustrated in
In addition, in step S4, the female mold 102 (with the guide rods 112 removed from the female mold 102) is received in the container holder 56 of the mixer 40, along with the case 114, as illustrated in
In step S4, the container holder 56 is subjected to a stronger partial vacuum (e.g., 20 kPa) than in the above-described step S2.
Incidentally, the stronger the vacuum (negative pressure) on the liquid mixture, the better the degassing effect of the liquid mixture is. Moreover, the larger the volume of the liquid mixture, the greater the fluidity of the liquid mixture is; as a result of this property, the liquid mixture is easily heated by friction during the agitating/degassing of the liquid mixture under centrifugal force. On the other hand, the higher the temperature of the liquid mixture, the more easily the liquid mixture generates foam (air bubbles). Consequently, in an environment that easily generates foam, the stronger the vacuum, the more foaming is promoted in the liquid mixture.
With this in mind, when the liquid mixture is agitated/degassed within the container 30 in step S2, the liquid mixture is more easily heated because of its larger volume than that of the liquid mixture when it is agitated/degassed in step S4 within the female mold 102. As a result, the liquid mixture is more prone to generating foam (air bubble) in step S2 than in step S4.
Therefore, in the present embodiment, the agitating/degassing in step S2 is performed at a weaker partial vacuum than that the partial vacuum applied during the agitating/degassing in step S4. For the same reasons, the agitating/degassing in step S5 is performed at a stronger partial vacuum than the partial vacuum applied during the agitating/degassing in step S2. In addition, the agitating/degassing in step S5 is performed at the same partial vacuum pressure as is applied during the agitating/degassing in step S4.
Subsequently, in step S5 depicted in
More specifically, as illustrated in
When the mixer 40 is activated, the male mold 104 is not closely engaged with the female mold 102, so that the fluidity of the liquid mixture within the female mold 102 is not substantially obstructed by the male mold 104. During this period (when the male mold 104 is not close to the female mold 102), the liquid mixture is agitated/degassed efficiently. The agitating/degassing is also performed at a relatively strong partial vacuum (e.g., 20 kPa, as described above), i.e., at a lower pressure than in step S2.
During the period in which the rotational speed and/or the orbiting speed of the mixer 40 increase(s) up to a target value, the centrifugal force generated by the planetary motion and applied to the male mold 104 increases as the rotational speed and/or the orbiting speed increase(s); this results in a corresponding increase in the driving force for moving the male mold 104 towards the female mold 102 along the guide rods 112.
When the driving force eventually overcomes the frictional resistance between the male mold 104 and the guide rods 112, the male mold 104 will move towards the female mold 102 along the guide rods 112. Eventually, the male mold 104 is brought into contact with the female mold 102. The mixer 40 continues operating even after the contact, to thereby allow the liquid mixture within the cavity 111 of the mold unit 100 to be agitated/degassed in the mold closed position as well. The agitating/degassing is performed at a relatively strong partial vacuum (e.g., 20 kPa, as described above), similar to the above-described previous agitating/degassing.
In the present embodiment, the male mold 104 is prevented from being brought into contact with the female mold 102 during an initial period of the molding process in order to maximize the fluidity of the liquid mixture in the female mold 102 during this time period, thereby maximizing the effect of the agitating/degassing. When a prescribed period of time has elapsed thereafter, the male mold 104 is then allowed or enabled to be brought into contact with the female mold 102.
Once the rotational molding using the mold unit 100 has been completed, the entire mold unit 100 is removed from the mixer 40. At this time, the mold unit 100 is in the mold closed position, as illustrated in
Thereafter, the mold unit 100 is clamped in step S6 depicted in
Subsequently, in step S7 depicted in
Thereafter, in step S8 depicted in
Subsequently, in step S9 depicted in
It is noted that, in step S4 in the present embodiment, the female mold 102 filled with the liquid mixture is subjected to the planetary motion by the mixer 40 as illustrated in
In an alternative, the present teachings may be practiced in a mode in which the performance of step S5 is omitted, i.e. steps S6 and S7 may directly follow upon completion of step S4. Only the agitating/degassing of the liquid mixture within the female mold 102 need be performed in step S4, in case an adequate agitating/degassing effect can be achieved thereby.
Thereafter, a sealant-filling method may be performed as illustrated in
As illustrated in
The use of the female mold 102 is not essential for holding the cap 10 in position. Although an alternative tool can be used, in case the female mold 102 is used, it is not necessary to manufacture an exclusive-use jig for holding the cap 10 in position.
Thereafter, with the recess 14 of the cap 10 held in position, it is filled with the sealant 118 as illustrated in
Next, in step S12 depicted in
Subsequently, in step S13 depicted in
Thereafter, in step S14 depicted in
Subsequently, in step S15 depicted in
Thereafter, in step S16 depicted in
As a result, the manufacture of the caps 10, which serve as final products, is completed. Each cap 10 is a combination of the cap 10, which served as an intermediate product, and the frozen sealant 118, with which each cap 10 is filled.
In other words, at this point in time, each cap 10 serving as a final product is a multi-layered structure made of a solid outer layer (shell 12) and a solid inner layer that is located within the outer layer, wherein the outer layer is made of a material, the original fluidity of which cannot be restored even by subsequent thawing due to the curing having already been completed, and the inner layer is made of a material (sealant 118), the original fluidity of which can be restored by subsequent thawing due to the fact that the curing was not previously completed.
After the sealant-filling method has been completed in the manner described above, the cap attaching method, as illustrated in
More specifically, in step S21, the product kit 124 is first received at the worksite. Next, in step S22, the received product kit 124 is placed into cold-storage in a freezer (not shown).
Subsequently, in step S23, when it becomes necessary to initiate the cap attaching process using the product kit 124, the product kit 124 is removed from the freezer and thereafter, the product kit 124 is thawed in a thawing area (although not shown, e.g., a thawing (warm) room) as illustrated in
After the cap 10 is thawed, the shell 12 is still solid and not liquefied, while the sealant 118 is liquefied and exhibits its original fluidity.
Thereafter, in step S24 (or concurrently with the thawing of step S23), the product kit 124 is dried using a dryer (not shown), to thereby remove any condensation that has formed on the surface of the cap 10 due to the thawing. The dryer can be configured, for example, to blow air onto the cap 10 at room temperature or hot air, to thereby blow off and/or evaporate any water on the surface of the cap 10.
Subsequently, in step S25, the product kit 124 is removed from the thawing area or the drying section, and the removed product kit 124 is transported to the worksite, e.g., using a handcart 126 as illustrated in
At this time, the cap 10 is solid while the sealant 118 within the cap 10 is fluid, which enables the cap 10 to be attached to the bolt 22. The sealant 118 deforms relatively freely so as to fill in any possible gaps between the cap 10 and the bolt 22, without leaving any gaps. As a result, a seal between the cap 10 and the bolt 22 is achieved. With that, this cap attaching method is completed.
As will be evident from the foregoing explanation, in the present embodiment, the first half of step S4 depicted in
Further, in the present embodiment, the last half of step S4 depicted in
Next, a cap molding method according to a second embodiment of the present teachings will be described. The present embodiment, however, is similar to the first embodiment, except for step S3 depicted in
In the first embodiment, while transferring the liquid mixture from the container 30 to the syringe 98 as illustrated in
Further, in the first embodiment, while transferring the liquid mixture from the container 30 to the syringe 98, the syringe 98 is held in space with its base end facing upward and with its tip end facing downward. In this orientation, when downwardly extruded from the container 30, the liquid mixture is injected into the syringe 98 via its base end.
In contrast, in the present embodiment as illustrated in
Thereafter, the container 30 is inverted from the original orientation, and as a result, the container 30 is held in space with the discharge passage 36 facing upward and with the chamber 34 facing downward. Subsequently, the syringe 98 is held in space with its base end facing upward with its tip end facing downward, and with the tip end and the outlet of the discharge passage 36 coinciding with each other.
In this orientation, the pusher 98a is moved upwardly within the chamber 34. As a result, the liquid mixture is extruded upwardly from the chamber 34. When upwardly extruded from the container 30, the liquid mixture is injected into the syringe 98 not via its base end, but rather via its tip end.
Thereafter, the liquid mixture moves upwardly within the syringe 98 while displacing air within the syringe 98 and discharging the air from the opening of the base end of the syringe 98 (less prone to impede the discharge of air due to the larger diameter than the opening of the tip end). As a result, the liquid mixture increasingly accumulates in the syringe 98, such that the uppermost level of the liquid mixture rises in the direction from the tip end to the base end.
Thus, in the present embodiment, when the liquid mixture is injected into the syringe 98, because it is injected via the tip end of the syringe 98, it is completed without compressing air within the syringe 98, as opposed to when it is injected from the base end. As a result, when the liquid mixture is injected into the syringe 98, it is less likely that air bubbles will be trapped in the liquid mixture within the syringe 98, than when the liquid mixture is injected via the base end of the syringe 98.
Next, a cap molding method according to a third embodiment of the present teachings will be described. The present embodiment, however, is similar to the first embodiment, except for a particular portion of the molding method, the structure of the mold unit, and the speed control for the mixer. Therefore, the present embodiment will be described in detail with regard to only the elements that differ from those of the first embodiment, while a redundant description of the elements common with those of the first embodiment will be omitted.
In the first embodiment, as illustrated in
In contrast, in the present embodiment, step S4 is omitted; instead, step S5 includes a mold-closing prevention period in a first half thereof and includes a mold-closing permissible period in a last half thereof. In other words, in the present embodiment, although it will be further explained below with reference to
During the mold-closing prevention period, while the male mold in the assembled mold unit is prevented from being closely engaged with the female mold, the liquid mixture within the female mold is agitated/degassed. In contrast, during the mold-closing permissible period, the male mold is permitted to be closely engaged with the female mold, and after the engagement, the liquid mixture is agitated/degassed within the narrow cavity defined by the male and female molds that are engaged with each other.
Similar to the mold unit 100 depicted in
The mold unit 140 further includes a guide cup 150 (a first cylindrical member), a spacer 152 and a mold-attachment cup 154 (a second cylindrical member having a larger diameter than the first cylindrical member).
The guide cup 150, which has a hollow cylinder shape with a bottom, includes a cylindrical section 156 and a bottom section 158 that encloses one of the two ends of the cylindrical section 156. The female mold 142 fits within the guide cup 150, contacts the bottom section 158 and is detachably attached to an inner circumferential surface of the guide cup 150, such that the female mold 142, after being attached, is rigidly affixed to the inner circumferential surface of the guide cup 150 with axial and rotational relative-movement inhibited. The guide cup 150 is made, e.g., of POM.
The spacer 152 also has a hollow cylinder shape with a bottom; the guide cup 150 slidably fits within the spacer 152 along its inner circumferential surface and is detachably attached to the inner circumferential surface of the spacer 152, such that the guide cup 150, after being attached, is rigidly affixed to the inner circumferential surface of the spacer 152 with axial and rotational relative-movement inhibited.
The mold-attachment cup 154 also has a hollow cylinder shape with a bottom; the spacer 152 slidably fits within the mold-attachment cup 154 along its inner circumferential surface and is detachably attached to the inner circumferential surface of the mold-attachment cup 154, such that the spacer 152, after being attached, is rigidly affixed to the inner circumferential surface of the mold-attachment cup 154 with axial and rotational relative-movement inhibited.
The mold-attachment cup 154 fits into the container holder 56 without any noticeable play and is detachably attached to the inner circumferential surface of the container holder 56, such that the mold-attachment cup 154, after being attached, is rigidly affixed to the inner circumferential surface of the container holder 56 with axial and rotational relative-movement inhibited.
Both the female mold 142 and the male mold 144 are fitted within the inner circumferential surface of the guide cup 150. The female mold 142 is rigidly affixed to the guide cup 150, such that the female mold 142 will always integrally rotate/orbit with the guide cup 150. In contrast, the male mold 144 fits in the guide cup 150 so as to be axially and rotatably movable relative to the guide cup 150. As a result, the male mold 144 can move axially towards and away from the female mold 142 while being guided by the inner circumferential surface of the guide cup 150. The movement of the male mold 144 relative to the female mold 142 is limited by cooperative action of guide pins and elongated guide holes that are fitted with each other, as will be described below.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As described above, the male mold 144 is axially and rotatably movable relative to the guide cup 150, but a path along which the male mold 144 can move is defined by the cooperative action of the guide pins 160 and the elongated guide holes 162. In addition, relative displacement (including relative rotation and relative linear motion) between the male mold 144 and the guide cup 150 generates relative movement between the male mold 144 and the female mold 142.
Briefly explained, the relative displacement between the male mold 144 and the guide cup 150 is generated based on the inertial force (primarily the direction thereof (from among the magnitude and the direction of the inertial force)) applied to the rotational direction of the male mold 144 and the axial component (magnitude) of the centrifugal force acting on the male mold 144.
While the mixer 40 is inactive, each guide pin 160 is located in its initial state at the terminal end (the lowest position) of the first portion 170 as illustrated in
In
In the example depicted in
Further, in the example depicted in
During the first rapid-acceleration interval A, the motor 50 is driven in the rapid acceleration mode, to thereby accelerate the female mold 142 in the rotational direction. As a result of this, as illustrated in
During the second constant-speed interval B, the motor 50 is driven in the constant speed mode, to thereby rotate and orbit both of the female mold 142 and the male mold 144 at a constant speed. During this time, the guide pins 160 are held in the initial position depicted in
During the third rapid-deceleration interval C, the brake 94 is activated with the motor 50 powered off, to thereby decelerate the female mold 142 in the rotational direction. As a result of this, as illustrated in
If the inertial force continuously acts on the male mold 144 in the same direction, the guide pins 160 will move from the terminal end (the rightmost position) of the second portion 172 shown in
In the present embodiment, the third portion 174 is inclined downwardly relative to the circumferential direction of the male mold 144. For this reason, as compared to an embodiment in which the third portion 174 is not inclined, the guide pins 160 are less likely to move back along the third portion 174 against gravity in an undesired manner.
During the fourth gradual-acceleration interval D, the motor 50 is driven in the gradual acceleration mode with the guide pins 160 positioned at the fourth portion 176, to thereby accelerate the male mold 144 in the orbital direction. As a result, the male mold 144 is subjected to a centrifugal force that increases over time. Because the centerline (i.e., the rotational axis) of the male mold 144 is inclined relative to the orbital axis, the geometry of the system results in that the overall centrifugal force contains an axial component (hereinafter, referred to as “axial centrifugal force”) and a radial component. The axial centrifugal force acts on the male mold 144 in the direction (i.e. the downward direction) that causes the male mold 144 to move towards the female mold 142. As a result, the guide pins 160 descend along the fourth portion 176 and move towards the female mold 142 as illustrated in
During this fourth gradual-acceleration interval D, the axial centrifugal force acting on the male mold 144 increases at a more gradual gradient than when the motor 50 is driven in the rapid acceleration mode. Therefore, the male mold 144 approaches the female mold 142 at a low speed. Thus, the male mold 144 is prevented from rushing into the liquid mixture within the female mold 142 at too high of a speed, which could undesirably incorporate or entrain air into the liquid mixture.
As illustrated in
During the fifth rapid-acceleration interval E, the motor 50 is driven in the rapid acceleration mode, to thereby rapidly accelerate the mold unit 140 in both the rotational direction and the orbital direction (at a steeper gradient than the preceding fourth gradual-acceleration interval E).
During the sixth constant-speed interval F, the motor 50 is driven in the constant speed mode, to thereby rotate/orbit the female mold 142 and the male mold 144 together at a constant speed. As a result, the liquid mixture within the narrow cavity, which is defined by the female mold 142 and the male mold 144, is agitated/degassed in a partial vacuum. During this sixth constant-speed interval F, the liquid mixture is also urged to completely fill, coat or cover the surface(s) of the female mold 142 and the male mold 144.
During the seventh gradual-deceleration interval G, the motor 50 is driven in the deceleration mode, to thereby decelerate the female mold 142 and the male mold 144 together in both the rotational direction and the orbital direction. During this seventh gradual-deceleration interval G, a more gradual speed gradient is realized than the third rapid-deceleration interval C, because the brake 94 is not actuated. Eventually, the female mold 142 and the male mold 144 will stop moving.
The agitating/degassing process according to the present embodiment will now be described in detail below with reference to
This agitating/degassing process begins with step S31, in which the male mold 144 is attached to the female mold 142 that has been filled with the liquid mixture as illustrated in
Next, in step S32, a disposing process is performed such that the assembled mold unit 140 is disposed in the mixer 40 as illustrated in the center drawing of
Subsequently, in step S33, a prevention process is initiated when the mixer 40 is actuated and is performed during the mold-closing prevention period. The prevention processes prevents the male mold 144 from moving towards the female mold 142 and from bringing the male mold 144 into close engagement with the female mold 142 due to the centrifugal force generated by the orbiting of the mold unit 140. In the present embodiment, the mold-closing prevention period is defined as including the first rapid-acceleration interval A, the second constant-speed interval B and the third rapid-deceleration interval C as illustrated in
In parallel with the above-described step S33, a first agitating/degassing process is performed during the mold-closing prevention period in step S34, such that the liquid mixture is agitated/degassed within the female mold 142 using the mixer 40 while the male mold 144 is disengaged from the female mold 142.
Subsequently, in step S35, a permitting process is performed during the mold-closing permissible period, which follows the mold-closing prevention period, while the mixer 40 is operating. This permitting process permits the male mold 144 to move towards the female mold 142 to bring the male mold 144 into close engagement with the female mold 142 due to the centrifugal force acting on the male mold 144. In the present embodiment, the mold-closing permission period is defined as including the fourth gradual-acceleration interval D, the fifth rapid-acceleration interval E, the sixth constant-speed interval F and the seventh gradual-deceleration interval G, as illustrated in
In parallel with the above-described step S35, a subsequent agitating/degassing process is performed in step S36 during the mold-closing permission period, while the male mold 144 is closely engaged with the female mold 142. In the subsequent agitating/degassing process, the liquid mixture is agitated/degassed within the cavity of the mold unit 140 using the mixer 40.
In the first embodiment illustrated in
Because the agitating/degassing of step S5 is performed while the liquid mixture is confined within the narrow cavity 110 in a state of low fluidity, step S4 is performed prior to step S5, in order to agitate/degas the liquid mixture while the liquid mixture is not confined within the female mold 102 and is in a state of high fluidity.
On the other hand, in the present embodiment, step S4 is omitted and step S5 is performed such that both a first or preliminary process of agitating/degassing the liquid mixture while the male mold 144 is disengaged from the female mold 142 and a main or subsequent process of agitating/degassing the liquid mixture while the male mold 144 is engaged with the female mold 142 are performed during a continuous operation of the mixer 40.
Therefore, the present embodiment provides the possibility of agitating/degassing the liquid mixture within the female mold 142 without interrupting the mixer 40, resulting in an improvement in the agitating/degassing efficiency, a reduction in the time required to mold the cap 10 and an improvement in the manufacturing efficiency of the cap 10.
In
The speed/time chart in the example depicted in
More specifically, in this second example, the motor 50 is driven in the rapid acceleration mode during the first rapid-acceleration interval A. The motor 50 is driven in the constant speed mode during the second constant-speed interval B and during the sixth constant-speed interval F. The motor 50 is driven in the deceleration mode during the seventh gradual-deceleration interval G.
This second example is similar to the first example, except for the third rapid-deceleration interval C that employs, as an alternative interval, a series of a deceleration interval C1, in which the motor 50 is driven in the deceleration mode without actuating the brake 94, and a deceleration interval C2, in which the brake 94 is actuated.
In this second example, differently from the first example, the motor 50 is current-controlled (electronic braking) during the first deceleration interval C1, to thereby reduce the rotational speed and the orbiting speed to sufficiently close to zero without relying on the brake 94. During the subsequent deceleration interval C2, the brake 94 is actuated to thereby impart an inertial (mechanical braking) force to the rotational direction of the male mold 144. In this second example, because the speed of the rotatable frame 54 when the brake 94 begins operation is less than in the first example, the load on the brake 94 and the motor 50 is reduced.
Further, in this second example, a series of three constant-speed intervals D1, D2 and D3 interleaved with three rapid-acceleration intervals E1, E2 and E3 are used as intervals corresponding to the series of the fourth gradual-acceleration interval D and the fifth rapid-acceleration interval E, as described in the first example. During each of the constant-speed intervals D1, D2 and D3, the motor 50 is driven in the constant speed mode, while during each of the rapid-acceleration intervals E1, E2 and E3, the motor 50 is driven in the rapid acceleration mode.
In this second example, by interleaving or alternating the constant speed modes with the rapid acceleration modes, the male mold 144 will experience a lesser centrifugal force than an alternative that utilizes a continuous rapid acceleration mode. As a result, when the male mold 144 is approaching the female mold 142 due to the centrifugal force acting on the male mold 144 and the guide pins 160 are descending into the fourth portion 176, as illustrated in
It is noted that, in the present embodiment, the brake 94 generates the inertial force required for moving the guide pins 160 from a locked position, which prevents the male mold 144 from approaching the female mold 142, to an unlocked position that permits this approaching movement. On the other hand, in case the required inertial force can be generated using only the current control (electronic braking) of the motor 50, it is not necessary to operate the brake 94.
Next, a cap molding method according to a fourth embodiment of the present teachings will be described. The present embodiment, however, is similar to the third embodiment, except for the structure of the mold unit and the speed control for the mixer. Therefore, the present embodiment will be described in detail with regard to only the elements that differ from those of the third embodiment, while a redundant description of the elements common with those of the third embodiment will be omitted.
In the third embodiment, as described above, the mold unit 140 is configured to include the guide pins 160 (each is an example of the “first member” set forth in the above mode (5)), which integrally move with the male mold 144, and the elongated guide holes 162 (each is an example of the “second member” set forth in the same mode), which integrally move with the female mold 142. The guide pins 160 move along the elongated guide holes 162, each having a predetermined path, due to the cooperative action of the inertial force, which that acts on the male mold 144 in the rotational direction of the male mold 144 because of its rotation and which varies over time at least in the direction of the force, and the axial centrifugal force, which acts on the male mold 144 because of its orbiting and which varies over time in the magnitude of the force. As a result, the operational state of the male mold 144 is switched between a state, in which the male mold 144 is prevented from closely engaging with the female mold 142, and a state, in which the male mold 144 is permitted to closely engage the female mold 142.
Thus, in the third embodiment, the relative motion between the guide pins 160 and the elongated guide holes 162 takes place without using any additional intervening movable-members, thereby making it easy to reduce the total part count.
In contrast, in the present embodiment, the relative motion between the guide pins 160 and guide grooves takes place using an additional intervening movable-member, in order to improve its stability and to simplify the design. Further, in the present embodiment, the speed control for the mixer 40 is performed, not using the brake 94, but rather using current control for the motor 50.
As illustrated in
Similar to the embodiment illustrated in
Similar to the embodiment illustrated in
As illustrated with enlargement in
In particular, the first section 240 plays an important role in preventing the male mold 144 from engaging with the female mold 142, while the fourth section 246 plays an important role in permitting the male mold 144 to engage with the female mold 142. For this reason, the fourth section 246 is closer in position to the female mold 142 than the first section 240.
The second section 242 extends obliquely and has a straight segment that interconnects the first section 240 with an upper end of the third section 244. The second section 242 has a slanted surface that contacts the guide pin 160 (an example of the aforementioned “second slanted surface”). This slanted surface functions to decompose or separate the axial centrifugal force (the downward force) acting on the male mold 144 during its orbiting by the mixer 40, to thereby convert the axial centrifugal force into a rotational force acting on the male mold 144 (i.e. only the force component from the axial centrifugal force that acts in the rotational direction is applied to the male mold 144). This second section 242 is inclined, relative to an imaginary straight line extending from the first section 240 in the circumferential direction of the cylindrical section 226, in a direction that extends towards the fourth section 246. The third section 244 is a straight segment that extends vertically from the fourth section 246 in a direction extending away from the female mold 142.
As illustrated in
The upper flange 252 is located above the lower flange 224. The upper flange 252 and the lower flange 224 cooperate to provide the same function as the spacer 152 depicted in
As illustrated in
The possible range of motion of the movable member 212 relative to the guide cup 210, however, is limited as illustrated in
As illustrated in
As illustrated in
As illustrated with enlargement in
The first section 270 approximates (i.e. it is substantially identical to) the overall shape of the second guide groove 260 and corresponds to one of two arms of the letter “V”, while the third section 274 corresponds to the other arm. The second section 272 connects the first section 270 with the third section 274. The first through third sections 270, 272 and 274 are arranged in order in one rotational direction of the guide cup 210. The upper end of the third section 274 is higher than the upper end of the first section 270.
The first section 270 decomposes or separates a downward force acting on the movable member 212 (i.e., the magnitude of the axial centrifugal force acting on the movable member 212 due to the orbiting minus the elastic force of a spring 280). The first section 270 has a slanted surface (the lower surface of the first section 270; one example of the aforementioned “first slanted surface”) that converts that portion or component of the downward force into a rotational force acting on the movable member 212. The third section 274 decomposes or separates an upward force acting on the movable member 212 (i.e., the magnitude of the elastic force of the spring 280 minus the axial centrifugal force). The third section 274 has a slanted surface (the upper surface of the third section 274; another example of the aforementioned “first slanted surface”) that converts that portion or component of the upward force into a rotational force acting on the movable member 212. The rotational forces generated by the first and third sections 270 and 274 both have the same direction.
As illustrated in
As illustrated in
The initial position of each guide pin 262 is Position A depicted in
Thereafter, when the orbiting speed of the mold unit 200 shifts from an increasing phase (or a constant speed phase) to a decreasing phase, the axial centrifugal force acting on the movable member 212 decreases, resulting in movement of each guide pin 262 from Position B to Position C. Subsequently, the guide pin 262 ascends while rotating in the same direction due to the slanted surface of the third section 274 of the second guide groove 260. As a result, guide pin 262 will move from Position C to Position D.
As illustrated in
As illustrated in
Further, when each guide pin 262 is in Position A, the third section 304 of each engagement portion 290 changes the apparent or effective shape of the fourth section 246 of each first guide groove 232, so that the male mold 144 is more reliably prevented from being brought into close engagement with the female mold 142. More specifically, the third section 304 narrows the apparent or effective groove width of the third section 244 of each first guide groove 232, to thereby prevent each guide pin 160 from entering the third section 244, from becoming closer to the fourth section 246, and from bringing the male mold 144 into close engagement with the female mold 142.
As illustrated in
At this stage, while it is possible that each guide pin 160 will overcome the protrusion of each first guide groove 232, which is located between the first section 240 and the second section 242, and the male mold 144 will be brought into close engagement with the female mold 142, it is also possible that each guide pin 160 cannot overcome the protrusion and thus the male mold 144 will not be brought into close engagement with the female mold 142.
As illustrated in
As illustrated in
In
As illustrated in
During the subsequent period from time t1 to t2, the orbiting speed decreases, to thereby decrease the axial centrifugal force acting on the movable member 212. During this period, when the elastic force of the spring 280 overcomes the axial centrifugal force acting on the movable member 212, each guide pin 262 will move from Position B depicted in
Thereafter, the orbiting speed increases from time t2 to t3, the orbiting speed is kept unchanged from time t3 to t4 and the orbiting speed decreases to zero from time t4 to t5. With that, one control cycle for the orbiting speed is concluded.
In
As illustrated in
During the subsequent period from time t3 to t4, the orbiting speed decreases; once the elastic force of the spring 280 overcomes the axial centrifugal force acting on the movable member 212, each guide pin 262 moves from Position B to Position C, with subsequent movement of each guide pin 262 to Position D. Before each guide pin 262 reaches a position just before Position D, a close engagement of the male mold 144 in the female mold 142 remains prohibited; when each guide pin 262 reaches the position just before Position D, the close engagement of the male mold 144 becomes permitted.
Thereafter, the orbiting speed is kept constant from time t4 to t5 and the orbiting speed decreases to zero from time t5 to t6. With that, one control cycle for the orbiting speed is concluded.
In
As illustrated in
During a further subsequent period from time t2 to t3, the orbiting speed decreases; once the elastic force of the spring 280 overcomes the axial centrifugal force acting on the movable member 212, each guide pin 262 moves from Position B to Position C, with subsequent movement of each guide pin 262 to Position D. Before each guide pin 262 reaches a position just before Position D, a close engagement of the male mold 144 in the female mold 142 remains prohibited; when each guide pin 262 reaches the position just before Position D, the close engagement of the male mold 144 becomes permitted. In this example, the male mold 144 is brought into close engagement with the female mold 142 more slowly than in the two preceding examples, triggered by a lesser magnitude of the orbiting speed, or a lesser magnitude of the axial centrifugal force acting on the male mold 144 than those of the preceding two examples. This prevents the male mold 144 from rushing into the liquid mixture within the female mold 142 at too high of a speed, which could undesirably incorporate air into the liquid mixture.
During the subsequent period from time t3 to t4, the motor 50 is driven by repeating the alternating runs of the acceleration modes and the constant speed modes, to thereby increase the orbiting speed at a more gradual gradient than if the motor 50 were to be driven continuously in the same acceleration mode. As a result, the axial centrifugal force acting on the male mold 144 increases with a gradual gradient in accordance therewith. This discontinuous acceleration profile is also conducive to preventing the introduction of air bubbles into the liquid mixture.
Thereafter, the orbiting speed is kept constant from time t4 to t5 and the orbiting speed decreases to zero from time t5 to t6. With that, one control cycle for the orbiting speed is concluded.
It is noted that, in the present embodiment, Positions B, C and D are not collinear in each second guide groove 260, but, in an alternative, Positions B, C and D may be collinear in each second guide groove 260. The reason is that, when each guide pin 262 moves from Position A to Position B, the third section 304 retracts in the rotational direction from the groove of the third section 244 of each first guide groove 232, to thereby permit each guide pin 160 to enter the third section 244 and move towards the fourth section 246 and to thereby bring the male mold 144 into close engagement with the female mold 142.
While several illustrative embodiments of the present teachings have been described above in detail with reference to the drawings, they are just examples, and the present teachings may be embodied in alternative modes, which begin with the modes described in the section titled “Summary,” or which are obtained by making various modifications and improvements to the above-described embodiments, in view of the knowledge of those skilled in the art.
It is further noted that this detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Furthermore, each of the additional features and teachings disclosed above may be utilized separately or in conjunction with other features and teachings to provide improved molds and molding methods.
Moreover, combinations of features and steps disclosed in the above detail description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe representative examples of the invention. Furthermore, various features of the above-described representative examples, as well as the various independent and dependent claims below, may be combined in ways that are not specifically and explicitly enumerated in order to provide additional useful embodiments of the present teachings.
Finally, all features disclosed in the description and/or the claims are intended to be disclosed separately and independently from each other for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter, independent of the compositions of the features in the embodiments and/or the claims. In addition, all value ranges or indications of groups of entities are intended to disclose every possible intermediate value or intermediate entity for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter.
Claims
1.-20. (canceled)
21. A method for producing a cap to be attached to an exposed portion of a fastener, with which a fastened member is fastened, wherein the exposed portion of the fastener, before the cap is attached thereto, projects from a surface of the fastened member, and after the cap has attached to the exposed portion, the cap encloses the exposed portion of the fastener,
- wherein the cap has: a shell made of synthetic resin formed in a generally hemispherical, hollow shape, and a recess defined by an inner surface of the shell in a generally hemispherical shape,
- the method comprising:
- prior to attachment of the cap to the exposed portion of the fastener, filling the recess with a sealant, wherein the sealant is fluid before being completely cured and exhibits: (a) thermosetting properties in which the sealant cures when heated, and once cured, original properties of the sealant are not restored even if the temperature of the sealant decreases, and (b) properties in which, when the sealant is cooled prior to curing, the sealant is frozen, and when the sealant is subsequently heated and thawed, its original fluidity is restored and curing of the sealant restarts;
- freezing the sealant by freezing the cap filled with the sealant; and
- thawing the cap filled with the sealant and drying the cap to remove any condensation that forms on the cap during the thawing.
22. The method according to claim 21, further comprising degassing the sealant before filling the recess with the sealant.
23. The method according to claim 21, further comprising degassing the sealant while the sealant is disposed in the recess.
24. The method according to claim 21, wherein the thawing/drying step is performed such that the thawing of the sealant and the drying of the cap are concurrently executed by blowing room-temperature air or hot air onto the cap filled with the frozen sealant.
25. The method according to claim 21, wherein the thawing/drying step includes thawing the sealant by heating the cap filled with the frozen sealant using a heater or by immersing the cap filled with the frozen sealant in hot water.
26. The method according to claim 21, wherein the sealant is made of the same synthetic resin as the cap.
27. The method according to claim 23, wherein the sealant is degassed by:
- placing the cap filled with the sealant in a container holder of a mixer, and
- then orbiting the container holder about a first rotational axis while rotating the container holder about a second rotational axis that is inclined relative to the first rotational axis.
28. The method according to claim 27, wherein the container holder is placed under a partial vacuum while the degassing step is being performed.
29. The method according to claim 28, wherein the sealant is frozen at a temperature of about −50° C. and about −70° C.
30. The method according to claim 21, wherein the sealant is frozen at a temperature of about −50° C. and about −70° C.
31. A method for making a cap filled with a fluid sealant, wherein the cap has a generally hemispherical outer shell made of a solid synthetic resin and a generally hemispherical recess defined by an inner surface of the outer shell,
- the method comprising:
- disposing the fluid sealant in the recess, the fluid sealant comprising a mixture of a thermosetting substance and a curing agent that is freezable prior to curing, such that while the mixture is frozen, no curing takes place, and when the mixture is subsequently heated and thawed, its original fluidity is restored and irreversible curing of the thermosetting substance proceeds;
- freezing the sealant while the fluid sealant is disposed in the cap; and
- subsequently thawing the sealant and drying the sealant and cap to remove any condensation that forms thereon during the thawing.
32. The method according to claim 31, further comprising degassing the fluid sealant before the fluid sealant is disposed in the recess.
33. The method according to claim 31, further comprising degassing the fluid sealant while the fluid sealant is disposed in the recess and prior to the freezing step.
34. The method according to claim 31, wherein the thawing/drying step is performed such that the thawing and the drying are concurrently executed by blowing room-temperature or hotter air onto the cap filled with the frozen sealant.
35. The method according to claim 31, wherein the thawing/drying step includes thawing the sealant by heating the cap filled with the frozen sealant using a heater or by immersing the cap filled with the frozen sealant in hot water.
36. The method according to claim 31, wherein the sealant is made of the same synthetic resin as the cap.
37. The method according to claim 33, wherein the fluid sealant is degassed by:
- placing the cap containing the fluid sealant in a container holder of a mixer, and
- then orbiting the container holder about a first rotational axis while rotating the container holder about a second rotational axis that is inclined relative to the first rotational axis.
38. The method according to claim 37, wherein the container holder is placed under a partial vacuum while the degassing step is being performed.
39. The method according to claim 38, wherein the sealant is frozen at a temperature of about −50° C. and about −70° C.
40. The method according to claim 31, wherein the sealant is frozen at a temperature of about −50° C. and about −70° C.
Type: Application
Filed: Oct 13, 2015
Publication Date: Feb 4, 2016
Inventors: Osamu Mizoguchi (Nagoya-Shi), Takayuki Nomura (Nagoya-Shi), Hitoshi Tsujikawa (Nagoya-Shi), Yoshiki Ikeda (Nagoya-shi)
Application Number: 14/881,870