WOVEN FIBERS, WICK STRUCTURES HAVING THE WOVEN FIBERS AND HEAT PIPES HAVING THE WICK STRUCTURES

An exemplary woven fiber includes a main body and at least a channel located at a side of the main body. The disclosure also provides a wick structure having woven fibers and a heat pipe having the wick structure.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD

The subject matter herein generally relates to a woven fiber, a wick structure having the woven fiber and a heat pipe having the wick structure.

BACKGROUND

A typical heat pipe includes a hollow tube, a plurality of wick structures in the tube, and working fluid contained in the tube. A typical wick structures includes a plurality of woven fibers. However, each woven fiber is cylindrical, which decreases the capillary action of the wick structures.

BRIEF DESCRIPTION OF THE DRAWINGS

Implementations of the present technology will now be described, by way of examples only, with reference to the attached figures.

FIG. 1 is a cross sectional view of a heat pipe in accordance with an embodiment of the present disclosure.

FIG. 2 is an isometric view of a wick structure in accordance with a first embodiment of the present disclosure.

FIG. 3 is a side view of the wick structure of FIG. 2.

FIG. 4 is an exploded view of the wick structure of FIG. 2.

FIG. 5 is an isometric view of a wick structure in accordance with a second embodiment of the present disclosure.

FIG. 6 is an isometric view of the wick structure of FIG. 5 from a different angle.

FIG. 7 is an isometric view of a wick structure in accordance with a third embodiment of the present disclosure.

FIG. 8 is an isometric view of a wick structure in accordance with a fourth embodiment of the present disclosure.

DETAILED DESCRIPTION

It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts have been exaggerated to better illustrate details and features of the present disclosure.

A definition that applies throughout this disclosure will now be presented.

The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series and the like.

The present disclosure is described in relation to a heat pipe 500.

FIG. 1 illustrates a heat pipe 500. The heat pipe 500 includes a hollow tube 501, a wick structure 100 arranged in the tube 501 and working fluid (not shown) in the tube 501. The working fluid can be water or alcohol. In at least one embodiment, the wick structure 100 is arranged on inner surfaces of the tube 501.

FIG. 2 illustrates the wick structure 100 in accordance with a first embodiment of the present disclosure. The wick structure 100 includes a first woven fiber 10 and a second woven fiber 20.

In at least one embodiment, the first woven fiber 10 and the second woven fiber 20 twine around each other. The first woven fiber 10 contacts with the second woven fiber 20. A slot 15 is defined between the first woven fiber 10 and the second woven fiber 20. In the preferred embodiment of FIG. 2, the first woven fiber 10 spirally twines around the second woven fiber 20 along a longitudinal direction of the second woven fiber 20. Similarly, the second woven fiber 20 spirally twines around the first woven fiber 10 along a longitudinal direction of the first woven fiber 10. Preferably, the first woven fiber 10 and the second woven fiber 20 twine around each other along a same direction. Referring to FIG. 3, the first woven fiber 10 and the second woven fiber 20 clockwise twine around each other. Alternatively, the first woven fiber 10 and second woven fiber 20 can counterclockwise twine around each other.

The first woven fiber 10 and the second woven fiber 20 are preferably made of metal material with high thermal conductivity such as using copper lines to form a copper net of the woven wick. Alternatively, the materials are not limited to the metal material. In at least one embodiment, the first woven fiber 10 can be coupled to the second woven fiber 20 by welding.

The first woven fiber 10 includes a main body 10m and at least a channel at a side of the main body 10m. In the embodiment of FIG. 3, the first woven fiber 10 has a first channel 11 at a first side and a second channel 12 at a second side opposite to the first side. The first channel 11 extends along a longitudinal direction of the first woven fiber 10. The second channel 12 extends along a longitudinal direction of the first woven fiber 10. Preferably, the first channel 11 spirally extends along the first woven fiber 10, and the second channel 12 spirally extends along the first woven fiber 10. Alternatively, the first channel 11 and the second channel 12 can be cavities formed in outer surface of the first woven fiber 10. Preferably, the cavities can be spaced from each other.

Similarly, the second woven fiber 20 includes a main body 20m and at least a channel at a side of the main body 20m. In the embodiment of FIG. 3, the second woven fiber 20 has a first channel 21 at a first side and a second channel 22 at a second side opposite to the first side. The first channel 21 extends along a longitudinal direction of the second woven fiber 20. The second channel 22 extends along a longitudinal direction of the second woven fiber 20. Preferably, the first channel 21 spirally extends along a longitudinal direction of the second woven fiber 20 and the second channel 22 spirally extends along the longitudinal direction of the second woven fiber 20. Alternatively, the first channel 21 and the second channel 22 can be cavities formed in outer surface of the second woven fiber 20. Preferably, the cavities can be spaced from each other.

Referring to FIG. 4, the main body 10m of the first woven fiber 10 includes a first portion 101, a second portion 102, and a first connecting portion 103 connecting the first portion 101 and the second portion 102. A thickness of the first connecting portion 103 is less than that of the first portion 101, and is less than that of the second portion 102. The first portion 101, the second portion 102 and the first connecting portion 103 each is spiral. The first portion 101, the second portion 102 and the first connecting portion 103 define the first channel 11 and the second channel 12 respectively. In the embodiment of FIG. 4, the first portion 101 and the second portion 102 are cylindrical, and the first connecting portion 103 is a rectangular plate.

The second woven fiber 20 has a similar configuration to the first woven fiber 10. The second woven fiber 20 twines around the first woven fiber 10 along a longitudinal direction of the first woven fiber 10. In a preferred embodiment of FIGS. 2-3, the second woven fiber 20 spirally twines around the first woven fiber 10.

The main body 20m of the second woven fiber 20 includes a first portion 201, a second portion 202 and a second connecting portion 203 connecting the first portion 201 and the second portion 202. A thickness of the second connecting portion 203 is less than that of the first portion 201, and is less than that of the second portion 202. The first portion 201, the second portion 202 and the second connecting portion 203 each is spiral. The first portion 201, the second portion 202 and the second connecting portion 203 defines the first channel 21 and the second channel 22 respectively at opposite sides of the second woven fiber 20. In this embodiment, a part of the second portion 102 of the first woven fiber 10 is received in the first channel 21 of the second woven fiber 20, and the second portion 102 extends along the first channel 21 of the second woven fiber 20; a part of the first portion 201 of the second woven fiber 20 is received in the second channel 12 of the first woven fiber 10, and the first portion 201 extends along the second channel 12 of the first woven fiber 10.

Referring to a second preferred embodiment shown in FIG. 5, the wick structure 200 includes a first woven fiber 10a, a second woven fiber 20a and a third woven fiber 30a. The first woven fiber 10a, the second woven fiber 20a and the second woven fiber 30a twine around each other, so that a plurality of rough structures 25 is formed at outer periphery of the wick structure 200. In the preferred embodiment of the FIG. 5, the first woven fiber 10a, the second woven fiber 20a and the third woven fiber 30a each is spiral and each extends along a clockwise direction.

Referring to FIG. 6, the first woven fiber 10a has a first convex edge 11a, a second convex edge 12a and a third convex edge 13a. The first convex edge 11a, the second convex 12a and the third convex edge 13a each extends along a longitudinal direction of the first woven fiber 10a. The convex edges 11a, 12a, 13a are preferably distributed uniformly at peripheral sides of the first woven fiber 10a. A first slot 101a is located between the first convex edge 11a and the second convex edge 12a. A second slot 102a is located between the second convex edge 12a and the third convex edge 13a. A third slot 103a is located between the third convex edge 13a and the first convex edge 11a.

Similarly, the second woven fiber 20a has a first convex edge 21a, a second convex edge 22a and a third convex edge 23a. The first convex edge 21a, the second convex 22a and the third convex edge 23a each extends along a longitudinal direction of the second woven fiber 20a. The convex edges 21a, 22a, 23a are preferably distributed uniformly at peripheral sides of the second woven fiber 20a. A first slot 201a is located between the first convex edge 21a and the second convex edge 22a. A second slot 202a is located between the second convex edge 22a and the third convex edge 23a. A third slot 203a is located between the third convex edge 23a and the first convex edge 21a.

Similarly, the third woven fiber 30a has a first convex edge 31a, a second convex edge 32a and a third convex edge 33a. The first convex edge 31a, the second convex 32a and the third convex edge 33a each extends along a longitudinal direction of the third woven fiber 30a. The convex edges 31a, 32a, 33a are preferably distributed uniformly at peripheral sides of the third woven fiber 30a. A first slot 301a is located between the first convex edge 31a and the second convex edge 32a. A second slot 302a is located between the second convex edge 32a and the third convex edge 33a. A third slot 303a is located between the third convex edge 33a and the first convex edge 31a.

In a third preferred embodiment of FIG. 7, the wick structure 300 includes a first woven fiber 10a, a second woven fiber 20a, a third woven fiber 30a and a fourth woven fiber 40a twining around each other. Preferably, The first woven fiber 10a further includes a fourth convex edge 14a, the second woven fiber 20a further includes a fourth convex edge 24a, the third woven fiber 30a further includes a fourth convex edge 34a. The fourth woven fiber 40a includes a first convex edge 41a, a second convex edge 42a, a third convex edge 43a and a fourth convex edge 44a spaced from each other and distributed uniformly at peripheral sides of the fourth woven fiber 40a.

In a fourth preferred embodiment of FIG. 8, the wick structure 400 includes a central cylinder 70 and at least a first woven fiber 10b twining around the central cylinder 70. The central cylinder 70 has a uniform diameter along a longitudinal direction thereof. In the preferred embodiment, the first woven fiber 10b spirally twines around the central cylinder 70 along a longitudinal direction.

Alternatively, the wick structure 400 can include a plurality of first woven fibers 10b, and the entire peripheral surface of the central cylinder 70 is covered by the plurality of first woven fibers 10b. In this embodiment, the wick structure 400 further includes a second woven fiber 20b, a third woven fiber 30b, a fourth woven fiber 40b, a fifth woven fiber 50b and a sixth woven fiber 60b twining around the central cylinder 70 respectively. The woven fibers 10b, 20b, 30b, 40b, 50b and 60b cover all the peripheral surface of the central cylinder 70.

Specifically, the second woven fiber 20b is adjacent to the first woven fiber 10b, and extends along the first woven fiber 10b. The third woven fiber 30b is adjacent to the second woven fiber 20b and extends along the second woven fiber 20b. The fourth woven fiber 40b is adjacent to the third woven fiber 30b and extends along the third woven fiber 30b. The fifth woven fiber 50b is adjacent to the fourth woven fiber 40b and extends along the fourth woven fiber 40b. The sixth woven fiber 60b is adjacent to the fifth woven fiber 50b and extends along the fifth woven fiber 50b.

The embodiments shown and described above are only examples. Many details are often found in the art such as the other features of a woven fiber, a wick structure having the woven fiber and a heat pipe having the wick structures. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, especially in matters of shape, size and arrangement of the parts within the principles of the present disclosure up to, and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.

Claims

1. A woven fiber comprising:

a main body; and
at least a channel located at a side of the main body.

2. The woven fiber of claim 1, wherein the channel extends along a longitudinal direction of the main body.

3. The woven fiber of claim 2, wherein the channel spirally extends along a longitudinal direction of the main body.

4. The woven fiber of claim 1, wherein the channel can be a plurality of cavities formed in outer surface of the main body.

5. The woven fiber of claim 1, wherein the main body includes a first portion, a second portion, and a first connecting portion connecting the first portion and the second portion, a thickness of the first connecting portion is less than that of the first portion, and is less than that of the second portion.

6. The woven fiber of claim 1, wherein further comprising a first convex edge, a second convex edge and a third convex edge formed at outer surface of the main body.

7. The woven fiber of claim 6, wherein the convex edges of the main body extend along a longitudinal direction of the main body.

8. The woven fiber of claim 7, wherein the convex edges of the main body are distributed uniformly at peripheral sides of the main body.

9. A wick structure formed in a heat pipe comprising a plurality of woven fibers, wherein the plurality of woven fibers twines around each other, and each woven fiber comprises a main body and at least a channel located at a side of the main body.

10. The wick structure of claim 9, wherein the woven fibers spirally twine around each other.

11. The wick structure of claim 9, wherein the channel can be a plurality of cavities formed in an outer surface of the main body.

12. The wick structure of claim 9 comprising a first woven fiber and a second woven fiber, wherein the first woven fiber and the second woven fiber twine around each other.

13. The wick structure of claim 12, wherein a first channel and a second channel are formed at opposite sides of the first woven fiber respectively, a first channel and a second channel are formed at opposite sides of the second woven fiber respectively.

14. The wick structure of claim 9, wherein further comprising a central cylinder, wherein the central cylinder is covered and twine by the plurality of woven fibers.

15. A heat pipe comprising:

a hollow tube;
a wick structure formed in the hollow tube; and
wherein the wick structure comprises a first woven fiber and a second woven fiber twining around each other.

16. The heat pipe of claim 15, wherein the first woven fiber spirally twines around the second woven fiber along a longitudinal direction of the second woven fiber.

17. The heat pipe of claim 15 wherein the first woven fiber comprises a first channel at a first side and a second channel at a second side opposite to the first side.

18. The heat pipe of claim 17, wherein the first channel and the second channel each extends along a longitudinal direction of the first woven fiber.

19. The heat pipe of claim 18, wherein the second woven fiber comprises a first channel at a first side of the second woven fiber and a second channel at a second side opposite to the first side of the second woven fiber.

20. The heat pipe of claim 17, wherein the first channel and the second channel can be a plurality of cavities.

Patent History
Publication number: 20160123679
Type: Application
Filed: Nov 17, 2014
Publication Date: May 5, 2016
Inventor: HUNG-NIEN CHIU (New Taipei)
Application Number: 14/543,645
Classifications
International Classification: F28D 15/04 (20060101);