THERMAL RETRACTING ACTUATOR
A thermal actuator for a rotating shaft shutdown seal that has a piston with a portion of its axial length enclosed within a chamber shell with a material that expands upon a rise in temperature. The portion of the actual length of the piston within the chamber has at least two different diameters with the larger diameter leading in the direction of travel of the piston. Upon a rise in temperature, expansion of the material surrounding the piston within the chamber creates a force on the piston in the desired direction of travel. Below a preselected temperature the piston is positively locked with a passive release when the preselected temperature is reached.
Latest WESTINGHOUSE ELECTRIC COMPANY LLC Patents:
- Ultrasonic testing probe, couplant delivery system, and ultrasonic testing apparatus
- RADIOISOTOPE ACTIVITY SURVEILLANCE APPARATUS, SYSTEM, AND METHOD
- SYSTEMS FOR PERIODICALLY MEASURING THE TOTAL GAMMA RADIATION ACTIVITY OF A TARGET RADIOISOTOPE BEING PRODUCED INSIDE THE CORE OF A NUCLEAR REACTOR
- FIXED IN-CORE DETECTOR DESIGN USING SIC SCHOTTKY DIODES CONFIGURED WITH A HIGH AXIAL AND RADIAL SENSOR DENSITY AND ENHANCED FISSION GAMMA MEASUREMENT SENSITIVITY
- METHODS TO DETECT AND LOCATE THE IN-CORE POSITION OF FUEL BUNDLES WITH CLADDING PERFORATIONS IN CANDU-STYLE NUCLEAR REACTORS
This application is a divisional application of U.S. patent application Ser. Nos. 13/970,899, filed Aug. 20, 2013, which application is a continuation-in-part of parent application Ser. No. 13/798,632, filed Mar. 13, 2013, entitled “Pump Seal With Thermal Retracting Actuator,” and claims priority to U.S. Provisional Patent Application Ser. No. 61/862,304, filed Aug. 5, 2013, entitled “Reactor Coolant Pump Shut Down Seal Thermal Retracting Actuator With Thermal Safety Lock.”
BACKGROUND1. Field
This invention pertains generally to rotary shaft seals and, more particularly to a thermally actuated seal for a centrifugal pump and in particular to a new thermal actuator for such a seal.
2. Related Art
In pressurized water nuclear power plants a reactor coolant system is used to transport heat from the reactor core to steam generators for the production of steam. The steam is then used to drive a turbine generator for the production of useful work. The reactor coolant system includes a plurality of separate cooling loops, each connected to the reactor core and containing a steam generator and a reactor coolant pump.
The reactor coolant pump typically is a vertical, single stage, centrifugal pump designed to move large volumes of reactor coolant at high temperatures and pressures, for example, 550° F. (280° C.) and at pressures of approximately 2,250 psia (155 bar). The pump basically includes three general sections from bottom to top; hydraulic, shaft seal and motor sections. The lower hydraulic section includes an impeller mounted on a lower end of the pump shaft which is operable within the pump casing to pump reactor coolant about the respective loop. The upper motor section includes a motor which is coupled to drive the pump shaft. The middle shaft seal section includes three tandem seal assemblies; lower primary (number 1 seal), middle secondary, and upper tertiary seal assemblies. The seal assemblies are located concentric to, and near the top end of, the pump shaft and their combined purpose is to provide for minimal reactor coolant leakage along the pump shaft to the containment atmosphere during normal operating conditions. Representative examples of pump shaft seal assemblies known in the prior art are described in U.S. Pat. Nos. 3,522,948; 3,529,838; 3,632,117; 3,720,222 and 4,275,891.
The pump shaft seal assemblies which mechanically seal the interface between the stationary pump pressure boundary and the rotating shaft, must be capable of containing the high system pressure (approximately 2,250 psi (155 bar)) without excessive leakage. The tandem arrangement of three seal assemblies is used to break down the pressure in stages. These three mechanical pump seal assemblies are controlled leakage seals which in operation, allow a minimal amount of controlled leakage at each stage while preventing excessive leakage of the reactor coolant from the primary coolant system to the respective seal leakoff ports.
The pump seal assemblies are normally maintained at temperatures well below those of the primary coolant system, either through the injection of cool fluid at the seal assemblies or through the use of a heat exchanger which cools the primary fluid before it reaches the seal assemblies. Theorized failure of these systems may expose the seal assemblies to high temperatures which will likely cause the controlled leakage of the seal assemblies to increase dramatically. When the cause of the loss of all nuclear fuel cooling in the reactor core is due to losing all AC power, the seal leakoff has no means of returning to the coolant system without electricity to power the makeup pumps. Controlled leakage without the means of makeup could hypothetically lead to reactor coolant uncovering the reactor core and subsequent core damage.
Consequently, a need exists for an effective way to back up the standard seal assemblies in the event of a coincidental loss of all fuel cooling and loss of makeup pumping. Preferably, such a back up seal should be operable upon loss of power or other cause for the loss of makeup pumping capacity to substantially seal the shaft from leakage.
SUMMARYThe foregoing objectives are achieved, in accordance with this invention, by a thermally actuated shutdown seal for a shaft of reduced speed or stopped rotating equipment such as a pump, compressor or the like, that is designed to restrict the normal leakage of coolant through a shaft seal. The shutdown seal claimed hereafter is useful for sealing any equipment having a narrow flow annulus between its shaft and housing.
The shutdown seal is characterized by a “split ring” that is designed (i) to surround the shaft with an annulus therebetween during normal operation and (ii) to constrict against the shaft when the shaft slows below a predetermined speed or stops rotating. The split ring has confronting ends that are maintained in spaced relationship by a spacer when the shaft is rotating during normal online operation. When the shaft slows or stops rotating and the temperature in the housing rises, the spacer is removed from the confronting ends of the split ring and the split ring constricts against the shaft as the confronting ends of the split ring approach each other, which blocks a substantial portion of the leakage of coolant through the annulus.
Preferably, the shutdown seal also has a pliable polymer seal ring which is urged against the shaft by an increase in pressure in the housing when the split ring blocks the leakage of coolant through the annulus.
In particular, this invention provides such a seal with an improved actuator for removing the spacer from between the confronting ends of the split ring when the liquid in the annulus rises above a preselected temperature so the split ring can constrict to narrow or substantially seal the portion of the annulus covered by the split ring. The actuator includes a cylinder having an axial dimension with a piston axially moveable within the cylinder with the cylinder having an upper and lower end which is sealed around the piston. A piston rod is connected at one end to the piston and at another end to the spacer. A cavity occupies a space within the cylinder between the upper and lower ends, through which space the piston travels. An axial dimension of the piston extends through the space within the cavity when the spacer is disposed between the confronting ends of the split ring. The axial dimension of the piston has at least two separate diameters with a largest of the diameters leading a smaller of the diameters in a direction of travel of the piston to remove the spacer from the confronting ends of the split ring. A material occupies at least a portion of the space within the cavity. The material expands upon an increase in temperature to exert a force on the piston that causes the piston to move in a direction to remove the spacer from between the confronting ends when the material rises above a preselected temperature. Preferably, the force is exerted over an area around a circumference of the piston wherein at least a portion of the at least two diameters of the piston extend.
In one embodiment, the actuator includes a first seal supported between the cavity and the piston at a lower end of the cavity and a second seal supported between the cavity and the piston at an upper end of the cavity with the first and second seals being operable to confine the material to the cavity. Preferably, the first and second seals are cup seals and are constructed of PEEK. In this embodiment, the actuator may also include backup seals for either or both of the first and second seals. Preferably, the backup seals are O-ring seals and desirably, the O-ring seals are formed from EPDM or HNBR. In another embodiment, the support for the first seal or a support for the second seal is designed to relieve a pressure within the cavity when the pressure exceeds a predetermined value and, desirably, the material is in thermal communication with the liquid.
In another embodiment the actuator includes a thermally activated safety lock configured to prevent the piston from moving in the cylinder in a direction that will remove the spacer from between the confronting ends of the split ring when the material is below the preselected temperature and free the piston to move and remove the spacer from confronting ends of the split ring when the material rises above the preselected temperature. Preferably, the thermal safety lock is configured to passively unlock the piston when the fluid is above the preselected temperature. In one embodiment the thermally activated safety lock comprises a pin that is suspended from one end of the cylinder and extends in a direction that the piston moves to remove the spacer from the confronting ends of the split ring. The pin extends at least partially within a recess in an end of the piston. A substantial remainder of the recess is substantially filled with a thermally activated material, wherein the thermally activated material has a viscosity at temperatures below the preselected temperature that prevents the thermally activated material from flowing alongside a side of the pin and out of the recess. At temperatures substantially at or above the preselected temperature the thermally activated material has a reduced viscosity that enables it to flow alongside the side of the pin and out of the recess. The resulting displacement of the thermally activated material enables the piston to move in a direction to remove the spacer from between the confronting ends of the split ring. The thermally activated material may, for example be a polymer such as polyethylene.
A further understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:
In the following description, like reference characters designate like or corresponding parts throughout the several view. Also, in the following description, it should be understood that such terms of direction as “forward,” “rearward,” “left,” “right,” “upwardly,” “downwardly,” and the like, are words of convenience and are not to be construed as limiting terms.
Prior Art Reactor Cooling PumpTo understand the invention, it is helpful to understand one environment in which the invention will operate. However, it should be appreciated that the invention has many other applications. Referring to
The coolant pump 14 pumps the coolant under high pressure about the closed loop system. Particularly, hot coolant emanating from the reactor 16 is conducted to the inlet plenum 20 of the steam generator 12 and through the heat exchange tubes 18 in communication therewith. While in the heat exchange tubes 18, the hot coolant flows in heat exchange relationship with cool feedwater supplied to the steam generator 12 via a conventional means (not shown). The feedwater is heated and portions thereof is changed to steam for use in driving a turbine generator (not shown). The coolant, whose temperature has been reduced by the heat exchange, is then recirculated to the reactor 16 via the coolant pump 14.
The reactor coolant pump 14 must be capable of moving large volumes of reactor coolant at high temperatures and pressures about the closed loop system. Although, the temperature of the coolant flowing from the steam generator 12 through the pump 14 as a result of the heat exchange has been cooled substantially below the temperature of the coolant flowing to the steam generator 12 from the reactor 16 before heat exchange, its temperature is still relatively high being typically about 550° F. (288° C.). To maintain the coolant in a liquid state at these relatively high temperatures, the system is pressurized by injection pumps (not shown) and operates at pressures that are approximately 2,250 psia (155 bar).
As seen in
In order that the pump shaft 34 might rotate freely within the seal housing 32 while maintaining the 2,250 psia (155 bar) pressure boundary between the pump housing interior 36 and the outside of the seal housing 32, tandemly arranged lower primary, middle secondary and upper tertiary seal assemblies 38, 40, 42 are provided in the positions illustrated in
Each of the seal assemblies 38, 40, 42 of the pump 14 generally includes a respective annular runner 44, 46, 48 which is mounted to the pump shaft 34 for rotation therewith and a respective annular seal ring 50, 52, 54 which is stationarally mounted within the seal housing 32. The respective runners 44, 46, 48 and the seal rings 50, 52, 54 have top and bottom surfaces 56, 58, 60 and 62, 64, 66 which face one another. The facing surfaces 56, 62 of the runner 44 and seal ring 50 of the lower primary sealing assembly 38 normally do not contact one another but instead a film of fluid normally flows between them. On the other hand, the face surfaces 58, 64 and 60, 66 of the runners and seal rings 46, 52 and 48, 54 of the middle secondary and upper tertiary seal assemblies 40 and 42 normally contact or rub against one another.
Because the primary sealing assembly 38 normally operates in a film-riding mode, some provision must be made for handling cooling fluid which “leaks off” in the annular space between the seal housing 32 and the shaft 34 rotatably mounted thereto. Accordingly, the seal housing 32 includes a primary leakoff port 69, whereas leakoff ports 71 accommodate coolant fluid leakoff from the secondary and tertiary seal assemblies 40, 42.
The holder 70 rotates with the shaft 34 since it is mounted on an annular support 78 which engages a shoulder 80 on the shaft 34 and is secured to the shaft by means of a sleeve 82 which is assembled onto the shaft 34 between the shaft and an upwardly extending leg 84 of the support 78 which is generally L-shaped in cross section. It should be appreciated that although this embodiment of the invention is being described as applied to a pump that employs a sleeve over the pump shaft, the invention can be employed equally as well on pump shafts that do not employ sleeves. A shoulder 86 on the holder 70 rests on the upper end of the leg 84, and a shoulder 88 on the sleeve 82 retains the holder 70 on the support 84. A pin 90 is pressed into a recess 92 in the sleeve 82 and engages an axial slot 94 in the holder 70. An axial clamping force is exerted on the sleeve 82 and the support 78 from a nut (not shown) which causes the sleeve 82 and the support 78 to rotate with the shaft 34. The pin 90, in turn, causes the holder 70 to rotate with the sleeve 82 which rotates with the shaft 34. O-ring seals 96 and 98 are provided between the support 78 and the shaft 34 and the holder 70, respectively. An O-ring seal 100 is also provided in the interface 102 between the holder 70 and the face plate 72.
The face plate 72 is composed of a corrosion and erosion resistant material having substantially the same coefficient of thermal expansion as the material of which the holder 70 is composed, and the holder 70 has a high elastic modulus. Similarly, the face plate 76 is composed of a corrosion and erosion resistant material having substantially the same coefficient of thermal expansion as the material of the holder 74 which has a high elastic modulus. Examples of suitable materials are carbides and ceramics. An O-ring seal 104 is provided in the interface 106 between the holder 74 and the face plate 76.
The holder 74 is movably mounted on a downwardly extending leg 108 of an annular seal ring insert 110 which is generally L-shaped in cross section. The insert 110 is retained in the housing 32 by cap screws 112. An O-ring seal 114 is provided in the interface between the insert 110 and the housing 32. Similarly, O-ring seal 118 is provided in the interface 120 between the holder 74 and the leg 108 of the insert 110. Rotative movement of the holder 74 is prevented by the pin 122 which is pressed into the insert 110. The pin 122 extends into a well 124 in the holder 74 with sufficient clearance between the wall of the well 126 and the pin 122 to permit axial movement of the holder 74 but limit rotative movement of the holder 74.
The face plate 76 is attached to the holder 74 by clamping means 128 which includes a retainer ring 130, a clamp ring 132, a lock ring 134, a plurality of cap screws 136 and belleville springs 138 mounted on the cap screw 136 between the lock ring 134 and the clamp ring 132. The cap screws 136 extend through the retainer ring 130, the clamp ring 132, the belleville springs 138 and are threaded into the lock rings 134. The interface 106 of the holder 74 is recessed at 140 to provide an annular fulcrum 142 on the interface at an outside diameter which is less than the outside diameter of the interface of the face plate 76. The retainer ring 130 has an inwardly extending flange with a ridge 144 which engages the portion 146 of the face plate 76 extending beyond the fulcrum 142. The clamp ring 132 has an inwardly extending flange with a ridge 148 which engages a face plate 150 on the holder 74. Thus, when the cap screws 136 are tightened to draw the clamp 132 and the retainer ring 130 towards each other, a force is produced which exerts a cantilever effect on the face plate 76 about the fulcrum 142. During the clamping action, the belleville springs 138 are partly compressed and the face plate 76 is deformed by the clamping force.
The face plate 72 is attached to the holder 70 by a clamping means 151 in a manner similar to that described with reference to the face plate 76. However, the fulcrum 152 on the interface 102 of the holder 70 is located closer to the outside diameter of the face plate 72 than is the fulcrum 142 on the holder 74. Thus, the clamping force on the face plate 72 does not produce as much deformation of the face plate about the fulcrum 152 as is produced on the face plate 76. If desired, the fulcrums 142 and 152 may be placed at the same locations with respect to their corresponding face plates.
As previously described, the seal ring 50 is mounted for limited axial movement relative the shaft 34 and the seal runner assembly 44. Also, rotative movement of the seal ring assembly 50 is limited by the anti-rotational pin 122 which fits loosely in the well 124 in the seal ring holder 74. A seal face 154 on the face plate 76 is biased toward the confronting seal face 156 on the face plate 72 by gravity.
In operation of the pump driven by the shaft 34, surfaces 158 and 160 of the seal ring holder 174 are subjected to the full pressure in the high pressure chamber 35. It is desirable to provide a pressure barrier between the high pressure chamber 35 and an annular low pressure region 162 adjacent the sleeve 82. The seal ring assembly is utilized as the pressure barrier means, but permits a controlled amount of fluid leakage flow to the region 162 from the pressure chamber 35 through a seal gap 164 provided between the confronting seal surfaces 154 and 156 on the seal plate 76 and 72, respectively.
During operation, a balanced or equilibrium position of the axially moveable seal ring assembly 50 is maintained in accordance with the pressure on opposing faces of the seal ring assembly. The thickness of the fluid in the gap 164 and, consequently, the amount of leakage flow through the gap 164 is determined by the configuration of the gap 164.
In order to obtain a self-restoration of the relative position of the seal ring assembly 50 and the runner assembly 44 upon a variation in the seal gap 164, a fluid flow path of decreasing thickness is provided from a high pressure edge or extremity 166 to a position between the seal faced extremities. More specifically, in the structure illustrated, the fluid flow path of decreasing thickness extends between the outer edge 166 and an intermediate concentric circle located at 168 on the sealing face 154.
As shown in the present structure, the decreasing flow path thickness is formed by tapering the surface 154 slightly away from the confronting surface 156 of the face plate 72 between the circle 168 and the outer edge 166 of the face plate 76. The angle between the surfaces 154 and 156 shown in the drawing is exaggerated. This configuration or structure is known as a tapered-face seal. The operation of a seal of this type is fully described in U.S. Pat. No. 3,347,552, issued Oct. 17, 1967 to Erling Frisch.
The current shutdown seal is fully described in U.S. Pat. 8,356,972, issued Jan. 22, 2013 and assigned to the Assignee of this invention. The shutdown seal, described in that patent is illustrated in
Thus, thermal activation is achieved as follows: As temperature rises, the wax 188 changes state and expands. Two HNBR (Hydrogenated Nitrile Butadiene Rubber) O-ring seals 198 are used to contain the wax with the upper O-ring providing a sliding interface for the cam 190. Expansion of the wax translates cam 190 permitting ball bearings in the race 192 to disengage plunger 196 from the housing 200. With the ball bearings disengaged, compression spring 194 translates plunger 196 upward along with spacer 176 thus releasing the piston ring and activating the shutdown seal.
Improved Pump Shutdown Seal ActuatorSince the entire retracting assembly 202 can be subjected to higher than atmospheric pressure, several radial openings 220 are oriented about the upper flange of piston 196. Without the radial openings 220 it may be possible that the head of the piston 196 could seal against the mating end cap 214. The external pressure (without radial openings present) could induce an undesirable axial force to the piston 196.
While it may not be required, sleeve 222 is placed over the exposed diameter of piston 196 to maintain the piston free from contaminants which may be present in the surrounding environment. The sleeve may be constructed of polypropylene which may melt when the activation temperature is reached. Alternately, a small wiper may be placed in the end of housing 216 to remove unwanted debris during translation of the piston.
Housing 216 contains at least two pockets 228 where the wall thickness of the chamber containing the wax is reduced in thickness T1. In the event that the piston 196 travels full stroke and the wax 188 pressure continues to rise, the housing wall can bulge at the pockets 228 thereby releasing excess wax volume and reducing the pressure to a safe state. Section A-A of
Another configuration is to have a housing where the thin wall section (T1) is continuous for 360°. Since the actuator will have performed its function at the time when the wax pressure can become excessive, structural integrity from a thicker section (T2) is not necessary.
While the foregoing embodiment has a spring to prevent inadvertent movement of the piston, it is highly desirable to provide a more robust mechanism as inadvertent actuation would be extremely costly due to shutdown of the power plant.
A typical piston force may be in the range of 50 to 100 lbs while achieving adequate piston travel to remove the spacer 176 from the split ring 172. O-ring 204 and cup seal 206 provide a pressure boundary for containment of the wax 188. O-ring seals 210 and 212 act as a redundant pressure boundary for the wax and provide isolation from the surrounding fluid from entering the wax chamber. Wiper 208 in conjunction with cup seal 206 are semi-rigid and act as dual bushings keeping piston 196 centered within housing 200. The primary function of wiper 208 is to exclude foreign material from entering into the housing 200. The wiper is also a seal to minimize surrounding fluid from entering new O-ring 204.
In one embodiment, in order to keep piston 196 from translation prior to thermal activation, plug 230 encapsulated in the piston 196 is sufficiently rigid to hold metal pin 232 in place. As can be seen in
During thermal activation, above normal operating temperature, plug 230 becomes soft before the wax begins to change state. As the temperature further increases, the plug can reach melt temperature either prior to or as the piston begins to move. As the plug 230 melts, the plug material becomes viscous and freely flows around pin 232 and subsequently permits translation of pin 232 within the piston recess 236 such that the piston is free to activate the shut down seal.
Thus, this improved actuator has a simplified thermal retracting design that has a higher output force and fewer components than the previous design described above. The previous design of the actuator uses HNBR O-rings with the life expectancy which may be less than the desired twelve years of operation. The seal arrangement in the preferred design uses long life EPDM O-rings and PEEK seals to provide separate and redundant boundaries for the thermal retracting actuator components.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular embodiments disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any and all equivalents thereof.
Claims
1. An actuator comprising:
- a cylinder having an axial dimension;
- a piston axially movable within the cylinder with the cylinder having an upper and lower end which is sealed around the piston, the piston having one end connectable to an operator;
- a cavity occupying a space within the cylinder between the upper and lower ends and which space at least partially surrounds a portion of the piston, an axial dimension of the piston extending through the space within the cavity when the piston is in a first position of its travel, the axial dimension of the piston having at least two separate diameters with a largest of the diameters leading a smaller of the diameters in a direction of travel of the piston to move the piston to a second position, the two diameters occupying at least a portion of the space when the piston is in the first position;
- a material occupying at least a portion of the space within the cavity, the material expanding upon an increase in temperature to exert a force on the piston that causes the piston to move to the second position when the material rises above a preselected temperature; and
- wherein the piston extends axially through the material occupying a portion of the space within the cavity.
2. The actuator of claim 1 including a safety lock configured to prevent the piston from moving from the first position to the second position when the material is substantially below the preselected temperature and free the piston to move in a direction toward the second position when the material rises approximately above the preselected temperature.
3. The actuator of claim 2 wherein the lock is thermally activated and configured to passively unlock the piston when the fluid is above the preselected temperature.
4. The actuator of claim 2 wherein the thermally activated safety lock comprises a pin that is suspended from one end of the cylinder and extends in a direction that the piston moves toward the second position, the pin extending partially within a recess in an end of the piston, a substantial remainder of the recess being substantially filled with a thermally activated material, wherein the thermally activated material has a viscosity at temperatures below the preselected temperature that prevents the thermally activated material from flowing alongside a side of the pin and out of the recess and at temperatures substantially at or above the preselected temperature the thermally activated material has a reduced viscosity that enables it to flow alongside the side of the pin and out of the recess enabling the piston to move in a direction toward the second position.
5. The actuator of claim 4 wherein the thermally activated material is a polymer.
6. The actuator of claim 5 wherein the polymer is polyethylene.
7. The actuator of claim 3 wherein the safety lock comprises a shear pin that is configured to form an obstruction that prevents the piston from substantially moving toward the second position when the material is substantially below the preselected temperature and when the force on the piston is large enough to move the piston in a direction toward the second position, the shear pin ruptures or otherwise deforms to remove the obstruction.
8. The actuator of claim 7 wherein the safety lock comprises a pin that is suspended from one end of the cylinder, in a direction that the piston moves toward the second position, wherein substantially below the preselected temperature the pin extends partially within a recess in an end of the piston, a substantial remainder of the recess being substantially accessible to accommodate piston travel, the pin having projections in the form of one or more shear pins or rings which prevent the pin from substantially moving into the substantial remainder of the recess when the material is substantially below the preselected temperature, wherein the projections are configured to rupture or otherwise deform to enable pin travel into the substantial remainder of the recess when the force on the piston is large enough to move the piston in a direction toward the second position.
9. The actuator of claim 1 wherein the force is exerted over an area around a circumference of the piston wherein at least a portion of the at least two separate diameters of the piston extend.
10. The actuator of claim 1 including a first seal supported between the cavity and the piston at a lower end of the cavity and a second seal supported between the cavity and the piston at an upper end of the cavity, the first and second seals being operable to substantially confine the material to the cavity.
11. The actuator of claim 10 wherein at least one of the first seal and second seal are cup seals.
12. The actuator of claim 11 wherein the cup seals are constructed out of PEEK.
13. The actuator of claim 10 including a backup seal for either or both of the first and second seals.
14. The actuator of claim 13 wherein the backup seal is an o-ring seal.
15. The actuator of claim 14 wherein the o-ring seal is formed from EPDM or HNBR.
16. The actuator of claim 10 wherein either a support for the first seal or a support for the second seal is designed to relieve a pressure within the cavity when the pressure exceeds a predetermined value.
17. The actuator of claim 1 including a spring supported within the cylinder and configured to bias the piston in the first position while the material remains below the preselected temperature.
18. The actuator of claim 17 wherein the force exerted on the piston is substantially greater than a force exerted by the spring.
19. The actuator of claim 1 wherein at least a portion of a wall of the cavity has a reduced thickness that will bulge outward when pressure within the cavity exceeds a design value to reduce the pressure within the cavity to a safe level.
Type: Application
Filed: Sep 28, 2015
Publication Date: Feb 11, 2016
Applicant: WESTINGHOUSE ELECTRIC COMPANY LLC (Cranberry Township, PA)
Inventors: Phillip J. Hawkins (Irwin, PA), Judith E. Hodgson (Irwin, PA)
Application Number: 14/867,048