POLYMER CENTER FIRE CARTRIDGE CASE FOR SMALL OR MEDIUM CALIBER AMMUNITION AND METHOD FOR MANUFACTURING SAME
An engineered polymer center fire small or medium ammunition cartridge case and methods for manufacturing the same, wherein the engineered polymer material meets the internal & external ballistic standards set by the Sporting Arms and Ammunition Manufacturers Institute and military specifications for center fire rifle small or medium calibers of ammunition cartridges from 0.223 caliber to 30 mm caliber. The cartridge case may allow a projectile to snap into place in the cartridge case mouth after the case is primed and propellant powder is placed into the cartridge case during the cartridge loading process. The rifle cartridge case may be either a single-piece case suitable for use in pistols or a two-piece case suitable for use in rifles, and may be formed by either injection molding or an injection blow molding process. Injection blow molding allows a single piece design. Also disclosed are inventive engineered polymers for use in cartridges.
This application claims benefit of U.S. Provisional Application No. 62/047,400, filed Sep. 8, 2014, which is hereby incorporated by reference in its entirety.
BACKGROUNDIt is well known in the firearms industry that conventional center fire ammunition cartridge cases are constructed from a metallic material (brass or steel) to make it possible to contain the chamber pressures generated by center fire ammunition. It is generally known that metals used to produce ammunition are a resource that is fast being depleted. It is also well known that the military establishment for many years has had the goal of lightening the ammunition weight which burdens the war-fighter. Tangentially lowering the weight of ammunition carried on fighting helicopter missions as well as lowering the weight of transporting ammunition into the theatre of war saves fuel and lowers the logistical problems of resupply in the middle of a critical mission. Lighter weight also means missions can fly farther when necessary.
Various polymer center fire small arms ammunition are discussed herein. The polymer center fire small arms ammunition may consist of cartridge cases designed and produced from a polymer, preferably an engineered polymer, which is either injection molded or injection blow molded to form a cartridge cases compliant with either the Sporting Arms & Ammunition Manufacturers Institute (SAAMI) or military standards for small or medium caliber ammunition center fire cartridge case in any center fire caliber. The ammunition may be used with any of a semi-automatic, bolt action or fully automatic rifle firing mechanism to ignite the cartridge primer and the propellant contained in the ammunition cartridge case of this invention. The engineered polymers from which the cartridge cases are produced are capable of containing the interior cartridge case pressures encountered by conventional small arms center fire ammunition. The engineered polymers also do not stress mankind's delicate environment. Furthermore, engineered polymers can provide a finished product design which may be over 50% lighter (case to case comparison) in weight than conventional brass cased ammunition.
A polymer cartridge case-based ammunition may have a generally cylindrical case body configured with a mouth opening, a metered amount of propellant/powder within a volume of space inside of the case cylindrical body, a projectile/bullet loaded into said mouth opening, and an angular groove designed to accept and mate to the extractor of the weapon in which the center fire rifle cartridge of this invention is fired. As used herein, “generally cylindrical” is not limited to cylinders with straight sidewalls and includes cylinders formed with sidewalls having different radii at different points along a central axis. Below the angular extractor groove of the cartridge case is a rim which houses the primer which ignites when struck by the weapon firing pin, and which in turn ignites the powder/propellant that propels the bullet/projectile through the barrel towards the target. As used herein, “rim” refers to an end wall of a generally cylindrical case, not just a portion of an end wall that extends outwardly beyond a sidewall of a generally cylindrical case. As discussed above, the cartridge case is produced from an engineered polymer and manufactured to the design specifications of any chosen SAAMI or military design center fire small or medium caliber ammunition in the SAAMI or military cartridge case library. The cartridge cases may be used in conventionally loaded cartridges containing a small or medium caliber primer or primer system, propellant, and a projectile/bullet which all together function as ammunition suitable for loading and firing in any center fire firearm either of a semi-automatic, bolt action or fully automatic rifle firing mechanism or in a pistol firing mechanism.
Engineered polymers save natural resources and are more recyclable than metals. In some embodiments, the cartridge case is formed from an engineered polymer that contains the pressures experienced in the firing of conventional brass or steel cased small or medium caliber ammunition. The finished engineered polymer cartridge case may equal or exceed the ballistic performance of conventional all-metallic casings. In some embodiments, the engineered polymer provides the cartridge case with high stiffness which is comparable to conventional metallic material toughness and which may offer the ability to produce thinner walls and lighter weight products. Engineered polymers may also provide improved reaction to high heat distortion temperatures, and higher retention of mechanical properties under humid conditions. Additionally, the engineered polymer may have explosive/propellant compatibility and may maximize prohibiting moisture absorption while providing moisture protection given to the complete round of ammunition.
The engineered polymer discussed above may be formed of a nylon resin. Examples of such nylon resins include PA6, NYCOA 8330™ available from Nylon Corporation of America, and RIP 299DX140551™ (natural) from RIP Co. of Winona, Minn. In order to improve the thermal and mechanical properties of cartridge cases made from such nylon resins, various additives may be added. For example, in one embodiment, a nano-composite material comprises a nylon (PA6) base in which nano-clays which are members of the smectite class of layered silicate or platy minerals are dispersed. The nano-clays may include alumino-silicate particles which are uniformly dispersed in a polymer matrix. Another example of a suitable material may be formed from a NYCOA 8330™ base and carbon nanotube (CNT), basalt and/or silica nanoparticle additives. In one embodiment, either CNT, basalt or silica nanoparticle additives are present with weight percentages between 0.25-5, and more preferably 0.5, 1, 1,5 or 2 weight percent. Yet another example includes RTP 299DX140551 base and additives comprising ball-milled ceramic fibers available from Thermal Products Co. of Norcross, Ga. or powdered KEVLAR™ fibers. Beads of such polymers may be molded into the components discussed above using an injection molding or blow molding process. In some embodiments, the material flexibility is sufficient to allow the mouth of the cartridge case to accept a bullet/projectile with an annular groove engaged by a corresponding detent in the mouth, and, in some two piece embodiments described below, is also sufficient to allow an insert to be inserted into a sleeve with a locking tab. (In other two-piece embodiments, the insert is molded or forged first, and then the insert is over molded by the sleeve during an injection molding process to create a unified cartridge case).
Injection blow molding is used in the production of hollow vessels. Just as in injection molding, the polymer material is injected onto a core pin which is next rotated to a station known in the industry as a blow molding station where it is inflated to shape, cooled and then ejected.
The molded coloring of the cartridge case may signify the functional use of each individual round of ammunition. The requisite color system taken from the visible and infra-red color spectrum may determine the difference between ball ammunition, tracer ammunition, training ammunition, sub-sonic ammunition or any other specialty ammunition types. The color may indicate the type, but not the caliber, of the ammunition.
Referring now to the drawings,
While various embodiments have been described above, it should be understood that they have been presented by way of example and not limitation. It will be apparent to persons skilled in the relevant art(s) that various changes in form and detail can be made therein without departing from the spirit and scope. In fact, after reading the above description, it will be apparent to one skilled in the relevant art(s) how to implement alternative embodiments.
In addition, it should be understood that any figures which highlight the functionality and advantages are presented for example purposes only. The disclosed methodology and system are each sufficiently flexible and configurable such that they may be utilized in ways other than that shown.
Although the term “at least one” may often be used in the specification, claims and drawings, the terms “a”, “an”, “the”, “said”, etc. also signify “at least one” or “the at least one” in the specification, claims and drawings.
Finally, it is the applicant's intent that only claims that include the express language “means for” or “step for” be interpreted under 35 U.S.C. 112(f). Claims that do not expressly include the phrase “means for” or “step for” are not to be interpreted under 35 U.S.C. 112(f).
Claims
1. A method for manufacturing a center fire small or medium caliber ammunition cartridge case from an engineered polymer material, comprising:
- providing a nano-composite material resulting from the polymerization of nano-clays which are members of the smectite class of layered silicate or platy minerals which are uniformly dispersed in the polymer matrix; and
- molding the nano-composite material to form a cartridge case.
2. The method of claim 1, wherein the cartridge case is a two piece cartridge case.
3. The method of claim 1, wherein an injection molding process or injection blow molding process is used to form the cartridge case, and the cartridge case is a single piece case.
4. The method of claim 1, wherein the cartridge case meets existing Sporting Arms & Ammunition Manufacturers Institute (SAAMI) and existing military ammunition design specifications for center fire small or medium caliber ammunition cartridge in all calibers from 0.223 to 30 mm calibers.
5. A single piece small or medium caliber polymer ammunition cartridge case, comprising:
- a rim; and
- a generally cylindrical sidewall integral with the rim;
- wherein the rim is positioned to seal a first end of the sidewall, a second end of the sidewall is open to form a mouth, and the sidewall and rim form a cavity; and
- wherein a first surface of the rim in the cavity has a primer well formed therein for accepting primer, the primer well having a depth less than a thickness of the rim such that the primer well does not extend through a second surface of the rim opposite the first surface of the rim, thereby allowing primer to be loaded into the primer well only through the mouth.
6. A two piece small or medium caliber polymer ammunition cartridge comprising:
- an insert, the insert including a generally cylindrical sidewall and a rim enclosing one end of the sidewall to form a cavity, an outer surface of the sidewall having an annular groove formed therein spaced apart from the rim; and
- a generally cylindrical sleeve, the sleeve having an annular locking tab configured to mate with the annular groove of the insert formed on an interior surface;
- wherein the insert and sleeve are formed from an engineered polymer material with a flexibility sufficient to allow the sleeve to be placed over the insert so that the annular locking tab of the sleeve mates with the annular groove of the insert, and, when the locking tab of the sleeve is mated with the annular groove of the insert, at least 50% of a length of the insert overlaps the sleeve and at least 50% of a length of the sleeve overlaps the insert.
Type: Application
Filed: Sep 8, 2015
Publication Date: Mar 10, 2016
Inventor: George B. WALSH (McLean, VA)
Application Number: 14/848,089