METHOD FOR THE PRODUCTION OF A CYLINDER FOR A TWO-STROKE ENGINE

- MAHLE International GmbH

A method for producing a cylinder for a two-stroke engine, has the following steps: producing a casting core, wherein a central core slide for the cylinder chamber and at least one salt core for a transfer port are produced and the at least one salt core is connected to the central core slide, inserting the casting core into a casting mold, casting the cylinder in a die-casting process, removing the central core slide from the cylinder, wherein the at least one salt core is separated from the central core slide, and flushing the at least one salt core out of the cylinder. The invention further relates to a casting core for such a method.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 13/808,702, filed on Jun. 17, 2013, which is the National Stage of PCT/DE2011/001408 filed on Jul. 5, 2011, which claims priority under 35 U.S.C. §119 of German Application No. 10 2010 026 597.7 filed on Jul. 8, 2010, the disclosures of which are incorporated by reference. The international application under PCT article 21(2) was not published in English.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method for the production of a cylinder for a two-stroke engine as well as to a casting core for this method.

2. The Prior Art

Such cylinders are generally cast from an aluminum alloy, in a gravity casting method, using sand cores. It is problematic, in this connection, that casting defects and inclusions form very easily. For this reason, it is aimed at to cast such cylinders in a die-casting method. However, sand cores cannot be used for this, because they do not withstand the pressure conditions that prevail during casting

DE 33 31 664 A1 describes a cylinder having closed transfer ports for a two-stroke engine, which is produced using the die-casting method. Divided steel cores are used to form the transfer ports; these cores are connected with the central core slide for the cylinder chamber. Both. the configuration of the multi-part cores and the removal of the divided steel cores for the transfer ports from the cast cylinder are very complicated and difficult.

It is furthermore known to use cores made of a wood fiber material (cf. DE 198 20 246 A1). However, such cores have not proven themselves for the die-casting method, because they are not sufficiently stable for it.

SUMMARY OF THE INVENTION

The task of the present invention consists in further developing a method of the stated type and a casting core of the stated type, in such a manner that the casting core can easily be removed from the cast cylinder, and is also suitable for a die-casting method.

The solution consists in that first, a casting core is produced, whereby a central core slide for the cylinder chamber and at least one salt core for a transfer port are produced, and the at least one salt core is connected with the central core slide, that the casting core is subsequently introduced into a casting mold, and the cylinder is cast using a die-casting method, that subsequently, the central core slide is removed from the cylinder, whereby the at least one salt core is separated from the central core slide, and finally, the at least one salt core is flushed out of the cylinder.

The casting core according to the invention is characterized in that it has a central core slide for the cylinder chamber, to which at least one salt core for a transfer port is connected.

It has turned out, in surprising manner for a person skilled in the art, that a. salt core connected with a central core slide is so stable that it withstands the conditions, particularly the pressure conditions, of a die-casting method. The at least one salt core can be flushed out of the cast cylinder particularly easily, in known manner, The method according to the invention and the casting core according to the invention therefore make it possible to produce cylinders for two-stroke engines, which have at least one transfer port, with little effort, using the die-casting method.

Advantageous further developments are evident from the dependent claims.

The at least one salt core can be produced in known manner, by means of pressing, injection-molding, or also by means of sintering. Sodium chloride and/or potassium chloride, for example, are suitable as main components. If necessary, at least one binder can be added, for example at least one alkali carbonate and/or at least one earth alkali carbonate.

The central core slide can be produced from various desired materials. Metallic materials, particularly steel materials, are preferred.

The at least one salt core is preferably connected with the central core slide with shape fit and without binders.

The method according to the invention and the casting core according to the invention are particularly suitable for the production of cylinders that are cast from an aluminum alloy, using a die-casting method.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and features of the present invention will become apparent from the following detailed description considered in connection with the accompanying drawings. It is to be understood, however, that the drawings are designed as an illustration only and not as a definition of the limits of the invention.

In the drawings, wherein similar reference characters denote similar elements throughout the several views:

FIG. 1 shows an exemplary overall representation of a cylinder for a two-stroke engine, in section;

FIG. 2 shows a cylinder for a two-stroke engine, with a first exemplary embodiment, situated in it, of a casting core according to the invention, in section;

FIG. 3 shows the cylinder according to FIG. 1, after removal of the casting core;

FIG. 4 shows another exemplary overall representation of a casting core according to the invention, in a perspective, slanted view;

FIG. 5 shows the casting core according to FIG. 4 in a front view;

FIG. 6 shows another cylinder for a two-stroke engine, in section, produced with a casting core according to FIGS. 4 and 5; and

FIG. 7 shows a section along the line VII-VII in FIG. 6.

DETAILED DESCRIPTION THE PREFERRED EMBODIMENT

FIG. 1 shows a schematic representation of a cylinder 10 for a two-stroke engine. In the exemplary embodiment, a piston-edge-controlled two-stroke engine is shown, as it is used, for example, for hand tools such as power saws. Such a two-stroke engine has at least one cylinder 10 having a cylinder chamber 11, in which a piston 12, which has a piston crown 16, is guided to move up and down. The cylinder 10 is closed off by a cylinder head 13 at one end. The other end of the cylinder 10 is attached to a crankcase 14, which is only shown in outlines in FIG. 1. The piston 12 is connected, in known manner, by means of a piston pin and a connecting rod, with a crankshaft that is mounted to rotate in the crankcase 14 (not shown).

In the cylinder 10, a combustion chamber 15 is formed, which is delimited by the cylinder head 13, the piston crown 16 of the piston 12, and the cylinder wall 17 of the cylinder chamber 11. In the exemplary embodiment, a transfer port 18 is shown, which connects the combustion chamber 15 with the crankcase 14. The cylinder chamber 11 furthermore has an outlet channel 21 for conducting away the combustion gases that occur, out of the combustion chamber 15. Below the opening of the transfer port 18 into the combustion chamber 15, the cylinder chamber 11 furthermore has an inlet channel 22, by way of which a fuel/air mixture is introduced into the crankcase 14. The outlet channel 21, the inlet channel 22, and the opening of the transfer port into the combustion chamber 15 are opened and closed by the piston 12, which is moving up and down, as a function of its stroke position.

In the position of the piston 12 shown in FIG. 1, in the region of its lower dead center, the outlet channel 21 and the opening of the transfer port 18 into the combustion chamber 15 are open. In this position, the fuel/air mixture compressed by the piston 12 in the crankcase flows into the combustion chamber 15 (see arrow S) and displaces the combustion gases situated the in combustion chamber 15, which exit from the combustion chamber 15 by way of the outlet channel 21. During the following upward movement of the piston 12 in the direction toward the cylinder head 13, first the opening of the transfer port 18 into the combustion chamber 15 is closed, and subsequently the outlet channel 21 closed. At the same time, the in channel 22 is opened, so that fresh fuel/air mixture is drawn into the crankcase 14. The piston 12 compresses the fuel/air mixture situated in the combustion chamber 15 on its path to the upper dead center, until it ignites below the combustion chamber roof 23 formed by the cylinder head 13. During the subsequent downward stroke, the inlet channel 22 is closed, and the fresh fuel/air mixture drawn into the crankcase 14 is compressed. Then, first the outlet channel 22 and subsequently the opening of the transfer port 18 into the fuel chamber 15 are opened, and the work cycle begins anew.

FIGS. 2 and 3 show an exemplary embodiment of the present invention in a simplified representation. FIG. 2 shows a cylinder 10 for a two-stroke engine, composed of an aluminum alloy. The cylinder 10 was cast in known manner, using a die-casting method.

The casting core 30 according to the invention used for this purpose has a central core slide 31 and a foot plate 32 provided on it. The core slide 31 serves for forming the cylinder chamber 11. The foot plate 32 essentially serves to close off the casting mold and to pull the core slide 31 out of the cast cylinder 10, in the direction of, the arrows A, after casting. The core slide 31 and the foot plate 32 consist, in the exemplary embodiment, of the steel material X37CrMoV5-1 hardened to 48-52 HRC.

In the exemplary embodiment, salt cores 33 are connected with the core slide 31; these serve to form two transfer ports 18, 19. The salt cores 33 consist, in the exemplary embodiment, of pressed sodium chloride or of pressed potassium chloride.

Connecting the salt cores 33 to the core slide takes place by means of a shape-fit connection.

The salt cores 33 support themselves on the foot plate 32 in the exemplary embodiment. The finished casting core 30 is laid into a casting mold. The cylinder 10 is cast from an aluminum material, using a die-casting method.

When the core slide 31 is pulled out after casting of the cylinder 10, the salt cores 33 are sheared off from the core slide 31 or separated from the foot plate 32. The salt cores 33 are not flushed out of the cylinder 10 in known manner, so that two transfer ports 18, 19 result. The support of the salt cores 33 on the foot plate 32 brings about the result that the transfer ports each have an opening 18a, 19a in the direction of the crankcase to be added later. After the crankcase is added, the transfer ports open into the crankcase.

FIGS. 4 to 7 show another exemplary embodiment of a cylinder 110 produced according to the method according to the invention, and of a casting core 130 used for this purpose. The cylinder 110 has a cylinder chamber 111, two transfer ports 118, 119, an outlet channel 121, and an inlet channel 122. The casting core 130 has a core slide 131 made from a steel material, particularly from heat-treated steel X37CrMoV5-1 hardened to 48-52 HRC, for forming the cylinder chamber 111. Two salt cores 133 for forming the transfer ports 118, 119 are connected with the core slide 131. Furthermore, a mold part 121a for forming an outlet channel 121 and a mold part 122a for forming an inlet channel 122 are provided. on the central core slide 131.

Accordingly, while only a few embodiments of the present invention have been shown and described, it is obvious that many changes and modifications may be made thereunto without departing from the spirit and scope of the invention.

Claims

1. A method for the production of a cylinder for a two-stroke engine, comprising the following method steps:

producing a casting core, wherein a central core slide for a cylinder chamber and at least one salt core for a transfer port are produced, and the at least one salt core is connected with the central core slide,
introducing the casting core into a casting mold,
casting the cylinder using a die-casting method,
removing the central core slide from the cylinder, wherein the at least one salt core is separated from the central core slide, and
flushing the at least one salt core out of the cylinder.

2. The method according to claim 1, wherein the at least one salt core is pressed.

3. The method according to claim 1, wherein the at least one salt core is sintered.

4. The method according to claim 1, wherein the at least one salt core is produced using an injection-molding method.

5. The method according to claim 1, wherein the at least one salt core is produced from sodium chloride as a main component.

6. The method according to claim 1, wherein the at least one salt core is produced from potassium chloride as a main component.

7. The method according to claim 1, wherein the at least one salt core is produced using at least one alkali carbonate and/or at least one earth alkali carbonate.

8. The method according to claim 1, wherein the central core slide is produced from a steel material.

9. The method according to claim 1, wherein the cylinder is cast from an aluminum alloy.

10. The method according to claim 1, wherein the central core slide has a cylindrical side wall and at least one recess in the cylindrical side wall and wherein the at least one salt core is connected with he recess in the cylindrical side wall with shape fit and without binders.

Patent History
Publication number: 20160089716
Type: Application
Filed: Dec 1, 2015
Publication Date: Mar 31, 2016
Applicant: MAHLE International GmbH (Stuttgart)
Inventors: Guenther MAYER (Boennigheim), Juergen SCHWARZ (Gueglingen-Eibensbach), Torsten EIL (Crailsheim)
Application Number: 14/955,303
Classifications
International Classification: B22D 19/00 (20060101); B22D 21/00 (20060101); B22C 9/24 (20060101); B22C 1/00 (20060101); B22C 9/10 (20060101);