POOL FILTER SYSTEMS INCLUDING POOL JET FITTINGS
Disclosed is a pool jet fitting configured to direct flow of water in a closed loop pool pumping filtration system. The pool jet fitting may include a housing, and a valve positioned in the housing. The housing may include a housing body that defines a bore that extends through the housing body. The housing body may include a coupler that is configured to mate with a coupler of a wall mount so as to releasably couple the housing to the wall mount. The valve may be positioned in the bore of the housing and may be configured to receive water flow from a water pump. The valve may define an adjustable opening having a dimension capable of automatically adjusting between a first dimension and a second dimension to facilitate a predetermined outflow velocity of the water received from the pump.
The present application is a continuation of U.S. patent application Ser. No. 13/197,426 filed Aug. 3, 2011, entitled POOL FILTER SYSTEMS INCLUDING POOL JET FITTINGS, now allowed, the entire contents of which is incorporated by reference into the present disclosure for all purposes.
BACKGROUNDSwimming pools include pool filter systems that circulate the pool water so as to remove debris, and to prevent algae outbreaks and pH swings. Typically pool filter systems include a pool pump that draws the pool water from the pool through a drain/filter and back to the pool through a plurality of returns. Many returns take the form of jet fittings, each having a rotatable eyeball that directs the return flow of the pool water toward the surface of the pool. Such an orientation creates surface agitation to thereby force the debris to the filter, and to create an audible sound that is desired by the pool owner.
Pool pumps typically are operated several hours of the day at high speeds, and consume a large amount of energy. The energy consumption involved during such usage can account for a major portion of a home owner's energy costs. To address this problem, variable speed water pumps have been introduced that can operate at low speeds. When operating at low speeds, however, the desired effect of the surface agitation is lost.
SUMMARYIn one embodiment a pool jet fitting may be configured to direct flow of water in a closed loop pool pumping filtration system. The pool jet fitting may include a housing, and a valve positioned in the housing. The housing may include a housing body that defines a bore that extends through the housing body. The housing body may include a coupler that is configured to mate with a coupler of a wall mount so as to releasably couple the housing to the wall mount. The valve may be positioned in the bore of the housing and may be configured to receive water flow from a water pump. The valve may define an adjustable opening having a dimension capable of automatically adjusting between a first dimension and a second dimension to facilitate a predetermined outflow velocity of the water received from the pump.
In another embodiment the pool jet fitting may include a housing and a valve positioned in the housing. The housing may include a housing body that defines a bore that extends through the housing body. The housing body may be configured to mate with a preexisting wall mount, and the bore may be configured to receive water flow from a variable flow water pump that is capable of pumping the water flow at different flow rates. The valve may be positioned in the bore of the housing, and may define an adjustable opening that is configured to maintain an outflow velocity of the water that agitates the surface of a pool as the flow rate of the water flow from the variable speed water pump changes.
In another embodiment, the pool jet fitting includes a housing and a valve. The housing includes a housing body and a bore that extends through the housing body. The housing body includes a coupler that is configured to mate with a coupler of a wall mount so as to releasably couple the housing to the wall mount. The bore is configured to receive water flow from a water pump. The valve is positioned in the bore of the housing. The valve has at least one slit that defines at least two flexible members that are configured to flex outwardly so as to facilitate a predetermined outflow velocity of the water received from the water pump.
In another embodiment a pool filter system may be configured to promote surface agitation of a pool. The pool filter system may include a variable speed water pump, a plurality of pool jet fittings, a pool drain, and piping. The water pump may be configured to pump water at least at a first flow rate and a second flow rate that is greater than the first flow rate. The variable speed water pump may have a pump inlet and a pump outlet. Each one of the plurality of pool jet fittings may include a valve that defines an adjustable opening that automatically adjusts in response to a change in pump output from the second flow rate to the first flow rate to facilitate an outflow velocity of the water from the pool jet fitting to promote surface agitation of a pool. The piping may connect the pool drain to the pump inlet and may connect the pump outlet to the pool jet fittings.
The foregoing summary, as well as the following detailed description of a preferred embodiment of the application, will be better understood when read in conjunction with the appended drawings. For the purposes of illustrating the pool filter systems and pool jet fittings of the present application, there is shown in the drawings preferred embodiments. It should be understood, however, that the application is not limited to the precise arrangements and instrumentalities shown. In the drawings:
Referring to
The pool filter system 10 may be configured to filter water for any pool configuration as desired. For example, the pool filter system 10 may filter water through a pool 12 that is substantially square shaped as illustrated or through an alternatively shaped pool, such as a kidney shaped pool. The pool filter system 10 may be configured to filter or otherwise pump water through a pool 12 that is configured as a swimming pool as illustrated, or any other pool as desired, such as a hot tub or a Jacuzzi bathtub. The pool filter system 10 may include any number of pool jet fittings 14. For example, while the illustrated embodiment of the pool filter system 10 includes ten pool jet fittings 14, it should be understood that the pool filter system 10 may include a single pool jet fitting 14 up to any number of pool jet fittings 14 depending on the size of the pool 12.
The water pump 28 may be a variable speed water pump that is configured to pump the water at least at a first flow rate and at a second flow rate that is greater than the first flow rate. By having multiple flow rates, the water pump 28 may be set to operate at a lower speed (i.e. lower flow rate) and therefore reduce energy use as compared to a single speed water pump that always operates at a high speed. For example, the water pump may operate at a first flow rate of about 20 gallons/minute and at a second flow rate of about 130 gallons/minute. It should be understood, however, that the water pump 28 may be configured to pump water at any desired flow rate(s). As shown in
As shown in
Now referring to
Referring to
The tubular portion 84 is configured to be glued or otherwise affixed within a bore defined by the wall of the pool 12. As shown in
As shown in
As shown in
Referring to
The tubular body 120 further defines a second coupler, such as external threads 140 that extend out from the external surface 132 of the body 120 proximate to the distal end of the housing 60. The threads 140 are configured to engage threads of the cap 72 so as to releasably affix the cap 72 to the distal end of the housing 60. It should be understood, however, that the housing 60 is not limited to threads 128 and 140, and that the housing 60 may include any coupler that is capable of releasably coupling the housing 60 to the wall mount 50 and the cap 72 to the housing 60.
As shown in
Referring now to FIGS. 2A and 5A-5D, the valve 68 is configured to be positioned within the bore 124 of the housing 60, and defines an adjustable opening 160 that defines a dimension DV capable of automatically adjusting between a first dimension and a second dimension to facilitate an outflow velocity of the water received from the water pump 28 that agitates the surface of the pool. For example, the adjustable opening 160 is configured to automatically adjust so as to maintain an outflow velocity of the water that agitates the surface of the pool as the flow rate of the water flow from the water pump 28 changes. The dimension DV of the adjustable opening 160 may be capable of automatically adjusting between a first dimension that is about 0.187 inches, and a second dimension that is about 1 inch. It could also be said that the adjustable opening 160 may be capable of automatically adjusting between a first area that is about 0.027 in2, and a second area that is about 0.785 in2. It should be understood, however, that the first and second dimensions may be any dimension as desired, and the first and second areas may be any area as desired. Moreover, while the dimension DV is illustrated as a diameter, it should be understood that the dimension DV may alternatively be a width, or a height.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
Referring now to
Referring now to
The insert 64 is configured to be disposed within the bore 124 of the housing 60. The insert 64 is configured to be disposed within the bore 124 of the housing 60 such that the insert 64 is capable of rotating relative to the housing 60. Therefore, when the pool jet fitting 14 is coupled to the wall mount 50, the insert 64 can be rotated so as to position the insert such that the passage 254 of the insert 64 is directed or otherwise extending towards the pool surface. Water flow from the water pump 28 will then be directed to the surface of the pool to create the desired agitation.
The passage 254 of the insert 64 may be sized to receive the valve 68 such that the valve 68 rotates along with the rotatable insert 64, when the rotatable insert 64 is rotated. Therefore, the adjustable opening 160 of the valve 68 can face the surface of the pool 12 when the insert 64 is rotated to face the surface of the pool 12.
Referring to FIGS. 1A and 9A-9C, the cap 72 is configured to be coupled to the housing 60 to thereby hold the insert 64 and the valve 68 within the housing 60. The cap 72 includes a substantially cylindrical cap body 252 that defines a bore 256 that extends longitudinally through the body 252. The cap 72 further includes a coupler, such as internal threads 258 that extend out from an internal surface 262 of the bore 256. The threads 258 are configured to engage the threads 140 of the housing 60 to thereby releasably affix the cap 72 to the distal end of the housing 60 and retain the insert 64 and the valve 68 within the housing 60. It should be understood, however, that the cap 72 is not limited to threads 258, and that the cap 72 may include any coupler that is capable of releasably coupling the cap 72 to the housing 60.
Referring to
In operation the pool jet fitting 14 will capable of maintaining a desired surface agitation whether the water pump 28 is operating at high speeds or at low speeds. For example, when the water pump 28 is operating at high speeds the water flow from the pump will be at a high velocity. As the high velocity water flow passes through the valve 68, the members 168 will flex outward thereby increasing the diameter and thus the area of the adjustable opening 160 of the valve 68. When the water pump 28 is changed from operating at high speeds to operating at low speeds the water flow from the pump 28 will decrease to a lower velocity as compared to when the pump is operating at high speeds. As the low velocity water flow passes through the valve 68, the members 168 will return to their non-flexed state thereby decreasing the diameter and thus the area of the adjustable opening 160 of the valve 68. Because the opening 160 has a smaller diameter when the pump 28 is operating at low speeds, the outflow velocity of the water will be increased to thereby maintain an outflow velocity that agitates the surface of the pool. Therefore, the pool jet fitting 14 will maintain a substantially similar outflow velocity, or at least maintain an outflow velocity within a specified range that agitates the surface of the pool whether the pump 28 is operating at high speeds or at low speeds.
In another embodiment, and in reference to
As shown, the extendable sections 284 are coupled to the outer sides 198 of the members 168. It should be understood, however, that the extendable sections 284 may be coupled to any part of the members 168. For example, the extendable members 284 may each define a sleeve that is coupled to the members 168 by being wrapped around the members 168. Moreover, the extendable sections 284 may be separate components from the members 168 or the members 168 and the extendable sections 284 may be integrally formed.
In another embodiment, and in reference to
As shown in
As shown in
In another embodiment and in reference to
It should be understood that while the pool filter system 10 has been described as utilizing a variable speed water pump 28, it should be understood that the pool filter system 10 may utilize a single speed water pump 28. For example, because in certain cases the piping used to operatively couple the pool jet fittings 14 to the water pump 28 vary with respect to each pool jet fitting 14, the amount of or flow of water from the water pump 28 may vary with respect to each pool jet fitting 14. Therefore, by using the pool jet fittings 14 that include valves with adjustable openings, the outflow velocity from each pool jet fitting 14 may be substantially similar or at least within a desired range. Moreover, it should be understood that every pool jet fitting of the system 10 does not have to be a pool jet fitting 14 having an adjustable opening. Therefore, the pool filter system 10 may include some pool jet fittings 14 having an adjustable opening, and at least one non-adjustable pool jet fitting having a fixed opening.
The foregoing description is provided for the purpose of explanation and is not to be construed as limiting the invention. While the invention has been described with reference to preferred embodiments or preferred methods, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Furthermore, although the invention has been described herein with reference to particular structure, methods, and embodiments, the invention is not intended to be limited to the particulars disclosed herein, as the invention extends to all structures, methods and uses that are within the scope of the appended claims. Those skilled in the relevant art, having the benefit of the teachings of this specification, may effect numerous modifications to the invention as described herein, and changes can be made without departing from the scope and spirit of the invention as defined by the appended claims. Furthermore, any features of one described embodiment can be applicable to the other embodiments described herein.
Claims
1. A valve configured for a pool jet fitting that is configured to direct a flow of water into a pool, the valve comprising:
- a valve body including an input end, an output end spaced from the input end in a first direction, a plurality of flexible members that converge toward a central axis, and an adjustable opening, each flexible member including a proximal end and a distal end opposed to the proximal end, each distal end being spaced apart from the central axis along a second direction that is perpendicular to the central axis so as to define the adjustable opening, the adjustable opening having a first dimension that extends from a first distal end of the plurality of flexible members to a second distal end of the plurality of flexible members along the second direction, and through the central axis, and an entirety of the adjustable opening being unobstructed,
- wherein the valve is configured such that a force applied to the plurality of flexible members along the first direction causes the adjustable opening to transition between the first dimension and a second dimension that is greater than the first dimension.
2. The valve according to claim 1, wherein the first dimension is centered about the central axis and is capable of automatically increasing from a nonzero first dimension to a second dimension that is greater than the first.
3. The valve according to claim 1, wherein the flexible members include an inner surface and an opposed outer surface, wherein the plurality of flexible members are configured to flex in response to the force applied to the inner surface, wherein the force is the impingement of the flow of water when the valve is disposed on the pool fitting and water is flowing through the pool jet fitting.
4. The valve according to claim 1, where application of the force causes the plurality of flexible members to flex outwardly away from the central axis to thereby increase the first dimension of the adjustable opening to the second dimension.
5. The valve according to claim 1, wherein the valve further includes a plurality of extendable sections, each extendable section being coupled to a respective pair of adjacent members of the plurality of flexible members.
6. The valve according to claim 1, wherein each flexible member is wedge shaped.
7. The valve according to claim 1, wherein the valve body includes a plurality of slits, wherein an adjacent pair of the plurality of slits define a respective one of the plurality of flexible members.
8. The valve according to claim 1, wherein the first dimension is about 0.25 inches and the second dimension is about 1.25 inches.
9. A pool jet fitting configured to direct flow of water, the pool jet fitting comprising:
- a valve defining an adjustable opening configured to permit the flow of water to pass therethrough, the adjustable opening defining a dimension that is centered along a central axis and is unobstructed along an entirety of the dimension so that water is flowable therethrough, and the adjustable opening is capable of automatically adjusting between a first dimension and a second dimension so as to facilitate a predetermined outflow velocity of the water from the valve, wherein the adjustable opening is unobstructed in the first dimension and the second dimension so as to permit the flow of water to pass therethrough.
10. The pool jet fitting according to claim 9, wherein the flexible members include an inner surface and an opposed outer surface, wherein the plurality of flexible members are configured to flex in response to the impingement of the flow of water on the inner surface of the flexible members when the valve is disposed on the pool jet fitting and water is flowing through the pool jet fitting.
11. The pool jet fitting according to claim 9, wherein each of the plurality flexible members are configured to flex away from the central axis to thereby increase the first dimension of the adjustable opening.
12. The pool jet fitting according to claim 9, wherein the first dimension is about 0.25 inches and the second dimension is about 1.25 inches.
13. The pool jet fitting according to claim 9, wherein the predetermined outflow velocity is a range of velocities.
14. The pool jet fitting according to claim 9, further comprising a housing including a housing body and a bore that extends through the housing body, wherein the valve is aligned the bore along the central axis, the housing body including a coupler that is configured to be releasably coupled to a wall mount, the bore configured to receive a flow of water from a water pump when the housing is coupled to the wall mount and the water pump pumps the water flow.
15. The pool jet fitting according to claim 14, wherein the dimension of the adjustable opening is capable of automatically adjusting in response to a change in the output of the water pump.
16. The pool jet fitting according to claim 14, wherein (i) the water pump is a variable flow water pump that is capable of pumping the water at different flow rates, and (ii) the predetermined outflow velocity is maintained within a predetermined range of velocities as the flow rate of the variable flow water pump changes.
Type: Application
Filed: Dec 4, 2015
Publication Date: Mar 24, 2016
Inventors: Sean Walsh (Westhampton, NY), James P. Mulhern (Nanticoke, PA)
Application Number: 14/959,870