BICYCLE TRAINER

The present invention is a bicycle trainer that allows a person to utilize their own bicycle and simulates real and varied road conditions. The device includes the front forks of a bicycle mounted to a stand; the stand including a flexible support arm allowing the bicycle to rock back and forth along a rocking arc; and the rear tire of the bicycle making contact with a roller face of a roller such that the roller is free to rotate in proportion to the rotation of the rear tire. Further, the roller is rotationally connected to a motor for selectively applying resistance and assistance to the rear tire rotation, for simulating real course conditions. Preferably it further includes a motor assembly which includes a frame for housing the roller and motor and rigidly connecting the motor assembly to the stand, the motor is pivotally mounted to the frame about its shaft, such that the motor and roller rotate in proportional unison with each other.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This application is a continuation in part of U.S. Ser. No. 14/460,459 filed Aug. 15, 2014 by Gary Bauer, Konstantine Poukhov, and Nikolay Bakunin which application claims priority from regularly filed U.S. provisional application No. 61/872,942 filed Sep. 3, 2014 by Gary Bauer, Konstantine Poukhov, Nikolay Bakunin under the title BICYCLE TRAINER.

FIELD OF THE INVENTION

The present concept relates to bicycle trainers and more particularly relates to a bicycle trainer that can simulate actual road conditions and utilize the riders own bicycle for the training exercise.

BACKGROUND OF THE INVENTION

There are numerous bicycle trainers which are known in the prior art some of which have been patented including U.S. Pat. No. 7,862,476 titled: Exercise Device, by David A. Blau et al. which was issued on Jan. 4, 2011.

The exercise device described in U.S. Pat. No. 7,862,476 does not enable the person to utilize his or her own bicycle nor does it simulate real road conditions, in particular it does not simulate the freedom of movement available on a regular bicycle in real life conditions.

Most of the bicycle training devices utilize a rigid stand and/or setup such as that described in U.S. Pat. No. 7,862,476 in which the user will sit in a simulated environment and pedal a bicycle like machine which attempts to simulate real road conditions.

There is a need for a bicycle training device which allows a user to utilize his own bicycle which the rider has become comfortable with and allow the freedom of movement that a real bicycle allows when pedaling on a normal road surface.

SUMMARY

The present concept a bicycle trainer comprising:

    • a) the front forks of a bicycle mounted to a stand;
    • b) the stand including a flexible support arm allowing the bicycle to rock back and forth along a rocking arc;
    • c) the rear tire of the bicycle making contact with a roller face of a roller such that the roller is free to rotate in proportion to the rotation of rear tire;
    • d) wherein the roller is rotationally connected to a motor for selectively applying resistance and assistance to the rear tire rotation, for simulating real course conditions.

Preferably further comprising a motor assembly which includes a frame for housing the roller and motor and rigidly connecting the motor assembly to the stand, the motor is pivotally mounted to the frame about its shaft, such that the motor and roller rotate in proportional unison with each other.

Preferably wherein the motor assembly further including a force sensor for measuring the tangential force between the roller and the bicycle.

Preferably wherein the motor is rigidly mounted to a base plate which has a top side and bottom side which is free to pivot with the motor.

Preferably wherein the motor assembly includes the force sensor in contact with one side of the plate, and a spring on the other side of the plate such that the force sensor and spring restrict the rotational deflection of the base plate and thereby measure the tangential force between the roller.

Preferably where the force sensor and spring are opposing each other mounted on opposite sides of the plate, in order to maintain positive bias of force on the force sensor.

Preferably wherein the force sensor is chosen from the group comprising piezo electric, and strain gauge and load cell and magneto elastic transducers.

Preferably further including a controller which includes data sets for simulating real and imaginary road conditions.

The present concept is a bicycle trainer for use with a bicycle with its front tire removed from the fork dropout comprising:

    • a) a stand which includes a flexible connecting arm connected to a motor assembly at a tire end of the flexible connecting arm;
    • b) a fork end of the flexible connecting arm dimensioned to attach to the front fork dropout of a bicycle;
    • c) the motor assembly includes a roller with a roller face, wherein the rear tire of the bicycle making contact with a roller face of the roller such that the roller is free to rotate in proportion to the rotation of rear tire and further the tire is free to move in a lateral direction across a portion of the face of the roller;
    • d) a motor is rotationally connected to the roller for selectively applying resistance and assistance to the rear tire rotation, for simulating real course conditions.

Preferably wherein the flexible connecting arm is dimensioned and selected to allow torsional flex of the flexible connecting arm such that the bicycle will rock back and forth along a rocking arc when the rider imparts torsional forces onto the stand.

Preferably also comprising a motor assembly which includes a frame for housing the roller and motor and also for rigidly connecting the motor assembly to the stand, the motor is rotationally mounted about its shaft with limited pivotal movement to the frame, such that the motor and roller rotate in proportional unison with each other.

Preferably wherein the motor assembly further includes a means for measuring force.

BRIEF DESCRIPTION OF THE DRAWINGS

The concept will now be described by way of example only with reference to the following drawings in which:

FIG. 1 is a schematic perspective view of a bicycle trainer which includes a bicycle mounted onto a stand and a motor assembly.

FIG. 2 is a schematic partial elevational view of the motor assembly showing part of the rear tire and rear wheel of the bicycle, and the motor assembly.

FIG. 3 is a flow diagram showing in schematic fashion the method of control of the motor.

FIG. 4 is a schematic perspective view of a further embodiment of a bicycle trainer which includes a bicycle mounted onto a stand and a motor assembly.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present concept a bicycle trainer shown generally as 100 in FIG. 1 includes the following major components namely bicycle 102, a stand 104, and a motor assembly 106.

Bicycle 102 includes all of the normal components of a bicycle except for the front wheel which has been removed from the front fork 108.

Bicycle 102 therefore will include all of the normal components found in a bicycle including handle bars 110 attached to a bicycle frame 112, including a seat 114, pedals 116, a set of front sprockets 118, a rear wheel 120 having mounted thereon a rear tire 122, a chain 124, engaging with a set of rear sprockets 126.

Bicycle 102 will also include the normal front and rear gear changing device which normally is a front de-railer for selecting a front sprocket 118 and a rear gear selector for selecting one of the rear sprockets 126 thereby allowing the rider of the bicycle to choose the gear ratio.

Stand 104 includes a fork support 130 onto which front fork 108 of bicycle 102 is mounted using fork nuts 133. Fork support 130 is connected to a flexible support arm 132 which in turn is attached to connecting arm 134 and outriggers 136.

Connecting arm 134 is connected at 1st end 140 to outriggers 136 and flexible support arm 132 and at a 2nd end 142 to motor assembly 106.

Motor assembly 106 includes a frame 150 which houses a roller 152 which is connected with a common shaft 154 to a motor 156.

Referring now to FIG. 2 which is a schematic side elevational view of the motor assembly 106 showing frame 150 connected to connecting arm 134 at a 2nd end 142.

The shaft 154 of motor 156 is mounted via bearings onto frame 150 using motor support 162.

Therefore motor 156 is free to rotate about shaft 154 except for the fact that the motor base plate is sandwiched between a force sensor 170 on the upper side 172 of motor base plate 164 and by spring 176 on the lower side 178 of motor base plate 164.

In other words the force sensor 170 and the spring 176 are the only elements which prevent or restrict motor 156 from rotating about shaft 154 when torque is being applied to the motor. Sensor 170 is mounted onto sensor flange 171 which in turn is mounted into frame 150.

The direction of bicycle forward or normal roller rotation is shown as 180 and the upward deflection direction of motor base plate 164 is shown as 182 and the downward deflection direction of motor base plate 164 is shown as 184.

Spring 176 is normally biased against motor base plate 164 therefore force sensor 170 normally sees a positive force even when motor 156 is stationary.

As torque is applied to motor 156 the reaction force of this torque will be measured by force sensor 170 thereby being able to measure instantaneously at any point in time the force being generated by motor 156 against force sensor 170.

Rear tire 122 makes contact with roller face 151 thereby imparting rotational forces onto roller 152 which is attached to the common shaft 154 shared with motor 156. Therefore as roller 152 rotates so does the rotor within motor 156.

Motor base plate 164 is sandwiched between the force sensor 170 and the spring 176. Together force sensor 170 and spring 176 prevent the motor 156 from rotating about axis of rotation 190. The pressure on force sensor 173 allows measuring of tangential force between the roller 150 and the bicycle tire 122.

Spring 176 provides the necessary positive force bias and allows the use of a single force sensor to measure tangential force on the roller 152 in both directions without resulting in a negative force on force sensor 170. The force sensor may be a piezo electric, strain gauge, load cell, magneto elastic device or other commonly known force sensors or transducers.

Referring now to FIG. 3 a signal from the force sensor 170 shown as 202 is fed to a computer 204 which then receives and processes inputs from force censor 170 and from user inputs 206 to set the current motor speed via motor control signal 208 to create a motor speed adjustment 210. Taking into account force value from the force sensor 170, current motor speed 156 and input parameters such as current road grade, combined weight of cyclist and the bike and wind speed the system can then calculate instant changes to motor speed 156 according to physical model of cycling in order to simulate instant forces during pedaling as would be experienced by cyclist if he rode in real life under the same input conditions. One can impart resistive or assisting forces to rear tire 122. The system easily takes into account macro factors such as headwinds, tailwinds and up or down hill slopes. More importantly the system is fast enough to simulate changes in pedal force such as changes that occur during the stroke of the pedal.

The system recalculates and applies changes to assistive and resistive forces transmitted to the pedal at a rate of at least 100 times per second which allow real-time simulation of cycling conditions.

User inputs 206 includes a controller which includes real time data or manufactured data and may include custom data sets and/or formulas describing any particular real or imaginary model of cycling allowing for a real-time simulation of cycling conditions.

The user inputs may for example include real road condition data which has been previously collected.

In Use

The user of bicycle trainer 100 is able to use the same bicycle 102 which they use in real life conditions.

The front wheel of bicycle 102 is removed and the front forks 108 of bicycle 102 are connected to a flexible support arm 132 which allows the bicycle to rock freely side to side along rocking arc 131.

The reader will note that the rear tire 122 mounted to the rear wheel 120 is free to move and rock side to side due to the fact that the only contact point is on the roller face 151 of roller 152.

Therefore as the user rides bicycle 102 it is free to rock side to side wherein the degree of freedom of movement is dependent upon the flexibility of flexible support arm 132.

Roller 152 is directly connected via a common shaft 154 to motor 156 which in practice may be an induction motor however alternative designs may include an out runner type of motor where the motors outer shell may serve as a roller, thereby eliminating the need for a separate motor & roller.

The combination of the roller 152, the motor 156 are free to rotate about the axis of rotation 190 due to the fact that the roller 152 and motor 156 are mounted onto bearings 160 which allow the motor to freely rotate about axis rotation 190, with limited pivotal movement due to restriction of force sensor 170.

Further Embodiment Described

A further embodiment of the present concept a bicycle trainer shown generally as 300 includes a connecting arm 306 with a motor assembly 106 attached at one end thereof.

Connecting arm 306 includes a longitudinal portion 308, a support arm 310, and a fork support 312. Fork support 312 is located at a fork end 314 of connecting arm 306 and is dimensioned to adapt to connect to the front fork dropouts 316 of front fork 318 of bicycle 302.

In order to mount bicycle 302 to the stand 304 the front tire of bicycle 302 is removed thereby exposing the front fork dropout 316 which then can be connected to fork support 312 as shown and depicted in FIG. 4.

Connecting arm 306 is connected at tire end 320 to motor assembly 106. Connecting arm 306 includes a collar 322 which attaches support arm 310 to a longitudinal portion 308 in addition to a slot 324 for adjusting the positioning of the collar 322 depending on the size of the bicycle. Support leg 326 supports connecting arm 306 slightly off of the floor or ground when bicycle trainer 300 is placed onto the floor.

Connecting arm 306 is made of preselected flexible material and in particular the longitudinal portion 308 of connecting arm 306 is selected to ensure that there is enough torsional flex 328 as shown by the arrows in FIG. 4 to allow for rocking motion of bicycle 302 along rocking arc 330 as shown in FIG. 4. The rider imparts torsional forces onto the stand 304 thereby causing connecting arm 306 and in particular the horizontal portion 308 to flex torsionally as shown as torsional flex 328 in FIG. 4.

It has been found in practice that the use of 4130 alloy steel for the components of connecting arm 306 having an outside diameter of 1.25 inches and a wall thickness of 0.095 inches is adequate to provide for enough torsional flex 328 within longitudinal portion 308 of connecting arm 306 to provide for a rocking arc 330 of plus or minus 5 degrees for a total rocking arc of 10 degrees.

It has also been found that using aluminium alloy 6061 having a diameter of 50 mm and a wall thickness of 10 mm will also provide adequate torsional flex 328 to provide for a rocking arc 330 plus or minus 10 degrees for heavy riders and more typically plus or minus 5 degrees for lightweight riders.

The typical modern day bicycle depicted in FIG. 4 has a length of anywhere from 34 to 44 inches measured from the centre of the front wheel hub to the centre of the rear wheel hub. A typical bicycle has a centre to centre wheel distance of approximately 39 inches plus or minus 3 inches.

The length of longitudinal portion 308 as well as support arm 310 is dimensioned such that the tread of rear tire 122 makes contact with roller 152 as shown in FIG. 4.

The collar 322 can be moved along longitudinal portion 308 to accommodate various sizes of bicycles and thereby ensure that the rear tire 122 makes contact with the top of roller face 151 of roller 152 as depicted in FIG. 4. Collar 322 is locked in any conventional means onto longitudinal portion 308.

Motor assembly 106 includes motor 156 which is connected to a common shaft 154 to roller 152 having a roller face 151.

The reader will note that rear tire 122 is allowed to move in the lateral direction 140 which will tend to happen during rocking of bicycle 302 along the rocking arc 330.

Typically the roller 152 has a width of approximately 5 to 9 inches and preferably approximately 6 to 7 inches which allows for lateral movement of rear tire 122 along the lateral direction 140 of approximately 2 to 3 inches in reaction to any disturbance and particularly as the bicycle is rocked along rocking arc 330. This provides for simulation of real cycling conditions in which when the rider is standing on the pedals and is pedaling often the bicycle 302 will rock back and forth along rocking arc 330 during the pedaling motion and rear tire 122 will move laterally along the lateral direction 140 as a result.

Motor 156 is rotationally attached to frame 150 at bearings 160 as depicted in FIG. 2.

The rotation of motor 156 is limited to pivoting action due to the restriction created by the motor base plate 164 impinging upon force sensor 170 on the upper side 172 and a spring 176 on the lower side 178 of motor base plate 164.

It should be apparent to persons skilled in the arts that various modifications and adaptations of this structure describe above are possible without departure from the spirit of the invention the scope of which is defined in the appended claim.

Claims

1. A bicycle trainer for use with a bicycle with its front tire removed from the fork dropout, the bicycle trainer comprises:

e) a stand which includes a flexible connecting arm connected to a motor assembly at a tire end of the flexible connecting arm;
f) a fork end of the flexible connecting arm dimensioned to attach to the front fork dropout of a bicycle;
g) the motor assembly includes a roller with a roller face, wherein the rear tire of the bicycle making contact with a roller face of the roller such that the roller is free to rotate in proportion to the rotation of rear tire and further the tire is free to move in a lateral direction across a portion of the face of the roller;
h) a motor is rotationally connected to the roller for selectively applying resistance and assistance to the rear tire rotation, for simulating real course conditions.

2. The bicycle trainer claimed in claim 1 further wherein the flexible connecting arm is dimensioned and selected to allow torsional flex of the flexible connecting arm such that the bicycle will rock back and forth along a rocking arc when the rider imparts torsional forces onto the stand.

3. The bicycle trainer claimed in claim 1 wherein the motor assembly which includes a frame for housing the roller and motor and also for rigidly connecting the motor assembly to the flexible connecting arm, the motor is rotationally mounted about its shaft with limited pivotal movement to the frame, such that the motor and roller rotate in proportional unison with each other.

4. The bicycle trainer claimed in claim 3 wherein the motor assembly further includes a means for measuring force.

5. The bicycle trainer claimed in claim 4 wherein the measuring means includes a force sensor for measuring the tangential force between the roller and the rear tire.

6. The bicycle trailer claimed in claim 4, wherein the motor assembly further includes a base plate to which the motor is rigidly mounted, the base plate is free to pivot with the motor and includes a top side and bottom side.

7. The bicycle trainer claimed in claim 6 wherein the motor assembly includes a force sensor and spring, the force sensor in contact with one side of the base plate, and the spring contacting the other side of the plate such that the force sensor and spring restrict the pivoting deflection of the base plate and thereby measure the tangential force between the roller and rear tire.

8. The bicycle trainer claimed in claim 7 where the force sensor and spring are opposing each other mounted on opposite sides of the base plate, in order to maintain positive bias of force on the force sensor.

9. The bicycle trainer claimed in claim 7 wherein the force sensor is chosen from the group comprising piezo electric, and strain gauge and load cell and magneto elastic transducers.

10. The bicycle trainer claimed in claim 7 further including a controller which includes data sets for simulating real and imaginary road conditions.

11. The bicycle trainer claimed in claim 10 wherein the motor assembly in response to the controllers input imparts resistance and assistance to tire rotation and adjusts the assistance and resistance forces imparted at least 100 times per second.

12. The bicycle trainer claimed in claim 1 wherein the flexible connecting arm includes a longitudinal portion, a support arm and a fork support, wherein the longitudinal portion connected to the motor assembly at a tire end, and connected to the support arm at the other end, and the support arm also connected to a fork support.

13. The bicycle trainer claimed in claim 12 wherein the horizontal portion adapted to flex torsionally in response to torsional force imparted onto the stand.

14. The bicycle trainer claimed in claim 1 wherein the flexible connecting arm selected to allow a rocking arc of 10° each side of centre for a total arc of 20°.

15. The bicycle trainer claimed in claim 1 wherein the flexible connecting arm selected to allow a rocking arc of 5° each side of centre for a total arc of 10°.

16. The bicycle trainer claimed in claim 1 wherein the flexible connecting arm made of an aluminium alloy 6061 having a wall thickness of 10 mm.

Patent History
Publication number: 20160158620
Type: Application
Filed: Dec 30, 2015
Publication Date: Jun 9, 2016
Inventors: Gary Bauer (Niagara Falls), Konstantine Poukhov (Toronto), Nikolay Bakunin (Aurora, CA)
Application Number: 14/983,737
Classifications
International Classification: A63B 69/16 (20060101); A63B 21/005 (20060101); A63B 24/00 (20060101);