IMAGE ANNOTATION IN IMAGE-GUIDED MEDICAL PROCEDURES
Presented herein are methods, systems, devices, and computer-readable media for image annotation in image-guided medical procedures. Some embodiments herein allow physicians or other operators to use one or more medical devices in order to define annotations in 3D space. These annotations may later be displayed to the physician or operator in 3D space in the position in which they were first drawn or otherwise generated. In some embodiments, the operator may use various available medical devices, such as needles, scalpels, or even a finger in order to define the annotation. Embodiments herein may allow an operator to more conveniently and efficiently annotate visualizable medical data.
This application is a continuation of U.S. application Ser. No. 14/047,628, filed Oct. 7, 2013, which is a continuation of U.S. application Ser. No. 13/014,596, filed Jan. 26, 2011, now U.S. Pat. No. 8,554,307, issued Oct. 8, 2013, which claims benefit to U.S. Provisional Patent Application No. 61/322,991 filed Apr. 12, 2010, and U.S. Provisional Patent Application No. 61/387,132, filed Sep. 28, 2010. Each of the provisional applications, 61/322,991 and 61/387,132 is incorporated by reference herein in its entirety for all purposes.
FIELDThe embodiments herein disclosed relate to computer-assisted medical procedures and more specifically to image annotation in image-guided medical procedures.
BACKGROUNDThe past few decades have seen incredible developments of technology and systems for computer-assisted, image-based, and image-guided surgery and other medical procedures. These advances in image-guided surgery are tied in part to technical and scientific improvements in imaging and three-dimensional (3D) computer graphics. For example, some of the early work of in this field in the late 1980's provided new 3D graphics rendering techniques, medical image shape detection, and head-mounted displays. These are some of the building blocks of later image-guided surgery systems developed in the mid-1990's and thereafter. Image-guided surgery makes use of imaging to aid a surgeon in performing more effective and more accurate surgeries.
Current image-guided surgery systems, however, do not provide adequate mechanisms to annotate images. The process of annotation is difficult and extremely time-consuming. Further, it would be difficult, disruptive, and time consuming for a surgeon or other operator to annotate an image during a medical procedure.
One or more of these problems and others are addressed by the systems, methods, devices, computer-readable media, techniques, and embodiments described herein. That is, some of the embodiments described herein may address one or more issues, while other embodiments may address different issues.
SUMMARYPresented herein are methods, systems, devices, and computer-readable media for image annotation in image-guided medical procedures. In some embodiments, pose information is determined for visualizable medical data and changing pose information is determined for a medical device over time. An annotation in 3D space may be generated based on the pose information over time for the medical device and the pose information for the visualizable medical data; and image guidance information may be generated based at least in part on the annotation in 3D space. A graphical rendering of the image guidance information may be displayed on one or more displays.
In some embodiments, a system may determine device type information for a first medical device; real-time emplacement information for the first medical device; and real-time emplacement information for a second medical device. The system may also determine the real-time relative emplacements of the first and second medical devices with the computer system and real-time prediction information for the first medical device. The image guidance system may then generate image guidance information based on the real-time relative emplacements of the first and second medical devices, the real-time prediction information for the first medical device, and data related to the second medical device. A graphical rendering of the image guidance information may be displayed on one or more displays. It is possible that determining changing pose information for the medical device over time include determining the changing pose information for the medical device over time relative to a 2D screen displaying the visualizable medical data; and/or generating the annotation in 3D space based on the pose information over time for the medical device and the pose information for the visualizable medical data may include determining the annotation in 3D space based at least in part on the 2D pose information.
Numerous other embodiments are described throughout herein. Although various embodiments are described herein, it is to be understood that not necessarily all objects, advantages, features or concepts need to be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments will become readily apparent to those skilled in the art from the following detailed description having reference to the attached figures, the invention not being limited to any particular disclosed embodiment(s).
In some embodiments herein, an operator, surgeon or other medical practitioner may annotate images during an image-guided medical procedure. In some embodiments, the operator may use medical devices that are typically present during the medical procedure to annotation the medical images. As depicted in
The image 156 may be associated with a medical device, such as an ultrasound transducer (not pictured in
The annotation 171, although it has been drawn on an image 156, may actually be located in 3D space—defined by the placement of the image 156 and the annotation 171.
Using embodiments described herein, a radiologist or other practitioner is not limited to marking tumors or other anatomical references on individual slices of CT scans. Instead, the radiologist may move in an intuitive manner through the CT scan. Further, various embodiments may decrease the time it takes to annotate an image, and/or to display those annotations, during a medical procedure, thereby reducing cost.
By allowing multiple annotations and by enabling the operator to place annotations in 3D space, various embodiments herein allow the operator to mark multiple objects of interest and view the location of those marks of interest at a later time. The annotations may be displayed using any display technique, such as those described in Image Management in Image-Guided Medical Procedures, to Sharif Razzaque et al., filed concurrently herewith and incorporated by reference above for all purposes.
Images may be annotated using embodiments herein during all a portion of a medical procedure. In one embodiment, the image annotation will only occur during an image annotation “session” (e.g. a period of time during which image annotation is performed, and before and after which, image annotation is not performed). An image annotation “session” may be initiated and/or terminated by the operator performing a key stroke, issuing a command (such as a verbal command), performing a gesture with a medical device or hand, pressing a button on the medical device, pressing a foot pedal, pressing a button on the medical device (e.g., a button on a Wacom pen), etc.
As used herein, the term “medical device” is a broad term that encompasses but is not limited to a device, item, or part used in the medical procedure. For example, a medical device could include an ablation needle, an ultrasound transducer, a cauterizer, a scalpel, a glove covering an operator's hand, the operator's hand or finger, etc. The medical device used for pose information could even be the operator's head, eyes, or gaze direction. Pose information for the medical device may be obtained using any system, device, method, or technique, such as those disclosed herein.
Example SystemsIn one embodiment, position sensing units 210 and 240 may be tracking systems 210 and 240 and may track surgical instruments 245 and 255 and provide data to the image guidance unit 230. The image guidance unit 230 may process or combine the data and show image guidance data on display 220. This image guidance data may be used by a physician to guide a procedure and improve care. There are numerous other possible embodiments of system 200. For example, many of the depicted modules may be joined together to form a single module and may even be implemented in a single computer or machine. Further, position sensing units 210 and 240 may be combined and track all relevant surgical instruments 245 and 255, as discussed in more detail below and exemplified in
Information about and from multiple surgical systems 249 and/or attached surgical instruments 245 may be processed by image guidance unit 230 and shown on display 220. These and other possible embodiments are discussed in more detail below. Imaging unit 250 may be coupled to image guidance unit 230. In one embodiment, imaging unit 250 may be coupled to a second display unit 251. The second display unit 251 may display imaging data from imaging unit 250. The imaging data displayed on display unit 220 and displayed on second display unit 251 may be, but are not necessarily, the same. In an embodiment, the imaging unit 250 is an ultrasound machine 250, the movable imaging device 255 is an ultrasound transducer 255 or ultrasound 255, and the second display unit 251 is a display associated with the ultrasound machine 250 that displays the ultrasound images from the ultrasound machine 250. In one embodiment, a movable imaging unit 255 may not be connected directly to an imaging unit 250, but may instead be connected to image guidance unit 230. The movable imaging unit 255 may be useful for allowing a user to indicate what portions of a first set of imaging data should be displayed. For example, the movable imaging unit 255 may be an ultrasound transducer 255 or a tracked operative needle or other device 255, for example, and may be used by a user to indicate what portions of imaging data, such as a pre-operative CT scan, to show on a display unit 220 as image 225. Further, in some embodiments, there could be a third set of pre-operative imaging data that could be displayed with the first set of imaging data.
In some embodiments, system 200 comprises a first position sensing unit 210, a display unit 220, and second position sensing unit 240 (if it is included) all coupled to image guidance unit 230. In one embodiment, first position sensing unit 210, display unit 220, and image guidance unit 230 are all physically connected to stand 270. Image guidance unit 230 may be used to produce images 225 that are displayed on display unit 220. The images 225 produced on display unit 220 by the image guidance unit 230 may be determined based on ultrasound or other visual images from first surgical instrument 245 and second surgical instrument 255. For example, if first surgical instrument 245 is an ablation needle 245 and second surgical instrument 255 is an ultrasound probe 255, then images 225 produced on display 220 may include the video or images from the ultrasound probe 255 combined with graphics, such as projected needle drive or projected ablation volume, determined based on the pose of ablation needle 245. If first surgical instrument 245 is an ultrasound probe 245 and second surgical instrument 255 is a laparoscopic camera 255, then images 225 produced on display 220 may include the video from the laparoscopic camera 255 combined with ultrasound data superimposed on the laparoscopic image. More surgical instrument may be added to the system. For example, the system may include an ultrasound probe, ablation needle, laparoscopic camera, cauterizer, scalpel and/or any other surgical instrument or medical device. The system may also process and/or display previously collected data, such as preoperative CT scans, X-Rays, MRIs, laser scanned 3D surfaces etc.
The term “pose” as used herein is a broad term encompassing its plain and ordinary meaning and may refer to, without limitation, emplacement, position, orientation, the combination of position and orientation, or any other appropriate location information. In some embodiments, the imaging data obtained from one or both of surgical instruments 245 and 255 may include other modalities such as a CT scan, MRI, open-magnet MRI, optical coherence tomography, positron emission tomography (“PET”) scans, fluoroscopy, ultrasound, or other preoperative, or intraoperative 2D or 3D anatomical imaging data. In some embodiments, surgical instruments 245 and 255 may also be scalpels, implantable hardware, or any other device used in surgery. Any appropriate surgical system 249 or imaging unit 250 may be coupled to the corresponding medical instruments 245 and 255.
As noted above, images 225 produced may also be generated based on live, intraoperative, or real-time data obtained using second surgical instrument 255, which is coupled to second imaging unit 250. The term “real-time” as used herein is a broad term and has its ordinary and customary meaning, including without limitation instantaneously or nearly instantaneously. The use of the term realtime may also mean that actions are performed or data is obtained with the intention to be used immediately, upon the next cycle of a system or control loop, or any other appropriate meaning. Additionally, as used herein, real-time data may be data that is obtained at a frequency that would allow a surgeon to meaningfully interact with the data during surgery. For example, in some embodiments, real-time data may be a medical image of a patient that is updated one time per second or multiple times per second.
Second surgical instrument 255 may be coupled to second position sensing unit 240. Second position sensing unit 240 may be part of imaging unit 250 or it may be separate. Second position sensing unit 240 may be used to determine the pose of second surgical instrument 255. In some embodiments, first and/or second position sensing units 210 and/or 240 may be magnetic trackers and magnetic may be coils coupled to surgical instruments 245 and/or 255. In some embodiments, first and/or second position sensing units 210 and/or 240 may be optical trackers and visually-detectable fiducials may be coupled to surgical instruments 245 and/or 255.
Images 225 may be produced based on intraoperative or real-time data obtained using first surgical instrument 245, which is coupled to first surgical system 249. In
In an embodiment, first position sensing unit 210 tracks the pose of first surgical device 245. First position sensing unit 210 may be an optical tracker 210 and first surgical device 245 may have optical fiducials attached thereto. The pose of optical fiducials may be detected by first position sensing unit 210, and, therefrom, the pose of first surgical device 245 may be determined.
In various embodiments, as depicted in
In some embodiments, either or both of the first position sensing unit 210 and the second position sensing unit 240 may be an Ascension Flock of Birds, Nest of Birds, driveBAY, medSAFE, trakSTAR, miniBIRD, MotionSTAR, pciBIRD, or Calypso 4D Localization System and tracking units attached to the first and/or second surgical or medical devices 245 and 255 may be magnetic tracking coils. The term “tracking unit,” as used herein, is a broad term encompassing its plain and ordinary meaning and includes without limitation all types of magnetic coils or other magnetic field sensing devices for use with magnetic trackers, fiducials or other optically detectable markers for use with optical trackers, such as those discussed above and below. Tracking units could also include optical position sensing devices such as the HiBall tracking system and the first and second position sensing units 210 and 240 may be part of a HiBall tracking systems. Tracking units may also include a GPS device or signal emitting device that would allow for tracking of the position and, optionally, orientation of the tracking unit. In some embodiments, a signal emitting device might include a radio-frequency identifier (RFID). In such embodiments, the first and/or second position sensing unit 210 and 240 may take in the GPS coordinates of the tracking units or may, for example, triangulate the radio frequency signal being emitted by the RFID associated with tracking units. The tracking systems may also include one or more 3D mice.
In some embodiments, either or both of the first position sensing unit 210 and the second position sensing unit 240 may be an Aurora® Electromagnetic Measurement System using sensor coils for tracking units attached to the first and/or second surgical devices 245 and 255. In some embodiments, either or both of the first position sensing unit 210 and the second position sensing unit 240 may also be an optical 3D tracking system using fiducials. Such optical 3D tracking systems may include the NDI Polaris Spectra, Vicra, Certus, PhaseSpace IMPULSE, Vicon MX, InterSense IS-900, NaturalPoint OptiTrack, Polhemus FastTrak, IsoTrak, or Claron MicronTracker2. In some embodiments, either or both of position sensing units 210 and 240 may each be an inertial 3D tracking system comprising a compass, accelerometer, tilt sensor and/or gyro, such as the InterSense InertiaCube or the Wii controller. In some embodiments, either or both of position sensing units 210 and 240 may be attached to or affixed on the corresponding surgical device 245 and 255. In some embodiments, the position sensing units, 210 and 240, may include sensing devices such as the HiBall tracking system, a GPS device, or signal emitting device that would allow for tracking of the position and, optionally, orientation of the tracking unit. In some embodiments, a position sensing unit 210 or 240 may be affixed to either or both of the surgical devices 245 and 255. The surgical devices 245 or 255 may be tracked by the position sensing units 210 or 240. A world reference, such as the display 220 may also be tracked by the position sensing unit 210 or 240 in order to determine the poses of the surgical devices 245 and 255 with respect to the world. Devices 245 and 255 may also include or have coupled thereto one or more accelerometers, which may be used to estimate movement, position, and location of the devices.
In an embodiment, the display unit 220 displays 3D images to a user, such as a physician. Stereoscopic 3D displays separate the imagery shown to each of the user's eyes. This can be accomplished by a stereoscopic display, a lenticular auto-stereoscopic display, or any other appropriate type of display. The display 220 may be an alternating row or alternating column display. Example alternating row displays include the Miracube G240S, as well as Zalman Trimon Monitors. Alternating column displays include devices manufactured by Sharp, as well as many “auto-stereoscopic” displays (e.g., Philips). Display 220 may also be a cathode ray tube. Cathode Ray Tube (CRT) based devices, may use temporal sequencing, showing imagery for the left and right eye in temporal sequential alternation; this method may also be used by newer, projection-based devices, as well as by 120-Hz-switchable liquid crystal display (LCD) devices.
In one embodiment, a user may wear a head mounted display in order to receive 3D images from the image guidance unit 230. In such embodiments, a separate display, such as the pictured display unit 220, may be omitted. The 3D graphics may be produced using underlying data models, stored in the image guidance unit 230 and projected onto one or more 2D planes in order to create left and right eye images for a head mount, lenticular, or other 3D display. The underlying 3D model may be updated based on the relative poses of the various devices 245 and 255, as determined by the position sensing unit(s), and/or based on new data associated with the devices 245 and 255. For example, if the second device is an ultrasound probe 255, then the underlying data model may be updated to reflect the most recent ultrasound image. If the first device 245 is an ablation needle, then the underlying model may be updated to reflect any changes related to the needle, such as power or duration information. Any appropriate 3D graphics processing may be used for rendering including processing based on OpenGL, Direct3D, Java 3D, etc. Whole, partial, or modified 3D graphics packages may also be used, such packages including 3DS Max, SolidWorks, Maya, Form Z, Cybermotion 3D, VTK, Slicer, or any others. In some embodiments, various parts of the needed rendering may occur on traditional or specialized graphics hardware. The rendering may also occur on the general CPU, on programmable hardware, on a separate processor, be distributed over multiple processors, over multiple dedicated graphics cards, or using any other appropriate combination of hardware or technique.
Regardless of the rendering implementation, in various embodiments, the volume can be displayed from several different perspectives:
-
- From that of the physician, using a position sensor on the ultrasound transducer and optionally on the physician as well;
- From that of the camera, x-ray radiation emitter, or imager;
- From that of the ultrasound transducer;
- From that of the needle or ablation device.
One or more modules, units, devices, or elements of various embodiments may be packaged and/or distributed as part of a kit. For example, in one embodiment, an ablation needle, tracking elements, 3D viewing glasses, and/or a portion of an ultrasound wand may form a kit. Other embodiments may have different elements or combinations of elements grouped and/or packaged together. Kits may be sold or distributed separately from or with the other portions of the system.
There are numerous other examples of image guidance systems which may use, incorporate, support, or provide for the techniques, methods, processes, and systems described herein, such as the 3D computer-graphics-based assigned to InnerOptic Technologies, Inc. that provides for displaying guidance data from multiple sources, U.S. application Ser. No. 11/833,134, filed Aug. 2, 2007, the contents of which are incorporated by reference herein in their entirety for all purposes. The image guidance may also be performed at least in part using the techniques described in U.S. patent application Ser. No. 11/828,826, filed Jul. 26, 2007, U.S. Pat. No. 7,728,868, U.S. patent application Ser. No. 12/299,899, U.S. patent application Ser. No. 12/483,099, U.S. patent application Ser. No. 12/893,123, U.S. patent application Ser. No. 12/842,261, and/or U.S. patent application Ser. No. 12/703,118, each of which is incorporated by reference herein in its entirety for all purposes.
Depicting Combinations of GraphicsAs discussed herein, when there are multiple instruments or devices being used in a procedure, images, graphics, and data associated with the multiple instruments may be displayed to the physician. In some embodiments, as depicted in
The data from two or more devices may be combined and displayed based on their relative emplacements or poses. For example, an ultrasound image 804 may be displayed with respect to an ablation needle on a display 820 in a manner that estimates the relative emplacements or poses of an ultrasound wand 855 and ablation needle 845. This is depicted in
Various embodiments include other combinations of graphics. For example, in some embodiments, data related to a single surgical instrument (such as an ablation needle, ultrasound wand, etc.) may be presented in more than one manner on a single display. Consider an embodiment in which device 845 is an ablation needle and device 855 is an ultrasound transducer. If a physician orients ultrasound transducer 855 such that it is perpendicular to the monitor, the 3D view of the ultrasound image would show only the edge and the ultrasound image would not be visible. In some embodiments, the image guidance system could track the physician's head using a position sensor, such as first and/or second position sensing units 210 and/or 240 of
In some embodiments, the image guidance system can constantly display an additional 2D view of the ultrasound image 805 (in screen space), simultaneous to the 3D depiction of the procedure, so that the ultrasound image is always visible, regardless of the orientation in which the physician holds the transducer. This is illustrated in
In some embodiments, the 2D view 805 of an ultrasound image is depicted in the upper right corner of the monitor (though it can be placed in any corner). The guidance system can automatically (and continually) choose a corner in which to render the 2D view of the ultrasound image, based on the 3D position of the surgical instruments in the rendered scene. For example, in
In some embodiments, the system attempts to avoid having the 2D ultrasound image quickly moving among corners of the display in order to avoid overlapping with graphics and data in the display. For example, a function ƒ may be used to determine which corner is most suitable for the 2D ultrasound image to be drawn in. The inputs to ƒ may include the locations, in the screen coordinate system, of the displayed needle tip, the corners of the 3D ultrasound image, etc. In some embodiments, ƒ's output for any given point in time is independent of ƒ's output in the previous frames, which may cause the ultrasound image to move among corners of the display rapidly. In some embodiments, the image guidance system will filter ƒ's output over time. For example, the output of a filter g, for any given frame, could be the corner which has been output by ƒ the most number of times over the last n frames, possibly weighting the most recent values for ƒ most heavily. The output of the filter g may be used to determine in which corner of display 820 to display the 2D ultrasound image and the temporal filtering provided by g may allow the 2D ultrasound image display to move more smoothly among the corners of the display 820.
In some embodiments, other appropriate virtual information can be overlaid on the 2D ultrasound image as well. Examples include: an indication of the distance between the needle's tip and the point in the plane of the ultrasound image that is closest to the needle tip; the cross section or outline of the ablation volume that intersects with the ultrasound slice; and/or the intersection point, box, outline, etc. between the needle's axis and the ultrasound image plane.
Methods for Image Annotation in Image-Guided Medical ProceduresIn block 310, pose information for visualizable medical data is determined. “Visualizable medical data” is a broad term that encompasses its ordinary and customary meaning and includes, without limitation, any two-dimensional (2D) or 3D medical data that can be visualized. The visualizable medical data may also be volumetric and can include, without limitation, one or more of a CT scan, an MRI, other 3D preoperative imaging data, other volume data, segmented internal organs, segmented blood vessels, annotations, tumors, etc. The visualizable medical data may also include 2D medical data such as ultrasounds, X-rays, or segments or slices of 3D medical data.
In some embodiments, the visualizable medical data may be associated with a medical device, such as an ultrasound probe, etc., and the medical device may be tracked in the medical scene. In such embodiments, the pose information for the visualizable medical data may be determined in block 310 from the pose of the associated medical device (that is tracked in the medical scene). For example, if the visualizable medical data is associated with an ultrasound probe and the ultrasound probe is tracked, then the pose of the visualizable medical data can be determined from the pose of the ultrasound probe. This can be the case even if the visualizable medical data is not generated by the medical device. For example, if the medical device is an ultrasound transducer and the visualizable medical data is a slice or image from a CT scan that is being navigated using the ultrasound transducer (see, for example, Image Management in Image-Guided Medical Procedures, to Sharif Razzaque et al., filed concurrently herewith, which is incorporated by reference above for all purposes) then the pose for that slice or image from the CT scan can still be determined based on the pose of the medical device.
When navigating/visualizing CT or other volumetric data with a medical device such as an ultrasound transducer, pose information for the medical device may be updated over time. Pose information for the underlying volumetric visualizable medical data set may also be determined (e.g., relative to the medical scene). The pose information for the underlying volumetric visualizable medical data (e.g., a CT scan or other volumetric data) may be determined separately from the pose information of the medical device used to visualize the medical data. Further, in some embodiments, the pose information for the visualizable medical data may initially be determined in order to register or approximately register the 3D visualizable medical data with the medical scene being visualized for the operator. Various techniques for registering the visualizable medical data with the medical scene may be used, including matching features in 3D space with features in the visualizable medical data known to be in the medical scene, such as tumors, bones, blood vessels, etc. Manual registration may also be possible where an operator or other technician manipulates the pose of the visualizable medical data relative to the scene.
In block 320, changing pose information is determined for a medical device. The medical device for which pose information is determined in block 320 may be different from a medical device used for visualization of data in block 310.
Returning again to block 320, pose information for the medical device may be determined using any system, device, method, or technique such as the tracking systems described herein. For example, if the medical device is an ablation needle, such as ablation needle 245 in
As depicted in
The medical device 645 used to point to an object on a screen may also be a stylus, needle, or any other appropriate medical device 645. Further, in some embodiments, the device used for input may not be a screen 621, but may instead be a drawing tablet, or other input device (in which case image 656 may or may not be displayed on the device).
In some embodiments, a medical device, such as finger 645 in
Returning again to
In block 330, annotations are generated in 3D space based on the pose information received in blocks 310 and 320. That is, the pose for the visualizable medical data (block 310) and the pose for the medical device (block 320) may be used to determine the annotations in 3D space (block 330). Referring again to
After an annotation has been created in 3D space in block 330 then in block 340 image guidance information is generated based on the annotation. Generating image guidance information based on the annotation in block 330 may include generating a 3D model or series of 3D models that represent the medical scene to be displayed to the operator. For example, as depicted in
After image guidance information has been generated based on the annotation in block 340, a graphical rendering of the image guidance information is displayed in block 350. In some embodiments, the display of graphical information can be monoscopic or stereoscopic. Further, multiple rendering techniques may be used. Edges or areas near the edge of a region of interest defined by the annotation, a medical device, or the image, may be displayed in a blurred or fading manner. Objects near objects of interest such as the image, the annotation, or the medical device may be displayed in sharper focus, may be displayed brighter, etc. In one embodiment, if an additional set of 3D visualizable medical data is displayed, a tunnel or cut-through that set of medical data may be made so that an image can be shown. Consider for example,
Turning to
As noted extensively herein, the data shown in the region of interest may be any appropriate visualizable medical data, not limited to ultrasound or CT data. Further, the data displayed outside of the region of interest may be any visualizable medical data, and may even be from the same data set as the data shown in the region of interest. For example, MRI data may be shown in fading planes outside of the region of interest and in focus (and visualizable through a tunnel) inside the region of interest. Further, annotation may be displayed along with the rendering of the visualizable medical data inside and/or outside of the region of interest. In this manner, an operator may see the annotations in the context of the visualizable medical data.
In rendering the annotation, each point of the line segment, spline segment, point cloud, etc. may be made transparent and/or blurry based on its distance from the region of interest, and its rendering may be controlled using various graphic techniques, such as bit maps and pixel shaders, such as those discussed in Image Management in Image-Guided Medical Procedures, to Sharif Razzaque et al., filed concurrently herewith, which is incorporated by reference above for all purposes.
The blocks of process 300 may be performed in a different order, may be augmented by other blocks or may have sub-blocks within the blocks shown. Further, the process 300 may be performed on a single computer or processor, on multiple computers or processors, on a single or multiple virtual machines, and/or in a distributed fashion on multiple processors, devices, machines, or virtual machines.
Example ProcedureConsider an example ablation procedure. Lesions, which are often less than 3 cm in width, are typical targets of ablation. A physician may be able to see the lesions in a CT scan more clearly than she can in an ultrasound image. The physician may mark the lesions with annotations by navigating around the CT scan data using the techniques herein and various techniques in Image Management in Image-Guided Medical Procedures, to Sharif Razzaque et al., filed concurrently herewith, which is incorporated by reference above for all purposes.
That is, the physician may manipulate a medical device, such as an ultrasound transducer, in order to navigate and view CT data preoperatively (or intraoperatively). The physician may be able to see the small lesions in the CT data. The physician can then annotate those lesions, perhaps by circling, creating a sphere around them, and/or drawing an arrow pointing to them, using annotation the techniques herein.
Intraoperatively, the physician may be able to leverage the preoperative lesion annotation. The physician may use intraoperative ultrasound in order to spot the current location of the various lesions, guided at least in part by the annotation made in 3D space relative to the CT scan. By doing this, the physician has utilized both the relative ease of discovery of lesions on the CT scan as well as the intraoperative accuracy of locating the lesions in the ultrasound. This can increase accuracy and reduce operative times and the problems and costs associated therewith.
Although an example of an ablation is given, these techniques may be used with numerous other procedures, such as laparoscopic, endoscopic, arthroscopic, robotic and percutaneous procedures, resections, tissue transplantation, training, diagnostic, as well as drug delivery procedures, etc.
Other EmbodimentsThe processes, computer readable medium, and systems described herein may be performed on various types of hardware, such as computer systems or computing devices. In some embodiments, position sensing units 210 and 240, display unit 220, image guidance unit 230, and/or any other module or unit of embodiments herein may each be separate computing devices, applications, or processes or may run as part of the same computing devices, applications, or processes—or one of more may be combined to run as part of one application or process—and/or each or one or more may be part of or run on a computing device. Computing devices or computer systems may include a bus or other communication mechanism for communicating information, and a processor coupled with the bus for processing information. A computer system or device may have a main memory, such as a random access memory or other dynamic storage device, coupled to the bus. The main memory may be used to store instructions and temporary variables. The computer system or device may also include a read-only memory or other static storage device coupled to the bus for storing static information and instructions. The computer systems or devices may also be coupled to a display, such as a CRT, LCD monitor, LED array, e-paper, projector, or stereoscopic display. Input devices may also be coupled to the computer system or device. These input devices may include a mouse, a trackball, touchscreen, tablet, foot pedal, or cursor direction keys. Computer systems or devices described herein may include the image guidance unit 230, first and second position sensing units 210 and 240, and imaging unit 250.
Each computer system or computing device may be implemented using one or more physical computers, processors, embedded devices, field programmable gate arrays (FPGAs), or computer systems or portions thereof. The instructions executed by the computer system or computing device may also be read in from a computer-readable medium. The computer-readable medium may be non-transitory, such as a CD, DVD, optical or magnetic disk, laserdisc, flash memory, or any other medium that is readable by the computer system or device. In some embodiments, hardwired circuitry may be used in place of or in combination with software instructions executed by the processor. Communication among modules, systems, devices, and elements may be over a direct or switched connections, and wired or wireless networks or connections, via directly connected wires, or any other appropriate communication mechanism. Transmission of information may be performed on the hardware layer using any appropriate system, device, or protocol, including those related to or utilizing Firewire, PCI, PCI express, CardBus, USB, CAN, SCSI, IDA, RS232, RS422, RS485, 802.11, etc. The communication among modules, systems, devices, and elements may include handshaking, notifications, coordination, encapsulation, encryption, headers, such as routing or error detecting headers, or any other appropriate communication protocol or attribute. Communication may also messages related to HTTP, HTTPS, FTP, TCP, IP, ebMS OASIS/ebXML, DICOM, DICOS, secure sockets, VPN, encrypted or unencrypted pipes, MIME, SMTP, MIME Multipart/Related Content-type, SQL, etc.
Any appropriate 3D graphics processing may be used for displaying or rendering, including processing based on OpenGL, Direct3D, Java 3D, etc. Whole, partial, or modified 3D graphics packages may also be used, such packages including 3DS Max, SolidWorks, Maya, Form Z, Cybermotion 3D, VTK, Slicer, Blender or any others. In some embodiments, various parts of the needed rendering may occur on traditional or specialized graphics hardware. The rendering may also occur on the general CPU, on programmable hardware, on a separate processor, be distributed over multiple processors, over multiple dedicated graphics cards, or using any other appropriate combination of hardware or technique.
The features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
Any process descriptions, elements, or blocks in the processes, methods, and flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art.
All of the methods and processes described above may be embodied in, and fully automated via, software code modules executed by one or more general purpose computers or processors, such as those computer systems described above. The code modules may be stored in any type of computer-readable medium or other computer storage device. Some or all of the methods may alternatively be embodied in specialized computer hardware.
It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
Claims
1.-20. (canceled)
21. A method for image annotation in image guided medical procedures, comprising:
- determining, with one or more computing devices, position and/or orientation of a first medical device;
- determining, with the one or more computing devices, position and/or orientation of visualizable medical data based at least in part on the determined position and/or orientation of the first medical device;
- causing one or more displays to display a perspective view of the visualizable medical data within a virtual 3D space based at least in part on the position and/or orientation of the first medical device;
- determining, with the one or more computing devices, position and/or orientation of a second medical device;
- determining an intersection of an axis associated with the second medical device and a plane associated with the visualizable medical data over a time period; and
- causing the one or more displays to display an annotation in the virtual 3D space based at least in part on the determined intersection over the time period.
22. The method of claim 21, further comprising generating virtual ink at the intersection of the axis associated with the second medical device and the plane associated with the visualizable medical data.
23. The method of claim 21, wherein said determining position and/or orientation of the second medical device over the time period, comprises determining the position and/or orientation of the second medical device over the time period relative to the display displaying the perspective view of the visualizable medical data.
24. The method of claim 21, wherein said determining position and/or orientation of the second medical device over the time period, comprises determining the position and/or orientation of the second medical device over the time period relative to the visualizable medical data.
25. The method of claim 21, wherein said determining the position and/or orientation of the second medical device comprises receiving input from a touch screen and said determining the intersection comprises determining the intersection based at least in part on the input from the touch screen.
26. The method of claim 21, wherein said determining the position and/or orientation of the second medical device comprises receiving input from a remote pointer and said determining the intersection comprises determining the intersection based at least in part on the input from the remote pointer.
27. The method of claim 21, wherein said determining the position and/or orientation of the second medical device comprises receiving tracking data from a tracking system that is tracking the second medical device.
28. The method of claim 21, wherein
- the position and/or orientation of the first medical device comprises position and orientation of the first medical device,
- the position and/or orientation of the visualizable medical data comprises position and orientation of the visualizable medical data, and
- the position and/or orientation of the second medical device comprises position and orientation of the second medical device.
29. The method of claim 21, wherein the visualizable medical data comprises an ultrasound image slice.
30. A system for image annotation in image guided medical procedures, comprising one or more computing devices, said one or more computing devices being configured to:
- determine position and/or orientation of a first medical device;
- determine position and/or orientation of visualizable medical data based at least in part on the determined position and/or orientation of the first medical device;
- cause one or more displays to display a perspective view of the visualizable medical data within a virtual 3D space based at least in part on the position and/or orientation of the first medical device;
- determine position and/or orientation of a second medical device;
- determine an intersection of an axis associated with the second medical device and a plane associated and the visualizable medical data over a time period; and
- cause the one or more displays to display an annotation in the virtual 3D space based at least in part on the determined intersection over the time period.
31. The system of claim 30, wherein to determine the position and/or orientation of the second medical device, the one or more computing devices are configured to determine the position and/or orientation of the second medical device relative to the display displaying the perspective view of the visualizable medical data.
32. The system of claim 30, wherein to determine the position and/or orientation of the second medical device the one or more computing devices are configured to determine the position and/or orientation of the second medical device relative to the visualizable medical data.
33. The system of claim 30, wherein
- the position and/or orientation of the first medical device comprises position and orientation of the first medical device,
- the position and/or orientation of the visualizable medical data comprises position and orientation of the visualizable medical data, and
- the position and/or orientation of the second medical device comprises position and orientation of the second medical device.
34. The system of claim 30, wherein the visualizable medical data comprises a medical image slice.
35. The system of claim 34, wherein the visualizable medical data comprises comprises an ultrasound image slice.
36. A non-transient computer-readable medium comprising computer-executable instructions for image annotation in image guided medical procedures, said computer-executable instructions, when executed by one or more computing devices, cause the one or more computing devices to:
- determine position and/or orientation of a first medical device;
- determine position and/or orientation of visualizable medical data based at least in part on the position and/or orientation of the first medical device;
- cause one or more displays to display a perspective view of the visualizable medical data within a virtual 3D space based at least in part on the position and/or orientation of the first medical device;
- determine position and/or orientation of a second medical device;
- determine an intersection of an axis associated with the second medical device and a plane associated and the visualizable medical data over a time period; and
- cause the one or more displays to display an annotation in the virtual 3D space based at least in part on the determined intersection over the time period.
37. The non-transient computer-readable medium of claim 36, wherein the annotation comprises a non-planar annotation in the virtual 3D space based at least in part on the determined intersection over the time period.
38. The non-transient computer-readable medium of claim 36, wherein the annotation comprises a spline based at least in part on the determined intersection over the time period.
39. The non-transient computer-readable medium of claim 36, wherein
- the position and/or orientation of the first medical device comprises position and orientation of the first medical device,
- the position and/or orientation of the visualizable medical data comprises position and orientation of the visualizable medical data, and
- the position and/or orientation of the second medical device comprises position and orientation of the second medical device.
40. The non-transient computer-readable medium of claim 36, wherein the visualizable medical data comprises an ultrasound image slice.
Type: Application
Filed: Aug 11, 2015
Publication Date: Jun 16, 2016
Inventors: Sharif Razzaque (Chapel Hill, NC), Andrei State (Chapel Hill, NC)
Application Number: 14/823,914