Compositions and methods for inhibiting hepcidin antimicrobial peptide (HAMP) or HAMP-related gene expression

The invention relates to lipid formulated double-stranded ribonucleic acid (dsRNA) targeting a hepcidin antimicrobial peptide (HAMP) and/or HAMP-related gene, and methods of using the dsRNA to inhibit expression of HAMP and/or HAMP-related genes.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/118,489, filed Nov. 18, 2013, now allowed, which is a national stage entry of PCT application Serial No. PCT/US2012/043603, filed Jun. 21, 2012, which claims the benefit of U.S. Provisional Application Ser. No. 61/499,516, filed Jun. 21, 2011, and claims the benefit of U.S. Provisional Application Ser. No. 61/569,054, filed Dec. 9, 2011; each of which are incorporated herein by reference, in their entirety, for all purposes.

REFERENCE TO SEQUENCE LISTING

This application includes a Sequence Listing submitted electronically as a text file named 31128_US_CRF_sequencelisting.txt, created on Oct. 23, 2015, with a size of 520,192 bytes. The sequence listing is incorporated by reference.

FIELD

The disclosure relates to double-stranded ribonucleic acid (dsRNA) targeting HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1, and methods of using dsRNA to inhibit expression of HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1.

BACKGROUND

The discovery of the hepcidin peptide and characterization of its gene, HAMP, has led to the revision of previous models for the regulation of iron homeostasis and the realization that the liver plays a key role in determining iron absorption from the gut and iron release from recycling and storage sites. In summary, the hepcidin model proposes that the rate of iron efflux into the plasma depends primarily on the plasma level of hepcidin; when iron levels are high the synthesis of hepcidin increases and the release of iron from enterocytes and macrophages is diminished. Conversely when iron stores drop, the synthesis of hepcidin is down-regulated and these cells release more iron. Hepcidin directly binds to ferroportin and decreases its functional activity by causing it to be internalized from the cell surface and degraded.

Hepcidin provides a unifying hypothesis to explain the behavior of iron in two diverse but common clinical conditions, the anemia of chronic disease and both HFE and non-HFE haemochromatosis. The pathophysiology of hepcidin has been sufficiently elucidated to offer promise of therapeutic intervention in both of these situations. Administering either hepcidin or an agonist could treat haemochromatosis, where the secretion of hepcidin is abnormally low.

The anemia of inflammation, commonly observed in patients with chronic infections, malignancy, trauma, and inflammatory disorders, is a well-known clinical entity. Until recently, little was understood about its pathogenesis. It now appears that the inflammatory cytokine IL-6 induces production of hepcidin, an iron-regulatory hormone that may be responsible for most or all of the features of this disorder. (Andrews N C. J Clin Invest. 2004 May 1; 113(9): 1251-1253). As such, down regulation of hepcidin in anemic patients will lead to a reduction in inflammation associated with such anemia.

Double-stranded RNA molecules (dsRNA) have been shown to block gene expression in a highly conserved regulatory mechanism known as RNA interference (RNAi). WO 99/32619 (Fire et al.) discloses the use of a dsRNA of at least 25 nucleotides in length to inhibit the expression of genes in C. elegans. dsRNA has also been shown to degrade target RNA in other organisms, including plants (see, e.g., WO 99/53050, Waterhouse et al.; and WO 99/61631, Heifetz et al.), Drosophila (see, e.g., Yang, D., et al., Curr. Biol. (2000) 10:1191-1200), and mammals (see WO 00/44895, Limmer; and DE 101 00 586.5, Kreutzer et al.). This natural mechanism has now become the focus for the development of a new class of pharmaceutical agents for treating disorders that are caused by the aberrant or unwanted regulation of a gene.

The following publications disclose dsRNA (siRNA) targeting the HAMP gene and are herein incorporated by reference for all purposes: WO 2008/036933 (International application no. PCT/US2007/079212, filed Sep. 21, 2007); US 2009-0209478 (U.S. patent application Ser. No. 11/859,288, filed Sep. 21, 2007); US 2010-0204307 (U.S. patent application Ser. No. 12/757,497, filed Apr. 9, 2010); US 2011-0269823 (U.S. patent application Ser. No. 13/184,087, filed Jul. 15, 2011).

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the HAMP1 mRNA levels in mouse liver following various dosages of siRNA and the serum iron concentration (μg/dL) following various dosages of siRNA in mice.

FIG. 2 shows the HAMP mRNA levels in liver following siRNA administration as well as the serum iron concentration (μg/dL) and the HAMP serum protein concentration (mg/mL) following siRNA administration to non-human primates.

FIG. 3 shows the HAMP1 and TFR2 mRNA levels in mouse liver following various dosages of siRNA and the percent (%) transferrin saturation following various dosages of siRNA.

FIG. 4 shows the HAMP1 and TFR2 mRNA levels in mouse liver following administration of siRNA and the percent (%) transferrin saturation over a 30 day time course.

FIG. 5 shows the HAMP1 and TFR2 mRNA levels in rat liver following administration of siRNA. FIG. 5 also shows the serum iron and Hb concentrations in rats at various time points.

FIG. 6 shows the level of HAMP mRNA reduction in the liver of each animal following siRNA administration, compared to PBS controls.

FIG. 7 shows the level of TFR2 mRNA reduction in the liver of each animal following siRNA administration, compared to PBS controls.

FIG. 8 shows that serum iron concentration was increased in each animal after 1 mg/kg AD-52590 siRNA administration.

FIG. 9 shows that the HAMP serum protein concentration was decreased in each animal following 1 mg/kg AD-52590 siRNA administration.

FIG. 10A shows combinatorial use of dsRNAs targeting different HAMP-related mRNAs (HFE and TFR2) in vivo and relative mRNA levels for HFE (left bar), TFR2 (middle bar), and HAMP (right bar) for each group.

FIG. 10B shows UIBC (μg/dL) for each group.

FIG. 10C shows the percent transferring saturation for each group.

FIG. 10D shows serum iron concentration (μg/dL) for each group.

SUMMARY

Disclosed herein is a double-stranded ribonucleic acid (dsRNA) for inhibiting expression of hepcidin antimicrobial peptide (HAMP), wherein said dsRNA is selected from the dsRNAs listed in Table 2, 3, 4, or 5 with a start position of 379, 380, 382, or 385. In some aspects, the dsRNA consists of a dsRNA listed in Table 2, 3, 4, or 5 with a start position of 382.

Also described herein is a dsRNA for inhibiting expression of HAMP, wherein said dsRNA comprises a sense strand and an antisense strand, the antisense strand comprising a region of complementarity to a HAMP mRNA transcript, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from one of the antisense strand sequences listed in Table 2, 3, 4, or 5.

In some aspects, the region of complementarity is at least 17 nucleotides in length. In some aspects, the region of complementarity is between 19 and 21 nucleotides in length. In some aspects, the region of complementarity is 19 nucleotides in length. In some aspects, the region of complementarity consists of one of the antisense strand sequences of Table 2, 3, 4, or 5.

In some aspects, the sense strand comprises 15 or more contiguous nucleotides of one of the sense strand sequences of Table 2, 3, 4, or 5. In some aspects, the antisense strand comprises 15 or more contiguous nucleotides of one of the antisense strand sequences of Table 2, 3, 4, or 5. In some aspects, the sense strand comprises 15 or more contiguous nucleotides of one of the sense strand sequences of Table 2, 3, 4, or 5 and the antisense strand comprises 15 or more contiguous nucleotides of one of the antisense strand sequences of Table 2, 3, 4, or 5. In some aspects, the sense strand comprises 16, 17, 18, 19, 20, or more contiguous nucleotides of one of the sense strand sequences of Table 2, 3, 4, or 5 and the antisense strand comprises 16, 17, 18, 19, 20, or more contiguous nucleotides of one of the antisense strand sequences of Table 2, 3, 4, or 5. In some aspects, the sense strand comprises one of the sense strand sequences of Table 2, 3, 4, or 5. In some aspects, the antisense strand comprises one of the antisense strand sequences of Table 2, 3, 4, or 5. In some aspects, the sense strand comprises one of the sense strand sequences of Table 2, 3, 4, or 5 and the antisense strand comprises one of the antisense strand sequences of Table 2, 3, 4, or 5. In some aspects, the sense strand consists of one of the sense strand sequences of Table 2, 3, 4, or 5 and the antisense strand consists of one of the antisense strand sequences of Table 2, 3, 4, or 5. In some aspects, the dsRNA mediates degradation of HAMP mRNA.

In some aspects, said dsRNA further comprises at least one modified nucleotide. In some aspects, at least one of said modified nucleotides is chosen from the group consisting of: a 2′-O-methyl modified nucleotide, a nucleotide comprising a 5′-phosphorothioate group, and a terminal nucleotide linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group. In some aspects, said modified nucleotide is chosen from the group consisting of: a 2′-fluoro modified nucleotide, a 2′-fluoro modified nucleoside, a 2′-deoxy-2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an abasic nucleotide, 2′-amino-modified nucleotide, 2′-alkyl-modified nucleotide, morpholino nucleotide, a phosphoramidate, and a non-natural base comprising nucleotide.

In some aspects, each strand is no more than 30 nucleotides in length. In some aspects, at least one strand comprises a 3′ overhang of at least 1 nucleotide. In some aspects, at least one strand comprises a 3′ overhang of at least 2 nucleotides. In some aspects, each strand comprises a 3′ overhang of 2 nucleotides.

In some aspects, a dsRNA described above further comprises a ligand. In some aspects, the ligand is conjugated to the 3′ end of the sense strand of the dsRNA. In some aspects, the dsRNA further comprises an N-Acetyl-Galactosamine (GalNac) conjugate.

In some aspects, a dsRNA described above is formulated in a nucleic acid lipid particle formulation. In some aspects, the nucleic acid lipid particle formulation is selected from Table A. In some aspects, the nucleic acid lipid particle formulation comprises MC3.

Also described herein is a cell comprising a dsRNA described above.

Also described herein is a vector encoding at least one strand of a dsRNA described above.

Also described herein is a cell comprising a vector described above.

Also described herein is a pharmaceutical composition for inhibiting expression of a HAMP gene comprising a dsRNA described above. In some aspects, the composition further comprises a lipid formulation. In some aspects, the lipid formulation is a nucleic acid lipid particle formulation.

Also described herein is a dsRNA for inhibiting expression of hemojuvelin (HFE2), wherein said dsRNA comprises a sense strand and an antisense strand, the antisense strand comprising a region of complementarity to a HFE2 mRNA transcript, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from one of the antisense strand sequences listed in Table 10A.

In some aspects, the region of complementarity is at least 17 nucleotides in length. In some aspects, the region of complementarity is between 19 and 21 nucleotides in length. In some aspects, the region of complementarity is 19 nucleotides in length. In some aspects, the region of complementarity consists of one of the antisense strand sequences of Table 10A.

In some aspects, the sense strand comprises 15 or more contiguous nucleotides of one of the sense strand sequences of Table 10A. In some aspects, the antisense strand comprises 15 or more contiguous nucleotides of one of the antisense strand sequences of Table 10A. In some aspects, the sense strand comprises 15 or more contiguous nucleotides of one of the sense strand sequences of Table 10A and the antisense strand comprises 15 or more contiguous nucleotides of one of the antisense strand sequences of Table 10A. In some aspects, the sense strand comprises 16, 17, 18, 19, 20, or more contiguous nucleotides of one of the sense strand sequences of Table 10A and the antisense strand comprises 16, 17, 18, 19, 20, or more contiguous nucleotides of one of the antisense strand sequences of Table 10A. In some aspects, the sense strand comprises one of the sense strand sequences of Table 10A. In some aspects, the antisense strand comprises one of the antisense strand sequences of Table 10A. In some aspects, the sense strand comprises one of the sense strand sequences of Table 10A and the antisense strand comprises one of the antisense strand sequences of Table 10A. In some aspects, the sense strand consists of one of the sense strand sequences of Table 10A and the antisense strand consists of one of the antisense strand sequences of Table 10A. In some aspects, the dsRNA mediates degradation of HFE2 mRNA.

In some aspects, said dsRNA further comprises at least one modified nucleotide. In some aspects, at least one of said modified nucleotides is chosen from the group consisting of: a 2′-O-methyl modified nucleotide, a nucleotide comprising a 5′-phosphorothioate group, and a terminal nucleotide linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group. In some aspects, said modified nucleotide is chosen from the group consisting of: a 2′-deoxy-2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an abasic nucleotide, 2′-amino-modified nucleotide, 2′-alkyl-modified nucleotide, morpholino nucleotide, a phosphoramidate, and a non-natural base comprising nucleotide.

In some aspects, each strand is no more than 30 nucleotides in length. In some aspects, at least one strand comprises a 3′ overhang of at least 1 nucleotide. In some aspects, at least one strand comprises a 3′ overhang of at least 2 nucleotides. In some aspects, each strand comprises a 3′ overhang of 2 nucleotides.

In some aspects, a dsRNA described above further comprises a ligand. In some aspects, the ligand is conjugated to the 3′ end of the sense strand of the dsRNA. In some aspects, a dsRNA described above further comprises a GalNac conjugate.

In some aspects, the dsRNA is formulated in a nucleic acid lipid particle formulation. In some aspects, the nucleic acid lipid particle formulation is selected from Table A. In some aspects, the nucleic acid lipid particle formulation comprises MC3.

Also described herein is a cell comprising a dsRNA described above.

Also described herein is a vector encoding at least one strand of a dsRNA described above.

Also described herein is a cell comprising a vector described above.

Also described herein is a pharmaceutical composition for inhibiting expression of a HFE2 gene comprising a dsRNA described above. In some aspects, the composition further comprises a lipid formulation. In some aspects, the lipid formulation is a nucleic acid lipid particle formulation.

Also described herein is a dsRNA for inhibiting expression of transferrin receptor 2 (TFR2), wherein said dsRNA comprises a sense strand and an antisense strand, the antisense strand comprising a region of complementarity to a TFR2 mRNA transcript, wherein the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from one of the antisense strand sequences listed in Table 10B or 13.

In some aspects, the region of complementarity is at least 17 nucleotides in length. In some aspects, the region of complementarity is between 19 and 21 nucleotides in length. In some aspects, the region of complementarity is 19 nucleotides in length. In some aspects, the region of complementarity consists of one of the antisense strand sequences of Table 10B or 13.

In some aspects, the sense strand comprises 15 or more contiguous nucleotides of one of the sense strand sequences of Table 10B or 13. In some aspects, the antisense strand comprises 15 or more contiguous nucleotides of one of the antisense strand sequences of Table 10B or 13. In some aspects, the sense strand comprises 15 or more contiguous nucleotides of one of the sense strand sequences of Table 10B or 13 and the antisense strand comprises 15 or more contiguous nucleotides of one of the antisense strand sequences of Table 10B or 13. In some aspects, the sense strand comprises 16, 17, 18, 19, 20, or more contiguous nucleotides of one of the sense strand sequences of Table 10B or 13 and the antisense strand comprises 16, 17, 18, 19, 20, or more contiguous nucleotides of one of the antisense strand sequences of Table 10B or 13. In some aspects, sense strand comprises one of the sense strand sequences of Table 10B or 13. In some aspects, the antisense strand comprises one of the antisense strand sequences of Table 10B or 13. In some aspects, the sense strand comprises one of the sense strand sequences of Table 10B or 13 and the antisense strand comprises one of the antisense strand sequences of Table 10B or 13. In some aspects, the sense strand consists of one of the sense strand sequences of Table 10B or 13 and the antisense strand consists of one of the antisense strand sequences of Table 10B or 13. In some aspects, the dsRNA mediates degradation of TFR2 mRNA.

In some aspects, said dsRNA further comprises at least one modified nucleotide. In some aspects, at least one of said modified nucleotides is chosen from the group consisting of: a 2′-O-methyl modified nucleotide, a nucleotide comprising a 5′-phosphorothioate group, and a terminal nucleotide linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group. In some aspects, said modified nucleotide is chosen from the group consisting of: a 2′-deoxy-2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an abasic nucleotide, 2′-amino-modified nucleotide, 2′-alkyl-modified nucleotide, morpholino nucleotide, a phosphoramidate, and a non-natural base comprising nucleotide.

In some aspects, each strand is no more than 30 nucleotides in length. In some aspects, at least one strand comprises a 3′ overhang of at least 1 nucleotide. In some aspects, at least one strand comprises a 3′ overhang of at least 2 nucleotides. In some aspects, each strand comprises a 3 overhang of 2 nucleotides.

In some aspects, a dsRNA described above further comprises a ligand. In some aspects, the ligand is conjugated to the 3′ end of the sense strand of the dsRNA. In some aspects, a dsRNA described above further comprises a GalNac conjugate.

In some aspects, the dsRNA is formulated in a nucleic acid lipid particle formulation. In some aspects, the nucleic acid lipid particle formulation is selected from Table A. In some aspects, the nucleic acid lipid particle formulation comprises MC3.

Also described herein is a cell comprising a dsRNA described above.

Also described herein is a vector encoding at least one strand of a dsRNA described above.

Also described herein is a cell comprising a vector described above.

Also described herein is a pharmaceutical composition for inhibiting expression of a TFR2 gene comprising a dsRNA described above. In some aspects, the composition further comprises a lipid formulation. In some aspects, the lipid formulation is a nucleic acid lipid particle formulation.

Also described herein is a composition comprising a first dsRNA for inhibiting expression of a HAMP gene and a second dsRNA for inhibiting expression of an HFE2 gene, wherein the first dsRNA comprises a first sense strand and an first antisense strand, the first antisense strand comprising a region of complementarity to a HAMP mRNA transcript, wherein the first antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from one of the antisense strand sequences listed in Table 2, 3, 4, or 5; and wherein the second dsRNA comprises a second sense strand and a second antisense strand, the second antisense strand comprising a region of complementarity to a HFE2 mRNA transcript, wherein the second antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from one of the antisense strand sequences listed in Table 10A.

Also described herein is a composition comprising a first dsRNA for inhibiting expression of a HAMP gene and a second dsRNA for inhibiting expression of an TFR2 gene, wherein said first dsRNA comprises a first sense strand and a first antisense strand, the first antisense strand comprising a region of complementarity to a HAMP mRNA transcript, wherein the first antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from one of the antisense strand sequences listed in Table 2, 3, 4, or 5; and wherein said second dsRNA comprises a second sense strand and a second antisense strand, the second antisense strand comprising a region of complementarity to a TFR2 mRNA transcript, wherein the second antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from one of the antisense strand sequences listed in Table 10B or 13.

Also described herein is a composition comprising a first dsRNA for inhibiting expression of a TFR2 gene and a second dsRNA for inhibiting expression of a HFE2 gene, wherein said first dsRNA comprises a first sense strand and a first antisense strand, the first antisense strand comprising a region of complementarity to a TFR2 mRNA transcript, wherein the first antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from one of the antisense strand sequences listed in Table 10B or 13; and wherein said second dsRNA comprises a second sense strand and a second antisense strand, the second antisense strand comprising a region of complementarity to a HFE2 mRNA transcript, wherein the second antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from one of the antisense strand sequences listed in Table 10A.

Also described herein is a composition comprising a plurality of dsRNAs selected from the dsRNAs described above.

Also described herein is a method of inhibiting HAMP expression in a cell, the method comprising: (a) introducing into the cell a dsRNA described above; and (b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of a HAMP gene, thereby inhibiting expression of the HAMP gene in the cell. In some aspects, the HAMP expression is inhibited by at least 30%. In some aspects, the HAMP expression is inhibited by at least 80%.

Also described herein is a method of treating a disorder associated with HAMP expression comprising administering to a subject in need of such treatment a therapeutically effective amount of a dsRNA described above.

In some aspects, the subject has anemia. In some aspects, the subject has refractory anemia. In some aspects, the subject has anemia of chronic disease (ACD). In some aspects, the subject has iron-restricted erythropoiesis. In some aspects, the subject is a human.

In some aspects, the dsRNA is administered at a concentration of 0.01 mg/kg-5 mg/kg bodyweight of the subject.

In some aspects, the dsRNA is lipid formulated. In some aspects, the dsRNA is lipid formulated in a formulation selected from Table A. In some aspects, the dsRNA is lipid formulated in a nucleic acid lipid particle formulation. In some aspects, the dsRNA is lipid formulated in a nucleic acid lipid particle formulation and administered intravenously. In some aspects, the dsRNA is conjugated to GalNac. In some aspects, the dsRNA is conjugated to GalNac and administered subcutaneously. In some aspects, the dsRNA is administered subcutaneously.

Also described herein is a method for treating anemia in a subject in need thereof comprising administering to the subject an effective amount of a HAMP dsRNA described above.

In some aspects, the dsRNA is lipid formulated. In some aspects, the dsRNA is lipid formulated in a nucleic acid lipid particle formulation. In some aspects, the dsRNA is lipid formulated in a nucleic acid lipid particle formulation and administered intravenously. In some aspects, the dsRNA is administered intravenously. In some aspects, the dsRNA is lipid formulated in a formulation selected from Table A. In some aspects, the dsRNA is conjugated to GalNac. In some aspects, the dsRNA is conjugated to GalNac and administered subcutaneously. In some aspects, the dsRNA is administered subcutaneously.

In some aspects, the subject is a primate or a rodent. In some aspects, the subject is a human.

In some aspects, the effective amount is a concentration of 0.01-5.0 mg/kg bodyweight of the subject.

In some aspects, the subject has fatigue, shortness of breath, headache, dizziness, or pale skin. In some aspects, the subject has reduced iron levels compared to a subject without anemia. In some aspects, the subject has haemoglobin (Hb) levels <9 g/dL. In some aspects, the subject has chronic kidney disease (CKD), cancer, chronic inflammatory disease, rheumatoid arthritis (RA), or iron-resistant iron-deficient amemia (IRIDA). In some aspects, the subject has reduced renal erythropoietin (EPO) synthesis compared to a subject without CKD, a dietary deficiency, blood loss, or elevated hepcidin levels compared to a subject without CKD. In some aspects, the subject has decreased renal excretion of hepcidin compared to a subject without CKD or low grade inflammation characterized by increased interleukin-6 (IL-6) levels compared to a subject without CKD. In some aspects, the subject has a reticulocyte Hb of <28 pg. In some aspects, the subject has >10% hypochromic red blood cells (RBCs). In some aspects, the method further comprises determining the complete blood count (CBC), serum iron concentration, Transferrin (Tf) saturation, or ferritin levels of the subject.

In some aspects, administering results in an increase in iron levels in the subject. In some aspects, administering results in a 2-fold increase in iron levels in the subject. In some aspects, administering results in an increase in Tf saturation in the subject.

In some aspects, the method further comprises determining the iron level in the subject. In some aspects, the method further comprises administering intravenous iron or ESAs to the subject.

Also described herein is a method of inhibiting HFE2 expression in a cell, the method comprising: (a) introducing into the cell a dsRNA described above; and (b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of a HFE2 gene, thereby inhibiting expression of the HFE2 gene in the cell. In some aspects, the HFE2 expression is inhibited by at least 30%. In some aspects, the HFE2 expression is inhibited by at least 80%.

Also described herein is a method of treating a disorder associated with HFE2 expression comprising administering to a subject in need of such treatment a therapeutically effective amount of a dsRNA described above.

In some aspects, the subject has anemia. In some aspects, the subject has refractory anemia. In some aspects, the subject has anemia of chronic disease (ACD). In some aspects, the subject has iron-restricted erythropoiesis. In some aspects, the subject is a human.

In some aspects, the dsRNA is administered at a concentration of 0.01 mg/kg-5 mg/kg bodyweight of the subject.

In some aspects, the dsRNA is lipid formulated. In some aspects, the dsRNA is lipid formulated in a formulation selected from Table A. In some aspects, the dsRNA is lipid formulated in a nucleic acid lipid particle formulation. In some aspects, the dsRNA is lipid formulated in a nucleic acid lipid particle formulation and administered intravenously. In some aspects, the dsRNA is conjugated to GalNac. In some aspects, the dsRNA is conjugated to GalNac and administered subcutaneously. In some aspects, the dsRNA is administered subcutaneously.

Also described herein is a method for treating anemia in a subject in need thereof comprising administering to the subject an effective amount of a HFE2 dsRNA described above.

In some aspects, the dsRNA is lipid formulated. In some aspects, the dsRNA is lipid formulated in a nucleic acid lipid particle formulation. In some aspects, the dsRNA is lipid formulated in a nucleic acid lipid particle formulation and administered intravenously. In some aspects, the dsRNA is administered intravenously. In some aspects, the dsRNA is lipid formulated in a formulation selected from Table A. In some aspects, the dsRNA is conjugated to GalNac. In some aspects, the dsRNA is conjugated to GalNac and administered subcutaneously. In some aspects, the dsRNA is administered subcutaneously.

In some aspects, the subject is a primate or a rodent. In some aspects, the subject is a human.

In some aspects, the effective amount is a concentration of 0.01-5.0 mg/kg bodyweight of the subject.

In some aspects, the subject has fatigue, shortness of breath, headache, dizziness, or pale skin. In some aspects, the subject has reduced iron levels compared to a subject without anemia. In some aspects, the subject has haemoglobin (Hb) levels <9 g/dL. In some aspects, the subject has chronic kidney disease (CKD), cancer, chronic inflammatory disease, rheumatoid arthritis (RA), or iron-resistant iron-deficient amemia (IRIDA). In some aspects, the subject has reduced renal erythropoietin (EPO) synthesis compared to a subject without CKD, a dietary deficiency, blood loss, or elevated hepcidin levels compared to a subject without CKD. In some aspects, the subject has decreased renal excretion of hepcidin compared to a subject without CKD or low grade inflammation characterized by increased interleukin-6 (IL-6) levels compared to a subject without CKD. In some aspects, the subject has a reticulocyte Hb of <28 pg. In some aspects, the subject has >10% hypochromic red blood cells (RBCs). In some aspects, the method further comprises determining the complete blood count (CBC), serum iron concentration, Transferrin (Tf) saturation, or ferritin levels of the subject.

In some aspects, administering results in an increase in iron levels in the subject. In some aspects, administering results in a 2-fold increase in iron levels in the subject. In some aspects, administering results in an increase in Tf saturation in the subject.

In some aspects, the method further comprises determining the iron level in the subject. In some aspects, the method further comprises administering intravenous iron or ESAs to the subject.

Also described herein is a method of inhibiting TFR2 expression in a cell, the method comprising: (a) introducing into the cell a dsRNA described above; and (b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of a TFR2 gene, thereby inhibiting expression of the TFR2 gene in the cell. In some aspects, the TFR2 expression is inhibited by at least 30%. In some aspects, the TFR2 expression is inhibited by at least 80%.

Also described herein is a method of treating a disorder associated with TFR2 expression comprising administering to a subject in need of such treatment a therapeutically effective amount of a dsRNA described above.

In some aspects, the subject has anemia. In some aspects, the subject has refractory anemia. In some aspects, the subject has anemia of chronic disease (ACD). In some aspects, the subject has iron-restricted erythropoiesis. In some aspects, the subject is a human.

In some aspects, the dsRNA is administered at a concentration of 0.01 mg/kg-5 mg/kg bodyweight of the subject.

In some aspects, the dsRNA is lipid formulated. In some aspects, the dsRNA is lipid formulated in a formulation selected from Table A. In some aspects, the dsRNA is lipid formulated in a nucleic acid lipid particle formulation. In some aspects, the dsRNA is lipid formulated in a nucleic acid lipid particle formulation and administered intravenously. In some aspects, the dsRNA is conjugated to GalNac. In some aspects, the dsRNA is conjugated to GalNac and administered subcutaneously. In some aspects, the dsRNA is administered subcutaneously.

Also described herein is a method for treating anemia in a subject in need thereof comprising administering to the subject an effective amount of a TFR2 dsRNA described above.

In some aspects, the dsRNA is lipid formulated. In some aspects, the dsRNA is lipid formulated in a nucleic acid lipid particle formulation. In some aspects, the dsRNA is lipid formulated in a nucleic acid lipid particle formulation and administered intravenously. In some aspects, the dsRNA is administered intravenously. In some aspects, the dsRNA is lipid formulated in a formulation selected from Table A. In some aspects, the dsRNA is conjugated to GalNac. In some aspects, the dsRNA is conjugated to GalNac and administered subcutaneously. In some aspects, the dsRNA is administered subcutaneously.

In some aspects, the subject is a primate or a rodent. In some aspects, the subject is a human.

In some aspects, the effective amount is a concentration of 0.01-5.0 mg/kg bodyweight of the subject.

In some aspects, the subject has fatigue, shortness of breath, headache, dizziness, or pale skin. In some aspects, the subject has reduced iron levels compared to a subject without anemia. In some aspects, the subject has haemoglobin (Hb) levels <9 g/dL. In some aspects, the subject has chronic kidney disease (CKD), cancer, chronic inflammatory disease, rheumatoid arthritis (RA), or iron-resistant iron-deficient amemia (IRIDA). In some aspects, the subject has reduced renal erythropoietin (EPO) synthesis compared to a subject without CKD, a dietary deficiency, blood loss, or elevated hepcidin levels compared to a subject without CKD. In some aspects, the subject has decreased renal excretion of hepcidin compared to a subject without CKD or low grade inflammation characterized by increased interleukin-6 (IL-6) levels compared to a subject without CKD. In some aspects, the subject has a reticulocyte Hb of <28 pg. In some aspects, the subject has >10% hypochromic red blood cells (RBCs). In some aspects, the method further comprises determining the complete blood count (CBC), serum iron concentration, Transferrin (Tf) saturation, or ferritin levels of the subject.

In some aspects, administering results in an increase in iron levels in the subject. In some aspects, administering results in a 2-fold increase in iron levels in the subject. In some aspects, administering results in an increase in Tf saturation in the subject.

In some aspects, the method further comprises determining the iron level in the subject. In some aspects, the method further comprises administering intravenous iron or ESAs to the subject.

Also described herein is a method of inhibiting HAMP, HFE2, and/or TFR2 expression in a cell, the method comprising: (a) introducing into the cell a plurality of dsRNAs selected from the dsRNAs described above; and (b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of a HAMP, HFE2, and/or TFR2 gene, thereby inhibiting expression of the HAMP, HFE2, and/or TFR2 gene in the cell.

In some aspects, the plurality of dsRNAs are introduced simultaneously. In some aspects, the plurality of dsRNAs are introduced concurrently. In some aspects, the plurality of dsRNAs are introduced individually. In some aspects, the plurality of dsRNAs are introduced together. In some aspects, the expression is inhibited by at least 30%. In some aspects, the expression is inhibited by at least 80%.

Also described herein is a method of treating a disorder associated with HAMP, HFE2, and/or TFR2 expression comprising administering to a subject in need of such treatment a therapeutically effective amount of a plurality of dsRNAs selected from the dsRNAs described above.

In some aspects, the plurality of dsRNAs are administered to the subject simultaneously. In some aspects, the plurality of dsRNAs are administered to the subject concurrently. In some aspects, the plurality of dsRNAs are administered to the subject individually. In some aspects, the plurality of dsRNAs are administered to the subject together.

In some aspects, the subject has anemia. In some aspects, the subject has refractory anemia. In some aspects, the subject has anemia of chronic disease (ACD). In some aspects, the subject has iron-restricted erythropoiesis. In some aspects, the subject is a human. In some aspects, the plurality is administered at a concentration of 0.01 mg/kg-5 mg/kg bodyweight of the subject.

Also described herein is a method for treating anemia in a subject in need thereof comprising administering to the subject an effective amount of a plurality of dsRNAs selected from the dsRNAs described above.

In some aspects, the plurality of dsRNAs are administered to the subject simultaneously. In some aspects, the plurality of dsRNAs are administered to the subject concurrently. In some aspects, the plurality of dsRNAs are administered to the subject individually. In some aspects, the plurality of dsRNAs are administered to the subject together.

In some aspects, the plurality is lipid formulated. In some aspects, the plurality is lipid formulated in a nucleic acid lipid particle formulation. In some aspects, the plurality is lipid formulated in a nucleic acid lipid particle formulation and administered intravenously. In some aspects, the plurality is administered intravenously. In some aspects, the plurality is lipid formulated in a formulation selected from Table A. In some aspects, the plurality is conjugated to GalNac. In some aspects, the plurality is conjugated to GalNac and administered subcutaneously. In some aspects, the plurality is administered subcutaneously.

In some aspects, the subject is a primate or a rodent. In some aspects, the subject is a human.

In some aspects, the effective amount is a concentration of 0.01-5.0 mg/kg bodyweight of the subject.

In some aspects, the subject has fatigue, shortness of breath, headache, dizziness, or pale skin. In some aspects, the subject has reduced iron levels compared to a subject without anemia. In some aspects, the subject has haemoglobin (Hb) levels <9 g/dL. In some aspects, the subject has chronic kidney disease (CKD), cancer, chronic inflammatory disease, rheumatoid arthritis (RA), or iron-resistant iron-deficient amemia (IRIDA). In some aspects, the subject has reduced renal erythropoietin (EPO) synthesis compared to a subject without CKD, a dietary deficiency, blood loss, or elevated hepcidin levels compared to a subject without CKD. In some aspects, the subject has decreased renal excretion of hepcidin compared to a subject without CKD or low grade inflammation characterized by increased interleukin-6 (IL-6) levels compared to a subject without CKD. In some aspects, the subject has a reticulocyte Hb of <28 pg. In some aspects, the subject has >10% hypochromic red blood cells (RBCs). In some aspects, the method further comprises determining the complete blood count (CBC), serum iron concentration, Transferrin (Tf) saturation, or ferritin levels of the subject.

In some aspects, administering results in an increase in iron levels in the subject. In some aspects, administering results in a 2-fold increase in iron levels in the subject. In some aspects, administering results in an increase in Tf saturation in the subject.

In some aspects, the method further comprises determining the iron level in the subject. In some aspects, the method further comprises administering intravenous iron or ESAs to the subject.

DETAILED DESCRIPTION

The details of one or more embodiments are set forth in the description below. Other features, objects, and advantages will be apparent from the description and the drawings, and from the claims.

Provided herein are dsRNAs and methods of using the dsRNAs for inhibiting the expression of HAMP in a cell or a mammal where the dsRNA targets HAMP. Also provided are compositions and methods for treating pathological conditions and diseases in a mammal caused by the expression of HAMP. A HAMP dsRNA directs the sequence-specific degradation of HAMP mRNA.

Also provided herein are dsRNAs and methods of using the dsRNAs for inhibiting the expression of HFE2 in a cell or a mammal where the dsRNA targets HFE2. Also provided are compositions and methods for treating pathological conditions and diseases in a mammal caused by the expression of HFE2. A HFE2 dsRNA directs the sequence-specific degradation of HFE2 mRNA.

Also provided herein are dsRNAs and methods of using the dsRNAs for inhibiting the expression of HFE in a cell or a mammal where the dsRNA targets HFE. Also provided are compositions and methods for treating pathological conditions and diseases in a mammal caused by the expression of HFE. A HFE dsRNA directs the sequence-specific degradation of HFE mRNA.

Also provided herein are dsRNAs and methods of using the dsRNAs for inhibiting the expression of TFR2 in a cell or a mammal where the dsRNA targets TFR2. Also provided are compositions and methods for treating pathological conditions and diseases in a mammal caused by the expression of TFR2. A TFR2 dsRNA directs the sequence-specific degradation of TFR2 mRNA.

Also provided herein are dsRNAs and methods of using the dsRNAs for inhibiting the expression of BMPR1a in a cell or a mammal where the dsRNA targets BMPR1a. Also provided are compositions and methods for treating pathological conditions and diseases in a mammal caused by the expression of BMPR1a. A BMPR1a dsRNA directs the sequence-specific degradation of BMPR1a mRNA.

Also provided herein are dsRNAs and methods of using the dsRNAs for inhibiting the expression of SMAD4 in a cell or a mammal where the dsRNA targets SMAD4. Also provided are compositions and methods for treating pathological conditions and diseases in a mammal caused by the expression of SMAD4. A SMAD4 dsRNA directs the sequence-specific degradation of SMAD4 mRNA.

Also provided herein are dsRNAs and methods of using the dsRNAs for inhibiting the expression of IL6R in a cell or a mammal where the dsRNA targets IL6R. Also provided are compositions and methods for treating pathological conditions and diseases in a mammal caused by the expression of IL6R. An IL6R dsRNA directs the sequence-specific degradation of IL6R mRNA.

Also provided herein are dsRNAs and methods of using the dsRNAs for inhibiting the expression of BMP6 in a cell or a mammal where the dsRNA targets BMP6. Also provided are compositions and methods for treating pathological conditions and diseases in a mammal caused by the expression of BMP6. A BMP6 dsRNA directs the sequence-specific degradation of BMP6 mRNA.

Also provided herein are dsRNAs and methods of using the dsRNAs for inhibiting the expression of NEO1 in a cell or a mammal where the dsRNA targets NEO1. Also provided are compositions and methods for treating pathological conditions and diseases in a mammal caused by the expression of NEO1. A NEO1 dsRNA directs the sequence-specific degradation of NEO1 mRNA.

DEFINITIONS

For convenience, the meaning of certain terms and phrases used in the specification, examples, and appended claims, are provided below. If there is an apparent discrepancy between the usage of a term in other parts of this specification and its definition provided in this section, the definition in this section shall prevail.

“G,” “C,” “A” and “U” each generally stand for a nucleotide that contains guanine, cytosine, adenine, and uracil as a base, respectively. “T” and “dT” are used interchangeably herein and refer to a deoxyribonucleotide wherein the nucleobase is thymine, e.g., deoxyribothymine. However, it will be understood that the term “ribonucleotide” or “nucleotide” or “deoxyribonucleotide” can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety. The skilled person is well aware that guanine, cytosine, adenine, and uracil may be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide comprising inosine as its base may base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine may be replaced in the nucleotide sequences of the invention by a nucleotide containing, for example, inosine. Sequences comprising such replacement moieties are embodiments of the invention.

As used herein, “HAMP” refers to the hepcidin antimicrobial peptide gene, transcript, or protein (also known as LEAP). A human mRNA sequence for HAMP is Genbank accession NM_021175.2, included below as SEQ ID NO:1. Other examples of mammalian HAMP sequences are shown in Table B.

As used herein, “HFE2” refers to hemojuvelin gene, transcript, or protein. Examples of mammalian HFE2 sequences are shown in Table B.

As used herein, “TFR2” refers to transferrin receptor 2 gene, transcript, or protein. Examples of mammalian TFR2 sequences are shown in Table B.

As used herein, “HFE” refers to hemochromatosis gene, transcript, or protein. Examples of mammalian HFE sequences are shown in Table B.

As used herein, “BMPR1a” refers to bone morphogenetic protein receptor, type 1A gene, transcript, or protein. Examples of mammalian BMPR1a sequences are shown in Table B.

As used herein, “SMAD4” refers to SMAD family member 4 gene, transcript, or protein. Examples of mammalian SMAD4 sequences are shown in Table B.

As used herein, “IL6R” refers to interleukin 6 receptor gene, transcript, or protein. Examples of mammalian IL6R sequences are shown in Table B.

As used herein, “BMP6” refers to bone morphogenetic protein 6 gene, transcript, or protein. Examples of mammalian BMP6 sequences are shown in Table B.

As used herein, “NEO1” refers to neogenin homolog 1 gene, transcript, or protein. Examples of mammalian NEO1 sequences are shown in Table B.

As used herein, “HAMP-related” refers to a HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene, transcript, or protein.

As used herein, “target sequence” refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene, including mRNA that is a product of RNA processing of a primary transcription product.

As used herein, the term “strand comprising a sequence” refers to an oligonucleotide comprising a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature.

As used herein, and unless otherwise indicated, the term “complementary,” when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucleotide sequence, as will be understood by the skilled person. Such conditions can, for example, be stringent conditions, where stringent conditions may include: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50° C. or 70° C. for 12-16 hours followed by washing. Other conditions, such as physiologically relevant conditions as may be encountered inside an organism, can apply. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides.

This includes base-pairing of the oligonucleotide or polynucleotide comprising the first nucleotide sequence to the oligonucleotide or polynucleotide comprising the second nucleotide sequence over the entire length of the first and second nucleotide sequence. Such sequences can be referred to as “fully complementary” with respect to each other herein. However, where a first sequence is referred to as complementary with respect to a second sequence herein, the two sequences can be fully complementary, or they may be “substantially complementary,” e.g., they may form one or more, but generally not more than 4, 3 or 2 mismatched base pairs upon hybridization, while retaining the ability to hybridize under the conditions most relevant to their ultimate application. However, where two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs shall not be regarded as mismatches with regard to the determination of complementarity. For example, a dsRNA comprising one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, may yet be referred to as “fully complementary” for the purposes described herein.

“Complementary” sequences, as used herein, may also include, or be formed entirely from, non-Watson-Crick base pairs and/or base pairs formed from non-natural and modified nucleotides, in as far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs includes, but not limited to, G:U Wobble or Hoogstein base pairing.

The terms “complementary,” “fully complementary” and “substantially complementary” herein may be used with respect to the base matching between the sense strand and the antisense strand of a dsRNA, or between the antisense strand of a dsRNA and a target sequence, as will be understood from the context of their use.

As used herein, a polynucleotide that is “substantially complementary to at least part of” a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1) including a 5′ UTR, an open reading frame (ORF), or a 3′ UTR. For example, a polynucleotide is complementary to at least a part of a HAMP mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding HAMP.

The term “double-stranded RNA” or “dsRNA,” as used herein, refers to a complex of ribonucleic acid molecules, having a duplex structure comprising two anti-parallel and substantially complementary, as defined above, nucleic acid strands. In general, the majority of nucleotides of each strand are ribonucleotides, but as described in detail herein, each or both strands can also include at least one non-ribonucleotide, e.g., a deoxyribonucleotide and/or a modified nucleotide. In addition, as used in this specification, “dsRNA” may include chemical modifications to ribonucleotides, including substantial modifications at multiple nucleotides and including all types of modifications disclosed herein or known in the art. Any such modifications, as used in an siRNA type molecule, are encompassed by “dsRNA” for the purposes of this specification and claims.

The two strands forming the duplex structure may be different portions of one larger RNA molecule, or they may be separate RNA molecules. Where the two strands are part of one larger molecule, and therefore are connected by an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure, the connecting RNA chain is referred to as a “hairpin loop.” Where the two strands are connected covalently by means other than an uninterrupted chain of nucleotides between the 3′-end of one strand and the 5′-end of the respective other strand forming the duplex structure, the connecting structure is referred to as a “linker.” The RNA strands may have the same or a different number of nucleotides. The maximum number of base pairs is the number of nucleotides in the shortest strand of the dsRNA minus any overhangs that are present in the duplex. In addition to the duplex structure, a dsRNA may comprise one or more nucleotide overhangs. The term “siRNA” is also used herein to refer to a dsRNA as described above.

As used herein, a “nucleotide overhang” refers to the unpaired nucleotide or nucleotides that protrude from the duplex structure of a dsRNA when a 3′-end of one strand of the dsRNA extends beyond the 5′-end of the other strand, or vice versa. “Blunt” or “blunt end” means that there are no unpaired nucleotides at that end of the dsRNA, i.e., no nucleotide overhang. A “blunt ended” dsRNA is a dsRNA that is double-stranded over its entire length, i.e., no nucleotide overhang at either end of the molecule.

The term “antisense strand” refers to the strand of a dsRNA which includes a region that is complementary, e.g., fully complementary or substantially complementary to a target sequence. As used herein, the term “region of complementarity” refers to the region on the antisense strand that is complementary to a sequence, for example a target sequence, as defined herein. Where the region of complementarity is not fully complementary to the target sequence, the mismatches are most tolerated in the terminal regions and, if present, are generally in a terminal region or regions, e.g., within 6, 5, 4, 3, or 2 nucleotides of the 5′ and/or 3′ terminus.

The term “sense strand,” as used herein, refers to the strand of a dsRNA that includes a region that is complementary, e.g., fully or substantially complementary to a region of the antisense strand.

The term “start position” refers to a nucleotide position on the target mRNA where the 5′ most nucleotide of a dsRNA sense strand aligns with the nucleotide position on the target mRNA. For example, a dsRNA with a start position of 382 on NM_021175.2 (SEQ ID NO:1) would include AD-11459 because position 382 on NM_021175.2 (SEQ ID NO:1) is G and the sense sequence of AD-11459 is 5′-GAAcAuAGGucuuGGAAuAdTsdT-3′ (SEQ ID NO:−30), where G is the 5′ most nucleotide of the sense strand of AD-11459; thus G at position 382 on NM_021175.2 (SEQ ID NO:1) is the start position of AD-11459.

As used herein, the term “nucleic acid lipid particle” includes the term “SNALP” and refers to a vesicle of lipids coating a reduced aqueous interior comprising a nucleic acid such as a dsRNA or a plasmid from which a dsRNA is transcribed. Nucleic acid lipid particles, e.g., SNALP are described, e.g., in U.S. Patent Application Publication Nos. 20060240093, 20070135372, and U.S. Ser. No. 61/045,228 filed on Apr. 15, 2008. These applications are hereby incorporated by reference.

“Introducing into a cell,” when referring to a dsRNA, means facilitating uptake or absorption into the cell, as is understood by those skilled in the art. Absorption or uptake of dsRNA can occur through unaided diffusive or active cellular processes, or by auxiliary agents or devices. The meaning of this term is not limited to cells in vitro; a dsRNA may also be “introduced into a cell,” wherein the cell is part of a living organism. In such instance, introduction into the cell will include the delivery to the organism. For example, for in vivo delivery, dsRNA can be injected into a tissue site or administered systemically. In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection. Further approaches are described herein or known in the art.

The terms “silence,” “inhibit the expression of,” “down-regulate the expression of,” “suppress the expression of” and the like in as far as they refer to a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene, herein refer to the at least partial suppression of the expression of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene, as manifested by a reduction of the amount of mRNA which may be isolated from a first cell or group of cells in which a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene is transcribed and which has or have been treated such that the expression of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has or have not been so treated (control cells). The degree of inhibition is usually expressed in terms of

( mRNA in control cells ) - ( mRNA in treated cells ) ( mRNA in control cells ) · 100 %

Alternatively, the degree of inhibition may be given in terms of a reduction of a parameter that is functionally linked to HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene expression, e.g., the amount of protein encoded by a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene which is secreted by a cell, or the number of cells displaying a certain phenotype, e.g., apoptosis. In principle, HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene silencing may be determined in any cell expressing the target, either constitutively or by genomic engineering, and by any appropriate assay. However, when a reference is needed in order to determine whether a given dsRNA inhibits the expression of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene by a certain degree and therefore is encompassed by the instant invention, the assays provided in the Examples below shall serve as such reference.

For example, in certain instances, expression of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene is suppressed by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% by administration of the double-stranded oligonucleotide featured in the invention. In some embodiments, a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene is suppressed by at least about 60%, 70%, or 80% by administration of the double-stranded oligonucleotide featured in the invention. In some embodiments, a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene is suppressed by at least about 85%, 90%, or 95% by administration of the double-stranded oligonucleotide featured in the invention.

As used herein in the context of HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 expression, the terms “treat,” “treatment,” and the like, refer to relief from or alleviation of pathological processes mediated by HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 expression. In the context of the present invention insofar as it relates to any of the other conditions recited herein below (other than pathological processes mediated by HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 expression), the terms “treat,” “treatment,” and the like mean to relieve or alleviate at least one symptom associated with such condition, or to slow or reverse the progression of such condition.

As used herein, the phrases “effective amount” refers to an amount that provides a benefit in the treatment, prevention, or management of pathological processes mediated by HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 expression or an overt symptom of pathological processes mediated by HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 expression. The specific amount that is effective can be readily determined by an ordinary medical practitioner, and may vary depending on factors known in the art, such as, for example, the type of pathological processes mediated by HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 expression, the patient's history and age, the stage of pathological processes mediated by HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 expression, and the administration of other anti-pathological processes mediated by HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 expression agents.

As used herein, a “pharmaceutical composition” comprises a pharmacologically effective amount of a dsRNA and a pharmaceutically acceptable carrier. As used herein, “pharmacologically effective amount,” or simply “effective amount” refers to that amount of an RNA effective to produce the intended pharmacological, therapeutic or preventive result. For example, if a given clinical treatment is considered effective when there is at least a 25% reduction in a measurable parameter associated with a disease or disorder, a pharmacologically effective amount of a drug for the treatment of that disease or disorder is the amount necessary to effect at least a 25% reduction in that parameter. For example, a pharmacologically effective amount of a dsRNA targeting HAMP can reduce HAMP serum levels by at least 25%.

The term “pharmaceutically acceptable carrier” refers to a carrier for administration of a therapeutic agent. Such carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The term specifically excludes cell culture medium. For drugs administered orally, pharmaceutically acceptable carriers include, but are not limited to pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract.

As used herein, a “transformed cell” is a cell into which a vector has been introduced from which a dsRNA molecule may be expressed.

Double-Stranded Ribonucleic Acid (dsRNA)

As described in more detail herein, the invention provides double-stranded ribonucleic acid (dsRNA) molecules for inhibiting the expression of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene in a cell or mammal, where the dsRNA includes an antisense strand having a region of complementarity which is complementary to at least a part of an mRNA formed in the expression of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene, and where the region of complementarity is less than 30 nucleotides in length, generally 19-24 nucleotides in length, and where said dsRNA, upon contact with a cell expressing said HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene, inhibits the expression of said HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene by at least 30% as assayed by, for example, a PCR or branched DNA (bDNA)-based method, or by a protein-based method, such as by Western blot. Expression of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene can be reduced by at least 30% when measured by an assay as described in the Examples below. For example, expression of a HAMP gene in cell culture, such as in Hep3B cells, can be assayed by measuring HAMP mRNA levels, such as by bDNA or TaqMan assay, or by measuring protein levels, such as by ELISA assay. The dsRNA of the invention can further include one or more single-stranded nucleotide overhangs.

The dsRNA can be synthesized by standard methods known in the art as further discussed below, e.g., by use of an automated DNA synthesizer, such as are commercially available from, for example, Biosearch, Applied Biosystems, Inc. The dsRNA includes two RNA strands that are sufficiently complementary to hybridize to form a duplex structure. One strand of the dsRNA (the antisense strand) includes a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence, derived from the sequence of an mRNA formed during the expression of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene, the other strand (the sense strand) includes a region that is complementary to the antisense strand, such that the two strands hybridize and form a duplex structure when combined under suitable conditions. Generally, the duplex structure is between 15 and 30 or between 25 and 30, or between 18 and 25, or between 19 and 24, or between 19 and 21, or 19, 20, or 21 base pairs in length. In one embodiment the duplex is 19 base pairs in length. In another embodiment the duplex is 21 base pairs in length. When two different dsRNAs are used in combination, the duplex lengths can be identical or can differ. In one embodiment, the antisense strand of the dsRNA is sufficiently complementary to a target mRNA (e.g., a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 mRNA) so as to cause cleavage of the target mRNA.

Each strand of the dsRNA of invention is generally between 15 and 30, or between 18 and 25, or 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length. In other embodiments, each is strand is 25-30 nucleotides in length. Each strand of the duplex can be the same length or of different lengths. When two different siRNAs are used in combination, the lengths of each strand of each siRNA can be identical or can differ.

The dsRNA of the invention can include one or more single-stranded overhang(s) of one or more nucleotides. In one embodiment, at least one end of the dsRNA has a single-stranded nucleotide overhang of 1 to 4, generally 1 or 2 nucleotides. In another embodiment, the antisense strand of the dsRNA has 1-10 nucleotides overhangs each at the 3′ end and the 5′ end over the sense strand. In further embodiments, the sense strand of the dsRNA has 1-10 nucleotides overhangs each at the 3′ end and the 5′ end over the antisense strand. The dsRNA can include a 3′ overhang of 2 nucleotides on both the sense and antisense strands.

A dsRNAs having at least one nucleotide overhang can have unexpectedly superior inhibitory properties than the blunt-ended counterpart. In some embodiments the presence of only one nucleotide overhang strengthens the interference activity of the dsRNA, without affecting its overall stability. A dsRNA having only one overhang has proven particularly stable and effective in vivo, as well as in a variety of cells, cell culture mediums, blood, and serum. Generally, the single-stranded overhang is located at the 3′-terminal end of the antisense strand or, alternatively, at the 3′-terminal end of the sense strand. The dsRNA can also have a blunt end, generally located at the 5′-end of the antisense strand. Such dsRNAs can have improved stability and inhibitory activity, thus allowing administration at low dosages, i.e., less than 5 mg/kg body weight of the recipient per day. Generally, the antisense strand of the dsRNA has a nucleotide overhang at the 3′-end, and the 5′-end is blunt. In another embodiment, one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate.

In one embodiment, a HAMP gene is a human HAMP gene. In specific embodiments, the sense strand of the dsRNA is one of the sense sequences from Tables 2, 3, 4, and 5, and the antisense strand is one of the antisense sequences of Tables 2, 3, 4, and 5. Alternative antisense agents that target elsewhere in the target sequence provided in Tables 2, 3, 4, and 5 can readily be determined using the target sequence and the flanking HAMP sequence.

The skilled person is well aware that dsRNAs having a duplex structure of between 20 and 23, but specifically 21, base pairs have been hailed as particularly effective in inducing RNA interference (Elbashir et al., EMBO 2001, 20:6877-6888). However, others have found that shorter or longer dsRNAs can be effective as well. In the embodiments described above, by virtue of the nature of the oligonucleotide sequences provided in Tables 2, 3, 4, and 5, the dsRNAs featured in the invention can include at least one strand of a length described herein. It can be reasonably expected that shorter dsRNAs having one of the sequences of Tables 2, 3, 4, and 5 minus only a few nucleotides on one or both ends may be similarly effective as compared to the dsRNAs described above. Hence, dsRNAs having a partial sequence of at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides from one of the sequences of Tables 2, 3, 4, and 5, and differing in their ability to inhibit the expression of a HAMP gene in an assay as described herein below by not more than 5, 10, 15, 20, 25, or 30% inhibition from a dsRNA comprising the full sequence, are contemplated by the invention. Further, dsRNAs that cleave within a desired HAMP target sequence can readily be made using the corresponding HAMP antisense sequence and a complementary sense sequence.

In addition, the dsRNAs provided in Tables 2, 3, 4, and 5 identify a site in a HAMP that is susceptible to RNAi based cleavage. As such, the present invention further features dsRNAs that target within the sequence targeted by one of the agents of the present invention. As used herein, a second dsRNA is said to target within the sequence of a first dsRNA if the second dsRNA cleaves the message anywhere within the mRNA that is complementary to the antisense strand of the first dsRNA. Such a second dsRNA will generally consist of at least 15 contiguous nucleotides from one of the sequences provided in Tables 2, 3, 4, and 5 coupled to additional nucleotide sequences taken from the region contiguous to the selected sequence in a HAMP gene.

In one embodiment, a HFE2 gene is a human HFE2 gene. In specific embodiments, the sense strand of the dsRNA is one of the sense sequences from Table 10A, and the antisense strand is one of the antisense sequences of Table 10A. Alternative antisense agents that target elsewhere in the target sequence provided in Table 10A can readily be determined using the target sequence and the flanking HFE2 sequence.

In the embodiments described above, by virtue of the nature of the oligonucleotide sequences provided in Table 10A, the dsRNAs featured in the invention can include at least one strand of a length described herein. It can be reasonably expected that shorter dsRNAs having one of the sequences of Table 10A minus only a few nucleotides on one or both ends may be similarly effective as compared to the dsRNAs described above. Hence, dsRNAs having a partial sequence of at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides from one of the sequences of Table 10A, and differing in their ability to inhibit the expression of a HFE2 gene in an assay as described herein below by not more than 5, 10, 15, 20, 25, or 30% inhibition from a dsRNA comprising the full sequence, are contemplated by the invention. Further, dsRNAs that cleave within a desired HFE2 target sequence can readily be made using the corresponding HFE2 antisense sequence and a complementary sense sequence.

In addition, the dsRNAs provided in Table 10A identify a site in a HFE2 that is susceptible to RNAi based cleavage. As such, the present invention further features dsRNAs that target within the sequence targeted by one of the agents of the present invention. As used herein, a second dsRNA is said to target within the sequence of a first dsRNA if the second dsRNA cleaves the message anywhere within the mRNA that is complementary to the antisense strand of the first dsRNA. Such a second dsRNA will generally consist of at least 15 contiguous nucleotides from one of the sequences provided in Table 10A coupled to additional nucleotide sequences taken from the region contiguous to the selected sequence in a HFE2 gene.

In one embodiment, a TFR2 gene is a human TFR2 gene. In specific embodiments, the sense strand of the dsRNA is one of the sense sequences from Table 10B or 13, and the antisense strand is one of the antisense sequences of Table 10B or 13. Alternative antisense agents that target elsewhere in the target sequence provided in Table 10B or 13 can readily be determined using the target sequence and the flanking TFR2 sequence.

In the embodiments described above, by virtue of the nature of the oligonucleotide sequences provided in Table 10B or 13, the dsRNAs featured in the invention can include at least one strand of a length described herein. It can be reasonably expected that shorter dsRNAs having one of the sequences of Table 10B or 13 minus only a few nucleotides on one or both ends may be similarly effective as compared to the dsRNAs described above. Hence, dsRNAs having a partial sequence of at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides from one of the sequences of Table 10B or 13, and differing in their ability to inhibit the expression of a TFR2 gene in an assay as described herein below by not more than 5, 10, 15, 20, 25, or 30% inhibition from a dsRNA comprising the full sequence, are contemplated by the invention. Further, dsRNAs that cleave within a desired TFR2 target sequence can readily be made using the corresponding TFR2 antisense sequence and a complementary sense sequence.

In addition, the dsRNAs provided in Table 10B or 13 identify a site in a TFR2 that is susceptible to RNAi based cleavage. As such, the present invention further features dsRNAs that target within the sequence targeted by one of the agents of the present invention. As used herein, a second dsRNA is said to target within the sequence of a first dsRNA if the second dsRNA cleaves the message anywhere within the mRNA that is complementary to the antisense strand of the first dsRNA. Such a second dsRNA will generally consist of at least 15 contiguous nucleotides from one of the sequences provided in Table 10B or 13 coupled to additional nucleotide sequences taken from the region contiguous to the selected sequence in a TFR2 gene.

In one embodiment, a SMAD4 gene is a human SMAD4 gene. In specific embodiments, the sense strand of the dsRNA is one of the sense sequences from Table 15 or 16, and the antisense strand is one of the antisense sequences of Table 15 or 16. Alternative antisense agents that target elsewhere in the target sequence provided in Table 15 or 16 can readily be determined using the target sequence and the flanking SMAD4 sequence.

In the embodiments described above, by virtue of the nature of the oligonucleotide sequences provided in Table 15 or 16, the dsRNAs featured in the invention can include at least one strand of a length described herein. It can be reasonably expected that shorter dsRNAs having one of the sequences of Table 15 or 16 minus only a few nucleotides on one or both ends may be similarly effective as compared to the dsRNAs described above. Hence, dsRNAs having a partial sequence of at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides from one of the sequences of Table 15 or 16, and differing in their ability to inhibit the expression of a SMAD4 gene in an assay as described herein below by not more than 5, 10, 15, 20, 25, or 30% inhibition from a dsRNA comprising the full sequence, are contemplated by the invention. Further, dsRNAs that cleave within a desired SMAD4 target sequence can readily be made using the corresponding SMAD4 antisense sequence and a complementary sense sequence.

In addition, the dsRNAs provided in Table 15 or 16 identify a site in a SMAD4 that is susceptible to RNAi based cleavage. As such, the present invention further features dsRNAs that target within the sequence targeted by one of the agents of the present invention. As used herein, a second dsRNA is said to target within the sequence of a first dsRNA if the second dsRNA cleaves the message anywhere within the mRNA that is complementary to the antisense strand of the first dsRNA. Such a second dsRNA will generally consist of at least 15 contiguous nucleotides from one of the sequences provided in Table 15 or 16 coupled to additional nucleotide sequences taken from the region contiguous to the selected sequence in a SMAD4 gene.

In one embodiment, a NEO1 gene is a human NEO1 gene. In specific embodiments, the sense strand of the dsRNA is one of the sense sequences from Table 17 or 18, and the antisense strand is one of the antisense sequences of Table 17 or 18. Alternative antisense agents that target elsewhere in the target sequence provided in Table 17 or 18 can readily be determined using the target sequence and the flanking NEO1 sequence.

In the embodiments described above, by virtue of the nature of the oligonucleotide sequences provided in Table 17 or 18, the dsRNAs featured in the invention can include at least one strand of a length described herein. It can be reasonably expected that shorter dsRNAs having one of the sequences of Table 17 or 18 minus only a few nucleotides on one or both ends may be similarly effective as compared to the dsRNAs described above. Hence, dsRNAs having a partial sequence of at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides from one of the sequences of Table 17 or 18, and differing in their ability to inhibit the expression of a NEO1 gene in an assay as described herein below by not more than 5, 10, 15, 20, 25, or 30% inhibition from a dsRNA comprising the full sequence, are contemplated by the invention. Further, dsRNAs that cleave within a desired NEO1 target sequence can readily be made using the corresponding NEO1 antisense sequence and a complementary sense sequence.

In addition, the dsRNAs provided in Table 17 or 18 identify a site in a NEO1 that is susceptible to RNAi based cleavage. As such, the present invention further features dsRNAs that target within the sequence targeted by one of the agents of the present invention. As used herein, a second dsRNA is said to target within the sequence of a first dsRNA if the second dsRNA cleaves the message anywhere within the mRNA that is complementary to the antisense strand of the first dsRNA. Such a second dsRNA will generally consist of at least 15 contiguous nucleotides from one of the sequences provided in Table 17 or 18 coupled to additional nucleotide sequences taken from the region contiguous to the selected sequence in a NEO1 gene.

In one embodiment, a BMP6 gene is a human BMP6 gene. In specific embodiments, the sense strand of the dsRNA is one of the sense sequences from Table 21, and the antisense strand is one of the antisense sequences of Table 21. Alternative antisense agents that target elsewhere in the target sequence provided in Table 21 can readily be determined using the target sequence and the flanking BMP6 sequence.

In the embodiments described above, by virtue of the nature of the oligonucleotide sequences provided in Table 21, the dsRNAs featured in the invention can include at least one strand of a length described herein. It can be reasonably expected that shorter dsRNAs having one of the sequences of Table 21 minus only a few nucleotides on one or both ends may be similarly effective as compared to the dsRNAs described above. Hence, dsRNAs having a partial sequence of at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides from one of the sequences of Table 21, and differing in their ability to inhibit the expression of a BMP6 gene in an assay as described herein below by not more than 5, 10, 15, 20, 25, or 30% inhibition from a dsRNA comprising the full sequence, are contemplated by the invention. Further, dsRNAs that cleave within a desired BMP6 target sequence can readily be made using the corresponding BMP6 antisense sequence and a complementary sense sequence.

In addition, the dsRNAs provided in Table 21 identify a site in a BMP6 that is susceptible to RNAi based cleavage. As such, the present invention further features dsRNAs that target within the sequence targeted by one of the agents of the present invention. As used herein, a second dsRNA is said to target within the sequence of a first dsRNA if the second dsRNA cleaves the message anywhere within the mRNA that is complementary to the antisense strand of the first dsRNA. Such a second dsRNA will generally consist of at least 15 contiguous nucleotides from one of the sequences provided in Table 21 coupled to additional nucleotide sequences taken from the region contiguous to the selected sequence in a BMP6 gene.

With regard to Tables 4, 10A, 10B, 13, 16, 18, and 21: It should be noted that unmodified versions of each of the modified sequences shown are included within the scope of the invention. “Unmodified version” refers to a sequence that does not include one or more chemical modifications, e.g., a 2′-O methyl group, a phosphorothioate, and/or a 2′-fluoro group. For example, included in the invention are unmodified versions of AD-47391, which targets HFE2. See Table 10A. Unmodified sense strand versions of AD-47391 include: AGAGUAGGGAAUCAUGGCUdTdT (SEQ ID NO: 31) and AGAGUAGGGAAUCAUGGCU (SEQ ID NO: 32). Unmodified antisense strand versions of AD-47391 include: AGCCAUGAUUCCCUACUCUdTdT (SEQ ID NO: 33) and AGCCAUGAUUCCCUACUCU (SEQ ID NO: 34). As another example, included in the invention are unmodified versions of AD-47826, which targets TFR2. See Table 10B. Unmodified sense strand versions of AD-47826 include: CAGGCAGCCAAACCUCAUUdTdT (SEQ ID NO: 35) and CAGGCAGCCAAACCUCAUU (SEQ ID NO: 36). Unmodified antisense strand versions of AD-47826 include: AAUGAGGUUUGGCUGCCUG (SEQ ID NO: 37) and AAUGAGGUUUGGCUGCCUGdTdT (SEQ ID NO: 38).

Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art. The cleavage site on the target mRNA of a dsRNA can be determined using methods generally known to one of ordinary skill in the art, e.g., the 5′-RACE method described in Soutschek et al., Nature; 2004, Vol. 432, pp. 173-178 (which is herein incorporated by reference for all purposes). Included in the invention are dsRNA that cleave the RNA target at the same location as the dsRNA described in the tables herein.

The dsRNA featured in the invention can contain one or more mismatches to the target sequence. In one embodiment, the dsRNA featured in the invention contains no more than 3 mismatches. If the antisense strand of the dsRNA contains mismatches to a target sequence, it is preferable that the area of mismatch not be located in the center of the region of complementarity. If the antisense strand of the dsRNA contains mismatches to the target sequence, it is preferable that the mismatch be restricted to 5 nucleotides from either end, for example 5, 4, 3, 2, or 1 nucleotide from either the 5′ or 3′ end of the region of complementarity. For example, for a 23 nucleotide dsRNA strand which is complementary to a region of a HAMP gene, the dsRNA generally does not contain any mismatch within the central 13 nucleotides. The methods described within the invention can be used to determine whether a dsRNA containing a mismatch to a target sequence is effective in inhibiting the expression of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene. Consideration of the efficacy of dsRNAs with mismatches in inhibiting expression of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene is important, especially if the particular region of complementarity in a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene is known to have polymorphic sequence variation within the population.

Modifications

In yet another embodiment, the dsRNA is chemically modified to enhance stability. The nucleic acids featured in the invention may be synthesized and/or modified by methods well established in the art, such as those described in “Current protocols in nucleic acid chemistry,” Beaucage, S. L. et al. (Eds.), John Wiley & Sons, Inc., New York, N.Y., USA, which is hereby incorporated herein by reference. Specific examples of dsRNA compounds useful in this invention include dsRNAs containing modified backbones or no natural internucleoside linkages. As defined in this specification, dsRNAs having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified dsRNAs that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

Modified dsRNA backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those) having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′. Various salts, mixed salts and free acid forms are also included.

Representative U.S. patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,195; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,316; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050, each of which is herein incorporated by reference

Modified dsRNA backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatoms and alkyl or cycloalkyl internucleoside linkages, or ore or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts. In some instances, dsRNAs can be made with “Light Fluoro” chemical modifications as follows: all pyrimidines (cytosine and uridine) in the sense strand can be replaced with corresponding 2′-Fluoro bases (2′ Fluoro C and 2′-Fluoro U). In the antisense strand, pyrimidines adjacent to (towards 5′ position) ribo A nucleoside can be replaced with their corresponding 2-Fluoro nucleosides.

Representative U.S. patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,64,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and, 5,677,439, each of which is herein incorporated by reference.

In other suitable dsRNA mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, a dsRNA mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar backbone of a dsRNA is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative U.S. patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.

Other embodiments of the invention are dsRNAs with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular —CH2—NH—CH2—, —CH2—N(CH3)—O—CH2— [known as a methylene (methylimino) or MMI backbone], —CH2—O—N(CH3)—CH2—, —CH2—N(CH3)—N(CH3)—CH2— and —N(CH3)—CH2—CH2— [wherein the native phosphodiester backbone is represented as —O—P—O—CH2—] of the above-referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above-referenced U.S. Pat. No. 5,602,240. Also preferred are dsRNAs having morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.

Modified dsRNAs may also contain one or more substituted sugar moieties. Preferred dsRNAs comprise one of the following at the 2′ position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Particularly preferred are O[(CH2)nO]mCH3, O(CH2)nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3)]2, where n and m are from 1 to about 10. Other preferred dsRNAs comprise one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an dsRNA, or a group for improving the pharmacodynamic properties of an dsRNA, and other substituents having similar properties. A preferred modification includes 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxy-alkoxy group. A further preferred modification includes 2′-dimethylaminooxyethoxy, i.e., a O(CH2)2ON(CH3)2 group, also known as 2′-DMAOE, as described in examples herein below, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethylaminoethoxyethyl or 2′-DMAEOE), i.e., 2′-O—CH2—O—CH2—N(CH2)2, also described in examples herein below.

Other preferred modifications include 2′-methoxy (2′-OCH3), 2′-aminopropoxy (2′-OCH2CH2CH2NH2) and 2′-fluoro (2′-F). Similar modifications may also be made at other positions on the dsRNA, particularly the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked dsRNAs and the 5′ position of 5′ terminal nucleotide. DsRNAs may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative U.S. patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

dsRNAs may also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl anal other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-daazaadenine and 3-deazaguanine and 3-deazaadenine. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. L, ed. John Wiley & Sons, 1990, these disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y S., Chapter 15, DsRNA Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., Ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds featured in the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., Eds., DsRNA Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are exemplary base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.

Representative U.S. patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,30; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; and 5,681,941, each of which is herein incorporated by reference, and U.S. Pat. No. 5,750,692, also herein incorporated by reference.

Conjugates

Another modification of the dsRNAs of the invention involves chemically linking to the dsRNA one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the dsRNA. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acid. Sci. USA, 1989, 86: 6553-6556), cholic acid (Manoharan et al., Biorg. Med. Chem. Let., 1994, 4:1053-1060), a thioether, e.g., beryl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306-309; Manoharan et al., Biorg. Med. Chem. Let., 1993, 3:2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J, 1991, 10:1111-1118; Kabanov et al., FEBS Lett., 1990, 259:327-330; Svinarchuk et al., Biochimie, 1993, 75:49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-rac-glycero-3-Hphosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654; Shea et al., Nucl. Acids Res., 1990, 18:3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229-237), or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923-937).

In some embodiments of the compositions and methods of the invention, an dsRNA oligonucleotide further comprises a carbohydrate. The carbohydrate conjugated dsRNA are advantageous for the in vivo delivery of nucleic acids, as well as compositions suitable for in vivo therapeutic use, as described herein. As used herein, “carbohydrate” refers to a compound which is either a carbohydrate per se made up of one or more monosaccharide units having at least 6 carbon atoms (which can be linear, branched or cyclic) with an oxygen, nitrogen or sulfur atom bonded to each carbon atom; or a compound having as a part thereof a carbohydrate moiety made up of one or more monosaccharide units each having at least six carbon atoms (which can be linear, branched or cyclic), with an oxygen, nitrogen or sulfur atom bonded to each carbon atom. Representative carbohydrates include the sugars (mono-, di-, tri- and oligosaccharides containing from about 4, 5, 6, 7, 8, or 9 monosaccharide units), and polysaccharides such as starches, glycogen, cellulose and polysaccharide gums. Specific monosaccharides include C5 and above (e.g., C5, C6, C7, or C8) sugars; di- and trisaccharides include sugars having two or three monosaccharide units (e.g., C5, C6, C7, or C8).

In one embodiment, a carbohydrate conjugate for use in the compositions and methods of the invention is a monosaccharide. In one embodiment, the monosaccharide is an N-acetylgalactosamine, such as

In another embodiment, a carbohydrate conjugate for use in the compositions and methods of the invention is selected from the group consisting of:

Another representative carbohydrate conjugate for use in the embodiments described herein includes, but is not limited to,

when one of X or Y is an oligonucleotide, the other is a hydrogen.

In some embodiments, the carbohydrate conjugate further comprises one or more additional ligands as described above, such as, but not limited to, a PK modulator and/or a cell permeation peptide.

In some embodiments, the conjugate or ligand described herein can be attached to an dsRNA oligonucleotide with various linkers that can be cleavable or non cleavable.

The term “linker” or “linking group” means an organic moiety that connects two parts of a compound, e.g., covalently attaches two parts of a compound. Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NR8, C(O), C(O)NH, SO, SO2, SO2NH or a chain of atoms, such as, but not limited to, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenylarylalkyl, alkenylarylalkenyl, alkenylarylalkynyl, alkynylarylalkyl, alkynylarylalkenyl, alkynylarylalkynyl, alkylheteroarylalkyl, alkylheteroarylalkenyl, alkylheteroarylalkynyl, alkenylheteroarylalkyl, alkenylheteroarylalkenyl, alkenylheteroarylalkynyl, alkynylheteroarylalkyl, alkynylheteroarylalkenyl, alkynylheteroarylalkynyl, alkylheterocyclylalkyl, alkylheterocyclylalkenyl, alkylhererocyclylalkynyl, alkenylheterocyclylalkyl, alkenylheterocyclylalkenyl, alkenylheterocyclylalkynyl, alkynylheterocyclylalkyl, alkynylheterocyclylalkenyl, alkynylheterocyclylalkynyl, alkylaryl, alkenylaryl, alkynylaryl, alkylheteroaryl, alkenylheteroaryl, alkynylhereroaryl, which one or more methylenes can be interrupted or terminated by O, S, S(O), SO2, N(R8), C(O), substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclic; where R8 is hydrogen, acyl, aliphatic or substituted aliphatic. In one embodiment, the linker is between about 1-24 atoms, 2-24, 3-24, 4-24, 5-24, 6-24, 6-18, 7-18, 8-18 atoms, 7-17, 8-17, 6-16, 7-17, or 8-16 atoms.

A cleavable linking group is one which is sufficiently stable outside the cell, but which upon entry into a target cell is cleaved to release the two parts the linker is holding together. In a preferred embodiment, the cleavable linking group is cleaved at least about 10 times, 20, times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times or more, or at least about 100 times faster in a target cell or under a first reference condition (which can, e.g., be selected to mimic or represent intracellular conditions) than in the blood of a subject, or under a second reference condition (which can, e.g., be selected to mimic or represent conditions found in the blood or serum).

Cleavable linking groups are susceptible to cleavage agents, e.g., pH, redox potential or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linking group by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linking group by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.

A cleavable linkage group, such as a disulfide bond can be susceptible to pH. The pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3. Endosomes have a more acidic pH, in the range of 5.5-6.0, and lysosomes have an even more acidic pH at around 5.0. Some linkers will have a cleavable linking group that is cleaved at a preferred pH, thereby releasing a cationic lipid from the ligand inside the cell, or into the desired compartment of the cell.

A linker can include a cleavable linking group that is cleavable by a particular enzyme. The type of cleavable linking group incorporated into a linker can depend on the cell to be targeted. For example, a liver-targeting ligand can be linked to a cationic lipid through a linker that includes an ester group. Liver cells are rich in esterases, and therefore the linker will be cleaved more efficiently in liver cells than in cell types that are not esterase-rich. Other cell-types rich in esterases include cells of the lung, renal cortex, and testis.

Linkers that contain peptide bonds can be used when targeting cell types rich in peptidases, such as liver cells and synoviocytes.

In general, the suitability of a candidate cleavable linking group can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linking group. It will also be desirable to also test the candidate cleavable linking group for the ability to resist cleavage in the blood or when in contact with other non-target tissue. Thus, one can determine the relative susceptibility to cleavage between a first and a second condition, where the first is selected to be indicative of cleavage in a target cell and the second is selected to be indicative of cleavage in other tissues or biological fluids, e.g., blood or serum. The evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. It can be useful to make initial evaluations in cell-free or culture conditions and to confirm by further evaluations in whole animals. In preferred embodiments, useful candidate compounds are cleaved at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).

In one embodiment, a cleavable linking group is a redox cleavable linking group that is cleaved upon reduction or oxidation. An example of reductively cleavable linking group is a disulphide linking group (—S—S—). To determine if a candidate cleavable linking group is a suitable “reductively cleavable linking group,” or for example is suitable for use with a particular dsRNA moiety and particular targeting agent one can look to methods described herein. For example, a candidate can be evaluated by incubation with dithiothreitol (DTT), or other reducing agent using reagents know in the art, which mimic the rate of cleavage which would be observed in a cell, e.g., a target cell. The candidates can also be evaluated under conditions which are selected to mimic blood or serum conditions. In one, candidate compounds are cleaved by at most about 10% in the blood. In other embodiments, useful candidate compounds are degraded at least about 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, or about 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions). The rate of cleavage of candidate compounds can be determined using standard enzyme kinetics assays under conditions chosen to mimic intracellular media and compared to conditions chosen to mimic extracellular media.

In another embodiment, a cleavable linker comprises a phosphate-based cleavable linking group. A phosphate-based cleavable linking group is cleaved by agents that degrade or hydrolyze the phosphate group. An example of an agent that cleaves phosphate groups in cells are enzymes such as phosphatases in cells. Examples of phosphate-based linking groups are —O—P(O)(ORk)-O—, —O—P(S)(ORk)-O—, —O—P(S)(SRk)-O—, —S—P(O)(ORk)-O—, —O—P(O)(ORk)-S—, —S—P(O)(ORk)-S—, —O—P(S)(ORk)-S—, —S—P(S)(ORk)-O—, —O—P(O)(Rk)-O—, —O—P(S)(Rk)-O—, —S—P(O)(Rk)-O—, —S—P(S)(Rk)-O—, —S—P(O)(Rk)-S—, —O—P(S)(Rk)-S—. Preferred embodiments are —O—P(O)(OH)—O—, —O—P(S)(OH)—O—, —O—P(S)(SH)—O—, —S—P(O)(OH)—O—, —O—P(O)(OH)—S—, —S—P(O)(OH)—S—, —O—P(S)(OH)—S—, —S—P(S)(OH)—O—, —O—P(O)(H)—O—, —O—P(S)(H)—O—, —S—P(O)(H)—O—, —S—P(S)(H)—O—, —S—P(O)(H)—S—, —O—P(S)(H)—S—. A preferred embodiment is —O—P(O)(OH)—O—. These candidates can be evaluated using methods analogous to those described above.

In another embodiment, a cleavable linker comprises an acid cleavable linking group. An acid cleavable linking group is a linking group that is cleaved under acidic conditions. In preferred embodiments acid cleavable linking groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.75, 5.5, 5.25, 5.0, or lower), or by agents such as enzymes that can act as a general acid. In a cell, specific low pH organelles, such as endosomes and lysosomes can provide a cleaving environment for acid cleavable linking groups. Examples of acid cleavable linking groups include but are not limited to hydrazones, esters, and esters of amino acids. Acid cleavable groups can have the general formula —C═NN—, C(O)O, or —OC(O). A preferred embodiment is when the carbon attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiary alkyl group such as dimethyl pentyl or t-butyl. These candidates can be evaluated using methods analogous to those described above.

In another embodiment, a cleavable linker comprises an ester-based cleavable linking group. An ester-based cleavable linking group is cleaved by enzymes such as esterases and amidases in cells. Examples of ester-based cleavable linking groups include but are not limited to esters of alkylene, alkenylene and alkynylene groups. Ester cleavable linking groups have the general formula —C(O)O—, or —OC(O)—. These candidates can be evaluated using methods analogous to those described above.

In yet another embodiment, a cleavable linker comprises a peptide-based cleavable linking group. A peptide-based cleavable linking group is cleaved by enzymes such as peptidases and proteases in cells. Peptide-based cleavable linking groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides etc.) and polypeptides. Peptide-based cleavable groups do not include the amide group (—C(O)NH—). The amide group can be formed between any alkylene, alkenylene or alkynelene. A peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins. The peptide based cleavage group is generally limited to the peptide bond (i.e., the amide bond) formed between amino acids yielding peptides and proteins and does not include the entire amide functional group. Peptide-based cleavable linking groups have the general formula —NHCHRAC(O)NHCHRBC(O)—, where RA and RB are the R groups of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above.

In one embodiment, an dsRNA of the invention is conjugated to a carbohydrate through a linker. Non-limiting examples of dsRNA carbohydrate conjugates with linkers of the compositions and methods of the invention include, but are not limited to,

when one of X or Y is an oligonucleotide, the other is a hydrogen.

In certain embodiments of the compositions and methods of the invention, a ligand is one or more GalNAc (N-acetylgalactosamine) derivatives attached through a bivalent or trivalent branched linker.

In one embodiment, a dsRNA of the invention is conjugated to a bivalent or trivalent branched linker selected from the group of structures shown in any of formula (XXXI)-(XXXIV):

wherein:

q2A, q2B, q3A, q3B, q4A, q4B, q5A, q5B and q5C represent independently for each occurrence 0-20 and wherein the repeating unit can be the same or different;

P2A, P2B, P3A, P3B, P4A, P4B, P5A, P5B, P5C, T2A, T2B, T3A, T3B, T4A, T4B, T4A, T5B, T5C are each independently for each occurrence absent, CO, NH, O, S, OC(O), NHC(O), CH2, CH2NH or CH2O;

Q2A, Q2B, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, Q5C are independently for each occurrence absent, alkylene, substituted alkylene wherein one or more methylenes can be interrupted or terminated by one or more of O, S, S(O), SO2, N(RN), C(R′)═C(R″), C≡C or C(O);

R2A, R2B, R3A, R3B, R4A, R4B, R5A, R5B, R5C are each independently for each occurrence absent, NH, O, S, CH2, C(O)O, C(O)NH, NHCH(Ra)C(O), —C(O)—CH(Ra)—NH—, CO, CH═N—O,

or heterocyclyl;

L2A, L2B, L3A, L3B, L4A, L4B, L5A, L5B, L5C represent the ligand; i.e. each independently for each occurrence a monosaccharide (such as GalNAc), disaccharide, trisaccharide, tetrasaccharide, oligosaccharide, or polysaccharide; and Ra is H or amino acid side chain. Trivalent conjugating GalNAc derivatives are particularly useful for use with RNAi agents for inhibiting the expression of a target gene, such as those of formula (XXXV):

wherein L5A, L5B and L5C represent a monosaccharide, such as GalNAc derivative.

Examples of suitable bivalent and trivalent branched linker groups conjugating GalNAc derivatives include, but are not limited to, the structures recited above as formulas II_VII, XI, X, and XIII.

Representative U.S. patents that teach the preparation of RNA conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941; 6,294,664; 6,320,017; 6,576,752; 6,783,931; 6,900,297; 7,037,646; 8,106,022, the entire contents of each of which are hereby incorporated herein by reference.

It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within a dsRNA. The present invention also includes dsRNA compounds which are chimeric compounds. “Chimeric” dsRNA compounds or “chimeras,” in the context of this invention, are dsRNA compounds, particularly dsRNAs, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of a dsRNA compound. These dsRNAs typically contain at least one region wherein the dsRNA is modified so as to confer upon the dsRNA increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the dsRNA may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of dsRNA inhibition of gene expression. Consequently, comparable results can often be obtained with shorter dsRNAs when chimeric dsRNAs are used, compared to phosphorothioate deoxydsRNAs hybridizing to the same target region.

In certain instances, the dsRNA may be modified by a non-ligand group. A number of non-ligand molecules have been conjugated to dsRNAs in order to enhance the activity, cellular distribution or cellular uptake of the dsRNA, and procedures for performing such conjugations are available in the scientific literature. Such non-ligand moieties have included lipid moieties, such as cholesterol (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86:6553), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4:1053), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3:2765), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10:111; Kabanov et al., FEBS Lett., 1990, 259:327; Svinarchuk et al., Biochimie, 1993, 75:49), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651; Shea et al., Nucl. Acids Res., 1990, 18:3777), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923). Representative United States patents that teach the preparation of such dsRNA conjugates have been listed above. Typical conjugation protocols involve the synthesis of dsRNAs bearing an aminolinker at one or more positions of the sequence. The amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents. The conjugation reaction may be performed either with the dsRNA still bound to the solid support or following cleavage of the dsRNA in solution phase. Purification of the dsRNA conjugate by HPLC typically affords the pure conjugate.

Vector Encoded dsRNAs

In another aspect, HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 dsRNA molecules are expressed from transcription units inserted into DNA or RNA vectors (see, e.g., Couture, A, et al., TIG. (1996), 12:5-10; Skillern, A., et al., International PCT Publication No. WO 00/22113, Conrad, International PCT Publication No. WO 00/22114, and Conrad, U.S. Pat. No. 6,054,299). These transgenes can be introduced as a linear construct, a circular plasmid, or a viral vector, which can be incorporated and inherited as a transgene integrated into the host genome. The transgene can also be constructed to permit it to be inherited as an extrachromosomal plasmid (Gassmann, et al., Proc. Natl. Acad. Sci. USA (1995) 92:1292).

The individual strands of a dsRNA can be transcribed by promoters on two separate expression vectors and co-transfected into a target cell. Alternatively each individual strand of the dsRNA can be transcribed by promoters both of which are located on the same expression plasmid. In one embodiment, a dsRNA is expressed as an inverted repeat joined by a linker polynucleotide sequence such that the dsRNA has a stem and loop structure.

The recombinant dsRNA expression vectors are generally DNA plasmids or viral vectors. dsRNA expressing viral vectors can be constructed based on, but not limited to, adeno-associated virus (for a review, see Muzyczka, et al., Curr. Topics Micro. Immunol. (1992) 158:97-129)); adenovirus (see, for example, Berkner, et al., BioTechniques (1998) 6:616), Rosenfeld et al. (1991, Science 252:431-434), and Rosenfeld et al. (1992), Cell 68:143-155)); or alphavirus as well as others known in the art. Retroviruses have been used to introduce a variety of genes into many different cell types, including epithelial cells, in vitro and/or in vivo (see, e.g., Eglitis, et al., Science (1985) 230:1395-1398; Danos and Mulligan, Proc. Natl. Acad. Sci. USA (1998) 85:6460-6464; Wilson et al., 1988, Proc. Natl. Acad. Sci. USA 85:3014-3018; Armentano et al., 1990, Proc. Natl. Acad. Sci. USA 87:61416145; Huber et al., 1991, Proc. Natl. Acad. Sci. USA 88:8039-8043; Ferry et al., 1991, Proc. Natl. Acad. Sci. USA 88:8377-8381; Chowdhury et al., 1991, Science 254:1802-1805; van Beusechem. et al., 1992, Proc. Natl. Acad. Sci. USA 89:7640-19; Kay et al., 1992, Human Gene Therapy 3:641-647; Dai et al., 1992, Proc. Natl. Acad. Sci. USA 89:10892-10895; Hwu et al., 1993, J. Immunol. 150:4104-4115; U.S. Pat. No. 4,868,116; U.S. Pat. No. 4,980,286; PCT Application WO 89/07136; PCT Application WO 89/02468; PCT Application WO 89/05345; and PCT Application WO 92/07573). Recombinant retroviral vectors capable of transducing and expressing genes inserted into the genome of a cell can be produced by transfecting the recombinant retroviral genome into suitable packaging cell lines such as PA317 and Psi-CRIP (Comette et al., 1991, Human Gene Therapy 2:5-10; Cone et al., 1984, Proc. Natl. Acad. Sci. USA 81:6349). Recombinant adenoviral vectors can be used to infect a wide variety of cells and tissues in susceptible hosts (e.g., rat, hamster, dog, and chimpanzee) (Hsu et al., 1992, J. Infectious Disease, 166:769), and also have the advantage of not requiring mitotically active cells for infection.

Any viral vector capable of accepting the coding sequences for the dsRNA molecule(s) to be expressed can be used, for example vectors derived from adenovirus (AV); adeno-associated virus (AAV); retroviruses (e.g., lentiviruses (LV), Rhabdoviruses, murine leukemia virus); herpes virus, and the like. The tropism of viral vectors can be modified by pseudotyping the vectors with envelope proteins or other surface antigens from other viruses, or by substituting different viral capsid proteins, as appropriate.

For example, lentiviral vectors featured in the invention can be pseudotyped with surface proteins from vesicular stomatitis virus (VSV), rabies, Ebola, Mokola, and the like. AAV vectors featured in the invention can be made to target different cells by engineering the vectors to express different capsid protein serotypes. For example, an AAV vector expressing a serotype 2 capsid on a serotype 2 genome is called AAV 2/2. This serotype 2 capsid gene in the AAV 2/2 vector can be replaced by a serotype 5 capsid gene to produce an AAV 2/5 vector. Techniques for constructing AAV vectors which express different capsid protein serotypes are within the skill in the art; see, e.g., Rabinowitz J E et al. (2002), J Virol 76:791-801, the entire disclosure of which is herein incorporated by reference.

Selection of recombinant viral vectors suitable for use in the invention, methods for inserting nucleic acid sequences for expressing the dsRNA into the vector, and methods of delivering the viral vector to the cells of interest are within the skill in the art. See, for example, Dornburg R (1995), Gene Therap. 2: 301-310; Eglitis M A (1988), Biotechniques 6: 608-614; Miller A D (1990), Hum Gene Therap. 1: 5-14; Anderson W F (1998), Nature 392: 25-30; and Rubinson D A et al., Nat. Genet. 33: 401-406, the entire disclosures of which are herein incorporated by reference.

Viral vectors can be derived from AV and AAV. In one embodiment, the dsRNA featured in the invention is expressed as two separate, complementary single-stranded RNA molecules from a recombinant AAV vector having, for example, either the U6 or H1 RNA promoters, or the cytomegalovirus (CMV) promoter.

A suitable AV vector for expressing the dsRNA featured in the invention, a method for constructing the recombinant AV vector, and a method for delivering the vector into target cells, are described in Xia H et al. (2002), Nat. Biotech. 20: 1006-1010.

Suitable AAV vectors for expressing the dsRNA featured in the invention, methods for constructing the recombinant AV vector, and methods for delivering the vectors into target cells are described in Samulski R et al. (1987), J. Virol. 61: 3096-3101; Fisher K J et al. (1996), J. Virol, 70: 520-532; Samulski R et al. (1989), J. Virol. 63: 3822-3826; U.S. Pat. No. 5,252,479; U.S. Pat. No. 5,139,941; International Patent Application No. WO 94/13788; and International Patent Application No. WO 93/24641, the entire disclosures of which are herein incorporated by reference.

The promoter driving dsRNA expression in either a DNA plasmid or viral vector featured in the invention may be a eukaryotic RNA polymerase I (e.g., ribosomal RNA promoter), RNA polymerase II (e.g., CMV early promoter or actin promoter or U1 snRNA promoter) or generally RNA polymerase III promoter (e.g., U6 snRNA or 7SK RNA promoter) or a prokaryotic promoter, for example the T7 promoter, provided the expression plasmid also encodes T7 RNA polymerase required for transcription from a T7 promoter. The promoter can also direct transgene expression to the pancreas (see, e.g., the insulin regulatory sequence for pancreas (Bucchini et al., 1986, Proc. Natl. Acad. Sci. USA 83:2511-2515)).

In addition, expression of the transgene can be precisely regulated, for example, by using an inducible regulatory sequence and expression systems such as a regulatory sequence that is sensitive to certain physiological regulators, e.g., circulating glucose levels, or hormones (Docherty et al., 1994, FASEB J. 8:20-24). Such inducible expression systems, suitable for the control of transgene expression in cells or in mammals include regulation by ecdysone, by estrogen, progesterone, tetracycline, chemical inducers of dimerization, and isopropyl-beta-D1-thiogalactopyranoside (EPTG). A person skilled in the art would be able to choose the appropriate regulatory/promoter sequence based on the intended use of the dsRNA transgene.

Generally, recombinant vectors capable of expressing dsRNA molecules are delivered as described below, and persist in target cells. Alternatively, viral vectors can be used that provide for transient expression of dsRNA molecules. Such vectors can be repeatedly administered as necessary. Once expressed, the dsRNAs bind to target RNA and modulate its function or expression. Delivery of dsRNA expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that allows for introduction into a desired target cell.

dsRNA expression DNA plasmids are typically transfected into target cells as a complex with cationic lipid carriers (e.g., Oligofectamine) or non-cationic lipid-based carriers (e.g., Transit-TKO™). Multiple lipid transfections for dsRNA-mediated knockdowns targeting different regions of a single HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene or multiple HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 genes over a period of a week or more are also contemplated by the invention. Successful introduction of vectors into host cells can be monitored using various known methods. For example, transient transfection can be signaled with a reporter, such as a fluorescent marker, such as Green Fluorescent Protein (GFP). Stable transfection of cells ex vivo can be ensured using markers that provide the transfected cell with resistance to specific environmental factors (e.g., antibiotics and drugs), such as hygromycin B resistance.

HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 specific dsRNA molecules can also be inserted into vectors and used as gene therapy vectors for human patients. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see U.S. Pat. No. 5,328,470) or by stereotactic injection (see e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA 91:3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can include a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.

Pharmaceutical Compositions Containing dsRNA

In one embodiment, the invention provides pharmaceutical compositions containing a dsRNA, as described herein, and a pharmaceutically acceptable carrier. The pharmaceutical composition containing the dsRNA is useful for treating a disease or disorder associated with the expression or activity of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene, such as pathological processes mediated by HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 expression. Such pharmaceutical compositions are formulated based on the mode of delivery. One example is compositions that are formulated for systemic administration via parenteral delivery, e.g., by intravenous (IV) delivery. Another example is compositions that are formulated for direct delivery into the brain parenchyma, e.g., by infusion into the brain, such as by continuous pump infusion.

The pharmaceutical compositions featured herein are administered in dosages sufficient to inhibit expression of HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 genes.

In general, a suitable dose of dsRNA will be in the range of 0.01 to 200.0 milligrams per kilogram body weight of the recipient per day, generally in the range of 1 to 50 mg per kilogram body weight per day. For example, the dsRNA can be administered at 0.0059 mg/kg, 0.01 mg/kg, 0.0295 mg/kg, 0.05 mg/kg, 0.0590 mg/kg, 0.163 mg/kg, 0.2 mg/kg, 0.3 mg/kg, 0.4 mg/kg, 0.5 mg/kg, 0.543 mg/kg, 0.5900 mg/kg, 0.6 mg/kg, 0.7 mg/kg, 0.8 mg/kg, 0.9 mg/kg, 1 mg/kg, 1.1 mg/kg, 1.2 mg/kg, 1.3 mg/kg, 1.4 mg/kg, 1.5 mg/kg, 1.628 mg/kg, 2 mg/kg, 3 mg/kg, 5.0 mg/kg, 10 mg/kg, 20 mg/kg, 30 mg/kg, 40 mg/kg, or 50 mg/kg per single dose.

In one embodiment, the dosage is between 0.01 and 0.2 mg/kg. For example, the dsRNA can be administered at a dose of 0.01 mg/kg, 0.02 mg/kg, 0.03 mg/kg, 0.04 mg/kg, 0.05 mg/kg, 0.06 mg/kg, 0.07 mg/kg 0.08 mg/kg 0.09 mg/kg, 0.10 mg/kg, 0.11 mg/kg, 0.12 mg/kg, 0.13 mg/kg, 0.14 mg/kg, 0.15 mg/kg, 0.16 mg/kg, 0.17 mg/kg, 0.18 mg/kg, 0.19 mg/kg, or 0.20 mg/kg.

In one embodiment, the dosage is between 0.005 mg/kg and 1.628 mg/kg. For example, the dsRNA can be administered at a dose of 0.0059 mg/kg, 0.0295 mg/kg, 0.0590 mg/kg, 0.163 mg/kg, 0.543 mg/kg, 0.5900 mg/kg, or 1.628 mg/kg.

In one embodiment, the dosage is between 0.2 mg/kg and 1.5 mg/kg. For example, the dsRNA can be administered at a dose of 0.2 mg/kg, 0.3 mg/kg, 0.4 mg/kg, 0.5 mg/kg, 0.6 mg/kg, 0.7 mg/kg, 0.8 mg/kg, 0.9 mg/kg, 1 mg/kg, 1.1 mg/kg, 1.2 mg/kg, 1.3 mg/kg, 1.4 mg/kg, or 1.5 mg/kg.

The dsRNA can be administered at a dose of 0.03 mg/kg, or 0.03, 0.1, 0.2, or 0.4 mg/kg.

The pharmaceutical composition may be administered once daily or the dsRNA may be administered as two, three, or more sub-doses at appropriate intervals throughout the day or even using continuous infusion or delivery through a controlled release formulation. In that case, the dsRNA contained in each sub-dose must be correspondingly smaller in order to achieve the total daily dosage. The dosage unit can also be compounded for delivery over several days, e.g., using a conventional sustained release formulation which provides sustained release of the dsRNA over a several day period. Sustained release formulations are well known in the art and are particularly useful for delivery of agents at a particular site, such as could be used with the agents of the present invention. In this embodiment, the dosage unit contains a corresponding multiple of the daily dose.

The effect of a single dose on HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 levels is long lasting, such that subsequent doses are administered at not more than 3, 4, or 5 day intervals, or at not more than 1, 2, 3, or 4 week intervals, or at not more than 5, 6, 7, 8, 9, or 10 week intervals.

The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a composition can include a single treatment or a series of treatments. Estimates of effective dosages and in vivo half-lives for the individual dsRNAs encompassed by the invention can be made using conventional methodologies or on the basis of in vivo testing using an appropriate animal model, as described elsewhere herein.

Advances in mouse genetics have generated a number of mouse models for the study of various human diseases, such as pathological processes mediated by HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 expression. Such models are used for in vivo testing of dsRNA, as well as for determining a therapeutically effective dose. A suitable mouse model is, for example, a mouse containing a plasmid expressing human HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1. Another suitable mouse model is a transgenic mouse carrying a transgene that expresses human HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1.

The data obtained from cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of compositions featured in the invention lies generally within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the methods featured in the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range of the compound or, when appropriate, of the polypeptide product of a target sequence (e.g., achieving a decreased concentration of the polypeptide) that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

The dsRNAs featured in the invention can be administered in combination with other known agents effective in treatment of pathological processes mediated by target gene expression. In any event, the administering physician can adjust the amount and timing of dsRNA administration on the basis of results observed using standard measures of efficacy known in the art or described herein.

Administration

The present invention also includes pharmaceutical compositions and formulations which include the dsRNA compounds featured in the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical, pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal, oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intraparenchymal, intrathecal or intraventricular, administration.

The dsRNA can be delivered in a manner to target a particular tissue.

Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful. Suitable topical formulations include those in which the dsRNAs featured in the invention are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. Suitable lipids and liposomes include neutral (e.g., dioleoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearoylphosphatidyl choline) negative (e.g., dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g., dioleoyltetramethylaminopropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA). DsRNAs featured in the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, dsRNAs may be complexed to lipids, in particular to cationic lipids. Suitable fatty acids and esters include but are not limited to arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a C1-10 alkyl ester (e.g., isopropylmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof. Topical formulations are described in detail in U.S. Pat. No. 6,747,014, which is incorporated herein by reference.

Liposomal Formulations

There are many organized surfactant structures besides microemulsions that have been studied and used for the formulation of drugs. These include monolayers, micelles, bilayers and vesicles. Vesicles, such as liposomes, have attracted great interest because of their specificity and the duration of action they offer from the standpoint of drug delivery. As used in the present invention, the term “liposome” means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.

Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Non-cationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages in vivo.

In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome which is highly deformable and able to pass through such fine pores.

Further advantages of liposomes include; liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.

Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes and as the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.

Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.

Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the skin. Compounds including analgesics, antibodies, hormones and high-molecular weight DNAs have been administered to the skin. The majority of applications resulted in the targeting of the upper epidermis

Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al., Biochem. Biophys. Res. Commun., 1987, 147, 980-985).

Liposomes which are pH-sensitive or negatively-charged, entrap DNA rather than complex with it. Since both the DNA and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some DNA is entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release, 1992, 19, 269-274).

One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.

Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted in a reduction of skin herpes sores while delivery of interferon via other means (e.g., as a solution or as an emulsion) were ineffective (Weiner et al., Journal of Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).

Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome™ I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome™ II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporin-A into different layers of the skin (Hu et al. S.T.P. Pharma. Sci., 1994, 4, 6, 466).

Liposomes also include “sterically stabilized” liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside GM1, or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., FEBS Letters, 1987, 223, 42; Wu et al., Cancer Research, 1993, 53, 3765).

Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., 1987, 507, 64) reported the ability of monosialoganglioside GM1, galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 6949). U.S. Pat. No. 4,837,028 and WO 88/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside GM1 or a galactocerebroside sulfate ester. U.S. Pat. No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al).

Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto et al. (Bull. Chem. Soc. Jpn., 1980, 53, 2778) described liposomes comprising a nonionic detergent, 2C1215G, that contains a PEG moiety. Illum et al. (FEBS Lett., 1984, 167, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols results in significantly enhanced blood half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups of polyalkylene glycols (e.g., PEG) are described by Sears (U.S. Pat. Nos. 4,426,330 and 4,534,899). Klibanov et al. (FEBS Lett., 1990, 268, 235) described experiments demonstrating that liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG stearate have significant increases in blood circulation half-lives. Blume et al. (Biochimica et Biophysica Acta, 1990, 1029, 91) extended such observations to other PEG-derivatized phospholipids, e.g., DSPE-PEG, formed from the combination of distearoylphosphatidylethanolamine (DSPE) and PEG. Liposomes having covalently bound PEG moieties on their external surface are described in European Patent No. EP 0 445 131 B1 and WO 90/04384 to Fisher. Liposome compositions containing 1-20 mole percent of PE derivatized with PEG, and methods of use thereof, are described by Woodle et al. (U.S. Pat. Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. Pat. No. 5,213,804 and European Patent No. EP 0 496 813 B1). Liposomes comprising a number of other lipid-polymer conjugates are disclosed in WO 91/05545 and U.S. Pat. No. 5,225,212 (both to Martin et al.) and in WO 94/20073 (Zalipsky et al.) Liposomes comprising PEG-modified ceramide lipids are described in WO 96/10391 (Choi et al). U.S. Pat. No. 5,540,935 (Miyazaki et al.) and U.S. Pat. No. 5,556,948 (Tagawa et al.) describe PEG-containing liposomes that can be further derivatized with functional moieties on their surfaces.

A number of liposomes comprising nucleic acids are known in the art. WO 96/40062 to Thierry et al. discloses methods for encapsulating high molecular weight nucleic acids in liposomes. U.S. Pat. No. 5,264,221 to Tagawa et al. discloses protein-bonded liposomes and asserts that the contents of such liposomes may include a dsRNA. U.S. Pat. No. 5,665,710 to Rahman et al. describes certain methods of encapsulating oligodeoxynucleotides in liposomes. WO 97/04787 to Love et al. discloses liposomes comprising dsRNAs targeted to the raf gene.

Transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes may be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g., they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transfersomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.

Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the “head”) provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).

If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.

If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.

If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.

If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.

The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).

Nucleic Acid Lipid Particles

In one embodiment, a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 dsRNA featured in the invention is fully encapsulated in the lipid formulation, e.g., a nucleic acid lipid particle, e.g., SPLP, pSPLP, SNALP, or other nucleic acid-lipid particle. As used herein, the term “SNALP” refers to a stable nucleic acid-lipid particle, including SPLP. As used herein, the term “SPLP” refers to a nucleic acid-lipid particle comprising plasmid DNA encapsulated within a lipid vesicle. SPLPs include “pSPLP,” which include an encapsulated condensing agent-nucleic acid complex as set forth in PCT Publication No. WO 00/03683. Nucleic acid lipid particles typically contain a cationic lipid, a non-cationic lipid, and a lipid that prevents aggregation of the particle (e.g., a PEG-lipid conjugate). Nucleic acid lipid particles are extremely useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous (i.v.) injection and accumulate at distal sites (e.g., sites physically separated from the administration site).

The particles of the present invention typically have a mean diameter of about 50 nm to about 150 nm, more typically about 60 nm to about 130 nm, more typically about 70 nm to about 110 nm, most typically about 70 nm to about 90 nm, and are substantially nontoxic. In addition, the nucleic acids when present in the nucleic acid-lipid particles of the present invention are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their method of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; 6,815,432; and PCT Publication No. WO 96/40964.

In one embodiment, the lipid to drug ratio (mass/mass ratio) (e.g., lipid to dsRNA ratio) will be in the range of from about 1:1 to about 50:1, from about 1:1 to about 25:1, from about 3:1 to about 15:1, from about 4:1 to about 10:1, from about 5:1 to about 9:1, or about 6:1 to about 9:1. In some embodiments the lipid to dsRNA ratio can be about 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, or 11:1.

In general, the lipid-nucleic acid particle is suspended in a buffer, e.g., PBS, for administration. In one embodiment, the pH of the lipid formulated siRNA is between 6.8 and 7.8, e.g., 7.3 or 7.4. The osmolality can be, e.g., between 250 and 350 mOsm/kg, e.g., around 300, e.g., 298, 299, 300, 301, 302, 303, 304, or 305.

The cationic lipid may be, for example, N,N-dioleyl-N,N-dimethylammonium chloride (DODAC), N,N-distearyl-N,N-dimethylammonium bromide (DDAB), N—(I-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP), N—(I-(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTMA), N,N-dimethyl-2,3-dioleyloxy)propylamine (DODMA), 1,2-DiLinoleyloxy-N,N-dimethylaminopropane (DLinDMA), 1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLenDMA), 1,2-Dilinoleylcarbamoyloxy-3-dimethylaminopropane (DLin-C-DAP), 1,2-Dilinoleyoxy-3-(dimethylamino)acetoxypropane (DLin-DAC), 1,2-Dilinoleyoxy-3-morpholinopropane (DLin-MA), 1,2-Dilinoleoyl-3-dimethylaminopropane (DLinDAP), 1,2-Dilinoleylthio-3-dimethylaminopropane (DLin-S-DMA), 1-Linoleoyl-2-linoleyloxy-3-dimethylaminopropane (DLin-2-DMAP), 1,2-Dilinoleyloxy-3-trimethylaminopropane chloride salt (DLin-TMA.Cl), 1,2-Dilinoleoyl-3-trimethylaminopropane chloride salt (DLin-TAP.Cl), 1,2-Dilinoleyloxy-3-(N-methylpiperazino)propane (DLin-MPZ), or 3-(N,N-Dilinoleylamino)-1,2-propanediol (DLinAP), 3-(N,N-Dioleylamino)-1,2-propanedio (DOAP), 1,2-Dilinoleyloxo-3-(2-N,N-dimethylamino)ethoxypropane (DLin-EG-DMA), 1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA), 2,2-Dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane (DLin-K-DMA) or analogs thereof, (3aR,5s,6aS)—N,N-dimethyl-2,2-di((9Z,12Z)-octadeca-9,12-dienyl)tetrahydro-3aH-cyclopenta[d][1,3]dioxol-5-amine (ALN100), (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (MC3), 1,1′-(2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl)amino)ethyl)piperazin-1-yl)ethylazanediyl)didodecan-2-ol (C12-200 or Tech G1), or a mixture thereof. The cationic lipid may comprise from about 20 mol % to about 50 mol % or about 40 mol % of the total lipid present in the particle.

The non-cationic lipid may be an anionic lipid or a neutral lipid including, but not limited to, distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylglycerol (DOPG), dipalmitoylphosphatidylglycerol (DPPG), dioleoyl-phosphatidylethanolamine (DOPE), palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE), dioleoyl-phosphatidylethanolamine 4-(N-maleimidomethyl)-cyclohexane-l-carboxylate (DOPE-mal), dipalmitoyl phosphatidyl ethanolamine (DPPE), dimyristoylphosphoethanolamine (DMPE), distearoyl-phosphatidyl-ethanolamine (DSPE), 16-O-monomethyl PE, 16-O-dimethyl PE, 18-1-trans PE, 1-stearoyl-2-oleoyl-phosphatidyethanolamine (SOPE), cholesterol, or a mixture thereof. The non-cationic lipid may be from about 5 mol % to about 90 mol %, about 10 mol %, or about 58 mol % if cholesterol is included, of the total lipid present in the particle.

The conjugated lipid that inhibits aggregation of particles may be, for example, a polyethyleneglycol (PEG)-lipid including, without limitation, a PEG-diacylglycerol (DAG), a PEG-dialkyloxypropyl (DAA), a PEG-phospholipid, a PEG-ceramide (Cer), or a mixture thereof. The PEG-DAA conjugate may be, for example, a PEG-dilauryloxypropyl (Ci2), a PEG-dimyristyloxypropyl (Ci4), a PEG-dipalmityloxypropyl (C16), or a PEG-distearyloxypropyl (C18). Other examples of PEG conjugates include PEG-cDMA (N-[(methoxy poly(ethylene glycol)2000)carbamyl]-1,2-dimyristyloxlpropyl-3-amine), mPEG2000-DMG (mPEG-dimyrystylglycerol (with an average molecular weight of 2,000) and PEG-C-DOMG (R-3-[(ω-methoxy-poly(ethylene glycol)2000)carbamoyl)]-1,2-dimyristyloxlpropyl-3-amine). The conjugated lipid that prevents aggregation of particles may be from 0 mol % to about 20 mol % or about 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, or 2 mol % of the total lipid present in the particle.

In some embodiments, the nucleic acid-lipid particle further includes cholesterol at, e.g., about 10 mol % to about 60 mol % or about 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, or 55 mol % of the total lipid present in the particle.

LNP01

LNP01 formulations are described, e.g., in International Application Publication No. WO 2008/042973, which is hereby incorporated by reference.

Additional exemplary formulations are described in Table A.

TABLE A cationic lipid/non-cationic lipid/cholesterol/PEG-lipid conjugate Cationic Mol % ratios Lipid Lipid:siRNA ratio SNALP DLinDMA DLinDMA/DPPC/Cholesterol/PEG-cDMA (57.1/7.1/34.4/1.4) lipid:siRNA ~7:1 S-XTC XTC XTC/DPPC/Cholesterol/PEG-cDMA 57.1/7.1/34.4/1.4 lipid:siRNA ~7:1 LNP05 XTC XTC/DSPC/Cholesterol/PEG-DMG 57.5/7.5/31.5/3.5 lipid:siRNA ~6:1 LNP06 XTC XTC/DSPC/Cholesterol/PEG-DMG 57.5/7.5/31.5/3.5 lipid:siRNA ~11:1 LNP07 XTC XTC/DSPC/Cholesterol/PEG-DMG 60/7.5/31/1.5, lipid:siRNA ~6:1 LNP08 XTC XTC/DSPC/Cholesterol/PEG-DMG 60/7.5/31/1.5, lipid:siRNA ~11:1 LNP09 XTC XTC/DSPC/Cholesterol/PEG-DMG 50/10/38.5/1.5 Lipid:siRNA 10:1 LNP10 ALN100 ALN100/DSPC/Cholesterol/PEG-DMG 50/10/38.5/1.5 Lipid:siRNA 10:1 LNP11 MC3 MC-3/DSPC/Cholesterol/PEG-DMG 50/10/38.5/1.5 Lipid:siRNA 10:1 LNP12 C12-200 C12-200/DSPC/Cholesterol/PEG-DMG 50/10/38.5/1.5 Lipid:siRNA 10:1 LNP13 XTC XTC/DSPC/Chol/PEG-DMG 50/10/38.5/1.5 Lipid:siRNA: 33:1 LNP14 MC3 MC3/DSPC/Chol/PEG-DMG 40/15/40/5 Lipid:siRNA: 11:1 LNP15 MC3 MC3/DSPC/Chol/PEG-DSG/GalNAc-PEG-DSG 50/10/35/4.5/0.5 Lipid:siRNA: 11:1 LNP16 MC3 MC3/DSPC/Chol/PEG-DMG 50/10/38.5/1.5 Lipid:siRNA: 7:1 LNP17 MC3 MC3/DSPC/Chol/PEG-DSG 50/10/38.5/1.5 Lipid:siRNA: 10:1 LNP18 MC3 MC3/DSPC/Chol/PEG-DMG 50/10/38.5/1.5 Lipid:siRNA: 12:1 LNP19 MC3 MC3/DSPC/Chol/PEG-DMG 50/10/35/5 Lipid:siRNA: 8:1 LNP20 MC3 MC3/DSPC/Chol/PEG-DPG 50/10/38.5/1.5 Lipid:siRNA: 10:1 LNP21 C12-200 C12-200/DSPC/Chol/PEG-DSG 50/10/38.5/1.5 Lipid:siRNA: 7:1 LNP22 XTC XTC/DSPC/Chol/PEG-DSG 50/10/38.5/1.5 Lipid:siRNA: 10:1

SNALP (1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA)) comprising formulations are described in International Publication No. WO2009/127060, filed Apr. 15, 2009, which is hereby incorporated by reference.

XTC (2,2-Dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane) comprising formulations are described, e.g., in U.S. Provisional Ser. No. 61/148,366, filed Jan. 29, 2009; U.S. Provisional Ser. No. 61/156,851, filed Mar. 2, 2009; U.S. Provisional Serial No. filed Jun. 10, 2009; U.S. Provisional Ser. No. 61/228,373, filed Jul. 24, 2009; U.S. Provisional Ser. No. 61/239,686, filed Sep. 3, 2009, and International Application No. PCT/US2010/022614, filed Jan. 29, 2010, which are hereby incorporated by reference.

MC3 ((6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate), (e.g., DLin-M-C3-DMA) comprising formulations are described, e.g., in U.S. Provisional Ser. No. 61/244,834, filed Sep. 22, 2009, U.S. Provisional Ser. No. 61/185,800, filed Jun. 10, 2009, and International Application No. PCT/US10/28224, filed Jun. 10, 2010, which are hereby incorporated by reference.

ALNY-100 ((3aR,5s,6aS)—N,N-dimethyl-2,2-di((9Z,12Z)-octadeca-9,12-dienyl)tetrahydro-3aH-cyclopenta[d][1,3]dioxol-5-amine) comprising formulations are described, e.g., International patent application number PCT/US09/63933, filed on Nov. 10, 2009, which is hereby incorporated by reference.

C12-200, i.e., Tech G1, comprising formulations are described in U.S. Provisional Ser. No. 61/175,770, filed May 5, 2009 and International Application No. PCT/US10/33777, filed May 5, 2010, which are hereby incorporated by reference.

Formulations prepared by either the standard or extrusion-free method can be characterized in similar manners. For example, formulations are typically characterized by visual inspection. They should be whitish translucent solutions free from aggregates or sediment. Particle size and particle size distribution of lipid-nanoparticles can be measured by light scattering using, for example, a Malvern Zetasizer Nano ZS (Malvern, USA). Particles should be about 20-300 nm, such as 40-100 nm in size. The particle size distribution should be unimodal. The total siRNA concentration in the formulation, as well as the entrapped fraction, is estimated using a dye exclusion assay. A sample of the formulated siRNA can be incubated with an RNA-binding dye, such as Ribogreen (Molecular Probes) in the presence or absence of a formulation disrupting surfactant, e.g., 0.5% Triton-X100. The total siRNA in the formulation can be determined by the signal from the sample containing the surfactant, relative to a standard curve. The entrapped fraction is determined by subtracting the “free” siRNA content (as measured by the signal in the absence of surfactant) from the total siRNA content. Percent entrapped siRNA is typically >85%. For a nucleic acid lipid formulation, the particle size is at least 30 nm, at least 40 nm, at least 50 nm, at least 60 nm, at least 70 nm, at least 80 nm, at least 90 nm, at least 100 nm, at least 110 nm, and at least 120 nm. The suitable range is typically about at least 50 nm to about at least 110 nm, about at least 60 nm to about at least 100 nm, or about at least 80 nm to about at least 90 nm.

Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. In some embodiments, oral formulations are those in which dsRNAs featured in the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators. Suitable surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Suitable bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate and sodium glycodihydrofusidate. Suitable fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g., sodium). In some embodiments, combinations of penetration enhancers are used, for example, fatty acids/salts in combination with bile acids/salts. One exemplary combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. DsRNAs featured in the invention may be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. DsRNA complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches. Suitable complexing agents include chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylaminomethylethylene P(TDAE), polyaminostyrene (e.g., p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(isohexylcynaoacrylate), DEAE-methacrylate, DEAE-hexylacrylate, DEAE-acrylamide, DEAE-albumin and DEAE-dextran, polymethylacrylate, polyhexylacrylate, poly(D,L-lactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, and polyethyleneglycol (PEG). Oral formulations for dsRNAs and their preparation are described in detail in U.S. Pat. No. 6,887,906, US Publn. No. 20030027780, and U.S. Pat. No. 6,747,014, each of which is incorporated herein by reference.

Compositions and formulations for parenteral, intraparenchymal (into the brain), intrathecal, intraventricular or intrahepatic administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids. Particularly preferred are formulations that target the liver when treating hepatic disorders such as hepatic carcinoma.

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

Emulsions

The compositions of the present invention may be prepared and formulated as emulsions. Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 301). Emulsions are often biphasic systems comprising two immiscible liquid phases intimately mixed and dispersed with each other. In general, emulsions may be of either the water-in-oil (w/o) or the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase, the resulting composition is called a water-in-oil (w/o) emulsion. Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase, the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions may contain additional components in addition to the dispersed phases, and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants may also be present in emulsions as needed. Pharmaceutical emulsions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions. Such complex formulations often provide certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise a system of oil droplets enclosed in globules of water stabilized in an oily continuous phase provides an o/w/o emulsion.

Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion may be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that may be incorporated into either phase of the emulsion. Emulsifiers may broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed the hydrophile/lipophile balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants may be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).

Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.

A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.

Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides that may readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used may be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.

The application of emulsion formulations via dermatological, oral and parenteral routes and methods for their manufacture have been reviewed in the literature (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of ease of formulation, as well as efficacy from an absorption and bioavailability standpoint (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.

In one embodiment of the present invention, the compositions of dsRNAs and nucleic acids are formulated as microemulsions. A microemulsion may be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Typically microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 271).

The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.

Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (SO750), decaglycerol decaoleate (DAO750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.

Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (Constantinides et al., Pharmaceutical Research, 1994, 11, 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be particularly advantageous when formulating thermolabile drugs, peptides or dsRNAs. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of dsRNAs and nucleic acids from the gastrointestinal tract, as well as improve the local cellular uptake of dsRNAs and nucleic acids.

Microemulsions of the present invention may also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the dsRNAs and nucleic acids of the present invention. Penetration enhancers used in the microemulsions of the present invention may be classified as belonging to one of five broad categories—surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed above.

Penetration Enhancers

In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly dsRNAs, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.

Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of the above mentioned classes of penetration enhancers are described below in greater detail.

Surfactants: In connection with the present invention, surfactants (or “surface-active agents”) are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of dsRNAs through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92); and perfluorochemical emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).

Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C.sub.1-10 alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654).

Bile salts: The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (Brunton, Chapter 38 in: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al. Eds., McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus the term “bile salts” includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. Suitable bile salts include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic acid (sodium glucholate), glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, Pa., 1990, pages 782-783; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al., J. Pharm. Sci., 1990, 79, 579-583).

Chelating Agents: Chelating agents, as used in connection with the present invention, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of dsRNAs through the mucosa is enhanced. With regards to their use as penetration enhancers in the present invention, chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, J. Chromatogr., 1993, 618, 315-339). Suitable chelating agents include but are not limited to disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of beta-diketones (enamines)(Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51).

Non-chelating non-surfactants: As used herein, non-chelating non-surfactant penetration enhancing compounds can be defined as compounds that demonstrate insignificant activity as chelating agents or as surfactants but that nonetheless enhance absorption of dsRNAs through the alimentary mucosa (Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33). This class of penetration enhancers include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).

Carriers

Certain compositions of the present invention also incorporate carrier compounds in the formulation. As used herein, “carrier compound” or “carrier” can refer to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For example, the recovery of a partially phosphorothioate dsRNA in hepatic tissue can be reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4′isothiocyano-stilbene-2,2′-disulfonic acid (Miyao et al., DsRNA Res. Dev., 1995, 5, 115-121; Takakura et al., DsRNA & Nucl. Acid Drug Dev., 1996, 6, 177-183.

Excipients

In contrast to a carrier compound, a “pharmaceutical carrier” or “excipient” is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc).

Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present invention. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can be used.

Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

Other Components

The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.

Aqueous suspensions may contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

In some embodiments, pharmaceutical compositions featured in the invention include (a) one or more dsRNA compounds and (b) one or more anti-cytokine biologic agents which function by a non-RNAi mechanism. Examples of such biologics include, biologics that target IL1β (e.g., anakinra), IL6 (tocilizumab), or TNF (etanercept, infliximab, adlimumab, or certolizumab).

Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit high therapeutic indices are preferred.

The data obtained from cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of compositions featured in the invention lies generally within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the methods featured in the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range of the compound or, when appropriate, of the polypeptide product of a target sequence (e.g., achieving a decreased concentration of the polypeptide) that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

In addition to their administration, as discussed above, the dsRNAs featured in the invention can be administered in combination with other known agents effective in treatment of pathological processes mediated by HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 expression. In any event, the administering physician can adjust the amount and timing of dsRNA administration on the basis of results observed using standard measures of efficacy known in the art or described herein.

Methods for Inhibiting Expression of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 Gene

In yet another aspect, the invention provides a method for inhibiting the expression of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene in a mammal. The method includes administering a composition featured in the invention to the mammal such that expression of the target HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene is silenced.

When the organism to be treated is a mammal such as a human, the composition may be administered by any means known in the art including, but not limited to oral or parenteral routes, including intracranial (e.g., intraventricular, intraparenchymal and intrathecal), intravenous, intramuscular, subcutaneous, transdermal, airway (aerosol), nasal, rectal, and topical (including buccal and sublingual) administration. In certain embodiments, the compositions are administered by intravenous infusion or injection.

Methods for Treating Diseases Caused by Expression of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 Gene

The invention relates in particular to the use of a dsRNA targeting HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 and compositions containing at least one such dsRNA for the treatment of a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1-mediated disorder or disease. For example, the compositions described herein can be used to treat anemia and other diseases associated with lowered iron levels.

Methods of Using dsRNAs Targeting HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1

In one aspect, the invention provides use of a siRNA for inhibiting the expression of HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 in a mammal. The method includes administering a composition of the invention to the mammal such that expression of the target HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene is decreased. In some embodiments, HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 expression is decreased for an extended duration, e.g., at least one week, two weeks, three weeks, or four weeks or longer. For example, in certain instances, expression of the HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene is suppressed by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% by administration of a siRNA described herein. In some embodiments, the HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene is suppressed by at least about 60%, 70%, or 80% by administration of the siRNA. In some embodiments, the HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene is suppressed by at least about 85%, 90%, or 95% by administration of the double-stranded oligonucleotide.

The methods and compositions described herein can be used to treat diseases and conditions that can be modulated by down regulating HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene expression. For example, the compositions described herein can be used to treat anemia and other forms of iron imbalance such as refractory anemia, refractory anemia of chronic disease (ACD), iron-restricted erythropoiesis, and the pathological conditions associated with these disorders. In some aspects, ACD subjects are those who are refractory to ESAs and i.v. iron administration. In some embodiments, the method includes administering an effective amount of a siRNA disclosed herein to a patient having lower iron levels relative to a control patient.

Therefore, the invention also relates to the use of a siRNA for the treatment of a disorder or disease mediated by or related to HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene expression. For example, a siRNA is used for treatment of anemia.

The effect of the decreased HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene expression preferably results in an enhancement of iron mobilization in the mammal. In some embodiments, iron mobilization is enhanced by at least 10%, 15%, 20%, 25%, 30%, 40%, 50%, or 60%, or more, as compared to pretreatment levels.

The effect of the decreased HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene expression preferably results in an Hb increase in the mammal. In some embodiments, Hb is increased by at least 10%, 15%, 20%, 25%, 30%, 40%, 50%, or 60%, or more, as compared to pretreatment levels.

The effect of the decreased HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene expression preferably results in a serum iron increase in the mammal. In some embodiments, serum iron is increased by at least 10%, 15%, 20%, 25%, 30%, 40%, 50%, or 60%, or more, as compared to pretreatment levels.

The effect of the decreased HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene expression preferably results in a transderrin (Tf) saturation increase in the mammal. In some embodiments, Tf saturation is increased by at least 10%, 15%, 20%, 25%, 30%, 40%, 50%, or 60%, or more, as compared to pretreatment levels.

The effect of the decreased HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene expression preferably results in decreased levels of HAMP in the mammal. In some embodiments, HAMP is decreased by at least 10%, 15%, 20%, 25%, 30%, 40%, 50%, or 60%, or more, as compared to pretreatment levels.

The method includes administering a siRNA to the subject to be treated. The subject to be treated is generally a subject in need thereof. When the subject to be treated is a mammal, such as a human, the composition can be administered by any means known in the art including, but not limited to oral or parenteral routes, including intravenous, intramuscular, subcutaneous, transdermal, and airway (aerosol) administration. In some embodiments, the compositions are administered by intravenous infusion or injection.

The method includes administering a siRNA, e.g., a dose sufficient to depress levels of HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 mRNA for at least 5, more preferably 7, 10, 14, 21, 25, 30 or 40 days; and optionally, administering a second single dose of dsRNA, wherein the second single dose is administered at least 5, more preferably 7, 10, 14, 21, 25, 30 or 40 days after the first single dose is administered, thereby inhibiting the expression of the target gene in a subject.

In one embodiment, doses of siRNA are administered not more than once every four weeks, not more than once every three weeks, not more than once every two weeks, or not more than once every week. In another embodiment, the administrations can be maintained for one, two, three, or six months, or one year or longer.

In another embodiment, administration can be provided when Hb levels reach or drop lower than a predetermined minimal level, such as less than 8 g/dL, 9 g/dL, or 10 g/dL. In some aspects, administration is continued until Hb levels are >11 g/dL, e.g, 12 g/dL.

In another embodiment, administration can be provided when a patient presents with various known symptoms of disorders such as anemia. These can include fatigue, shortness of breath, headache, dizziness, or pale skin.

In another embodiment, administration can be provided when a patient is diagnosed with anemia via CBC.

In general, the siRNA does not activate the immune system, e.g., it does not increase cytokine levels, such as TNF-alpha or IFN-alpha levels. For example, when measured by an assay, such as an in vitro PBMC assay, such as described herein, the increase in levels of TNF-alpha or IFN-alpha, is less than 30%, 20%, or 10% of control cells treated with a control dsRNA, such as a dsRNA that does not target HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1.

In an aspect, a subject can be administered a therapeutic amount of siRNA, such as 0.5 mg/kg, 1.0 mg/kg, 1.5 mg/kg, 2.0 mg/kg, or 2.5 mg/kg dsRNA. The siRNA can be administered by intravenous infusion over a period of time, such as over a 5 minute, 10 minute, 15 minute, 20 minute, or 25 minute period. The administration is repeated, for example, on a regular basis, such as biweekly (i.e., every two weeks) for one month, two months, three months, four months or longer. After an initial treatment regimen, the treatments can be administered on a less frequent basis. For example, after administration biweekly for three months, administration can be repeated once per month, for six months or a year or longer. Administration of the siRNA can reduce HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 levels, e.g., in a cell, tissue, blood, urine or other compartment of the patient by at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80% or at least 90% or more.

Before administration of a full dose of the siRNA, patients can be administered a smaller dose, such as a 5% infusion reaction, and monitored for adverse effects, such as an allergic reaction, or for elevated lipid levels or blood pressure. In another example, the patient can be monitored for unwanted immunostimulatory effects, such as increased cytokine (e.g., TNF-alpha or IFN-alpha) levels.

A treatment or preventive effect is evident when there is a statistically significant improvement in one or more parameters of disease status, or by a failure to worsen or to develop symptoms where they would otherwise be anticipated. As an example, a favorable change of at least 10% in a measurable parameter of disease, and preferably at least 20%, 30%, 40%, 50% or more can be indicative of effective treatment. Efficacy for a given siRNA drug or formulation of that drug can also be judged using an experimental animal model for the given disease as known in the art. When using an experimental animal model, efficacy of treatment is evidenced when a statistically significant reduction in a marker or symptom is observed.

Additional Agents and Co-Administration

In further embodiments, administration of a siRNA is administered in combination an additional therapeutic agent. The siRNA and an additional therapeutic agent can be administered in combination in the same composition, e.g., parenterally, or the additional therapeutic agent can be administered as part of a separate composition or by another method described herein.

In one embodiment, the siRNA is administered to the patient, and then the additional therapeutic agent is administered to the patient (or vice versa). In another embodiment, the siRNA and the additional therapeutic agent are administered at the same time.

In some aspects, the additional agent can include one or more Erythropoiesis-stimulating agents (ESAs). ESAs are generally known in the art. ESAs can include Erythropoietin (EPO), Epoetin alfa (Procrit/Epogen), Epoetin beta (NeoRecormon), Darbepoetin alfa (Aranesp), and Methoxy polyethylene glycol-epoetin beta (Micera). ESAs can be administered in various doses, e.g., 7,000 U/week to 30,000 U/week.

In some aspects, the additional agent can include intravenous iron. Iron can be administered in various doses known in the art.

In some aspects, two or more dsRNAs are co-administered to a subject. In one embodiment, a first dsRNA is administered to the patient, and then a second dsRNA is administered to the patient (or vice versa). In another embodiment, the first dsRNA and the second dsRNA are administered at the same time.

In some aspects, a HAMP dsRNA is co-administered with one or more dsRNAs selected from HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1dsRNAs.

In some aspects, a HFE2 dsRNA is co-administered with one or more dsRNAs selected from HAMP, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1dsRNAs.

In some aspects, a HFE dsRNA is co-administered with one or more dsRNAs selected from HAMP, HFE2, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1dsRNAs.

In some aspects, a TFR2 dsRNA is co-administered with one or more dsRNAs selected from HAMP, HFE2, HFE, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1dsRNAs.

In some aspects, a BMPR1a dsRNA is co-administered with one or more dsRNAs selected from HAMP, HFE2, HFE, TFR2, SMAD4, IL6R, BMP6, and/or NEO1dsRNAs.

In some aspects, a SMAD4 dsRNA is co-administered with one or more dsRNAs selected from HAMP, HFE2, HFE, TFR2, BMPR1a, IL6R, BMP6, and/or NEO1dsRNAs.

In some aspects, an IL6R dsRNA is co-administered with one or more dsRNAs selected from HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, BMP6, and/or NEO1dsRNAs.

In some aspects, a BMP6 dsRNA is co-administered with one or more dsRNAs selected from HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, and/or NEO1dsRNAs.

In some aspects, a NEO1 dsRNA is co-administered with one or more dsRNAs selected from HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, and/or BMP6 dsRNAs.

In another aspect, the invention features, a method of instructing an end user, e.g., a caregiver or a subject, on how to administer a siRNA described herein. The method includes, optionally, providing the end user with one or more doses of the siRNA, and instructing the end user to administer the siRNA on a regimen described herein, thereby instructing the end user.

Identification of Subjects in Need of dsRNA Administration

In one aspect, the invention provides a method of treating a patient by selecting a patient on the basis that the patient is in need of iron mobilization. The method includes administering to the patient a siRNA in an amount sufficient to increase the patient's iron mobilization.

In one aspect, the invention provides a method of treating a patient by selecting a patient on the basis that the patient is in need of increased Hb levels. Such a subject can have Hb levels of <9 g/dL. The method includes administering to the patient a siRNA in an amount sufficient to increase the patient's Hb levels. Typically target Hb levels are >11 g/dL, e.g., 11 g/dL or 12 g/dL.

In some aspects, a subject is identified as having anemia. In some aspects, a subject is identified as having a refractory form of anemia. In some aspects, a subject is identified as having ACD. Such subjects can be in need of administration of a dsRNA described herein. ACD can include a form of anemia wherein the subject is refractory to ESAs and/or i.v. iron administration. Typical clinical presentation of ACD includes fatigue, shortness of breadth, headache, dizziness, and/or pale skin. ACD can also be diagnosed via a CBC test, which is generally known in the art. ACD can also be diagnosed via serum iron levels, Tf saturation, and/or ferritin levels. ACD is typically diagnosed in certain settings such as subjects with CKD, cancer, chronic inflammatory diseases such as RA, or IRIDA. In some aspects, a subject with ACD has Hb levels of less than 9 g/dL. Such subjects typically become symptomatic for ACD.

CKD can result in reduced renal EPO synthesis, dietary hematinic deficiencies, blood loss, and/or elevated hepcidin levels. The elevation in hepcidin levels can be due to decreased renal excretion and/or low grade inflammation characterized by, e.g., interleukin (IL)-6.

In some aspects, a subject is identified as having iron-restricted erythropoiesis (IRE). Such subjects can be in need of administration of a dsRNA described herein. IRE can be assessed via reticulocyte Hb (CHr). Typically a result of <28 pg suggests IRE, where normal is in the range of 28-35 pg. IRE can also be assessed via percent (%) hypochromic RBCs. Typically a result of >10% suggests IRE, where 1-5% is generally considered normal.

A healthcare provider, such as a doctor, nurse, or family member, can take a family history before prescribing or administering a siRNA. In addition, a test may be performed to determine a geneotype or phenotype. For example, a DNA test may be performed on a sample from the patient, e.g., a blood sample, to identify the relevant genotype and/or phenotype before a dsRNA is administered to the patient. In another embodiment, a test is performed to identify a related genotype and/or phenotype.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the dsRNAs and methods featured in the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

EXAMPLES Example 1 dsRNA Synthesis Source of Reagents

Where the source of a reagent is not specifically given herein, such reagent may be obtained from any supplier of reagents for molecular biology at a quality/purity standard for application in molecular biology.

siRNA Synthesis

Single-stranded RNAs were produced by solid phase synthesis on a scale of 1 μmole using an Expedite 8909 synthesizer (Applied Biosystems, Applera Deutschland GmbH, Darmstadt, Germany) and controlled pore glass (CPG, 500 Å, Proligo Biochemie GmbH, Hamburg, Germany) as solid support. RNA and RNA containing 2′-O-methyl nucleotides were generated by solid phase synthesis employing the corresponding phosphoramidites and 2′-O-methyl phosphoramidites, respectively (Proligo Biochemie GmbH, Hamburg, Germany). These building blocks were incorporated at selected sites within the sequence of the oligoribonucleotide chain using standard nucleoside phosphoramidite chemistry such as described in Current protocols in nucleic acid chemistry, Beaucage, S. L. et al. (Edrs.), John Wiley & Sons, Inc., New York, N.Y., USA. Phosphorothioate linkages were introduced by replacement of the iodine oxidizer solution with a solution of the Beaucage reagent (Chruachem Ltd, Glasgow, UK) in acetonitrile (1%). Further ancillary reagents were obtained from Mallinckrodt Baker (Griesheim, Germany).

Deprotection and purification of the crude oligoribonucleotides by anion exchange HPLC were carried out according to established procedures. Yields and concentrations were determined by UV absorption of a solution of the respective RNA at a wavelength of 260 nm using a spectral photometer (DU 640B, Beckman Coulter GmbH, Unterschleiβheim, Germany). Double stranded RNA was generated by mixing an equimolar solution of complementary strands in annealing buffer (20 mM sodium phosphate, pH 6.8; 100 mM sodium chloride), heated in a water bath at 85-90° C. for 3 minutes and cooled to room temperature over a period of 3-4 hours. The annealed RNA solution was stored at −20° C. until use.

Nucleic acid sequences are represented below using standard nomenclature, and specifically the abbreviations of Table 1.

TABLE 1 Abbreviations Abbreviation Nucleotide(s) A adenosine-3′-phosphate C cytidine-3′-phosphate G guanosine-3′-phosphate U uridine-3′-phosphate N any nucleotide (G, A, C, or T) a 2′-O-methyladenosine-3′-phosphate c 2′-O-methylcytidine-3′-phosphate g 2′-O-methylguanosine-3′-phosphate u 2′-O-methyluridine-3′-phosphate T, dT 2′-deoxythymidine-3′-phosphate sT; sdT 2′-deoxy-thymidine-5′phosphate-phosphorothioate Af 2′-fluoroadenosine-3′-phosphate Cf 2′-fluorocytidine-3′-phosphate Gf 2′-fluoroguanosine-3′-phosphate Uf 2′-fluorouridine-3′-phosphate

Example 2 HAMP siRNA Design Transcripts

siRNA design was carried out to identify siRNAs targeting human, cynomolgus monkey (Macaca fascicularis; herein “cyno”), mouse, and rat HAMP transcripts annotated in the NCBI Gene database ncbi.nlm.nih.gov/gene website. In mouse, the HAMP gene is duplicated, yielding distinct HAMP1 and HAMP2 loci; duplex designs targeted only HAMP1. Design used the following transcripts from the NCBI RefSeq and GenBank collections: Human—NM_021175.2 (SEQ ID NO:1); Cyno—EU076443.1; Mouse—NM_032541.1; Rat—NM_053469.1. Due to the short length of the HAMP transcripts and the high degree of primate/rodent HAMP sequence divergence, siRNA duplexes were designed in multiple separate batches. The separate batches are listed below and matched the various species as follows:

    • human and cyno HAMP, exactly;
    • only human HAMP, exactly;
    • human and cyno HAMP, with mismatches to HAMP in both species allowed at sense-strand position 19 when a G or C HAMP targeting-nucleotide was replaced with a U or A, i.e. “UA-swap”;
    • human and cyno HAMP, with exact match to human HAMP and mismatches to cyno HAMP allowed at sense-strand positions 1, 2, and 19, i.e. “mismatch-to-cyno”;
    • mouse HAMP1, exactly;
    • only rat HAMP, exactly.

All siRNA duplexes were designed that shared 100% identity with all listed human, cyno, mouse, or rat transcripts with the exception(s) of designated mismatched-to-target bases. Unless otherwise noted, duplexes themselves were 100% complementary and double-stranded.

siRNA Design, Specificity, and Efficacy Prediction

The predicted specificity of all possible 19mers was predicted from each sequence. Candidate 19mers were selected that lacked repeats longer than 7 nucleotides. These siRNAs were used in comprehensive searches against the appropriate transcriptomes.

siRNAs strands were assigned to a category of specificity according to the calculated scores: a score above 3 qualifies as highly specific, equal to 3 as specific and between 2.2 and 2.8 as moderately specific. We sorted by the specificity of the antisense strand.

Table 2 provides the sequences of the sense and antisense strands of 42 duplexes targeting the 3′UTR of the human HAMP gene.

Table 3 provides the sequences of the sense and antisense strands of 47 duplexes targeting the CDS of the human HAMP gene.

Table 4 provides the sequences of the sense and antisense strands of the modified duplexes targeting the HAMP gene.

Table 5 provides the sequences of the sense and antisense strands of the unmodified version of the duplexes shown in Table 4.

The antisense-derived human/cyno, mouse, rat, UA-swap, and mismatch-to-cyno oligonucleotides shown in Tables 3-4 were synthesized and formed into duplexes.

In some instances the duplexes contained no chemical modifications (unmodified).

In some instances the duplexes contained modifications (modified). For example, some duplexes were made with “Light Fluoro” chemical modifications as follows: all pyrimidines (cytosine and uridine) in the sense strand were replaced with corresponding 2′-Fluoro bases (2′ Fluoro C and 2′-Fluoro U). In the antisense strand, pyrimidines adjacent to (towards 5′ position) ribo A nucleoside was replaced with their corresponding 2-Fluoro nucleosides.

Example 3 HAMP siRNA Screening Cell Culture and Transfections: Dual Luciferase System:

COS7 cells (ATCC, Manassas, Va.) were grown to near confluence at 37° C. in an atmosphere of 5% CO2 in DMEM (Gibco) supplemented with 10% FBS before being released from the plate by trypsinization. Cells were transfected with a psiCHECK2 vector (Promega) containing the human HAMP open reading frame (ORF). The ORF was introduced following the stop codon in the renilla luciferase sequence. Plasmid transfection was carried out by adding 19.8 μl of Opti-MEM plus 0.2 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad Calif. cat #13778-150) and 2.5 ng plasmid into a 96-well plate and incubated at room temperature for 15 minutes. 80 μl of complete growth media containing ˜2×104 COS7 cells were then added. Cells were incubated for three hours, after which the media was removed from the wells and replaced with 80 μl of complete growth media. Transfection of siRNA was accomplished out by preparing adding 14.8 μl of Opti-MEM plus 0.2 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 5 μl of siRNA duplexes per well into a new 96-well plate and incubated at room temperature for 15 minutes. The 20 μl volumes containing the lipoplexes were then added over the culture plates and incubated for 48 hours. Single dose experiments were performed at final concentrations of 10 nM and 0.1 nM. An additional concentration of 0.01 nM was performed for selected duplexes. Final duplex concentrations for dose response experiments were 10, 1.67, 0.278, 0.046, 0.0077, 0.0012, 0.0002, and 0.000035 nM.

Endogenous System (Human):

For HAMP, HepG2 cells were used. HepG2 cells (ATCC, Manassas, Va.) were grown to near confluence at 37° C. in an atmosphere of 5% CO2 in MEM (Gibco) supplemented with 10% FBS before being released from the plate by trypsinization. Transfection was carried out by adding 14.8 μl of Opti-MEM plus 0.2 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 5 μl of siRNA duplexes per well into a 96-well plate and incubated at room temperature for 15 minutes. 80 μl of complete growth media without antibiotic containing ˜2×104 HepG2 cells were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification. Single dose experiments were performed at final concentrations of 10 nM and 0.1 nM. An additional concentration of 0.01 nM was performed for selected duplexes. Final duplex concentrations for dose response experiments were 10, 1.67, 0.278, 0.046, 0.0077, 0.0012, 0.0002, and 0.000035 nM.

Endogenous System (Cynomolgus):

Transfection was carried out by adding 14.8 μl of Opti-MEM plus 0.2 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 5 μl of siRNA duplexes per well into a 96-well plate and incubated at room temperature for 15 minutes. Primary cynomolgus hepatocytes (M003055-P, Celsis) were thawed and prepared in InVitroGRO CP plating medium (Z99029, Celsis). 80 μl of complete growth media without antibiotic containing ˜2×104 cynomolgus hepatocytes were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification. Single dose experiments were performed at final concentrations of 10 nM and 0.1 nM. Final duplex concentrations for dose response experiments were 10, 1.67, 0.278, 0.046, 0.0077, 0.0012, 0.0002, and 0.000035 nM.

Dual Luciferase Assay (Promega Part E2980):

For cells transfected with the psiCHECK2 vector containing the human HAMP ORF, the Dual Luciferase assay was performed to measure reduction in HAMP levels. Forty-eight hours after transfection, the media was removed over the cells, and cells received 150 uL of a 1:1 mixture of complete growth medium and Dual-Glo Luciferase Reagent. As a control, these reagents were also added to empty wells; data derived from these samples were thus used as a blank measurement. Cells were then incubated for 30 minutes at room temperature on a shaker, protected from light. At this time, luminescence was determined using a SpectraMax M5 (Molecular Devices) with an integration time of 500 ms, and resulting data defined as the firefly luciferase signal. Following measurement, 754 of Dual-Glo Stop & Glo Reagent was added and the plates incubated in the dark at room temperature, without shaking. After an additional 10 minutes luminescence was again measured as above, and resulting data defined as the renilla luciferase signal. Data were background-subtracted, and the renilla values normalized to the firefly Luciferase values. Data were then expressed as percent mock-transfected or percent AD-1955.

Total RNA Isolation Using DYNABEADS mRNA Isolation Kit (Invitrogen, Part #: 610-12):

Cells were harvested and lysed in 150 μl of Lysis/Binding Buffer then mixed for 5 minute at 850 rpm using an Eppendorf Thermomixer (the mixing speed was the same throughout the process). Ten microliters of magnetic beads and 80 μl Lysis/Binding Buffer mixture were added to a round bottom plate and mixed for 1 minute. Magnetic beads were captured using magnetic stand and the supernatant was removed without disturbing the beads. After removing supernatant, the lysed cells were added to the remaining beads and mixed for 5 minutes. After removing supernatant, magnetic beads were washed 2 times with 150 μl Wash Buffer A and mixed for 1 minute. Beads were capture again and supernatant removed. Beads were then washed with 150 μl Wash Buffer B, captured and supernatant was removed. Beads were next washed with 150 μl Elution Buffer, captured and supernatant removed. Beads were allowed to dry for 2 minutes. After drying, 50 μl of Elution Buffer was added and mixed for 5 minutes at 70° C. Beads were captured on magnet for 5 minutes. 40 μl of supernatant was removed and added to another 96 well plate.

cDNA Synthesis Using ABI High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, Calif., Cat #4368813):

A master mix of 2 μl 10× Buffer, 0.8 μl 25× dNTPs, 2 μl Random primers, 1 μl Reverse Transcriptase, 1 μl RNase inhibitor and 3.2 μl of H2O per reaction were added into 10 μl total RNA. cDNA was generated using a Bio-Rad C-1000 or S-1000 thermal cycler (Hercules, Calif.) through the following steps: 25° C. 10 min, 37° C. 120 min, 85° C. 5 sec, 4° C. hold.

Real Time PCR:

For human HAMP, 2 μl of cDNA were added to a master mix containing 0.5 μl GAPDH TaqMan Probe (Applied Biosystems Cat #4326317E), 0.5 μl HAMP TaqMan probe (Applied Biosystems cat # Hs00221783_m1) and 5 μl Lightcycler 480 probe master mix (Roche Cat #04887301001) per well in a 384 well 50 plates (Roche cat #04887301001). For cynomolgus HAMP, 2 μl of cDNA were added to a master mix containing 0.5 μl 18 s TaqMan Probe (Applied Biosystems Cat #4319413E), 0.1 μl 10× custom cynomolgus HAMP probe (Forward primer: CTCCGTTTTCCCACAACA (SEQ ID NO: 39); Reverse primer: CAGCACATCCCACACTTT (SEQ ID NO: 40); Probe: ACCCACTTCCCCATCTGCATT (SEQ ID NO: 41)), and 5 μl Lightcycler 480 probe master mix (Roche Cat #04887301001) per well in a 384 well 50 plates (Roche cat #04887301001). Real time PCR was done in an ABI 7900HT Real Time PCR system (Applied Biosystems) using the ΔΔCt(RQ) assay. Each duplex was tested in two independent transfections and each transfection was assayed in duplicate, unless otherwise noted in the summary tables.

To calculate relative fold change, real time data were analyzed using the ΔΔCt method and normalized to assays performed with cells transfected with 10 nM AD-1955, or mock transfected cells. IC50s were calculated using a 4 parameter fit model using XLFit and normalized to cells transfected with 10 nM AD-1955, mock transfected, or to the average lowest dose.

Table 6 shows the HAMP single dose screening data of the modified duplexes using the dual luciferase assay. Data are expressed as a percent of mock or AD-1955.

Table 7 shows the HAMP single dose screening data of the unmodified duplexes using the human endogenous assay. Data are expressed as a percent of mock.

Table 8 shows the HAMP single dose screening data of the modified duplexes using the human endogenous assay. Data are expressed as a percent of mock.

Table 9 shows the HAMP dose response data of modified and unmodified duplexes using the dual luciferase assay. Cells used included HepG2 and Cyno primary hepatocytes.

Example 4 HFE2 siRNA Design

siRNA design was carried out to identify siRNAs targeting human, rhesus (Macaca mulatta), mouse, and rat HFE2 transcripts annotated in the NCBI Gene database website noted above. There are at least 4 annotated human HFE2 transcripts and at least 3 annotated rhesus transcripts. Accordingly, we focused on the shortest annotated transcript for human, and the rhesus transcript which shared the greatest number of orthologous human exons, and designed on sequences held in common by the alternate transcripts. Design used the following transcripts from the NCBI RefSeq collection: Human—NM_213652.3; Rhesus—XM_001092987.1; Mouse—NM_027126.4; Rat—NM_001012080.1. Due to high primate/rodent sequence divergenge, siRNA duplexes were designed in two separate batches. The first batch matched human and rhesus; the second matched mouse and rat. All siRNA duplexes were designed that shared 100% identity with all listed human/rhesus or mouse/rat transcripts.

siRNA Design, Specificity, and Efficacy Prediction

The predicted specificity of all possible 19mers was predicted from each sequence. Candidate 19mers were selected that lacked repeats longer than 7 nucleotides. These siRNAs were used in comprehensive searches against the appropriate transcriptomes.

siRNAs strands were assigned to a category of specificity according to the calculated scores: a score above 3 qualifies as highly specific, equal to 3 as specific and between 2.2 and 2.8 as moderately specific. We sorted by the specificity of the antisense strand. We then selected duplexes whose antisense oligos lacked GC at the first position, lacked G at both positions 13 and 14, and had 4 or more Us or As in the seed region.

siRNA Sequence Selection

A total of 47 sense and 47 antisense derived human/rhesus, and 40 sense and 40 antisense derived mouse/rat siRNA oligos were synthesized and formed into duplexes.

Table 10A provides the sequences of the sense and antisense strands of the duplexes targeting the HFE2 gene.

Example 5 TFR2 siRNA Design Transcripts

siRNA design was carried out to identify siRNAs targeting human, rhesus (Macaca mulatta), mouse, and rat TFR2 transcripts annotated in the NCBI Gene database website noted above. Design used the following transcripts from the NCBI RefSeq collection: Human—NM_003227.3, NM_001206855.1; Rhesus—XM_001113151.2; Mouse—NM_015799.3; Rat—NM_001105916.1. Due to high primate/rodent sequence divergenge, siRNA duplexes were designed in three separate batches. The first batch matched human and rhesus; the second matched human, rhesus, and mouse; the last batch matched mouse and rat. All siRNA duplexes were designed that shared 100% identity with all listed human/rhesus, human/rhesus/mouse, or mouse/rat transcripts.

siRNA Design, Specificity, and Efficacy Prediction

The predicted specificity of all possible 19mers was predicted from each sequence. Candidate 19mers were selected that lacked repeats longer than 7 nucleotides. These siRNAs were used in comprehensive searches against the appropriate transcriptomes.

siRNAs strands were assigned to a category of specificity according to the calculated scores: a score above 3 qualifies as highly specific, equal to 3 as specific and between 2.2 and 2.8 as moderately specific. We sorted by the specificity of the antisense strand. We then selected duplexes whose antisense oligos lacked GC at the first position, lacked G at both positions 13 and 14, and had 3 or more Us or As in the seed region.

siRNA Sequence Selection

A total of 40 sense and 40 antisense derived human/rhesus, 5 sense and 5 antisense derived human/rhesus/mouse, and 45 sense and 45 antisense derived mouse/rat siRNA oligos were synthesized and formed into duplexes.

Table 10B provides the sequences of the sense and antisense strands of the duplexes targeting the TFR2 gene.

Example 6 HFE2 and TFR2 siRNA Screening Cell Culture and Transfections:

Endogenous system (Human): For TFR2, HepG2 cells were used; Hep3b cells were used for HFE2. HepG2 and Hep3b cells (ATCC, Manassas, Va.) were grown to near confluence at 37° C. in an atmosphere of 5% CO2 in MEM (Gibco) supplemented with 10% FBS before being released from the plate by trypsinization. Transfection was carried out by adding 14.8 μl of Opti-MEM plus 0.2 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 5 μl of siRNA duplexes per well into a 96-well plate and incubated at room temperature for 15 minutes. 80 μl of complete growth media without antibiotic containing ˜2×104 HepG2 cells were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification. Single dose experiments were performed at final concentrations of 10 nM and 0.1 nM. An additional concentration of 0.01 nM was performed for selected duplexes. Final duplex concentrations for dose response experiments were 10, 1.67, 0.278, 0.046, 0.0077, 0.0012, 0.0002, and 0.000035 nM.

Total RNA Isolation Using DYNABEADS mRNA Isolation Kit (Invitrogen, Part #: 610-12):

Cells were harvested and lysed in 150 μl of Lysis/Binding Buffer then mixed for 5 minute at 850 rpm using an Eppendorf Thermomixer (the mixing speed was the same throughout the process). Ten microliters of magnetic beads and 80 μl Lysis/Binding Buffer mixture were added to a round bottom plate and mixed for 1 minute. Magnetic beads were captured using magnetic stand and the supernatant was removed without disturbing the beads. After removing supernatant, the lysed cells were added to the remaining beads and mixed for 5 minutes. After removing supernatant, magnetic beads were washed 2 times with 150 μl Wash Buffer A and mixed for 1 minute. Beads were capture again and supernatant removed. Beads were then washed with 150 μl Wash Buffer B, captured and supernatant was removed. Beads were next washed with 150 μl Elution Buffer, captured and supernatant removed. Beads were allowed to dry for 2 minutes. After drying, 50 μl of Elution Buffer was added and mixed for 5 minutes at 70° C. Beads were captured on magnet for 5 minutes. 40 μl of supernatant was removed and added to another 96 well plate.

cDNA Synthesis Using ABI High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, Calif., Cat #4368813):

A master mix of 2 μl 10× Buffer, 0.8 μl 25× dNTPs, 2 μl Random primers, 1 μl Reverse Transcriptase, 1 μl RNase inhibitor and 3.2 μl of H2O per reaction were added into 10 μl total RNA. cDNA was generated using a Bio-Rad C-1000 or S-1000 thermal cycler (Hercules, Calif.) through the following steps: 25° C. 10 min, 37° C. 120 min, 85° C. 5 sec, 4° C. hold.

Real Time PCR:

2 μl of cDNA were added to a master mix containing 0.5 μl GAPDH TaqMan Probe (Applied Biosystems Cat #4326317E), 0.5 μl HFE2 or TFR2 probes, and 5 μl Lightcycler 480 probe master mix (Roche Cat #04887301001) per well in a 384 well 50 plates (Roche cat #04887301001). HFE2 and TFR2 probes were Applied Biosystems cat # Hs02378779_s1 and Hs00162690_m1, respectively. Real time PCR was done in an ABI 7900HT Real Time PCR system (Applied Biosystems) using the ΔΔCt(RQ) assay. Each duplex was tested in two independent transfections and each transfection was assayed in duplicate, unless otherwise noted in the summary tables.

To calculate relative fold change, real time data were analyzed using the ΔΔCt method and normalized to assays performed with cells transfected with 10 nM AD-1955, or mock transfected cells. IC50s were calculated using a 4 parameter fit model using XLFit and normalized to cells transfected with 10 nM AD-1955, mock transfected, or to the average lowest dose.

Table 11 shows the HFE2 and TFR2 single dose screening data of the duplexes using the human endogenous assay.

Table 12 shows the HFE2 and TFR2 dose response data of the duplexes.

Example 7 HFE siRNA Design Transcripts

siRNA design was carried out to identify siRNAs targeting human, rhesus (Macaca mulatta), mouse, and rat HFE transcripts annotated in the NCBI Gene database website noted above. There are at least 9 annotated human HFE transcripts, at least 5 annotated rhesus transcripts, and at least 4 annotated rat transcripts. Accordingly, we focused on the shortest annotated transcripts for human, rhesus, and rat HFE, and designed on sequences held in common by the alternate transcripts. Design used the following transcripts from the NCBI RefSeq collection: Human—NM_139006.2; Rhesus—XM_001085598.2; Mouse—NM_010424.4; Rat—NM_001173435.1. Due to high primate/rodent sequence divergenge, siRNA duplexes were designed in two separate batches. The first batch matched human and rhesus; the second matched mouse and rat. All siRNA duplexes were designed that shared 100% identity with all listed human/rhesus or mouse/rat transcripts.

siRNA Design, Specificity, and Efficacy Prediction

The predicted specificity of all possible 19mers was predicted from each sequence. Candidate 19mers were selected that lacked repeats longer than 7 nucleotides. These siRNAs were used in comprehensive searches against the appropriate transcriptomes.

siRNAs strands were assigned to a category of specificity according to the calculated scores: a score above 3 qualifies as highly specific, equal to 3 as specific and between 2.2 and 2.8 as moderately specific. We sorted by the specificity of the antisense strand. We then selected duplexes whose antisense oligos lacked GC at the first position, lacked G at both positions 13 and 14, and had 3 or more Us or As in the seed region.

siRNA Sequence Selection

A total of 46 sense and 46 antisense derived human/rhesus, and 24 sense and 24 antisense derived mouse/rat siRNA oligos are synthesized and formed into duplexes. The duplexes are screened using the methods described above. One or more duplexes are selected for further testing.

Example 8 BMPR1a siRNA Design Transcripts

siRNA design was carried out to identify siRNAs targeting mouse and rat BMPR1A transcripts annotated in the NCBI Gene database website noted above. Design used the following transcripts from the NCBI RefSeq collection: Mouse—NM_009758.4; Rat—NM_030849.1. All siRNA duplexes were designed that shared 100% identity with all listed mouse/rat transcripts.

siRNA Design, Specificity, and Efficacy Prediction

The predicted specificity of all possible 19mers was predicted from each sequence. Candidate 19mers were selected that lacked repeats longer than 7 nucleotides. These siRNAs were used in comprehensive searches against the appropriate transcriptomes.

siRNAs strands were assigned to a category of specificity according to the calculated scores: a score above 3 qualifies as highly specific, equal to 3 as specific and between 2.2 and 2.8 as moderately specific. We sorted by the specificity of the antisense strand. We then selected duplexes whose antisense oligos lacked GC at the first position, lacked G at both positions 13 and 14, and had 4 or more Us or As in the seed region.

siRNA Sequence Selection

A total of 46 sense and 46 antisense derived mouse/rat siRNA oligos are synthesized and formed into duplexes. The duplexes are screened using the methods described above. One or more duplexes are selected for further testing.

Example 9 SMAD4 siRNA Design Transcripts

siRNA design was carried out to identify siRNAs targeting human and mouse SMAD4 transcripts annotated in the NCBI Gene database website noted above. Design used the following transcripts from the NCBI RefSeq collection: Human—NM_005359.5; Mouse—NM_008540.2. All siRNA duplexes were designed that shared 100% identity with all listed human/mouse transcripts.

siRNA Design, Specificity, and Efficacy Prediction

The predicted specificity of all possible 19mers was predicted from each sequence. Candidate 19mers were selected that lacked repeats longer than 7 nucleotides. These siRNAs were used in comprehensive searches against the appropriate transcriptomes.

siRNAs strands were assigned to a category of specificity according to the calculated scores: a score above 3 qualifies as highly specific, equal to 3 as specific and between 2.2 and 2.8 as moderately specific. We sorted by the specificity of the antisense strand. We then selected duplexes whose antisense oligos lacked GC at the first position, lacked G at both positions 13 and 14, and had 4 or more Us or As in the seed region.

siRNA Sequence Selection

Tables 15-16 provide the sequences of the sense and antisense strands of the duplexes targeting SMAD4 mRNA at the indicated locations. Some duplexes were modified as indicated. These siRNA oligos were synthesized and formed into duplexes for further testing as described below.

Example 10 IL6R siRNA Design Transcripts

siRNA design was carried out to identify siRNAs targeting mouse and rat IL6R transcripts annotated in the NCBI Gene database website noted above. Design used the following transcripts from the NCBI RefSeq collection: Mouse—NM_010559.2; Rat—NM_017020.3. All siRNA duplexes were designed that shared 100% identity with all listed mouse/rat transcripts.

siRNA Design, Specificity, and Efficacy Prediction

The predicted specificity of all possible 19mers was predicted from each sequence. Candidate 19mers were selected that lacked repeats longer than 7 nucleotides. These siRNAs were used in comprehensive searches against the appropriate transcriptomes.

siRNAs strands were assigned to a category of specificity according to the calculated scores: a score above 3 qualifies as highly specific, equal to 3 as specific and between 2.2 and 2.8 as moderately specific. We sorted by the specificity of the antisense strand. We then selected duplexes whose antisense oligos lacked GC at the first position and had 2 or more Us or As in the seed region.

siRNA Sequence Selection

A total of 44 sense and 44 antisense derived mouse/rat siRNA oligos are synthesized and formed into duplexes. The duplexes are screened using the methods described above. One or more duplexes are selected for further testing.

Example 11 BMP6 siRNA Design Transcripts

siRNA design was carried out to identify siRNAs targeting human, rhesus (Macaca mulatta), mouse, and rat BMP6 transcripts annotated in the NCBI Gene database website noted above. Design used the following transcripts from the NCBI RefSeq collection: Human—NM_001718.4; Rhesus—XM_001085364.2; Mouse—NM_007556.2; Rat—NM_013107.1. Due to high primate/rodent sequence divergenge, siRNA duplexes were designed in three separate batches. The first batch matched human and rhesus; the second matched human, rhesus, and mouse; the last batch matched mouse and rat. All siRNA duplexes were designed that shared 100% identity with all listed human/rhesus, human/rhesus/mouse, or mouse/rat transcripts.

siRNA Design, Specificity, and Efficacy Prediction

The predicted specificity of all possible 19mers was predicted from each sequence. Candidate 19mers were selected that lacked repeats longer than 7 nucleotides. These siRNAs were used in comprehensive searches against the appropriate transcriptomes.

siRNAs strands were assigned to a category of specificity according to the calculated scores: a score above 3 qualifies as highly specific, equal to 3 as specific and between 2.2 and 2.8 as moderately specific. We sorted by the specificity of the antisense strand. We then selected duplexes whose antisense oligos lacked GC at the first position, lacked G at both positions 13 and 14, and had 3 or more Us or As in the seed region.

siRNA Sequence Selection

Table 21 provides the sequences of the sense and antisense strands of the duplexes targeting BMP6 mRNA. Some duplexes were modified as indicated. These siRNA oligos were synthesized and formed into duplexes for further testing using the methods described herein.

Example 12 Neo1 siRNA Design Transcripts

siRNA design was carried out to identify siRNAs targeting human and mouse NEO1 transcripts annotated in the NCBI Gene database website noted above. There are 2 annotated mouse NEO1 transcripts. Accordingly, we focused on the shortest annotated transcripts for mouse NEO1, and designed on sequences held in common by the alternate transcripts. Design used the following transcripts from the NCBI RefSeq collection: Human—NM_002499.2; Mouse—NM_001042752.1. All siRNA duplexes were designed that shared 100% identity with all listed human/mouse transcripts.

siRNA Design, Specificity, and Efficacy Prediction

The predicted specificity of all possible 19mers was predicted from each sequence. Candidate 19mers were selected that lacked repeats longer than 7 nucleotides. These siRNAs were used in comprehensive searches against the appropriate transcriptomes.

siRNAs strands were assigned to a category of specificity according to the calculated scores: a score above 3 qualifies as highly specific, equal to 3 as specific and between 2.2 and 2.8 as moderately specific. We sorted by the specificity of the antisense strand. We then selected duplexes whose antisense oligos lacked GC at the first position, lacked G at both positions 13 and 14, and had 3 or more Us or As in the seed region.

siRNA Sequence Selection

Tables 17-18 provide the sequences of the sense and antisense strands of the duplexes targeting NEO1 mRNA at the indicated locations. Some duplexes were modified as indicated. These siRNA oligos were synthesized and formed into duplexes for further testing as described below.

Example 13 Activity of Murine siRNA In Vivo

The efficacy of one or more siRNAs described above is determined in mice, e.g., normal 10 week old 129s6/svEvTac mice using AD-1955 targeting luciferase as a control. The siRNAs are formulated as described herein and administered, e.g., through i.v. bolus at a dose of, e.g., 10 mg/kg. Forty eight hours after injection, the liver and serum samples are harvested. The liver mRNA levels of the target mRNA are determined by qRT-PCR using gene specific primers and serum iron levels are determined using Feroxcine (Randox Life Sciences) and Hitachi 717 instrument.

siRNAs that result in lowering of mRNA are selected for further evaluation.

Example 14 Activity of Murine Hepcidin siRNA In Vivo

The efficacy of an HAMP siRNA AD-10812 was determined in mice using AF-011 formulated control siRNA and PBS as controls. Each siRNA was formulated with AF-011. AF-011 is also known as LNP11 (See Table A above; MC-3/DSPC/Cholesterol/PEG-DMG (50/10/38.5/1.5); Lipid:siRNA 10:1)).

position in mouse SEQ SEQ access. # sense strand sequence ID antisense strand ID duplex NM_032541.1 (5′-3′) NO sequence (5′-3′) NO name 245-263 uGcuGuAAcAAuucccAGuTsT 42 ACUGGGAAUUGUuAcAGcATsT 43 AD-10812

PBS and the siRNAs were administered at various dosages to the mice as shown in FIG. 1: 1 mg/kg, 0.3 mg/kg, 0.1 mg/kg, 0.03 mg/kg, 0.01 mg/kg, and 0.003 mg/kg. A single siRNA dose was administered to each mouse. After injection, liver and serum samples were harvested from the mice. The liver Hamp1 mRNA levels were determined by qRT-PCR using Hamp1 specific primers and serum iron levels were determined FIG. 1 shows the HAMP1 mRNA levels in mouse liver following various dosages of siRNA and the serum iron concentration (μg/dL) following various dosages of siRNA.

Administration of AD-10812 HAMP siRNA to mice resulted in lowering of HAMP mRNA by >80% following a single dose. Administration of AD-10812 HAMP siRNA to mice resulted in an approximately 2-fold increase in serum iron following a single dose.

Example 15 Activity of Hepcidin siRNA in Nonhuman Primates (NHPs) In Vivo

The efficacy of an HAMP siRNA AD-11459 was determined in male cynomolgus monkeys using AF-011 siRNA as a control.

Duplex Start Sense SEQ ID Antisense Target ID Position Name Sense Sequence NO Name Antisense Sequence SEQ ID NO HAMP AD- 382 A-18280.2 GAAcAuAGGucuuG 30 A-18304.1 uAuUCcAAGACCuAuGuUC 44 11459 GAAuAdTsdT dTsdT

Each siRNA was formulated with AF-011. The siRNAs were administered intravenously at a dose of 1 mg/kg via a 15 minute infusion. A single siRNA dose was administered to each monkey. After injection, liver and serum samples were harvested. Liver samples were taken at 48 hours (h) post-injection. Serum samples were taken at Day −9, Day −6, Day −3, 24 h post-injection, and 48 h post-injection. The liver Hamp mRNA levels were determined by qRT-PCR using Hamp specific primers and serum iron levels were determined Serum HAMP protein levels were also determined. FIG. 2 shows the HAMP mRNA levels in liver following siRNA administration as well as the serum iron concentration (μg/dL) and the HAMP serum protein concentration (mg/mL) following siRNA administration.

Single administration of LNP-siRNA AD-11459 resulted in rapid reduction of hepcidin mRNA and protein levels and elevation of serum iron levels in NHPs.

Example 16 Silencing of Murine TFR2 Via siRNA In Vivo

The efficacy of TFR2 siRNA AD-47882 (see table below for sequences) was determined in C57BL6 mice using AF-011 siRNA and PBS as controls. Each siRNA was formulated with AF-011. PBS and the siRNAs were administered at various dosages to the mice as shown in FIG. 3: 1 mg/kg, 0.3 mg/kg, 0.1 mg/kg, and 0.03 mg/kg. After injection, liver and serum samples were harvested from the mice. The liver Hamp1 and TFR2 mRNA levels were determined by qRT-PCR using gene specific primers and transferrin saturation were determined at 48 hours post-injection. FIG. 3 shows the HAMP1 and TFR2 mRNA levels in mouse liver following various dosages of siRNA and the percent (%) transferrin saturation following various dosages of siRNA.

Duplex Target ID Sense Sequence SEQ ID NO Antisense Sequence SEQ ID NO TFR2 AD- ccAcGuGAuucuccu 45 AGAAAGGAGAAUcACG 46 47882 uucudTsdT UGGdTsdT

Administration of AD-47882 siRNA to mice resulted in lowering of HAMP and TFR2 mRNA levels. Administration of AD-47882 siRNA to mice resulted in an increase in transferrin saturation.

Example 17 Silencing of Murine TFR2 Via siRNA In Vivo

The duration of TFR2 siRNA AD-47882 was determined in C57BL6 mice. The siRNAs were administered at in a single 0.3 mg/kg dose intravenously. Each siRNA was formulated with AF-011. After injection, liver and serum samples were harvested from the mice at various time points shown in FIG. 4. The liver Hamp1 and TFR2 mRNA levels were determined by qRT-PCR using gene specific primers and transferrin saturation were determined FIG. 4 shows the HAMP1 and TFR2 mRNA levels in mouse liver following administration of siRNA and the percent (%) transferrin saturation over a 30 day time course.

Administration of AD-47882 siRNA to mice resulted in lowering of HAMP and TFR2 mRNA levels. Administration of AD-47882 siRNA to mice resulted in an increase in transferrin saturation.

Example 18 Silencing of Rat TFR2 Via siRNA In Vivo

The duration and efficacy of TFR2 siRNA AD-47882 was determined in male Lewis rats using the anemia of chronic disease (ACD) model described in Coccia et al., Exp. Hematology, 2001. Briefly, anemia was initiated in the rats with a single intraperaoneal (i.p.) injection of PG-APS (polymers from Group A Streptococci). The rats were then treated 3× per week with AD-47882 siRNA, AF-011 control siRNA, or saline control starting at day 21 post PG-APS. Each siRNA was formulated with AF-011. Serum and hematology parameters were measured biweekly and at 48 hours post final treatment. Serum samples were harvested from the rats at various time points as shown in FIG. 5. Liver mRNA measurement was taken at 48 hours post final treatment. FIG. 5 shows the HAMP1 and TFR2 mRNA levels in rat liver following administration of siRNA. FIG. 5 also shows the serum iron and Hb concentrations at various time points.

Administration of AD-47882 siRNA resulted in lowering of HAMP and TFR2 mRNA levels. Administration of AD-47882 siRNA resulted in an approximate 2× increase in serum iron upon treatment. Administration of AD-47882 siRNA resulted in an increase in Hb levels to 11-12 g/dL with treatment.

Example 19 TFR2 siRNA Selection and Screening

siRNA Sequence Selection

Table 13 provides the sequences of the sense and antisense strands of the duplexes targeting the TFR2 gene at the indicated locations (64 or 239). These siRNA oligos were synthesized and formed into duplexes.

Cell Culture and Transfections:

Endogenous system (Human): For TFR2, HepG2 cells were used. HepG2 cells (ATCC, Manassas, Va.) were grown to near confluence at 37° C. in an atmosphere of 5% CO2 in MEM (Gibco) supplemented with 10% FBS before being released from the plate by trypsinization. Transfection was carried out by adding 14.8 μl of Opti-MEM plus 0.2 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 5 μl of siRNA duplexes per well into a 96-well plate and incubated at room temperature for 15 minutes. 80 μl of complete growth media without antibiotic containing ˜2×104 HepG2 cells were then added to the siRNA mixture. Cells were incubated for 24 hours prior to RNA purification. Single dose experiments were performed at final concentrations of 10 nM and 0.1 nM and 0.01 nM. An additional concentration of 0.01 nM was performed for selected duplexes.

Total RNA Isolation Using DYNABEADS mRNA Isolation Kit (Invitrogen, Part #: 610-12):

Cells were harvested and lysed in 150 μl of Lysis/Binding Buffer then mixed for 5 minute at 850 rpm using an Eppendorf Thermomixer (the mixing speed was the same throughout the process). Ten microliters of magnetic beads and 80 μl Lysis/Binding Buffer mixture were added to a round bottom plate and mixed for 1 minute. Magnetic beads were captured using magnetic stand and the supernatant was removed without disturbing the beads. After removing supernatant, the lysed cells were added to the remaining beads and mixed for 5 minutes. After removing supernatant, magnetic beads were washed 2 times with 150 μl Wash Buffer A and mixed for 1 minute. Beads were capture again and supernatant removed. Beads were then washed with 150 μl Wash Buffer B, captured and supernatant was removed. Beads were next washed with 150 μl Elution Buffer, captured and supernatant removed. Beads were allowed to dry for 2 minutes. After drying, 50 μl of Elution Buffer was added and mixed for 5 minutes at 70° C. Beads were captured on magnet for 5 minutes. 40 μl of supernatant was removed and added to another 96 well plate.

cDNA Synthesis Using ABI High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, Calif., Cat #4368813):

A master mix of 2 μl 10× Buffer, 0.8 μl 25× dNTPs, 2 μl Random primers, 1 μl Reverse Transcriptase, 1 μl RNase inhibitor and 3.2 μl of H2O per reaction were added into 10 μl total RNA. cDNA was generated using a Bio-Rad C-1000 or S-1000 thermal cycler (Hercules, Calif.) through the following steps: 25° C. 10 min, 37° C. 120 min, 85° C. 5 sec, 4° C. hold.

Real Time PCR:

2 μl of cDNA were added to a master mix containing 0.5 μl GAPDH TaqMan Probe (Applied Biosystems Cat #4326317E), 0.5 μl TFR2 probes, and 5 μl Lightcycler 480 probe master mix (Roche Cat #04887301001) per well in a 384 well 50 plates (Roche cat #04887301001). TFR2 probes were Applied Biosystems cat # Hs02378779_s1 and Hs00162690_m1, respectively. Real time PCR was done in an ABI 7900HT Real Time PCR system (Applied Biosystems) using the ΔΔCt(RQ) assay. Each duplex was tested in two independent transfections and each transfection was assayed in duplicate, unless otherwise noted in the summary tables.

To calculate relative fold change, real time data were analyzed using the ΔΔCt method and normalized to assays performed with cells transfected with 10 nM AD-1955, or mock transfected cells. IC50s were calculated using a 4 parameter fit model using XLFit and normalized to cells transfected with 10 nM AD-1955, mock transfected, or to the average lowest dose.

Table 14 shows the TFR2 dose response data of the duplexes.

Example 20 Activity of TFR2 and HAMP siRNA in Non-Human Primates (NHPs) In Vivo

The efficacy of AD-52590, AD-51707, and AD-48141 was determined in separate cynomolgus monkeys (3 each) using PBS as a control. The sequence of AD-52590, AD-51707, and AD-48141 are shown below and in Table 4, 10B, and 13.

Duplex Start SEQ ID Target ID Position SEQ ID NO Sense Sequence NO Antisense Sequence TFR2 AD- 239 35 cAGGcAGcCAAAcCuCAuUdTsdT 38 AAUGAGGUuUGGCUGcCugdTsdT 52590 TFR2 AD- 1051 47 ccuucAAucAAAcccAGuudTsdT 48 AACuGGGUuUGAuUGAAGGdTsdT 51707 HAMP AD- 382 30 GAAcAuAGGucuuGGAAuAdTdT 44 UAuUCcAAGACCuAuGuUCdTdT 48141

Each siRNA was formulated with AF-011. The siRNAs were administered intravenously as indicated (0.1 mg/kg, 0.03 mg/kg, or 1 mg/kg) via a 15 minute infusion. A single siRNA dose was administered to each monkey. After injection, liver and serum samples were harvested. Liver biopsy samples were taken at 48 hours (h) post-injection. Serum samples were taken at Day −9, Day −6, Day −3, 24 h post-injection, and 48 h post-injection. The liver Hamp mRNA levels were determined by qRT-PCR using Hamp specific primers. The liver TFR2 mRNA levels were determined by qRT-PCR using TFR2 specific primers. Serum iron levels were determined and are shown in μg/dL. Serum HAMP protein levels were also determined and are shown in ng/mL.

FIG. 6 shows HAMP mRNA levels in the liver of each animal following siRNA administration, relative to PBS controls. FIG. 7 shows TFR2 mRNA levels in the liver of each animal following siRNA administration, relative to PBS controls. FIG. 8 shows that serum iron concentration was increased in each animal after 1 mg/kg AD-52590 siRNA administration. FIG. 9 shows that the HAMP serum protein concentration was decreased in each animal following 1 mg/kg AD-52590 siRNA administration.

Single administration of AD-52590 resulted in rapid reduction of hepcidin mRNA and protein levels, TFR2 mRNA levels, and elevation of serum iron levels in NHPs.

Example 21 NEO1 and SMAD4 Duplex Screening

Human/mouse cross-reactive Neo1 and Smad4 siRNAs were screened in primary mouse hepatocytes. Duplexes are shown in Tables 15, 16, 17, and 18.

Cell Culture and Transfections:

Freshly isolated primary mouse hepatocytes (PMH) were transfected by adding 14.8 μl of Opti-MEM plus 0.2 μl of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad Calif. cat #13778-150) to 5 μl of siRNA duplexes per well into a 96-well plate and incubated at room temperature for 15 minutes. 80 μl of primary hepatocyte media containing ˜2×104 PMH cells were then added to the siRNA mixture. Cells were incubated for either 24 prior to RNA purification. Single dose experiments were performed at 10 nM and 0.1 nM final duplex concentration.

Total RNA Isolation Using DYNABEADS mRNA Isolation Kit (Invitrogen, Part #: 610-12):

Cells were harvested and lysed in 150 μl of Lysis/Binding Buffer then mixed for 5 minute at 850 rpm using an Eppendorf Thermomixer (the mixing speed was the same throughout the process). Ten microliters of magnetic beads and 80 μl Lysis/Binding Buffer mixture were added to a round bottom plate and mixed for 1 minute. Magnetic beads were captured using magnetic stand and the supernatant was removed without disturbing the beads. After removing supernatant, the lysed cells were added to the remaining beads and mixed for 5 minutes. After removing supernatant, magnetic beads were washed 2 times with 150 μl Wash Buffer A and mixed for 1 minute. Beads were capture again and supernatant removed. Beads were then washed with 150 μl Wash Buffer B, captured and supernatant was removed. Beads were next washed with 150 μl Elution Buffer, captured and supernatant removed. Beads were allowed to dry for 2 minutes. After drying, 50 μl of Elution Buffer was added and mixed for 5 minutes at 70° C. Beads were captured on magnet for 5 minutes. 40 μl of supernatant was removed and added to another 96 well plate.

cDNA Synthesis Using ABI High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, Calif., Cat #4368813):

A master mix of 2 μl 10× Buffer, 0.8 μl 25× dNTPs, 2 μl Random primers, 1 μl Reverse Transcriptase, 1 μl RNase inhibitor and 3.2 μl of H2O per reaction were added into 10 μl total RNA. cDNA was generated using a Bio-Rad C-1000 or S-1000 thermal cycler (Hercules, Calif.) through the following steps: 25° C. 10 min, 37° C. 120 min, 85° C. 5 sec, 4° C. hold.

Real Time PCR:

2 μl of cDNA were added to a master mix containing 0.5 μl of mouse GAPDH TaqMan Probe (Applied Biosystems Cat #4352932E), 0.5 μl Neo1 or SMAD4 TaqMan probe (Applied Biosystems cat # Neo1-Mm00476326_m1 or SMAD4 Mm03023996_m1) and 5 μl Lightcycler 480 probe master mix (Roche Cat #04887301001) per well in a 384 well 50 plates (Roche cat #04887301001). Real time PCR was done in an ABI 7900HT Real Time PCR system (Applied Biosystems) using the ΔΔCt(RQ) assay. Each duplex was tested in two independent transfections and each transfection was assayed in duplicate, unless otherwise noted.

To calculate relative fold change, real time data were analyzed using the ΔΔCt method and normalized to assays performed with cells transfected with 10 nM AD-1955, or mock transfected cells. IC50s were calculated using a 4 parameter fit model using XLFit and normalized to cells transfected with AD-1955 or naïve cells over the same dose range, or to its own lowest dose.

Table 19 shows the percent remaining mRNA remaining for each SMAD4 duplex tested at 0.1 nM and 10 nM. Controls were 10 nM AD-1955, mock transfected. Table 20 shows the percent remaining mRNA remaining for each NEO1 duplex tested at 0.1 nM and 10 nM. Controls were 10 nM AD-1955, mock transfected.

Example 22 In Vivo Combinatorial Use of dsRNAs Targeting HAMP-Related mRNAs

The efficacy of TFR2 siRNA AD-47882 and HFE siRNA AD-47320 (see table below for sequences) alone and in combination was determined in C57BL6 female mice using AF-011-Luc siRNA and PBS as controls. Each siRNA was formulated with AF-011. PBS and the siRNAs were administered at various (mg/kg) dosages to the mice as shown on the X-axis of each subfigure (A-D) of FIG. 10. 48 hours after injection, liver and serum samples were harvested from the mice.

Duplex Target ID Accession Number Sense Sequence SEQ ID NO Antisense Sequence SEQ ID NO HFE AD- NM_010424.4 uuuucuccAGuuAAG 49 UGAACUuAACUGGAGA 51 47320 uucAdTsdT AAAdTsdT HFE Unmod NM_010424.4 UUUUCUCCAGUUA 50 UGAACUUAACUGGAG 52 AD- AGUUCA AAAA 47320

The liver Hamp1, HFE, and TFR2 mRNA levels were determined by qRT-PCR using gene specific primers. Blood was processed into serum to measure serum iron, transferrin saturation, and UIBC. FIG. 10A shows the HAMP1, HFE, and TFR2 mRNA levels in mouse liver following various dosages of each siRNA group or PBS. FIGS. 10B-D shows serum iron concentration, transferrin saturation, and UIBC concentration in the serum of each group tested.

Example 23 Inhibition of HAMP in Humans

A human subject is treated with a siRNA targeted to a HAMP gene to inhibit expression of the HAMP gene to treat a condition. In some instances, one or more additional siRNAs are co-administered, e.g., an siRNA targeted to a HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene.

A subject in need of treatment is selected or identified.

The identification of the subject can occur in a clinical setting, or elsewhere, e.g., in the subject's home through the subject's own use of a self-testing kit.

At time zero, a suitable first dose of an siRNA is administered to the subject. The siRNA is formulated as described herein. After a period of time following the first dose, e.g., 7 days, 14 days, and 21 days, the subject's condition is evaluated. This measurement can be accompanied by a measurement of target gene expression in said subject, and/or the products of the successful siRNA-targeting of mRNA. Other relevant criteria can also be measured. The number and strength of doses are adjusted according to the subject's needs.

Example 24 Inhibition of HFE2 in Humans

A human subject is treated with a siRNA targeted to a gene to inhibit expression of the HFE2 gene to treat a condition. In some instances, one or more additional siRNAs are co-administered, e.g., an siRNA targeted to a HAMP, HFE, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene.

A subject in need of treatment is selected or identified.

The identification of the subject can occur in a clinical setting, or elsewhere, e.g., in the subject's home through the subject's own use of a self-testing kit.

At time zero, a suitable first dose of an siRNA is administered to the subject. The siRNA is formulated as described herein. After a period of time following the first dose, e.g., 7 days, 14 days, and 21 days, the subject's condition is evaluated. This measurement can be accompanied by a measurement of target gene expression in said subject, and/or the products of the successful siRNA-targeting of mRNA. Other relevant criteria can also be measured. The number and strength of doses are adjusted according to the subject's needs.

Example 25 Inhibition of HFE in Humans

A human subject is treated with a siRNA targeted to a gene to inhibit expression of the HFE gene to treat a condition. In some instances, one or more additional siRNAs are co-administered, e.g., an siRNA targeted to a HAMP, HFE2, TFR2, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene.

A subject in need of treatment is selected or identified.

The identification of the subject can occur in a clinical setting, or elsewhere, e.g., in the subject's home through the subject's own use of a self-testing kit.

At time zero, a suitable first dose of an siRNA is administered to the subject. The siRNA is formulated as described herein. After a period of time following the first dose, e.g., 7 days, 14 days, and 21 days, the subject's condition is evaluated. This measurement can be accompanied by a measurement of target gene expression in said subject, and/or the products of the successful siRNA-targeting of mRNA. Other relevant criteria can also be measured. The number and strength of doses are adjusted according to the subject's needs.

Example 26 Inhibition of TFR2 in Humans

A human subject is treated with a siRNA targeted to a gene to inhibit expression of the TFR2 gene to treat a condition. In some instances, one or more additional siRNAs are co-administered, e.g., an siRNA targeted to a HAMP, HFE2, HFE, BMPR1a, SMAD4, IL6R, BMP6, and/or NEO1 gene.

A subject in need of treatment is selected or identified.

The identification of the subject can occur in a clinical setting, or elsewhere, e.g., in the subject's home through the subject's own use of a self-testing kit.

At time zero, a suitable first dose of an siRNA is administered to the subject. The siRNA is formulated as described herein. After a period of time following the first dose, e.g., 7 days, 14 days, and 21 days, the subject's condition is evaluated. This measurement can be accompanied by a measurement of target gene expression in said subject, and/or the products of the successful siRNA-targeting of mRNA. Other relevant criteria can also be measured. The number and strength of doses are adjusted according to the subject's needs.

Example 27 Inhibition of BMPR1a in Humans

A human subject is treated with a siRNA targeted to a gene to inhibit expression of the BMPR1a gene to treat a condition. In some instances, one or more additional siRNAs are co-administered, e.g., an siRNA targeted to a HAMP, HFE2, HFE, TFR2, SMAD4, IL6R, BMP6, and/or NEO1 gene.

A subject in need of treatment is selected or identified.

The identification of the subject can occur in a clinical setting, or elsewhere, e.g., in the subject's home through the subject's own use of a self-testing kit.

At time zero, a suitable first dose of an siRNA is administered to the subject. The siRNA is formulated as described herein. After a period of time following the first dose, e.g., 7 days, 14 days, and 21 days, the subject's condition is evaluated. This measurement can be accompanied by a measurement of target gene expression in said subject, and/or the products of the successful siRNA-targeting of mRNA. Other relevant criteria can also be measured. The number and strength of doses are adjusted according to the subject's needs.

Example 28 Inhibition of SMAD4 in Humans

A human subject is treated with a siRNA targeted to a gene to inhibit expression of the SMAD4 gene to treat a condition. In some instances, one or more additional siRNAs are co-administered, e.g., an siRNA targeted to a HAMP, HFE2, HFE, TFR2, BMPR1a, IL6R, BMP6, and/or NEO1 gene.

A subject in need of treatment is selected or identified.

The identification of the subject can occur in a clinical setting, or elsewhere, e.g., in the subject's home through the subject's own use of a self-testing kit.

At time zero, a suitable first dose of an siRNA is administered to the subject. The siRNA is formulated as described herein. After a period of time following the first dose, e.g., 7 days, 14 days, and 21 days, the subject's condition is evaluated. This measurement can be accompanied by a measurement of target gene expression in said subject, and/or the products of the successful siRNA-targeting of mRNA. Other relevant criteria can also be measured. The number and strength of doses are adjusted according to the subject's needs.

Example 29 Inhibition of IL6R in Humans

A human subject is treated with a siRNA targeted to a gene to inhibit expression of the IL6R gene to treat a condition. In some instances, one or more additional siRNAs are co-administered, e.g., an siRNA targeted to a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, BMP6, and/or NEO1 gene.

A subject in need of treatment is selected or identified.

The identification of the subject can occur in a clinical setting, or elsewhere, e.g., in the subject's home through the subject's own use of a self-testing kit.

At time zero, a suitable first dose of an siRNA is administered to the subject. The siRNA is formulated as described herein. After a period of time following the first dose, e.g., 7 days, 14 days, and 21 days, the subject's condition is evaluated. This measurement can be accompanied by a measurement of target gene expression in said subject, and/or the products of the successful siRNA-targeting of mRNA. Other relevant criteria can also be measured. The number and strength of doses are adjusted according to the subject's needs.

Example 30 Inhibition of BMP6 in Humans

A human subject is treated with a siRNA targeted to a gene to inhibit expression of the BMP6 gene to treat a condition. In some instances, one or more additional siRNAs are co-administered, e.g., an siRNA targeted to a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, and/or NEO1 gene.

A subject in need of treatment is selected or identified.

The identification of the subject can occur in a clinical setting, or elsewhere, e.g., in the subject's home through the subject's own use of a self-testing kit.

At time zero, a suitable first dose of an siRNA is administered to the subject. The siRNA is formulated as described herein. After a period of time following the first dose, e.g., 7 days, 14 days, and 21 days, the subject's condition is evaluated. This measurement can be accompanied by a measurement of target gene expression in said subject, and/or the products of the successful siRNA-targeting of mRNA. Other relevant criteria can also be measured. The number and strength of doses are adjusted according to the subject's needs.

Example 31 Inhibition of NEO1 in Humans

A human subject is treated with a siRNA targeted to a gene to inhibit expression of the NEO1 gene to treat a condition. In some instances, one or more additional siRNAs are co-administered, e.g., an siRNA targeted to a HAMP, HFE2, HFE, TFR2, BMPR1a, SMAD4, IL6R, and/or BMP6 gene.

A subject in need of treatment is selected or identified.

The identification of the subject can occur in a clinical setting, or elsewhere, e.g., in the subject's home through the subject's own use of a self-testing kit.

At time zero, a suitable first dose of an siRNA is administered to the subject. The siRNA is formulated as described herein. After a period of time following the first dose, e.g., 7 days, 14 days, and 21 days, the subject's condition is evaluated. This measurement can be accompanied by a measurement of target gene expression in said subject, and/or the products of the successful siRNA-targeting of mRNA. Other relevant criteria can also be measured. The number and strength of doses are adjusted according to the subject's needs.

Tables

TABLE B SEQ ID NO DESCRIPTION SEQUENCE 1 Human HAMP - gactgtcactcggtcccagacaccagagcaagctcaagacccagcagtgggacagcc NM_021175.2 agacagacggcacgatggcactgagctcccagatctgggccgcttgcctcctgctcc tcctcctcctcgccagcctgaccagtggctctgttttcccacaacagacgggacaac ttgcagagctgcaaccccaggacagagctggagccagggccagctggatgcccatgt tccagaggcgaaggaggcgagacacccacttccccatctgcattttctgctgcggct gctgtcatcgatcaaagtgtgggatgtgctgcaagacgtagaacctacctgccctgc ccccgtcccctcccttccttatttattcctgctgccccagaacataggtcttggaat aaaatggctggttcttttgttttccaaaaaa 2 Cyno HAMP - tcaagacctagcagtgggacagccagacagacggcacgatggcactgagctcccaga EU076443.1 tctgggccacttgcctcctcctccttctcctcctcgccagcctgaccagtggctccg ttttcccacaacagacgggacaacttgcagagctgcaacctcaggacagagctggag ccagggccagctggacgcccatgctccagaggcgaaggaggcgagacacccacttcc ccatctgcattttctgctgcggctgctgtcatcgatcaaagtgtgggatgtgctgca ggacgtagaaccttcctgccctgcccccatcccctcccttccttatttattcctgct gccccagaacacaggtcttggaataaaacggctgattcttttgttttcc 3 Mouse HAMP - agtccttagactgcacagcagaacagaaggcatgatggcactcagcactcggaccca NM_032541.1 ggctgcctgtctcctgcttctcctccttgccagcctgagcagcaccacctatctcca tcaacagatgagacagactacagagctgcagcctttgcacggggaagaaagcagggc agacattgcgataccaatgcagaagagaaggaagagagacaccaacttccccatctg catcttctgctgtaaatgctgtaacaattcccagtgtggtatctgttgcaaaacata gcctagagccacatcctgacctctctacacccctgcagcccctcaaccccattattt attcctgccctccccaccaatgaccttgaaataaagacgattttattttcaaaaaaa aaaaaaaaaaa 4 Rat HAMP - cacgagggcaggacagaaggcaagatggcactaagcactcggatccaggctgcctgt NM_053469.1 ctcctgcttctcctcctggccagcctgagcagcggtgcctatctccggcaacagacg agacagactacggctctgcagccttggcatggggcagaaagcaagactgatgacagt gcgctgctgatgctgaagcgaaggaagcgagacaccaacttccccatatgcctcttc tgctgtaaatgctgtaagaattcctcctgtggtctctgttgcataacatagagagcc aagagccttgtcctgacctctcaacacactgcctcccctccgccccattatttattc ctgtcctaccccagcaatgaccttg 5 Human HFE2 - accgtcaactcagtagccacctccctccctgctcagctgtccagtactctggccagc NM_213652.3 catatactcccccttccccccataccaaaccttctctggttccctgacctcagtgag acagcagccggcctggggacctgggggagacacggaggaccccctggctggagctga cccacagagtagggaatcatggctggagaattggatagcagagtaatgtttgacctc tggaaacactcaccatcatatttaagaacatgcaggaatgcattgatcagaaggtgt atcaggctgaggtggataatcttcctgtagcctttgaagatggttctatcaatggag gtgaccgacctgggggatccagtttgtcgattcaaactgctaaccctgggaaccatg tggagatccaagctgcctacattggcacaactataatcattcggcagacagctgggc agctctccttctccatcaaggtagcagaggatgtggccatggccttctcagctgaac aggacctgcagctctgtgttggggggtgccctccaagtcagcgactctctcgatcag agcgcaatcgtcggggagctataaccattgatactgccagacggctgtgcaaggaag ggcttccagtggaagatgcttacttccattcctgtgtctttgatgttttaatttctg gtgatcccaactttaccgtggcagctcaggcagcactggaggatgcccgagccttcc tgccagacttagagaagctgcatctcttcccctcagatgctggggttcctctttcct cagcaaccctcttagctccactcctttctgggctctttgttctgtggctttgcattc agtaaggggaccatcagtcccattactagtttggaaatgatttggagatacagattg gcatagaagaatgtaaagaatcattaaaggaagcagggcctaggagacacgtgaaac aatgacattatccagagtcagatgaggctgcagtccagggttgaaattatcacagaa taaggattctgggcaaggttactgcattccggatctctgtggggctcttcaccaatt tttccagcctcatttatagtaaacaaattgttctaatccatttactgcagatttcac ccttataagtttagaggtcatgaaggttttaatgatcagtaaagatttaagggttga gatttttaagaggcaagagctgaaagcagaagacatgatcattagccataagaaact caaaggaggaagacataattagggaaagaagtctatttgatgaatatgtgtgtgtaa ggtatgttctgctttcttgattcaaaaatgaagcaggcattgtctagctcttaggtg aagggagtctctgcttttgaagaatggcacaggtaggacagaagtatcatccctacc ccctaactaatctgttattaaagctacaaattcttcacaccatcaaaaaaaaaaaaa aaaaaa 6 Rhesus HFE2 - cttctctggctccctgacctcagtgagacagcagccggcctggggacctgggggaga XM_001092987.1 catggagaaagagacggaggaccccctggctggagctgacccacagagtagggaatc atggctggagaattggatagcagagtaatgtttgacctctggaaacaccaaatttct tttttcagtcacttacagggcttccggtcaaaattcactaggtaggagggtcatcag ctgggaagaaccggcgcctggggaacctggctggataggtatgggggagcaaggcca gtcccctagtcccaggtcctcccatggcagtcccccaactctaagcactctcactct cctgctgctcctctgtggacatgctcattctcaatgcaagatcctccgctgcaatgc tgagtatgtatcgtccactctgagccttagaggtggcggttcatcaggagcacttcg aggaggaggaggaggaggaggccggggtggaggggtgggctctggcggcctctgtcg agccctccgctcctatgcgctctgcactcggcgcaccgcccgcacctgccgtgggga cctcgccttccattcggcggtacatggcatcgaagacctgatgatccagcacaactg ctcgcgccagggccctacagcccctcccccgccccggggccccgcccttccaggcgc aggctccggcctccctgccccggacccttgtgactatgaaggccggttttcccggct gcatggtcgtcccccggggttcttgcattgcgcttccttcggggacccccatgtgcg cagcttccaccaccattttcacacatgccgtgtccaaggagcttggcctctactgga taacgacttcctctttgtccaagccaccagctcccccatggcgttgggggccaacgc taccgctacccggaagctcaccatcatatttaagaacatgcaggaatgcattgatca gaaggtctatcaggctgaggtggataatcttcctgcagcctttgaagatggttctgt caatggaggtgaccgacctgggggatccagtttgtcgattcaaactgctaaccctgg gaaccacgtggagatccaagctgcctacattggcacaactataatcattcggcagac agctgggcagctctccttctccatcaaggtagcagaggatgtggccatggccttctc agctgaacaggacctgcagctctgtgttggggggtgccctccaagtcagcgactctc tcgatcagagcgcagtcgtccgggagctataaccattgatactgccagacggctgtg taaggaagggcttccagtggaagatgcttacttccattcctgtgtctttgatgtttt aatttctggtgatcccaactttactgtggcagctcaggcagcactggaggatgcccg agccttcctgccagacttagataagctgcatctcttcccttcagatgctggggtttc tctttcctcagcaaccttcctagccccactcctttctgggctctttgttctgtggct ttgcattcagtaaggaagccatcagtcctattactagtttggaaatgatttggggat agagattggcatagaagaatgtaaacaatcattaaaggaagcagggcccagaagaca catgaaacaatgacatcatccagagtcagatgaggctgcagtccagggttgaaatga tcacagaataaggattctgggcaaggtttctgcattccagacctcttcgccaaattt tccagccccatttacagtaaacaaattgttctttccatttactgcagatttcaccct ataagcttagaggtcatgaaggttttaacaatcagtaaagacttaagggttgagatt tttaagaggcaagagctgaaagcagaagacatgatcattagccataagaaactcaaa ggaagaagaaataattagggaaagaagtctatttgatgaatatgtgtgtgtaaggta tgttctgctttcttggttcaaaaatgaagcgggcgttgtctagctcttaggtgaagg gagtctctgctttggaagaacggcacaggtaggacagaagtatcatccctaccccta actgatctgttattaaagctacaaattcttcacaccgtc 7 Mouse HFE2 - ggctctctgacctgagtgagactgcagccattccggggcaatcatggagaaagagat NM_027126.4 gggggaccccctggctggagcagaccaacagaataggcaactatggctcgagaaccc agtatcagagtaatgcttgacctcgggaaacatcacagaagtacccagagaaattca ctaggtaggaggctcatcatctgggaagaaccggtgcctggggggacctggctggat aggtatgggccagtcccctagtccccggtccccccacggcagccctccaactctaag caccctcactctcctgctgctcctctgtggacaggctcactcccagtgcaagatcct ccgctgcaatgccgagtatgtctcgtccactctgagtcttcggggaggtggctcacc ggacacgccgcgtggaggcggccgtggtgggctggcctcaggtggcttgtgtcgcgc cctgcgctcctacgctctctgcacgcggcgcacggcccgcacctgccgcggggacct tgctttccactctgcggtgcatggcatagaggacctgatgatccagcacaactgctc acgccagggtcccacggccccgcccccggcccggggccccgccctgcccggggccgg gccagcgcccctgaccccagatccctgtgactatgaggcccggttttccaggctgca cggtcgagccccgggcttcttgcattgcgcatcctttggagatccccatgtgcgcag tttccacaaccaatttcacacatgccgtgtccaaggagcttggcccttgctagataa cgacttcctctttgtccaggccaccagctccccggtttcgtcgggagccaacgctac caccatccggaagatcactatcatatttaaaaacatgcaggaatgcattgaccagaa agtctaccaggctgaggtggacaatcttcctgcagcctttgaagatggttctatcaa tgggggcgaccgacctgggggctcgagtttgtccattcaaactgctaaccttgggag tcacgtggagattcgagctgcctacattggaacaactatcatcattcgacagacagc tgggcagctctccttctccatcagggtagcagaggatgtggcgcgggccttctccgc agagcaggacctacagctgtgtgttgggggatgccctccgagccagcgactctctcg ctcagagcgcaaccgccgtggggctatagccatagatactgccagaaggctgtgtaa ggaagggcttccggttgaagatgcctacttccaatcctgcgtctttgatgtttcagt ctccggtgaccccaactttactgtggcagctcagacagctctggacgatgcccgaat cttcttgacggatttagagaacttacatctctttccctcagatgcggggcctcccct ctctcctgccatctgcctagtcccgcttctttcggccctctttgttctgtggctttg cttcagtaagtaggccagcaacccatgactggtttggaaacgatttgaggatagagg ttggtgtgagaaaccacaaagatgtgccaaaggaaacagcggggacaggagacaaca cttactcaatcagatgaggttgcagtccagggctgaaatgaccctagaataaagatt ctgggccagggttttgcactccagaccttggtgtgggctattcaccatggatttccc agttagtgatttcccacttgtaatgaaattccactctccatacacctgataccactc ctacaagcctagagattgtgagagtgctaatgaccagtgaaacattaaaggactgag atatcgtaaaggcaaaaacatgattctctttgagaaagtcaaaagaggagaagctaa ttaggaaaagcttttggttcagaaacgaagtgggcattgtctggcagaggaagtcag cttttggagactggcaccaactcagaaacgggcatttccatcccttcctaatctgtt attaaagcgattagttctccatcctg 8 Rat HFE2 - cggggacagacatggagaaggagatggaggaccccctggctggagcagaccaacaga NM_001012080.1 ataggcaactatggctggagaaccgggtatcagagtaatgcttgacctcgggaaaca ccaaatttcttcttccgatcgcagaagtagtactcggcgaaattcactaggtaggag gctcctcatctgggaagaaccggtgcctggggggacctggctggataggtatggggg atcgaggccggtcccctagtctccggtccccccatggcagtcctccaactctaagca ccctcactctcctgctgctcctctgtggacaggctcactcccagtgcaagatcctcc gctgcaatgccgagtacgtctcgtccactctgagccttcggggagggggctcaccgg acacgccacatggaggcggccgtggtgggccggcctcaggtggcttgtgtcgcgccc tgcgctcctacgctctctgcacgcggcgcaccgcccgcacctgccgcggggacctcg ctttccactccgcggtgcatggcatagaggacctgatgatccagcacaactgctcac gccagggtcccacggcctcgcccccggcccggggtcctgccctgcccggggccggcc cagcgcccctgaccccagatccctgtgactatgaagcccggttttccaggctgcacg gtcgaaccccgggtttcttgcattgtgcttcctttggagacccccatgtgcgcagct tccacaatcactttcacacatgccgcgtccaaggagcttggcccctactagataacg acttcctctttgtccaagccaccagctccccggtagcatcgggagccaacgctacca ccatccggaagatcactatcatatttaaaaacatgcaggaatgcattgaccagaaag tctaccaggctgaggtagacaatcttcctgcagcctttgaagatggttctgtcaatg ggggcgaccgacctgggggctcgagtttgtccattcaaactgctaaccttgggagcc acgtggagattcgagctgcctacattggaacaactataatcgttcgtcagacagctg gacagctctccttctccatcagggtagcggaggatgtggcacgggccttctctgctg agcaggatctacagctgtgtgttgggggatgccctccgagccagcgactctctcgct cagagcgcaatcgccgtggggcgatagccatagatactgccagaaggttgtgtaagg aagggcttccggttgaagatgcctacttccaatcctgcgtctttgatgtttcagtct ccggtgaccccaactttactgtggcagctcagtcagctctggacgatgcccgagtct tcttgaccgatttggagaacttgcaccttttcccagtagatgcggggcctcccctct ctccagccacctgcctagtccggcttctttcggtcctctttgttctgtggttttgca ttcagtaagtaggccagcaacccgtgactagtttggaaacggtttgaggagagaggt tgatgtgagaaaacacaaagatgtgccaaaggaaacagtggggacaggagacaacga ccttactcaatcacacgaggttgcagtccagggctgaaatgaccctagaataaagat tctgagacagggttttgcactccagaccttggtatgggctccccatgaatttcccca ttagtgatttcccacttgtagtgaaattctactctctgtacacctgatatcactcct gcaaggctagagattgtgagagcgctaagggccagcaaaacattaaagggctgagat atcttaaaggcagaaactagaaaaggggaaaccatgattatctataagaaaatcaaa agaggggtttgggaatttagctcagtggtagagcacttgcctagcaagcgcaaggcc ctgggttcggtccccagctcctaaaaaagaaaaaaaaaatcaaaagagaaaaaacta attaaggcaagctttttggttcagaaatgaagtgggcattgtctggcagaggaagtc agcttttggagactggcaccaacatctccacccttcctactctgttattaaagtgac gaattccccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagg 9 Human TFR2 - cgctgggggacagcctgcaggcttcaggaggggacacaagcatggagcggctttggg NM_003227.3 gtctattccagagagcgcaacaactgtccccaagatcctctcagaccgtctaccagc gtgtggaaggcccccggaaagggcacctggaggaggaagaggaagacggggaggagg gggcggagacattggcccacttctgccccatggagctgaggggccctgagcccctgg gctctagacccaggcagccaaacctcattccctgggcggcagcaggacggagggctg ccccctacctggtcctgacggccctgctgatcttcactggggccttcctactgggct acgtcgccttccgagggtcctgccaggcgtgcggagactctgtgttggtggtcagtg aggatgtcaactatgagcctgacctggatttccaccagggcagactctactggagcg acctccaggccatgttcctgcagttcctgggggaggggcgcctggaggacaccatca ggcaaaccagccttcgggaacgggtggcaggctcggccgggatggccgctctgactc aggacattcgcgcggcgctctcccgccagaagctggaccacgtgtggaccgacacgc actacgtggggctgcaattcccggatccggctcaccccaacaccctgcactgggtcg atgaggccgggaaggtcggagagcagctgccgctggaggaccctgacgtctactgcc cctacagcgccatcggcaacgtcacgggagagctggtgtacgcccactacgggcggc ccgaagacctgcaggacctgcgggccaggggcgtggatccagtgggccgcctgctgc tggtgcgcgtgggggtgatcagcttcgcccagaaggtgaccaatgctcaggacttcg gggctcaaggagtgctcatatacccagagccagcggacttctcccaggacccaccca agccaagcctgtccagccagcaggcagtgtatggacatgtgcacctgggaactggag acccctacacacctggcttcccttccttcaatcaaacccagttccctccagttgcat catcaggccttcccagcatcccagcccagcccatcagtgcagacattgcctcccgcc tgctgaggaagctcaaaggccctgtggccccccaagaatggcaggggagcctcctag gctccccttatcacctgggccccgggccacgactgcggctagtggtcaacaatcaca ggacctccacccccatcaacaacatcttcggctgcatcgaaggccgctcagagccag atcactacgttgtcatcggggcccagagggatgcatggggcccaggagcagctaaat ccgctgtggggacggctatactcctggagctggtgcggaccttttcctccatggtga gcaacggcttccggccccgcagaagtctcctcttcatcagctgggacggtggtgact ttggaagcgtgggctccacggagtggctagagggctacctcagcgtgctgcacctca aagccgtagtgtacgtgagcctggacaacgcagtgctgggggatgacaagtttcatg ccaagaccagcccccttctgacaagtctcattgagagtgtcctgaagcaggtggatt ctcccaaccacagtgggcagactctctatgaacaggtggtgttcaccaatcccagct gggatgctgaggtgatccggcccctacccatggacagcagtgcctattccttcacgg cctttgtgggagtccctgccgtcgagttctcctttatggaggacgaccaggcctacc cattcctgcacacaaaggaggacacttatgagaacctgcataaggtgctgcaaggcc gcctgcccgccgtggcccaggccgtggcccagctcgcagggcagctcctcatccggc tcagccacgatcgcctgctgcccctcgacttcggccgctacggggacgtcgtcctca ggcacatcgggaacctcaacgagttctctggggacctcaaggcccgcgggctgaccc tgcagtgggtgtactcggcgcggggggactacatccgggcggcggaaaagctgcggc aggagatctacagctcggaggagagagacgagcgactgacacgcatgtacaacgtgc gcataatgcgggtggagttctacttcctttcccagtacgtgtcgccagccgactccc cgttccgccacatcttcatgggccgtggagaccacacgctgggcgccctgctggacc acctgcggctgctgcgctccaacagctccgggacccccggggccacctcctccactg gcttccaggagagccgtttccggcgtcagctagccctgctcacctggacgctgcaag gggcagccaatgcgcttagcggggatgtctggaacattgataacaacttctgaggcc ctggggatcctcacatccccgtcccccagtcaagagctcctctgctcctcgcttgaa tgattcagggtcagggaggtggctcagagtccacctctcattgctgatcaatttctc attacccctacacatctctccacggagcccagaccccagcacagatatccacacacc ccagccctgcagtgtagctgaccctaatgtgacggtcatactgtcggttaatcagag agtagcatcccttcaatcacagccccttcccctttctggggtcctccatacctagag accactctgggaggtttgctaggccctgggacctggccagctctgttagtgggagag atcgctggcaccatagccttatggccaacaggtggtctgtggtgaaaggggcgtgga gtttcaatatcaataaaccacctgatatcaataagccaaaa 10 Human TFR2 - ccctgcccctggcgaccccacgtctctggcatccttccctcttccctccctctcctc NM_001206855.1 cgggcgcccagaaaagtccccacctctccccgcttaggcaaaccagccttcgggaac gggtggcaggctcggccgggatggccgctctgactcaggacattcgcgcggcgctct cccgccagaagctggaccacgtgtggaccgacacgcactacgtggggctgcaattcc cggatccggctcaccccaacaccctgcactgggtcgatgaggccgggaaggtcggag agcagctgccgctggaggaccctgacgtctactgcccctacagcgccatcggcaacg tcacgggagagctggtgtacgcccactacgggcggcccgaagacctgcaggacctgc gggccaggggcgtggatccagtgggccgcctgctgctggtgcgcgtgggggtgatca gcttcgcccagaaggtgaccaatgctcaggacttcggggctcaaggagtgctcatat acccagagccagcggacttctcccaggacccacccaagccaagcctgtccagccagc aggcagtgtatggacatgtgcacctgggaactggagacccctacacacctggcttcc cttccttcaatcaaacccagttccctccagttgcatcatcaggccttcccagcatcc cagcccagcccatcagtgcagacattgcctcccgcctgctgaggaagctcaaaggcc ctgtggccccccaagaatggcaggggagcctcctaggctccccttatcacctgggcc ccgggccacgactgcggctagtggtcaacaatcacaggacctccacccccatcaaca acatcttcggctgcatcgaaggccgctcagagccagatcactacgttgtcatcgggg cccagagggatgcatggggcccaggagcagctaaatccgctgtggggacggctatac tcctggagctggtgcggaccttttcctccatggtgagcaacggcttccggccccgca gaagtctcctcttcatcagctgggacggtggtgactttggaagcgtgggctccacgg agtggctagaaggctacctcagcgtgctgcacctcaaagccgtagtgtacgtgagcc tggacaacgcagtgctgggggatgacaagtttcatgccaagaccagcccccttctga caagtctcattgagagtgtcctgaagcaggtggattctcccaaccacagtgggcaga ctctctatgaacaggtggtgttcaccaatcccagctgggatgctgaggtgatccggc ccctacccatggacagcagtgcctattccttcacggcctttgtgggagtccctgccg tcgagttctcctttatggaggacgaccaggcctacccattcctgcacacaaaggagg acacttatgagaacctgcataaggtgctgcaaggccgcctgcccgccgtggcccagg ccgtggcccagctcgcagggcagctcctcatccggctcagccacgatcgcctgctgc ccctcgacttcggccgctacggggacgtcgtcctcaggcacatcgggaacctcaacg agttctctggggacctcaaggcccgcgggctgaccctgcagtgggtgtactcggcgc ggggggactacatccgggcggcggaaaagctgcggcaggagatctacagctcggagg agagagacgagcgactgacacgcatgtacaacgtgcgcataatgcgggtggagttct acttcctttcccagtacgtgtcgccagccgactccccgttccgccacatcttcatgg gccgtggagaccacacgctgggcgccctgctggaccacctgcggctgctgcgctcca acagctccgggacccccggggccacctcctccactggcttccaggagagccgtttcc ggcgtcagctagccctgctcacctggacgctgcaaggggcagccaatgcgcttagcg gggatgtctggaacattgataacaacttctgaggccctggggatcctcacatccccg tcccccagtcaagagctcctctgctcctcgcttgaatgattcagggtcagggaggtg gctcagagtccacctctcattgctgatcaatttctcattacccctacacatctctcc acggagcccagaccccagcacagatatccacacaccccagccctgcagtgtagctga ccctaatgtgacggtcatactgtcggttaatcagagagtagcatcccttcaatcaca gccccttcccctttctggggtcctccatacctagagaccactctgggaggtttgcta ggccctgggacctggccagctctgttagtgggagagatcgctggcaccatagcctta tggccaacaggtggtctgtggtgaaaggggcgtggagtttcaatatcaataaaccac ctgatatcaataagccaaaa 11 Rhesus TFR2 - accccaggacctgcgctcagggagcaggcaggtgtggggctgtggagagattggcag XM_001113151.2 gggagagcacagccgcttgtgctctggcctggactcaggggccacgtctggaaggtt ggaccgaggccaggactgtgcccccacccttgggggtggtaaggagcagccttggct caggctttctgccagggctgataaggagccctcctggggctcccacaaacggtttat cggtttatcactggggacagcctgcaggcttcaggagggggcacaagcatggagcag ctttggggtctactccagagagcgcaacaactgtccccaagatcctctcagaccgtc taccagcgtgtggaaggcccccagaaagggcacctggaggaggaagaggaagacggg gaggagacactggcccacttctgccccatggagctgaagggccctgagcccctgggc tctagacccaggcagccaaacctcattccctgggcagcagcaggacggagggctgcc ccctacctggtcctgactgctctactgatcttcactggggccttccttctgggctac gtcgccttccgagggtcctgccagacatgcggagactccgtgttggtggtcagtgag gacgtcaactatgagcctgacctggatttccaccggggcacactgtactggagcgac ctccaggccatgttcctgcagttcctgggggaggggcgcctggaggacaccatcagg caaaccagccttcgggaacgggtggcaggctcggccgggatggccgctctgactcag gatatccgcgcggcgctctctcgccagaagctggaccacgtgtggaccgacacgcac tacgtggggctgcaattcccggacccggctcaccccaacaccctgcactgggtcgat gaggccgggaaggtcggagagcagctgccgctagaggaccctgacgtctactgcccc tacagcgccatcggcaacgtcacgggagagctggtgtacgcccactacgggcggccc gaagacctgcaggacctgcgggccaggggcgtggacccagcgggccgcctgctgcta gtgcgcgtgggggtgatcagcttcgcccagaaggtgaccaatgctcaggactttggg gctcaaggagtgctcatatacccagagccagcggacttctcccaggacccacacaag ccaagcctgtccagccagcaggctgtgtatggacatgtgcacctgggaactggagac ccctacacgcctggcttcccttccttcaatcaaacccagttccctccagttgcatca tcgggccttcccagcatcccagcccagcccatcactgcagacattgcctcccgcctg ctgaggaagctcaaaggccctgtggccccccaggaatggcaggggagcctcctaggc tccccttatcacctgggccccgggccacgactgcggctagcggtcaacaaccacagg acctccacccccatcaacaacatctttggctgcatcgaaggccgctcagagccagat cactatgttgtcatcggggcccagagggatgcgtggggcccaggagcagctaaatcc gctgtggggacagctatactcctggagctggtgcggaccttttcctccatggtgagc aacggcttccggccccgcagaagtctcctcttcatcagctgggatggcggtgacttt gggagcgtgggctccacagagtggctagagggctacctcagtgtgctgcacctcaaa gctgtagtgtacgtgagcctggacaacgcagtgctgggggatgacaagtttcatgcc aagaccagcccccttctgacaagtctcattgagagtgtcctgaaacaggcaagagca ccccaggaatggctgaccctgcagtgggtgtactccgcgcggggggactacatccgg gcggcggagaagctgcggcaggagatctacagctcggaggagagagacgagcgactg acacgcatgtacaacgtgcgcataatgcgggtggagttctacttcctttcccagtac gtgtcgccggccgactccccgttccgccacatcttcatgggccgcggagaccacacg ctgggcgccctgctggaccacctgcggctgctgcgctccaacagctccgggaccccc ggggccacctcctccgccgtcttccaggagagtcgcttccggcgtcagctagccctg ctcacctggacgctgcaaggggcagccaatgcgcttagcggggacgtctggaacatt gataacaacttctgagaccctggggatcctcagatccccctgtccccttgtcgagag ctcctctgctcctcgcttcaatgattcagggtcagggaggtggctcagagtccacct ctcattgctgatcgacttctcattacccctacacgtctctccacggagcccagactg cagcacagatatccacacaccccagccctgcagtgtagctgactctaatgtgatggt catactgtcggttaatcagagagcagtatcccttcaatcacaaccccttcccctttc tggggtcctccatacctagagactaggccttgggacctggccagctctcttagcggg agagatcgctggcaccatagccttatggccaacaggtggtctgtggtgaaaggggca tggagtttcaatgtc 12 Mouse TFR2 - gagcatggtccaagaaacccagagacctgttgctgagctgaacttggctgctgtgtc NM_015799.3 ttcccactcaggactcggctttgacagctgcaggtcctggtgtcttcgtcgcggctt ggatttcaaactggaggagttcaggagggggcacaagcatggagcaacgttggggtc tacttcggagagtgcaacagtggtccccaagaccctctcagaccatctacagacgcg tggaaggccctcagctggagcacctggaggaggaagacagggaggaaggggcggagc ttcctgcccagttctgccccatggaactcaaaggccctgagcacttaggctcctgtc ccgggaggtcaattcccataccctgggctgcagcaggtcgaaaggctgccccctatc tggtcctgatcaccctgctaatcttcactggggccttcctcctaggctacgtggcct ttcgagggtcctgccaggcgtgtggggactccgtgttggtggtcgatgaagatgtca accctgaggactccggccggaccacgttgtactggagcgacctccaggccatgtttc tccggttccttggggaggggcgcatggaagacaccatcaggctgaccagcctccggg aacgcgtggctggctcagccagaatggccaccctggtccaagatatcctcgataagc tctcgcgccagaagctggaccacgtgtggactgacacgcactacgtgggacttcagt tcccagatccggctcacgctaacaccctgcactgggtggatgcagacgggagcgtcc aggagcagctaccgctggaggatccggaagtctactgtccctacagcgccaccggca acgccacgggcaagctggtgtacgcccactacgggcggtcggaggacctacaggacc taaaagccaagggcgtggagctggccggcagcctcctgctagtgcgagttggaatta ctagcttcgcccagaaggtagccgttgcccaggactttggggctcaaggagtgctga tataccctgacccatcagacttctcccaggatccccacaagccaggcctgtctagcc accaggctgtgtacggacatgtgcacctgggaactggagacccttacacacctggct tcccgtccttcaatcaaacccagttccctccagtagaatcatcaggccttcccagca tccccgcccagcccatcagtgctgacattgctgatcaattgctcaggaaactcacag gccccgtggctccccaggagtggaaaggtcacctctcaggctctccttatcggctgg gacctgggcccgacttacgccttgtggtcaacaaccacagagtctctacccccatca gtaacatctttgcgtgcatcgagggctttgcagagccagatcactatgttgtcattg gggcccagagggatgcatggggcccaggagcagccaagtctgcagtggggactgcca tcctgctggagctggttcggaccttctcttccatggtcagcaatgggttcagacctc gaagaagtcttttgttcatcagctgggacggaggtgactttggcagcgtgggagcca cagagtggttggagggctacctcagcgtgctacacctcaaagctgttgtgtacgtga gcctggacaactccgtgttgggagatggcaaattccatgctaagaccagcccccttc tcgtcagcctcattgagaatatcttgaagcaggtggactcccctaaccatagtggac agaccctctatgaacaagtggcactcacccaccccagctgggatgctgaagtgattc agcccctgcccatggacagcagtgcatattccttcacagcctttgcgggggtcccag ctgtggagttctccttcatggaggatgatcgggtgtacccattcctgcacacgaagg aggacacatatgagaatctgcacaagatgctgcgaggtcgcctgcccgccgtggtcc aggcagtggctcagctcgcgggccagctcctcatccgactgagccacgatcacctac tgccgctagacttcggccgctatggagacgtggttctcaggcacatcggcaacctca atgagttctctggggacctcaaggagcgcgggctgaccctgcagtgggtgtactctg caaggggggactacatccgtgcggcggaaaagctgcggaaggagatttacagctcgg agcggaacgatgagcgtctgatgcgcatgtacaacgtgcgcatcatgagggtggagt tctacttcctgtcccagtatgtgtcgccagccgactccccattccgccacattttcc taggccaaggcgaccacactttgggtgccctggtagaccacctgcggatgctgcgcg ccgatggctcaggagccgcctcttcccggttgacagcaggtctgggcttccaggaga gtcgcttccggcgccagctggcgctgctcacctggacactgcagggggcagccaacg ctctcagtggcgacgtttggaacattgacaataacttttgaagccaaaagccctcca tgggccccacgtgattctcctttctccctctttgagtggtgcaggcaaaggaggtgc ctgagattgtaacctattcttaacacccttggtcctgcaatgctggtgcgccatatt ttctcagtgtggttgtcatgccgttgcttacccagaaagcggttttcttcccatcac aggcccttctgtcttcaggagcaaagttccccatatctagagactatctagatgctg ggatctgatcagctctcttagagagtgagatggacagcgtcattattttatgacaca tgagctacggtatgtgagcagcccaaggggattagatgtcaataaaccaattgtaac ccctgttgtccatacgcaa 13 Rat TFR2 - aaatccagagacctgttgctgagttgaacttggctgctgtgtcttcccactcaggac NM_001105916.1 tcggctttgacaggcacgaggcagggactggggtgagcccctacctctcagatcttt ctggacctggctgcgggtcctgggatcttcagcgcggcttggatttcaaactggagg ggttcaggagggggcacaagcatggaacaacgttggggtctacttcggaaagtgcaa cagtggtccccaagaccctctcagaccatctacagacgtgtggaaggccctcaactg gagaacctagaggaggaagatagggaggaaggggaggagcttcctgcccagttctgc cccatggaactcaaaggccctgagcgcttaggctcctgtcctgggaggtccattccc ataccctgggctgcagcaggtcgaaaggctgctccctatctggtcctgaccaccctg ctaatcttcactggggccttcctcctgggctacgtggcctttcgagggtcctgccag gcatgtggggactctgtgttggtggttggtgaagatgtcaactctgaggactccagc cggggcacgttgtactggagtgacctccaggacatgtttctccggttccttggggag ggacgcatggaggacaccatcaggctgaccagcctccgggaacgcgtggccggctca gccagaatggccaccctggtccaagacatcctcgataagctctcgcgccagaagctg gaccacgtgtggactgacacgcactatgtgggacttcagttcccggacccggctcac cctaacaccctgcactgggtgggtgcagacgggagcgtccaagagcagctaccgctg gaggatccggaagtctactgtccctacagcgccacgggcaacgccacgggcaagctt gtgtacgcccactacgggcggcgggaggacctgcaggacctgaaagccaaggacgtg gagctggccggcagcctcctgctagtgcgtgctgggattacaagcttcgcccagaag gtagccattgcccaggactttggggcccacggagtgctgatataccctgacccagcg gacttctcccaagacccccacaagccaggcctgtctagtgacagggctgtgtatgga catgtgcacctgggaactggggacccttacacgcctggcttcccgtccttcaatcaa acccagttccctccagtagaatcatcggggcttcccaacatccctgcccagcccatc agtgccgacgttgctgatcgcttgctcaggaaactcacaggtcccgtggctcctcag gaatggaagggtcgcctctcagactctccgtatcgcctgggacctgggccaggctta cgccttgtggtcaacaaccacagaacctctactcccatcagtaacatctttgcgtgc atcgagggcttcgcagagccagatcactatgtcgttatcggggcccagagggatgcc tggggcccaggagcagccaagtctgcagtggggactgccatcctcctggagctggtt cggaccttttcctccatggtcagcagtggctttagacctcgaagaagtcttttgttc atcagctgggacggaggtgactttggcagcgtgggagccacggagtggttggagggc tacctcagcgtgctacacctcaaagctgtcgtgtatgtgagcctggacaactccgtg ttgggagacggcaaattccatgctaagaccagcccccttctcgtcagcctcattgag aatatcctgaagcaggtggattcccctaaccacagtggacagacactctacgatcaa gtggcattcacccacccaagctgggatgctgaagtgatccagcccctgcccatggac agcagcgcatattccttcacagcttttgcgggcgtcccagctgtggagttctccttc atggaggacgatagggtgtacccattcctgcacacgaaggaggacacgtatgagaat ctgcacaagatgctgcgaggtcgcctgcccgccgtggtcctagcagtggctcagctc gctggtcagctcctcatccgactgagccacgatcacctactgccgctggacttcggc cgctacggagacgtggtcctcaggcacatcggcaaccttaatgagttctctggggac ctcaaggcgcgcgggctgaccctgcagtgggtgtactctgcaaggggggactatatc cgggcggcggagaagctgcggaaggagatttacagctcggagcagagcgatgagcgt ctgatgcgcatgtacaacgtgcgcatcatgagggtggagttctacttcctgtcccag tacgtgtcgccggccgactccccattccgccacattttcctaggccaaggcgaccac actttgggtgccctggtggaacacctacggatgctgcgctccgatggctcaggagct gcctcttctgggttgagcccaggtctgggcttccaggagagtcgcttccggcgacag ctggcgctgctcacgtggacgctacagggggcagccaacgcactcagtggcgacgtt tggaacatcgacaataacttttgaggccagaagtcctccatgggccccacgtgattc tcctttctccctatttgagtggtgcaggcaacggaggtgcctgagagcaacctatcc tcattaacaaccttggtcctgcaacgccagtgagacatattttctcagtgtgactgt tataccactgtttatccagaaagcggttttcttcccatcactggcctctctgccttc aggagcatagttccccatatctagaaaccatctagacactgggatccagctctctta gcgggtgagatggatagcgtcattttcttatgacacacaagtggtatgtgggtggcc caagggggattagatgtcaataaaccatttacctggtaacctctgttgtccataagc 14 Human HFE - ctaaagttctgaaagacctgttgcttttcaccaggaagttttactgggcatctcctg NM_139006.2 agcctaggcaatagctgtagggtgacttctggagccatccccgtttccccgcccccc aaaagaagcggagatttaacggggacgtgcggccagagctggggaaatgggcccgcg agccaggccggcgcttctcctcctgatgcttttgcagaccgcggtcctgcaggggcg cttgctgcgttcacactctctgcactacctcttcatgggtgcctcagagcaggacct tggtctttccttgtttgaagctttgggctacgtggatgaccagctgttcgtgttcta tgatcatgagagtcgccgtgtggagccccgaactccatgggtttccagtagaatttc aagccagatgtggctgcagctgagtcagagtctgaaagggtgggatcacatgttcac tgttgacttctggactattatggaaaatcacaaccacagcaaggagtcccacaccct gcaggtcatcctgggctgtgaaatgcaagaagacaacagtaccgagggctactggaa gtacgggtatgatgggcaggaccaccttgaattctgccctgacacactggattggag agcagcagaacccagggcctggcccaccaagctggagtgggaaaggcacaagattcg ggccaggcagaacagggcctacctggagagggactgccctgcacagctgcagcagtt gctggagctggggagaggtgttttggaccaacaagtgaccactctacggtgtcgggc cttgaactactacccccagaacatcaccatgaagtggctgaaggataagcagccaat ggatgccaaggagttcgaacctaaagacgtattgcccaatggggatgggacctacca gggctggataaccttggctgtaccccctggggaagagcagagatatacgtgccaggt ggagcacccaggcctggatcagcccctcattgtgatctgggagccctcaccgtctgg caccctagtcattggagtcatcagtggaattgctgtttttgtcgtcatcttgttcat tggaattttgttcataatattaaggaagaggcagggttcaagaggagccatggggca ctacgtcttagctgaacgtgagtgacacgcagcctgcagactcactgtgggaaggag acaaaactagagactcaaagagggagtgcatttatgagctcttcatgtttcaggaga gagttgaacctaaacatagaaattgcctgacgaactccttgattttagccttctctg ttcatttcctcaaaaagatttccccatttaggtttctgagttcctgcatgccggtga tccctagctgtgacctctcccctggaactgtctctcatgaacctcaagctgcatcta gaggcttccttcatttcctccgtcacctcagagacatacacctatgtcatttcattt cctatttttggaagaggactccttaaatttgggggacttacatgattcattttaaca tctgagaaaagctttgaaccctgggacgtggctagtcataaccttaccagattttta cacatgtatctatgcattttctggacccgttcaacttttcctttgaatcctctctct gtgttacccagtaactcatctgtcaccaagccttggggattcttccatctgattgtg atgtgagttgcacagctatgaaggctgtacactgcacgaatggaagaggcacctgtc ccagaaaaagcatcatggctatctgtgggtagtatgatgggtgtttttagcaggtag gaggcaaatatcttgaaaggggttgtgaagaggtgttttttctaattggcatgaagg tgtcatacagatttgcaaagtttaatggtgccttcatttgggatgctactctagtat tccagacctgaagaatcacaataattttctacctggtctctccttgttctgataatg aaaattatgataaggatgataaaagcacttacttcgtgtccgactcttctgagcacc tacttacatgcattactgcatgcacttcttacaataattctatgagataggtactat tatccccatttcttttttaaatgaagaaagtgaagtaggccgggcacggtggctcac gcctgtaatcccag 15 Rhesus HFE - ttttactgggcatctcctgagcctaggcaatagctgtagggtgacttctggagccat XM_001085598.2 cgccgtttccccgccccaccaaagaagcggagacttaaaggggacgtgcagtcagag ctggggaaatgggcccgcgagccaggccggcgcttctcctcctgatgcttttgcaga ccgcggtcctgcaggggcgcttgctgcgttcacactctctgcactacctcttcatgg gttcctcagagcaggaccttggtctttccctgtttgaagctttgggctatgtggacg accagctgttcgtgttctatgatcatgagagtcgccgtgtggagccccgaactccat gggtttccggtagaacgtcaagccagatgtggctgcagctgagtcagagtctgaaag ggtgggatcacatgttcactgttgacttctggactattatggaaaatcacaaccaca gcaaggagtcccacaccctgcaggtcatcctgggctgcaaaatgcaagaggacaaca gtaccgagggcttctggaagtacgggtacgatgggcaggaccaccttgaattctgcc ctgacacactggattggagagcagcagaacccagggcctggcccaccaagctggagt gggaaaggcacaaaattcgggccaggcagaacagggcctacctcgagagggactgcc ctgtgcagctgcagcagttgctggagctggggagaggtgttttcgaccggccagtga ccactctacggtgtcgggccctgaactactacccccagaacatcaccatgaagtggc tgaaggataggcagtcaatggatgccaaggaggtcgaacctaaagacgtattgccca atggggatgggacctaccagggctggataaccttgactgtacccccaggggaagaac agagatatacttgccaggtggagcacccaggcctggatcagcccctccttgctttct gggagccctcaccatctagaactctagtcattggagtcatcagtggaattgctgttt ttgtcatcatcttgttcattggaattttgttcataatattaaggaagaggcagactt caagaggagtcatggggcactacgtcttagctgaacgtgagtgacacg 16 Mouse HFE - ctgagaggtctggaacctcagcaatggctacagggtgacttcttggatcctccacgt NM_010424.4 ttccagatcctagtgaagaccggtggacccagctgaggacatgagcctatcagctgg gctccctgtgcggccgctgctgctgctgctgctactgctgtggtccgtggccccgca ggcactgccaccgcgttcacattctctaagatacctcttcatgggtgcctcagagcc agacctcgggctgcctttgtttgaggctaggggctatgtggatgaccagctctttgt gtcctacaatcatgagagtcgccgtgctgagcccagggccccgtggatcttggagca aacctcaagccagctgtggctgcatctgagtcagagcctgaaagggtgggactacat gttcatagtagacttctggaccatcatgggcaactataaccacagtaaggtcacgaa gttgggagtggtgtccgagtcccacatcctgcaggtggtcctaggctgtgaggtgca tgaagacaacagtaccagcggcttctggagatatggttatgacgggcaagatcacct ggaattctgccccaagacactaaactggagcgcagccgagccaggggcctgggccac caaggtggaatgggacgagcacaagatccgtgccaaacagaacagggactacctgga gaaggactgccccgagcagctgaaacggctcctggagctggggagaggcgttctggg acagcaagtgcctactttggtgaaagtgactcgccactgggcctctacggggacctc tctaaggtgtcaggctctggacttcttcccccagaacatcactatgaggtggttgaa ggacaaccaaccactggatgccaaagatgtcaaccccgagaaggtgctacctaacgg ggatgagacctatcaaggctggctgacattggccgtggcccctggggacgagacaag gttcacctgtcaagtggagcacccaggcctggaccagcctctcactgcctcttggga gcccttgcaatctcaggccatgattatcggaatcatcagtggagtcaccgtctgtgc catcttcttggttggaattctgttcctaatcttaaggaaaaggaaggcttcaggagg aaccatgggtggctatgtcttaacagactgtgagtgatctgcagcctgctgaaccac ggaagagagaaaactcagccaaagacttggagggggcacacttgctccactgtagga cacagttggacctaacacacagaaactgcctgagaactgtgctcttagctttctctg ttcactttcttaaggtgttttctccagttaagttcagttcctgaatagtagtgattg caccagttgcaacctctccctccagaactggtctcatgattcttaggctgcttcttg gaagcatcctatgtttccttcatgcacctagactccatatgtctacgtaaagagccc ctctaagtttagtggatacatgattcgtttccacatctgaagaagttgtgaaccttc atccggggatgctcacacatacttgagccagaatttttcacctatatcctagaatcc aggacccactcaactatcctccatctgttatagagtgactcctctgtcaccatgccc tgacttctctgccattggagtgttatatatatggatcatcaataaagccatgaaggc tacacaactgtg 17 Rat HFE - tcagcaatggctacagggtgacttcttggatcctccacgtttccaggtcctagtgaa NM_001173435.1 aaccggtggacccagctggaggcatggaccgatcagctgggctccctgtgcggctgc tattgctgctgctgttgttgctgctgtggtccgtggccccgcaggcgctgcggcccg tgcctactttggtgaaagtgactcgccactgggcctctacagggacctctctaaggt gtcaggctctgaatttcttcccccagaacatcactatgaggtggttgaaggacagcc agcccctagatgccaaggatgtcaaccctgagaacgtgctgccaaatggggatggga cctatcagggctggctgaccttggctgtggcccctggagaagagacaaggttcagct gtcaagtggagcacccaggcctggatcagcctctcactgccacttgggagccctcac ggtctcaggacatgattattggaatcataagtgggatcaccatttgtgccatcttct ttgttggaattctgatcctagtcttaaggaaaaggaaggtttcaggaggaaccatgg gtgactatgtcttaacagagtgtgagtgacctgcagcatgcagaagcacagaagaga gaagactcagccaaagacttggaggggacacacttgctccattctagaacacagctg gacctaacacacagaaactgcctgaggactctgcccttagctttcctgtttgctttc ttaaggtgttttctccagttaagttcagttcctgaataatagtgactgccccagctg caacctctcccttcagaaccagtctcatgatctttaagctgctacttgcaggcatcc ttcgttttctgcatccacctagacttcgtatgtctacttaaaaagccccactaaatt tgggggacacatgattcatttccacatctgaagaagttatgaaccttcatcctggga tgcacacattcttgtgccagaatttttcatacatatcctaggacccattcaattgtc atttgagcctctctatctgttagtgactactctgacttctctgccattggagtgtta tggcaataaagctatgaacgtta 18 Mouse BMPR1a - ccgcgcgagacgacgactgtacggccgcgcgaggggcgaccgggcccgggccgctgc NM_009758.4 acgccgagggcggaggccgagccgggccccgccgccccgcggctgtccgtgcccgcc cgcgccgagcgccggaggatgagtttctcgggatcccgatttatgaaaatatgcatc gctttgatactgtcttggaattcatgagatggaagcataggtcaaagctgttcggag aaattggaactacagttttatctagccacatctctgagaattctgaagaaagcagca ggtgaaagtcattgccaagtgattttgttctgtaaggaagcctccctcattcactta caccagtgagacagcaggaccagtcattcaaagggccgtgtacaggacgcgtgcgaa tcagacaatgactcagctatacacttacatcagattactgggagcctgtctgttcat catttctcatgttcaagggcagaatctagatagtatgctccatggcactggtatgaa atcagacttggaccagaagaagccagaaaatggagtgactttagcaccagaggatac cttgcctttcttaaagtgctattgctcaggacactgcccagatgatgctattaataa cacatgcataactaatggccattgctttgccattatagaagaagatgatcagggaga aaccacattaacttctgggtgtatgaagtatgaaggctctgattttcaatgcaagga ttcaccgaaagcccagctacgcaggacaatagaatgttgtcggaccaatttgtgcaa ccagtatttgcagcctacactgccccctgttgttataggtccgttctttgatggcag catccgatggctggttgtgctcatttccatggctgtctgtatagttgctatgatcat cttctccagctgcttttgctataagcattattgtaagagtatctcaagcaggggtcg ttacaaccgtgatttggaacaggatgaagcatttattccagtaggagaatcattgaa agacctgattgaccagtcccaaagctctgggagtggatctggattgcctttattggt tcagcgaactattgccaaacagattcagatggttcggcaggttggtaaaggccgcta tggagaagtatggatgggtaaatggcgtggtgaaaaagtggctgtcaaagtgttttt taccactgaagaagctagctggtttagagaaacagaaatctaccagacggtgttaat gcgtcatgaaaatatacttggttttatagctgcagacattaaaggcactggttcctg gactcagctgtatttgattactgattaccatgaaaatggatctctctatgacttcct gaaatgtgccacactagacaccagagccctactcaagttagcttattctgctgcttg tggtctgtgccacctccacacagaaatttatggtacccaagggaagcctgcaattgc tcatcgagacctgaagagcaaaaacatccttattaagaaaaatggaagttgctgtat tgctgacctgggcctagctgttaaattcaacagtgatacaaatgaagttgacatacc cttgaataccagggtgggcaccaagcggtacatggctccagaagtgctggatgaaag cctgaataaaaaccatttccagccctacatcatggctgacatctatagctttggttt gatcatttgggaaatggctcgtcgttgtattacaggaggaatcgtggaggaatatca attaccatattacaacatggtgcccagtgacccatcctatgaggacatgcgtgaggt tgtgtgtgtgaaacgcttgcggccaatcgtgtctaaccgctggaacagcgatgaatg tcttcgagcagttttgaagctaatgtcagaatgttgggcccataatccagcctccag actcacagctttgagaatcaagaagacacttgcaaaaatggttgaatcccaggatgt aaagatttgacaattaaacaattttgagggagaatttagactgcaagaacttcttca cccaaggaatgggtgggattagcatggaataggatgttgacttggtttccagactcc ttcctctacatcttcacaggctgctaacagtaaaccttaccgtactctacagaatac aagattggaacttggaacttcaaacatgtcattctttatatatggacagctttgttt taaatgtggggtttttttgttttgctttttttgttttgttttggttttgatgctttt ttggtttttatgaactgcatcaagactccaatcctgataagaagtctctggtcaacc tctgggtactcactatcctgtccataaagtggtgctttctgtgaaagccttaagaaa attaatgagctcagcagagatggaaaaaggcatatttgccttctaccagagaaaaca tctgtctgtgttctgtctttgtaaacagcctatagattatgatctctttgggatact gcctggtttatgatggtgcaccatacctttgatatgcataccagaattctctgctgc cctagggcttagaagacaagaatgtaaaggttgcacaggaaggtatttgtggccagt ggtttaaatatgcaatatctagttgacaatcgccaatttcataaaagccatccacct tgtaactgtagtaacttctccactgactttatttttagcataatagttgtgaaggcc aaactccatgtaaagtgtccatagacttggactgttttcccccagtcaccattttgt tctccttttggtaattatttttgttataaaaagccacctatccagaattggagctct ctgtcttgaaccatactttgaaagaaacgcctcttccgtactgcatctgatcacaat gtgcatacctatgatcaaattctggagtctttgttctcggtacctcctaaaaaggaa agttgattcttgtgtaacatgcttttattttcagaacctgcacagctgtcattctag ccatgttttacctacacactcagttctatacaagacagcccatacactctgtctcac atctgatccttggtgggaagtgttttaaagtagaactatgtatgaatttcagaattc atgcattttaaaacttcactaagatattgtctcatatctttatgagaatgtcagctg acttttcaactaacagtaaatgtattttagatatctaaatcttttgaaatttggttt tacaatttctggtccctaattgtgaagacaagaggcagaagtacccagtcactaccc atatttacactgaacgttattaaataaaatgatgtgtattttattataaaataaata taggccttgttatctcaaaaaacagatctggttcaaacttattataccaatatcata ctatttaaatgttctaagtaaacaagccatgtgagcatcaagtggcattggctcttt ggatgaaacataaacttaaggtgattgtatcaacacatagagtgactgaaattaaat gggaggcaggtagagcatatgtccatctgtccacctacaggcatgactaaactacag ctcatattccacaaatttgagatttgtcttgcctggtttgtttagtgagtctcatct gatgtacctaaagcctgagagtactgaggtctgattttatatctttcctgaataaac taaatcttttttgtcacttatcatcttaatgatatacctaaggaataattctttggc atgtttcagttgtgtgtggcagccactgtaatgactcttctctaagaaaggctgtca ggagttaattataaggcaggcagtgagcgctctagtcactgccttcccacgctgcca tcactgcattcatgggaatcagtgacgttctcgaaatggcaaacgctgctgcttttc cttatttggaatcctaaaatcaaaagttgcattaaacttactgtgttctcttctccc tctcagccataaatgtaaaattcagtaagtaaaaatatttaaagagtgtatcagccc tttggccagtgagatagctcagtagataaaggcatttgctgccaagtcctcaacctc aattcagactctgggggacacatggcgaagggaggagccaactaccccatcattgtc ctctgacttccacacactccatggcttgcgcccctccccacagacacacaccatgta ctccacaaaagtagtttaaaggaaaaaaagaatagaacccactgtgtaatggaataa gtattatgtagttacttaacaacttgtaaaaatctggaaactatgatttggttcccc tttgaatctagagtttaaaaaacagatggctaaaatcagccatcatttaaataatta aaaataaaagccccaaaccccaaactgcctaaataaataccaagtaatccaggaagc cgtcatgtgtggtttgtatgaccagtagttctctggtacagagcatgttaagatttg ccccagcctgattctctgaggtctctgcattactgagtactgttctgagtataaaat ctgaactgatttctctagaaatactgtaacaaaaaggtattttagtcagcatgttat gttaacccttccactgtctagaaacttgaataagcacataaagacaccttttgctgt catcatctgttgtcctggaatgtgccagttttaatttattcattctaatgatattca atttgcttttcttttttagatgtttttcttgtttagagtaaaaggacgaatttttca agaaccttgcatctctgatttggcctaaggtcaaattggatattgagtagtctattc cagggcagatttcctaagcaatacttgtcttttcagctatgtattgttttgaaatgt ttccatttcaacagaggtgtaagtcatgtgaaaagaaaggtggtgtagcccttgtgg taatgacacaagttgacttgcgtcagatgttaagcagggacagttctcccacctcct ggctgtaaggagtggaaactaggcaagcagtgtatcagtccacagaggacaggaagg gtcatcccataaagaaagcctgtgagtatggctttggcaaaaaattagacataatac tgtccttttaggttgtgctctgttctttcctttcagtggaattatttaagctcttta gtggcctttgtttttcccacttaaaaactaaaatgtagcatatattgtataaaatgg aaatattaatagcttagggaaactgtacataaggcattgacaggtttaaaaaaagca tttttattatgcagttgtaaaacaccaaaaatatagattcatcttgatatgtaacac taagtgtattttgtacagcatctgatttgaaaggtgccttatgaagtttaccattaa ttgctttgttctatatacagattatgtccaatgtatcatttttcagtaaataacctt attttagta 19 Rat BMPR1a - gaattcatgagatggaaacataggtcaaagctgtttggagaaattggaactacagtt NM_030849.1 ttatctagccacatctctgagaagtctgaagaaagcagcaggtgaaagtcattgtca agtgattttgttcttctgtaaggaaacctcgttcagtaaggccgtttacttcagtga aacagcaggaccagtaatcaaggtggcccggacaggacacgtgcgaattggacaatg actcagctatacacttacatcagattactgggagcctgtctgttcatcatttctcat gttcaagggcagaatctagatagtatgctccatggtactggtatgaaatcagacgtg gaccagaagaagccggaaaatggagtgacgttagcaccagaggacaccttacctttc ttaaaatgctattgctcaggacactgcccagatgacgctattaataacacatgcata actaatggccattgctttgccattatagaagaagatgatcagggagaaaccacgtta acttctgggtgtatgaagtatgaaggctctgattttcaatgcaaggattcaccaaaa gcccagctacgcaggacaatagaatgttgtcggaccaatttgtgcaaccaatatttg cagcctacactgccccctgtcgttataggcccattctttgatggcagcgtccgatgg ctggctgtgctcatctctatggctgtctgtattgtcgccatgatcgtcttctccagc tgcttctgttacaaacattactgtaagagtatctcaagcagaggtcgttacaaccgt gacttggaacaggatgaagcatttattccagtaggagaatcactgaaagacctgatt gaccagtcacaaagctctggtagtggatctggattacctttattggttcagcgaact attgccaaacagattcagatggttcggcaggttggtaaaggccggtatggagaagta tggatgggtaaatggcgtggtgaaaaagtggctgtcaaagtattttttaccactgaa gaagctagctggtttagagaaacagaaatctaccagacggtgttaatgcgtcatgaa aatatacttggttttatagctgcagacattaaaggcaccggttcctggactcagctg tatttgattactgattaccatgagaatgggtctctctatgacttcctgaaatgtgcc accctggacaccagagccctactcaagttagcttattctgctgcctgtggtctgtgc cacctccacacagaaatttatggcacgcaaggcaagcctgcaattgctcatcgagac ctgaagagcaaaaacatccttattaagaaaaatggtagttgctgtattgctgacctg ggcctagctgttaaattcaacagtgacacaaatgaagttgacatacccttgaacacc agggtgggcaccaggcggtacatggctccagaagtgctggacgagagcctgagtaaa aaccatttccagccctacatcatggctgacatctacagctttggtttgatcatttgg gagatggcccgtcgctgtattacaggaggaatcgtggaggaatatcaattaccatat tacaacatggtgcctagtgacccatcttatgaagacatgcgtgaggtcgtgtgtgtg aaacgcttgcggccaatcgtctctaaccgctggaacagtgatgaatgtcttcgagcc gttttgaagctgatgtcagaatgctgggcccataatccagcatccagactcacagct ttgagaatcaagaagacgctcgcaaagatggttgaatcccaggatgtaaagatttga caaacagttttgagaaagaatttagactgcaagaaattcacccgaggaagggtggag ttagcatggactaggatgtcggcttggtttccagactctctcctctacatcttcaca ggctgctaacagtaaactttcaggactctgcagaatgcagggttggagcttcagaca taggacttcagacatgctgttctttgcgtatggacagctttgttttaaatgtgggct tttgatgcctttttggtttttatgaattgcatcaagactccaatcctgataagaagt ctctggtcaaactctggttactcactatcctgtccataaagtggtgctttctgtgaa agccttaaggaaattagtgagctcagcagagatggagaaaggcatatttgccctcta cagagaaaatatctgtctgtgttctgtctctgtaaacagcctggactatgatctctt tgggatgctgcctggttgatgatggtgcatcatgcctctgatatgcataccagactt cctctgctgccatgggcttacaagacaagaatgtgaaggttgcacaggacggtattt gtggccagtggtttaaatatgcaatatctaatcgacattcgccaatctcataaaagc catctaccttgtaactgaagtaacttctctaccaactttatttttagcataatagtt gtaaaggccaaactatgtataaagtgtccatagactcgaactgttttcctccagtca ccattttgttttccttttggtaattatttttgttatataattcctcctatccagaat tggcgctcactgtcttgaaccatactttgaaagaaatgcctcttcctggagtctgcc ttactgcatctgatcaccatgtgcatacctctgatcaaattctggagtctttgttct cggtacctcttaaaaagggaaattgtgtatcatgtgtagtgtgcttttattttcaaa atcttcatagcctttattctagccatttttacctacatactcattctgtacaaaaca gctcactcggtctcacggctgatcctcagtggaaatgatttaaagtagagctgtgta cgaatttcagaattcatgtatttaaaaacttcacactaacactttactaagatattg tctcatatcttttatgaggatgtcagctgattttcaatgactataaatgtatcttag ctatctaaatcttttgaaatttggttttataatttctggtccctaacttgtgaagac aaagaggcagaagtacccagtctaccacatttacactgtacattattaaataaaaaa atgtatattttaaaaaaaaaaaaaaaaaaaaa 20 Human SMAD4 - atgctcagtggcttctcgacaagttggcagcaacaacacggccctggtcgtcgtcgc NM_005359.5 cgctgcggtaacggagcggtttgggtggcggagcctgcgttcgcgccttcccgctct cctcgggaggcccttcctgctctcccctaggctccgcggccgcccagggggtgggag cgggtgaggggagccaggcgcccagcgagagaggccccccgccgcagggcggcccgg gagctcgaggcggtccggcccgcgcgggcagcggcgcggcgctgaggaggggcggcc tggccgggacgcctcggggcgggggccgaggagctctccgggccgccggggaaagct acgggcccggtgcgtccgcggaccagcagcgcgggagagcggactcccctcgccacc gcccgagcccaggttatcctgaatacatgtctaacaattttccttgcaacgttagct gttgtttttcactgtttccaaaggatcaaaattgcttcagaaattggagacatattt gatttaaaaggaaaaacttgaacaaatggacaatatgtctattacgaatacaccaac aagtaatgatgcctgtctgagcattgtgcatagtttgatgtgccatagacaaggtgg agagagtgaaacatttgcaaaaagagcaattgaaagtttggtaaagaagctgaagga gaaaaaagatgaattggattctttaataacagctataactacaaatggagctcatcc tagtaaatgtgttaccatacagagaacattggatgggaggcttcaggtggctggtcg gaaaggatttcctcatgtgatctatgcccgtctctggaggtggcctgatcttcacaa aaatgaactaaaacatgttaaatattgtcagtatgcgtttgacttaaaatgtgatag tgtctgtgtgaatccatatcactacgaacgagttgtatcacctggaattgatctctc aggattaacactgcagagtaatgctccatcaagtatgatggtgaaggatgaatatgt gcatgactttgagggacagccatcgttgtccactgaaggacattcaattcaaaccat ccagcatccaccaagtaatcgtgcatcgacagagacatacagcaccccagctctgtt agccccatctgagtctaatgctaccagcactgccaactttcccaacattcctgtggc ttccacaagtcagcctgccagtatactggggggcagccatagtgaaggactgttgca gatagcatcagggcctcagccaggacagcagcagaatggatttactggtcagccagc tacttaccatcataacagcactaccacctggactggaagtaggactgcaccatacac acctaatttgcctcaccaccaaaacggccatcttcagcaccacccgcctatgccgcc ccatcccggacattactggcctgttcacaatgagcttgcattccagcctcccatttc caatcatcctgctcctgagtattggtgttccattgcttactttgaaatggatgttca ggtaggagagacatttaaggttccttcaagctgccctattgttactgttgatggata cgtggacccttctggaggagatcgcttttgtttgggtcaactctccaatgtccacag gacagaagccattgagagagcaaggttgcacataggcaaaggtgtgcagttggaatg taaaggtgaaggtgatgtttgggtcaggtgccttagtgaccacgcggtctttgtaca gagttactacttagacagagaagctgggcgtgcacctggagatgctgttcataagat ctacccaagtgcatatataaaggtctttgatttgcgtcagtgtcatcgacagatgca gcagcaggcggctactgcacaagctgcagcagctgcccaggcagcagccgtggcagg aaacatccctggcccaggatcagtaggtggaatagctccagctatcagtctgtcagc tgctgctggaattggtgttgatgaccttcgtcgcttatgcatactcaggatgagttt tgtgaaaggctggggaccggattacccaagacagagcatcaaagaaacaccttgctg gattgaaattcacttacaccgggccctccagctcctagacgaagtacttcataccat gccgattgcagacccacaacctttagactgaggtcttttaccgttggggcccttaac cttatcaggatggtggactacaaaatacaatcctgtttataatctgaagatatattt cacttttgttctgctttatcttttcataaagggttgaaaatgtgtttgctgccttgc tcctagcagacagaaactggattaaaacaattttttttttcctcttcagaacttgtc aggcatggctcagagcttgaagattaggagaaacacattcttattaattcttcacct gttatgtatgaaggaatcattccagtgctagaaaatttagccctttaaaacgtctta gagccttttatctgcagaacatcgatatgtatatcattctacagaataatccagtat tgctgattttaaaggcagagaagttctcaaagttaattcacctatgttattttgtgt acaagttgttattgttgaacatacttcaaaaataatgtgccatgtgggtgagttaat tttaccaagagtaactttactctgtgtttaaaaagtaagttaataatgtattgtaat ctttcatccaaaatattttttgcaagttatattagtgaagatggtttcaattcagat tgtcttgcaacttcagttttatttttgccaaggcaaaaaactcttaatctgtgtgta tattgagaatcccttaaaattaccagacaaaaaaatttaaaattacgtttgttattc ctagtggatgactgttgatgaagtatacttttcccctgttaaacagtagttgtattc ttctgtatttctaggcacaaggttggttgctaagaagcctataagaggaatttcttt tccttcattcatagggaaaggttttgtattttttaaaacactaaaagcagcgtcact ctacctaatgtctcactgttctgcaaaggtggcaatgcttaaactaaataatgaata aactgaatattttggaaactgctaaattctatgttaaatactgtgcagaataatgga aacattacagttcataataggtagtttggatatttttgtacttgatttgatgtgact ttttttggtataatgtttaaatcatgtatgttatgatattgtttaaaattcagtttt tgtatcttggggcaagactgcaaacttttttatatcttttggttattctaagccctt tgccatcaatgatcatatcaattggcagtgactttgtatagagaatttaagtagaaa agttgcagatgtattgactgtaccacagacacaatatgtatgctttttacctagctg gtagcataaataaaactgaatctcaacatacaaagttgaattctaggtttgattttt aagattttttttttcttttgcacttttgagtccaatctcagtgatgaggtaccttct actaaatgacaggcaacagccagttctattgggcagctttgtttttttccctcacac tctaccgggacttccccatggacattgtgtatcatgtgtagagttggtttttttttt ttttaatttttattttactatagcagaaatagacctgattatctacaagatgataaa tagattgtctacaggataaatagtatgaaataaaatcaaggattatctttcagatgt gtttacttttgcctggagaacttttagctatagaaacacttgtgtgatgatagtcct ccttatatcacctggaatgaacacagcttctactgccttgctcagaaggtcttttaa atagaccatcctagaaaccactgagtttgcttatttctgtgatttaaacatagatct tgatccaagctacatgacttttgtctttaaataacttatctaccacctcatttgtac tcttgattacttacaaattctttcagtaaacacctaattttcttctgtaaaagtttg gtgatttaagttttattggcagttttataaaaagacatcttctctagaaattgctaa ctttaggtccattttactgtgaatgaggaataggagtgagttttagaataacagatt tttaaaaatccagatgatttgattaaaaccttaatcatacattgacataattcattg cttcttttttttgagatatggagtcttgctgtgttgcccaggcaggagtgcagtggt atgatctcagctcactgcaacctctgcctcccgggttcaactgattctcctgcctca gcctccctggtagctaggattacaggtgcccgccaccatgcctggctaacttttgta gttttagtagagacggggttttgcctgttggccaggctggtcttgaactcctgacct caagtgatccatccaccttggcctcccaaagtgctgggattacgggcgtgagccact gtccctggcctcattgttcccttttctactttaaggaaagttttcatgtttaatcat ctggggaaagtatgtgaaaaatatttgttaagaagtatctctttggagccaagccac ctgtcttggtttctttctactaagagccataaagtatagaaatacttctagttgtta agtgcttatatttgtacctagatttagtcacacgcttttgagaaaacatctagtatg ttatgatcagctattcctgagagcttggttgttaatctatatttctatttcttagtg gtagtcatctttgatgaataagactaaagattctcacaggtttaaaattttatgtct actttaagggtaaaattatgaggttatggttctgggtgggttttctctagctaattc atatctcaaagagtctcaaaatgttgaatttcagtgcaagctgaatgagagatgagc catgtacacccaccgtaagacctcattccatgtttgtccagtgcctttcagtgcatt atcaaagggaatccttcatggtgttgcctttattttccggggagtagatcgtgggat atagtctatctcatttttaatagtttaccgcccctggtatacaaagataatgacaat aaatcactgccatataaccttgctttttccagaaacatggctgttttgtattgctgt aaccactaaataggttgcctataccattcctcctgtgaacagtgcagatttacaggt tgcatggtctggcttaaggagagccatacttgagacatgtgagtaaactgaactcat attagctgtgctgcatttcagacttaaaatccatttttgtggggcagggtgtggtgt gtaaaggggggtgtttgtaatacaagttgaaggcaaaataaaatgtcctgtctccca gatgatatacatcttattatttttaaagtttattgctaattgtaggaaggtgagttg caggtatctttgactatggtcatctggggaaggaaaattttacattttactattaat gctccttaagtgtctatggaggttaaagaataaaatggtaaatgtttctgtgcctgg tttgatggtaactggttaatagttactcaccattttatgcagagtcacattagttca caccctttctgagagccttttgggagaagcagttttattctctgagtggaacagagt tctttttgttgataatttctagtttgctcccttcgttattgccaactttactggcat tttatttaatgatagcagattgggaaaatggcaaatttaggttacggaggtaaatga gtatatgaaagcaattacctctaaagccagttaacaattattttgtaggtggggtac actcagcttaaagtaatgcatttttttttcccgtaaaggcagaatccatcttgttgc agatagctatctaaataatctcatatcctcttttgcaaagactacagagaataggct atgacaatcttgttcaagcctttccatttttttccctgataactaagtaatttcttt gaacataccaagaagtatgtaaaaagtccatggccttattcatccacaaagtggcat cctaggcccagccttatccctagcagttgtcccagtgctgctaggttgcttatcttg tttatctggaatcactgtggagtgaaattttccacatcatccagaattgccttattt aagaagtaaaacgttttaatttttagcctttttttggtggagttatttaatatgtat atcagaggatatactagatggtaacatttctttctgtgcttggctatctttgtggac ttcaggggcttctaaaacagacaggactgtgttgcctttactaaatggtctgagaca gctatggttttgaatttttagttttttttttttaacccacttcccctcctggtctct tccctctctgataattaccattcatatgtgagtgttagtgtgcctccttttagcatt ttcttcttctctttctgattcttcatttctgactgcctaggcaaggaaaccagataa ccaaacttactagaacgttctttaaaacacaagtacaaactctgggacaggacccaa gacactttcctgtgaagtgctgaaaaagacctcattgtattggcatttgatatcagt ttgatgtagcttagagtgcttcctgattcttgctgagtttcaggtagttgagataga gagaagtgagtcatattcatattttcccccttagaataatattttgaaaggtttcat tgcttccacttgaatgctgctcttacaaaaactggggttacaagggttactaaatta gcatcagtagccagaggcaataccgttgtctggaggacaccagcaaacaacacacaa caaagcaaaacaaaccttgggaaactaaggccatttgttttgttttggtgtcccctt tgaagccctgccttctggccttactcctgtacagatatttttgacctataggtgcct ttatgagaattgagggtctgacatcctgccccaaggagtagctaaagtaattgctag tgttttcagggattttaacatcagactggaatgaatgaatgaaactttttgtccttt ttttttctgtttttttttttctaatgtagtaaggactaaggaaaacctttggtgaag acaatcatttctctctgttgatgtggatacttttcacaccgtttatttaaatgcttt ctcaataggtccagagccagtgttcttgttcaacctgaaagtaatggctctgggttg ggccagacagttgcactctctagtttgccctctgccacaaatttgatgtgtgacctt tgggcaagtcatttatcttctctgggccttagttgcctcatctgtaaaatgagggag ttggagtagattaattattccagctctgaaattctaagtgaccttggctaccttgca gcagttttggatttcttccttatctttgttctgctgtttgagggggctttttactta tttccatgttattcaaaggagactaggcttgatattttattactgttcttttatgga caaaaggttacatagtatgcccttaagacttaattttaaccaaaggcctagcaccac cttaggggctgcaataaacacttaacgcgcgtgcgcacgcgcgcgcgcacacacaca cacacacacacacacacacacaggtcagagtttaaggctttcgagtcatgacattct agcttttgaattgcgtgcacacacacacgcacgcacacactctggtcagagtttatt aaggctttcgagtcatgacattatagcttttgagttggtgtgtgtgacaccaccctc ctaagtggtgtgtgcttgtaattttttttttcagtgaaaatggattgaaaacctgtt gttaatgcttagtgatattatgctcaaaacaaggaaattcccttgaaccgtgtcaat taaactggtttatatgactcaagaaaacaataccagtagatgattattaactttatt cttggctctttttaggtccattttgattaagtgacttttggctggatcattcagagc tctcttctagcctacccttggatgagtacaattaatgaaattcatattttcaaggac ctgggagccttccttggggctgggttgagggtggggggttggggagtcctggtagag gccagctttgtggtagctggagaggaagggatgaaaccagctgctgttgcaaaggct gcttgtcattgatagaaggactcacgggcttggattgattaagactaaacatggagt tggcaaactttcttcaagtattgagttctgttcaatgcattggacatgtgatttaag ggaaaagtgtgaatgcttatagatgatgaaaacctggtgggctgcagagcccagttt agaagaagtgagttgggggttggggacagatttggtggtggtatttcccaactgttt cctcccctaaattcagaggaatgcagctatgccagaagccagagaagagccactcgt agcttctgctttggggacaactggtcagttgaaagtcccaggagttcctttgtggct ttctgtatacttttgcctggttaaagtctgtggctaaaaaatagtcgaacctttctt gagaactctgtaacaaagtatgtttttgattaaaagagaaagccaactaaaaaaaaa aaaaaaaaaaa 21 Mouse SMAD4 - ccgctgcggtaacggagcggctcgggtggcggagcccgtgttcgcgtccgtccgccc NM_008540.2 gcccgcccgccgtcctccggaggcccttcccgcgccgcgctccgctccgcggccgtc cccggggcgggagcgcgtgaccggagccggcgcccgcgagcgaggccccccgcagcg gggcggctccggagctccagcggcccggccggccggcgcggtccgcggcgcggcggg gagagggggccgcctgggccggacgccgcgggcggggcccgggaagcgacagcgagg cgaggcgcggtgcggcgcggagcccaggtcatcctgctcaccagatgtcttgacagt ttttcttgcaacattggccattggttttcactgccttcaaaagatcaaaattactcc agaaattggagagttggatttaaaagaaaaaacttgaacaaatggacaatatgtcta taacaaatacaccaacaagtaacgatgcctgtctgagcattgtacatagtttgatgt gtcatagacaaggtggggaaagtgaaacctttgcaaaaagagcaattgagagtttgg taaagaagctgaaagagaaaaaagatgaattggattctttaataacagctataacta caaatggagctcatcctagcaagtgtgtcaccatacagagaacattggatggacgac ttcaggtggctggtcggaaaggatttcctcatgtgatctatgcccgtctgtggaggt ggcctgatctacacaagaatgaactaaagcatgttaaatattgtcagtatgcgtttg acttaaaatgtgacagtgtctgtgtgaatccatatcactatgagcgggttgtctcac ctggaattgatctctcaggattaacactgcagagtaatgctccaagtatgttagtga aggatgagtacgttcacgactttgaaggacagccgtccttacccactgaaggacatt cgattcaaaccatccaacacccgccaagtaatcgcgcatcaacggagacgtacagcg ccccggctctgttagccccggcagagtctaacgccaccagcaccaccaacttcccca acattcctgtggcttccacaagtcagccggccagtattctggcgggcagccatagtg aaggactgttgcagatagcttcagggcctcagccaggacagcagcagaatggattta ctgctcagccagctacttaccatcataacagcactaccacctggactggaagtagga ctgcaccatacacacctaatttgcctcaccaccaaaacggccatcttcagcaccacc cgcctatgccgccccatcctggacattactggccagttcacaatgagcttgcattcc agcctcccatttccaatcatcctgctcctgagtactggtgctccattgcttactttg aaatggacgttcaggtaggagagacgtttaaggtcccttcaagctgccctgttgtga ctgtggatggctatgtggatccttcgggaggagatcgcttttgcttgggtcaactct ccaatgtccacaggacagaagcgattgagagagcgaggttgcacataggcaaaggag tgcagttggaatgtaaaggtgaaggtgacgtttgggtcaggtgccttagtgaccacg cggtctttgtacagagttactacctggacagagaagctggccgagcacctggcgacg ctgttcataagatctacccaagcgcgtatataaaggtctttgatctgcggcagtgtc accggcagatgcagcaacaggcggccactgcgcaagctgcagctgctgctcaggcgg cggccgtggcagggaacatccctggccctgggtccgtgggtggaatagctccagcca tcagtctgtctgctgctgctggcatcggtgtggatgacctccggcgattgtgcattc tcaggatgagctttgtgaagggctggggcccagactaccccaggcagagcatcaagg aaaccccgtgctggattgagattcaccttcaccgagctctgcagctcttggatgaag tcctgcacaccatgcccattgcggacccacagcctttagactgagatctcacaccac ggacgccctaaccatttccaggatggtggactatgaaatatactcgtgtttataatc tgaagatctattgcattttgttctgctctgtcttttcctaaagggttgagagatgtg tttgctgccttgctcttagcagacagaaactgaattaaaacttcttttctattttag aactttcaggtgtggctcagtgcttgaagatcagaaagatgcagttcttgctgagtc ttccctgctggttctgtatggaggagtcggccagtgctgggcgctcagccctttagt gtgtgcgagcgccttgcatgccgaggagagtcagagctgctgattgtaaggctgaga agttctcacagttaagccacctgccccttagtgggcgagttattaaacgcactgtgc tcacgtggcgctgggccagccagctctaccaagagcaactttactctcctttaaaaa ccttttagcaacctttgattcacaatggtttttgcaagttaaacagtgaaggtgaat taaattcatactgtcttgcagacttcagggtttcttccccaagacaaaacactaatc tgtgtgcatattgacaattccttacaattatcagtcaaagaaatgccatttaaaatt acaatttttttaatccctaatggatgaccactatcaagatgtatactttgccctgtt aaacagtaaatgaattcttctatatttctaggcacaaggttagttatttaaaaaaaa aaaaaaaagcctaggggagggatttttcccttaattcctagggagaaggttttgtat aaaacactaaaagcagtgtcactctgcctgctgcttcactgttctgcaaggtggcag tacttcaactgaaataatgaatattttggaaactgctaaattctatgttaaatactg tgcagaataatggaaacagtgcagttggtaacaggtggtttggatatttttgtactt gatttgatgtgtgacttcttttcatatactgttaaaatcatgtatgttttgacattg tttaaaattcagtttttgtatcttagggcaagactgcagacttttttataccttttg gttataagccctgtgtttgccatccttgatcacttggcggtgactttgtagagattg aagtggaggagttaagacacattgactgtaccacagacacacatgtatactttctac ctagttactagcgtaaataaaactgagtcactataaaaaaaaaaaaaaaaaaaaa 22 Mouse IL6R - gcagtgcgagctgagtgtggagcccgaggccgagggcgactgctctcgctgccccag NM_010559.2 tctgccggccgcccggccccggctgcggagccgctctgccgcccgccgtcccgcgta gaaggaagcatgctgaccgtcggctgcacgctgttggtcgccctgctggccgcgccc gcggtcgcgctggtcctcgggagctgccgcgcgctggaggtggcaaatggcacagtg acaagcctgccaggggccaccgttaccctgatttgccccgggaaggaagcagcaggc aatgttaccattcactgggtgtactctggctcacaaaacagagaatggactaccaca ggaaacacactggttctgagggacgtgcagctcagcgacactggggactatttatgc tccctgaatgatcacctggtggggactgtgcccttgctggtggatgttcccccagag gagcccaagctctcctgcttccggaagaacccccttgtcaacgccatctgtgagtgg cgtccgagcagcaccccctctccaaccacgaaggctgtgctgtttgcaaagaaaatc aacaccaccaacgggaagagtgacttccaggtgccctgtcagtattctcagcagctg aaaagcttctcctgccaggtggagatcctggagggtgacaaagtataccacatagtg tcactgtgcgttgcaaacagtgtgggaagcaagtccagccacaacgaagcgtttcac agcttaaaaatggtgcagccggatccacctgccaaccttgtggtatcagccatacct ggaaggccgcgctggctcaaagtcagctggcagcaccctgagacctgggacccgagt tactacttgctgcagttccagcttcgataccgacctgtatggtcaaaggagttcacg gtgttgctgctcccggtggcccagtaccaatgcgtcatccatgatgccttgcgagga gtgaagcacgtggtccaggtccgtgggaaggaggagcttgaccttggccagtggagc gaatggtccccagaggtcacgggcactccttggatagcagagcccaggaccaccccg gcaggaatcctctggaaccccacacaggtctctgttgaagactctgccaaccacgag gatcagtacgaaagttctacagaagcaacgagtgtcctcgccccagtgcaagaatcc tcgtccatgtccctgcccacattcctggtagctggaggaagcttggcgtttgggttg cttctctgtgtcttcatcatcctgagactcaagcagaaatggaagtcagaggctgag aaggaaagcaagacgacctctcctccacccccaccgtattccttgggcccactgaag ccgaccttccttctggttcctctcctcaccccacacagctctgggtctgacaatacc gtaaaccacagctgcctgggtgtcagggacgcacagagcccttatgacaacagcaac agagactacttattccccagataatcatctggatggtacctggcagctggcagggca ccacgagatcagcacacaagtttctcatgcgggtcccatccacctggggtggggtgg ggcgggcggggctgcagcttcactaacccacaagagctctgcacaggttctgagtag gtgcagctggtgctgcataggctctgaaggaaggaaggggctgtgaggaacacaggc cattgtgaagacagcttgtgatgactgaatagagatgcccgtcagctccacatctga tagtggctcacaagctgcaccctcaggaggcctcagaaaggggctccaaaggctgcc ccagctgcctcgctctgcctcactgccccaagccaccttttagctctcgaactccta aagtccaagcactttgccattctctttccgaggccactgaggccgggtggaagcttg gttccgatttccttctcaacatctggaaagcagctgggcccggtggtggtgactaat atctcagggcctgatggtttacgcgagtgacaatttctcacaagcagtttttaaatg tgaatgatgaccccaggcactgctggctgcggaggcttcattttcctcttcgatctc aggacttcaggcgaaaagcggagtggaagtagagagcggatgggtgtccaccgtcct catggtacttgcgggaggtacagcctggaaaacacgtttcctgtccccctactctcc caggagagggatgatggtagggggtgcctcttccagggcggagagaactactttacc ccagccttgcccattctgatttcaactggactggagctactaggaaagtcgacattc atgcaaaaagaaaaaacgttaactagcaagaatgcactttcattttggtttttagag aactgttgcctgtttctctcaagagtctggaagaggccgctcactgcacactactgt atgaaccctcactgcccaccctggaggaccaagtgcagtaacggtagcccaaacacc aagtcaagtgaaaatcgagggaaaaaaaaaacaaacaagcaacaaaaaaaaaaaacc aaaactaaactaaaaaacaaatcacccccccaaaaaaaaacaaaaccaaaaaccaaa aaaaacaaaaaaacaaaacaacaacaacaaaaaaaacccaaaccaacccgctgtttc ctataacagaaaagcctttggtttcattttttattttgatttttttgtcttaaaaag tataaaaatagcctgtccatgctctgcttcagggaatgagcctgtgaacactcccag gcgcaggcaggaagggtgtctgcttcctgctacacctcactgccaccttggccttcc ttgctttacgtttgactgagtggcctcagatgctttcccctggggctttgaggaatc cagtgatgttagtggtcaccgaggagaccacagagccacagtgtggtgcttagatta aagtgacttctgcaaccacagcaccccacacctgccgtcttactgaactatgccagt aacttgccttttctgccaccaccacgagacgagacgggcagagctcggaagctgtca ccccatgccctctgcttgtccgctctaggggccactgacctaagcattagttatttt attttattttatttttttgtgggttttgtacattttaggtcctgttgctgtcttaga aaaggctctgtaggttgacagaaaatcaggccaagtattcatgttttgttttttttt tttttccttctttcctcctttgctaagtttttgggactcaagggtagcaaaactgct gtgaaagggaaatttattaaaaatgttacagatcgtg 23 Rat IL6R - gccccacgtagaaggaaccatgctggccgtcggctgcaccctgctggtcgccctgct NM_017020.3 ggccgcgcccgcagtcgcgctggtccttgggagctgccgcgcgctggaggtggcaaa tggtacggtgacgagcctgccaggggccactgttaccctgatctgccctgggaagga agcagcaggcaatgctaccattcactgggtgtactcaggctcacagagcagagaatg gactaccacgggaaacacactggttctgagggccgtgcaggtcaacgacactgggca ctatttgtgcttcctggatgatcatctggttgggactgtgcccttgctggtggatgt tcccccagaggagcccaagctctcctgcttccggaagaacccccttgtaaatgcctt ttgtgagtggcatccaagcagcactccctctccaaccacgaaggctgtgatgtttgc aaagaaaatcaacaccaccaatgggaagagtgacttccaggtgccttgccagtattc tcagcagctgaaaagcttctcctgcgaggtggagatcctggagggtgacaaagtgta ccacatagtgtcactgtgcgttgcaaacagtgtcggaagcaggtccagccacaatgt agtatttcagagtttaaaaatggtgcagccggatccacctgccaaccttgtggtatc agccatacctggaaggcctcgttggctcaaagtcagttggcaagaccctgagtcctg ggacccaagttactacttgttgcaattcgagcttcgataccgacctgtatggtcaaa gacgttcacggtgtggccgctccaggtggcccagcatcaatgtgtcatccatgatgc cttgcgaggagtaaagcatgtggtgcaggtccgagggaaggaggagtttgacattgg ccagtggagcaaatggtccccggaggtcacaggcactccttggctagcagagcccag gaccactccggcagggatcccggggaaccccacacaggtctctgttgaagactatga caaccacgaggatcagtacggaagttctacagaagcaacgagtgtcctcgccccagt gcaaggatcctcgcctatacccctgcccacattcctggtagctggaggaagcctggc gtttggattgcttctctgtgtcttcatcatcttgagactcaagaagaaatggaagtc acaggctgagaaggaaagcaagacgacttctcccccaccgtatcccttgggaccgct gaagccgaccttcctcctggttcctctcctcaccccatcagggtcccataacagctc tgggactgacaacaccggaagccacagctgcctgggtgtcagggacccacagtgccc taatgacaacagcaacagagactacttattccccagataattgtctggagggtacct ggcagctggcacgcaagtttctcactgccggccccgtccaccagggctgggggcggg gtgggcggggctgcagcttcacgatcccacaggagccttgcaaaggttctgagtggg agaagactggtgtgctgcacgggcttcgaaagaaggggctgtgaggagcacgagcca tcatgaagagagcctgtgatgactctgaatagagacgcccgcccatcagctacacac ctgatggtggctctcaagctatcctctcaggaagcctctgggaggggcgacaaaggc tgccccagttgcctagctctggctcactggcccaagctgccttttagcttgaactcc taaaatccaagcaccttggccattctcttcctaggccaccgaggccgcggggaagct tggttctactttccttctcaacacctggagaagcagctgcccggtggtggtgactaa cgtatcagggcctgatggcttatgaggaatgacaattaattcctcataagcagtttt taaatgtgaatagtaatcctaggcactgctgacttgaggttttattttcttcaatct caggacttcaggagagaagcagagcagaagtagagagaggatgggtgtccattgtcc gtgtggtacttgagggggatacagcctggaaaacacgtttcctgtccccctactctc ccagaagaggtagggggtggcgcctcttccagggcagagagtataactactttacct ggccttgcccatactggtttcaactggacttgagctactaggaaaaatgacattcat gcaaaaagaaaactttaactagcaagaatgcacttccactttggtttctagaggact gttgctcctcttgagacgctggaagaggccgctcactgtaccctggtgtatgagccc tcaccccccaccccagggtaagtgcagtaactttagtctaaacaccgagtcaggtaa aaatcgaggaaaaaacaaccctgtttcctgtaacagaaaagcctttggtttcgtttt gtattttgattttttttttgtcttaaaaagtgtaaaaatagtctgtccatactctgc ttcagggaatgacctgtgaatactccccaggcgtgggcaggaagggtgtctgcttcc tgctacacctcactgccacctcggccttccttgctttacattcaactgagttgcctc agctgctttcccctggggcgctgaaaaagccagtgatgttggtggtcaccgagaaga ccacagagccacagagtaatgctgtgattgaagcgagttacgcaaccacagcacccc acatttgctgtattatagaactatgctaggagcttgccttttcacaaaataccacca ccacgagacgtggcagagctcggaagctgtcaccttgtgccatctgcttgccagctc caaggggccactgacttaagcagttattttctttgtgggctttgttcatttcagggc ctgttgctgtcttagaaaaagctctgtcggttgacaaaaacatcagacaggtagtca tgtttatttattttttttccttctttgctaagtctttgggactcaagggtagtaaaa aatgctgtgaaaagggaaacattagaaacagcgatcttcggggaataggtgactgtg cccacgcactgttcttcagtccctcacgtggctctgcccgagtgctgttccaagcca ggcagagcaggctggcggaagattgaaatccagatagttcgttatctctgagagcta aatagctttgatctccaagctgttattgctttcactattgtaacaggatagcctccc ccccccatgtcaaaaggatgcttttcccttttgactttttataagctaagtcagtga agtctgtttcatctgagctccagcttcgttcagttcgcacaggtgtatgccctcagc tgcttcgggcctcagatctgtgctagttgaatggttgtcccatccttgggtcatcct taccagagtttctgcagcccacaggtctgccttgtcaacagtaccacttaacaccag cattcagtgcccaggcagccagatgtggagggtttacccagagatgatttaaacatg accttaaacgtgtatggtagaacgaggggaacccataccagctcaggttctaaagag atctttgattcttctggcattagtgaaatagctttaaactatttcaaggaagaagcc ttggccacacccacgacatttggtgacaatcctttctctccatgagccttgtcttta caccttctcacctggctgaaagctcacactgaatctttcctatgtccctggtgtctt gggagaaaggaaactggtatgggcttcactgctggaattggcttggagccagcgtgt ggcgcagcgcctggcagggtgggccaggcttagttatggtgtgctggtttaaggaat gcctggcttgcctggttgcttgggttctgagctgcagagtttcctagcagttcttta tggctgacctagttggggaagattcccacactcaactgcaggtggaggtggtgagaa agctgttttcatttggagaggcaggatcagcccaagaagctttcagtgggagagcct acagtgaggctgtacctcactgtgggaggaggcaggccagctggctcaggtcctggg actggcactggggagggtctgccaaaggtccctccagcctgtagtcctagcatagtc gggtgccagttccaggaagtttctatggcaaccttagtgctcattaaggaacattgt cagttttgtgaacatatgctcagatggagatcttgttttcagagaaaggactggtac agtgtgtaacaagctggagcagacagagagactttttggcaagagatcacatccgtt aagcagaatacctcagtgctacatgtttttgtctttgagacaatgtttttaaggttt ttatgctctgttacctgtaagctgatacctaaaactttctgcaaagtcagggttttt caatgccttttttttttttttgccattgtttgctttaaagtgaagattgtaactgtt tgaaataaataatttctaaaactgca 24 Human BMP6 - caactgggggcgccccggacgaccatgagagataaggactgagggccaggaagggga NM_001718.4 agcgagcccgccgagaggtggcggggactgctcacgccaagggccacagcggccgcg ctccggcctcgctccgccgctccacgcctcgcgggatccgcgggggcagcccggccg ggcggggatgccggggctggggcggagggcgcagtggctgtgctggtggtgggggct gctgtgcagctgctgcgggcccccgccgctgcggccgcccttgcccgctgccgcggc cgccgccgccggggggcagctgctgggggacggcgggagccccggccgcacggagca gccgccgccgtcgccgcagtcctcctcgggcttcctgtaccggcggctcaagacgca ggagaagcgggagatgcagaaggagatcttgtcggtgctggggctcccgcaccggcc ccggcccctgcacggcctccaacagccgcagcccccggcgctccggcagcaggagga gcagcagcagcagcagcagctgcctcgcggagagccccctcccgggcgactgaagtc cgcgcccctcttcatgctggatctgtacaacgccctgtccgccgacaacgacgagga cggggcgtcggagggggagaggcagcagtcctggccccacgaagcagccagctcgtc ccagcgtcggcagccgcccccgggcgccgcgcacccgctcaaccgcaagagccttct ggcccccggatctggcagcggcggcgcgtccccactgaccagcgcgcaggacagcgc cttcctcaacgacgcggacatggtcatgagctttgtgaacctggtggagtacgacaa ggagttctcccctcgtcagcgacaccacaaagagttcaagttcaacttatcccagat tcctgagggtgaggtggtgacggctgcagaattccgcatctacaaggactgtgttat ggggagttttaaaaaccaaacttttcttatcagcatttatcaagtcttacaggagca tcagcacagagactctgacctgtttttgttggacacccgtgtagtatgggcctcaga agaaggctggctggaatttgacatcacggccactagcaatctgtgggttgtgactcc acagcataacatggggcttcagctgagcgtggtgacaagggatggagtccacgtcca cccccgagccgcaggcctggtgggcagagacggcccttacgacaagcagcccttcat ggtggctttcttcaaagtgagtgaggtgcacgtgcgcaccaccaggtcagcctccag ccggcgccgacaacagagtcgtaatcgctctacccagtcccaggacgtggcgcgggt ctccagtgcttcagattacaacagcagtgaattgaaaacagcctgcaggaagcatga gctgtatgtgagtttccaagacctgggatggcaggactggatcattgcacccaaggg ctatgctgccaattactgtgatggagaatgctccttcccactcaacgcacacatgaa tgcaaccaaccacgcgattgtgcagaccttggttcaccttatgaaccccgagtatgt ccccaaaccgtgctgtgcgccaactaagctaaatgccatctcggttctttactttga tgacaactccaatgtcattctgaaaaaatacaggaatatggttgtaagagcttgtgg atgccactaactcgaaaccagatgctggggacacacattctgccttggattcctaga ttacatctgccttaaaaaaacacggaagcacagttggaggtgggacgatgagacttt gaaactatctcatgccagtgccttattacccaggaagattttaaaggacctcattaa taatttgctcacttggtaaatgacgtgagtagttgttggtctgtagcaagctgagtt tggatgtctgtagcataaggtctggtaactgcagaaacataaccgtgaagctcttcc taccctcctcccccaaaaacccaccaaaattagttttagctgtagatcaagctattt ggggtgtttgttagtaaatagggaaaataatctcaaaggagttaaatgtattcttgg ctaaaggatcagctggttcagtactgtctatcaaaggtagattttacagagaacaga aatcggggaagtggggggaacgcctctgttcagttcattcccagaagtccacaggac gcacagcccaggccacagccagggctccacggggcgcccttgtctcagtcattgctg ttgtatgttcgtgctggagttttgttggtgtgaaaatacacttatttcagccaaaac ataccatttctacacctcaatcctccatttgctgtactctttgctagtaccaaaagt agactgattacactgaggtgaggctacaaggggtgtgtaaccgtgtaacacgtgaag gcaatgctcacctcttctttaccagaacggttctttgaccagcacattaacttctgg actgccggctctagtaccttttcagtaaagtggttctctgcctttttactatacagc ataccacgccacagggttagaaccaacgaagaaaataaaatgagggtgcccagctta taagaatggtgttagggggatgagcatgctgtttatgaacggaaatcatgatttccc ttgtagaaagtgaggctcagattaaattttagaatattttctaaatgtctttttcac aatcatgtactgggaaggcaatttcatactaaactgattaaataatacatttataat ctacaactgtttgcacttacagctttttttgtaaatataaactataatttattgtct attttatatctgttttgctgtaacattgaaggaaagaccagacttttaaaaaaaaag agtttatttagaaagtatcatagtgtaaacaaacaaattgtaccactttgattttct tggaatacaagactcgtgatgcaaagctgaagttgtgtgtacaagactcttgacagt tgtgcttctctaggaggttgggtttttttaaaaaaagaattatctgtgaaccatacg tgattaataaagatttcctttaaggca 25 Rhesus BMP6 - agcgcagcccggactcggacgcacctggcctgtaccgcgcgcctctagagacctgcg XM_001085364.2 cggggctgtggggctccccttcctcccctccaagcggttctcccggtgatcgcccct tcgccacccctctatcctgggcaactgggggcgccccggacgaccatgagagataag gactgagggccaggaaggggaagcgagcccgccgagaggtggcgggggctgctcacg ccaagggccacagcggccgtgctccagcctcgctccgccgctccacgcctcgcggga tccgcgggggcagcccggccgggcggggatgccggggctggggcggagggcgcagtg gctgtgctggtggtgggggctgttgtgcagctgctgcgggcccccgccgctgcggcc gcccctgcccgctgccgcggccgccgccgccgggggccagctgctgggggacggcgg gagccccggccgcacggagcagccgccgccgtcgccgcaatcctcctcgggcttcct ctaccggcggctcaagacgcacgagaagcgggagatgcagaaggagatcttgtcggt gctggggctcccacaccggccccggcccctgcacggcctccaacagccgcagccccc ggcgctcccgcagcagcagcagcagcagcagcagccgcctcgcggagagccccctcc cgggcagctgaagtccgcgcccctcttcatgctggatctgtacaacgccctgtccgc cgacgacgaggaggacggggcgtcggagggggagaggcagcagccctggccccacga aggagccagctcgtcccagcctcggcagccggccccgggcgccgcgcacccgctcaa ccgcaagagcctcctggcccccggacctggcagcggcggcgcgtccccactgaccag cgcgcaggacagcgccttcctcaacgacgcagacatggtcatgagctttgtgaacct ggtggagtacgacaaggagttctcccctcgtcagcgacaccacaaagagttcaagtt caacttatcccagattcctgagggtgaggcggtgacggctgcagaattccgcatcta caaggactgtgttgtggggagttttaaaaaccaaacttttcttatcagcatttatca agtcttacaggagcatcagcacagagactctgacctttttttgctggacacccgcgt agtgtgggcctcagaagaaggctggctggaatttgacatcacggccactagcaatct gtgggttgtgaccccgcagcataacatggggcttcagctgagtgtggtgacgcggga tggagtccacatccatccccgagccgcgggcctggtgggcagagacggcccttacga caagcagcccttcatggtggctttcttcaaagtgagtgaggtccacgtgcgcaccac caggtcagcctctggccggcgccgacaacagagtcgtaatcgctctacccagtccca ggacgtggcgcgggtctccagtgcttcagattacaacagcagtgaattaaaaacagc ttgcaggaagcatgagctgtatgtgagtttccaagacctgggatggcaggactggat cattgcacccaagggctacgctgccaattactgtgatggggaatgctccttcccact caacgcacacatgaatgcaaccaaccacgcgatcgtgcagaccttggttcaccttat gaaccctgagtatgtccccaaaccgtgctgtgcgccaactaaactaaatgccatctc agttctttactttgatgacaattccaatgtcattctgaaaaaatacaggaatatggt tgtaagagcttgtggatgccactaactcgaaaccagatgctggggacacacattctg ccttggattcctagattacatctgccttaaaaaacacagaagcacagttggaggtgg gacgatgagacttggaaactatctcatgccagtgccttattacccaagaagatttta aaggacctcattaataatttgctcacttggtaaatgacgtgagtagttgttggtctg tagcaagctgagtttggatgtctgtagtgcaaggtccggtaactgcagaaagcaccg tgaagctcttcctcccctcctcccccaaaaacccaccaaaattagttttagctgtag atcaagctatttggggtgttagtaagtagggaaaataatctcaaaggagttaaatgt attcttggttaaagtatcagcctgttcagtactgtctatcaaaggtagattttacag agaacagaaattggggaagttgggggaacgcctctgttcagatttcattcccaggaa gttcaatttcatacatgacccacagcccaggccacagccagggctccatggggcgcc tttgtctcagtcattgctgttatgtgttcatgctggagttttgttg 26 Mouse BMP6 - gatcctggccgtcgccccgtcgtctcttctccacccgggcttctgggggcgccgcgg NM_007556.2 atgaccatgagagataaggactgagtgccaggaccgggaagagagcccgccgagagg tggcgggggctgcccactccgagggccacagcctccgcgctccggcctcgctccgcc gctcgacgcctcgcgggccccgcgggggcagccgggctgggcggcgatgcccgggct ggggcggagggcgcagtggctgtgctggtggtgggggttgctgtgcagctgcggccc cccgccactgcggccccctctgccggtagccgcggccgccgccggggggcagctgct gggagccggcgggagcccggtgcgcgctgagcagccaccgccacagtcctcttcttc gggcttcctctatcggcggctcaagacccacgagaagcgggagatgcaaaaggagat cctgtcggtgctggggctcccgcacaggccgcggcccctgcacggtctccagcagcc tcagcccccggtgctcccgccacagcagcagcagcagcagcagcagcagcagacggc ccgcgaggagccccctccagggcggctgaagtccgctccactcttcatgctggatct ctacaacgccctgtccaatgacgacgaagaggatggggcatcggagggtgtggggca agagcctgggtcccacggaggggccagctcgtcccagctcaggcagccgtctcccgg cgctgcacactccttgaaccgcaagagtctcctggccccgggacccggtggcggtgc gtccccactgactagcgcgcaggacagcgctttcctcaacgacgcggacatggtcat gagctttgtgaacctggtggagtacgacaaggagttctccccacatcaacgacacca caaagagttcaagttcaacctatcccagattcctgagggtgaggcggtgacggctgc tgagttccgcgtctacaaggactgtgtggtggggagttttaaaaaccaaacctttct tatcagcatttaccaagtcttgcaggagcatcagcacagagactctgacctattttt gttggacacccgggtggtgtgggcctcagaagaaggttggctggaatttgacatcac agcaactagcaatctgtgggtggtgacaccgcagcacaacatggggctccagctgag tgtggtgactcgggatggactccacgtcaacccccgtgcggcgggcctggtgggcag agacggcccttacgacaagcagcccttcatggtggccttcttcaaggtgagcgaggt ccacgtgcgcaccaccaggtcagcctccagtcggcggcggcagcagagtcgcaaccg gtccacccagtcgcaggacgtgtcccggggctccggttcttcagactacaacggcag tgagttaaaaacagcttgcaagaagcatgagctctatgtgagcttccaggacctggg atggcaggactggatcattgcacccaaaggctacgctgccaactactgtgatggaga gtgttccttcccactcaacgcacacatgaatgccaccaaccacgccattgtacagac cttggtccaccttatgaatcccgagtacgtccccaaaccatgctgcgcaccaaccaa actgaatgccatctcggttctttacttcgatgataactccaatgtcatcttgaaaaa gtacaggaatatggtcgtgagagcttgtggttgccattaagttgaagctggtgtgtg tgtgtgggtgggggcatggttctgccttggattcctaacaacaacatctgccttaaa ccacgaacaacagcacagcgaagcgggatggtgacacacagagggatcgtgacacgc agacacatctcccgctggtgccttacccacggaggcttttatgaggaccttgtcaag ggctttcccagttcctaactgagcagttgctggtctgcaggaagctggaaggcttgt agtacaggcctggaaactgcagttacctaatgttcgcctcccccaaccccgcccgga gtagttttagcttttagatctagctgcttgtggtgtaagtagagagtaaacttgaag gaatattaaatatccctgggttgaaagacccggtggtggctctacagcacccatccc agggagatttttgcagacatccgaatggaggggagaagggcactctttcaggttcca ttcccagcaagggcagctcacacaggacctgcagcctggccatcagcaggctctgtg gaggtgccttctgtctactgttgtagttacgtgttttgtgttgactctcggtggtgt gagaatgtactaatctctgtcaagacaaactgtagcatttccaccccatcctcctcc ctccctcacagaattc 27 Rat BMP6 - atgcccgggctggggcggagggcgcagtggctgtgctggtggtgggggttactgtgc NM_013107.1 agctgcggccccccgccactgcggccccctctgccggtagccgcggccgccgccggg gggcagctgctgggagccggcgggagccctgtgcgcgccgagcagccaccgccgcaa tcctcctcttcgggcttcctctatcggcggctcaagacccacgagaagcgggagatg caaaaggagatcctgtcggtgttggggctgcctcacaggccgcggcccctgcacggt ctccagcagcctcaatcccccgtgctcccgcagcagcaacaatcgcaacagacggcc cgcgaggagccccctccagggcggctgaagtccgctccgctcttcatgctggatctc tacaactccctgtccaaggacgacgaagaggatggggtgtcagagggagagggactg gagcccgagtcccacggaagggccagctcgtcccagctcaaacagccatctcccggg gctgcacactccctgaaccgcaagagtctcctggccccgggacccggcggcagtgcg tccccactgaccagcgcgcaggacagcgctttcctcaacgacgcggacatggtcatg agctttgtgaacctggtggagtacgacaaggagttctccccacgccagcgacaccac aaggagttcaagttcaacttatcccagattcccgagggtgaggcagtgacggctgca gagttccgcgtctacaaggactgtgtggtggggagttttaaaaaccaaacttttctt atcagcatttaccaagtcttacaggagcatcagcacagagactctgacctatttttg ttggacacccgggtggtgtgggcctccgaagaaggctggctggaattcgacatcaca gcaactagcaatctgtgggtggtgacaccgcagcacaacatgggactccagctgagt gtggtgactcgggacggactccacatcaacccccgtgcggcgggcctggtgggcaga gacggcccttacgacaagcagcccttcatggtggccttcttcaaggtgagcgaggtc cacgtgcgcaccaccaggtcagcctccagtcggcgtcgacagcagagtcgcaatcgg tccacccagtcgcaggacgtgtcccggggctccagtgcttcagactacaacagcagt gagttaaaaacagcttgcaagaagcatgagctttacgtgagcttccaggacctggga tggcaggactggatcatcgcacccaaaggctacgctgccaactattgtgacggagag tgttccttccctctcaatgcacacatgaatgccaccaaccacgccattgtacagacc ttggtccaccttatgaatcccgagtacgtccccaaaccatgctgcgcaccaaccaaa ctgaatgccatctcggttctttacttcgacgacaactccaatgtcatcttgaaaaaa tacaggaacatggttgtgagagcttgtggatgtcattga 28 Human NEO1 - gggccgggccgggctgggctggagcagcggcggccgcgggagccgagcttgcagcga NM_002499.2 gggaccggctgaggcgcgcgggagggaaggaggcaagggctccgcggcgctgtcgcc gccgctgccgctcactctcggggaagagatggcggcggagcggggagcccggcgact cctcagcaccccctccttctggctctactgcctgctgctgctcgggcgccgggcgcc gggcgccgcggccgccaggagcggctccgcgccgcagtccccaggagccagcattcg aacgttcactccattttattttctggtggagccggtggatacactctcagttagagg ctcttctgttatattaaactgttcagcatattctgagccttctccaaaaattgaatg gaaaaaagatggaacttttttaaacttagtatcagatgatcgacgccagcttctccc ggatggatctttatttatcagcaatgtggtgcattccaaacacaataaacctgatga aggttattatcagtgtgtggccactgttgagagtcttggaactattatcagtagaac agcgaagctcatagtagcaggtcttccaagatttaccagccaaccagaaccttcctc agtttatgctgggaacaatgcaattctgaattgtgaagttaatgcagatttggtccc atttgtgaggtgggaacagaacagacaaccccttcttctggatgatagagttatcaa acttccaagtggaatgctggttatcagcaatgcaactgaaggagatggcgggcttta tcgctgcgtagtggaaagtggtgggccaccaaagtatagtgatgaagttgaattgaa ggttcttccagatcctgaggtgatatcagacttggtatttttgaaacagccttctcc cttagtcagagtcattggtcaggatgtagtgttgccatgtgttgcttcaggacttcc tactccaaccattaaatggatgaaaaatgaggaggcacttgacacagaaagctctga aagattggtattgctggcaggtggtagcctggagatcagtgatgttactgaggatga tgctgggacttatttttgtatagctgataatggaaatgagacaattgaagctcaagc agagcttacagtgcaagctcaacctgaattcctgaagcagcctactaatatatatgc tcacgaatctatggatattgtatttgaatgtgaagtgactggaaaaccaactccaac tgtgaagtgggtcaaaaatggggatatggttatcccaagtgattattttaagattgt aaaggaacataatcttcaagttttgggtctggtgaaatcagatgaagggttctatca gtgcattgctgaaaatgatgttggaaatgcacaagctggagcccaactgataatcct tgaacatgcaccagccacaacgggaccactgccttcagctcctcgggatgtcgtggc ctccctggtctctacccgcttcatcaaattgacgtggcggacacctgcatcagatcc tcacggagacaaccttacctactctgtgttctacaccaaggaagggattgctaggga acgtgttgagaataccagtcacccaggagagatgcaagtaaccattcaaaacctaat gccagcgaccgtgtacatctttagagttatggctcaaaataagcatggctcaggaga gagttcagctccactgcgagtagaaacacaacctgaggttcagctccctggcccagc acctaaccttcgtgcatatgcagcttcgcctacctccatcactgttacgtgggaaac accagtgtctggcaatggggaaattcagaattataaattgtactacatggaaaaggg gactgataaagaacaggatgttgatgtttcaagtcactcttacaccattaatgggtt gaaaaaatatacagagtatagtttccgagtggtggcctacaataaacatggtcctgg agtttccacaccagatgttgctgttcgaacattgtcagatgttcccagtgctgctcc tcagaatctgtccttggaagtgagaaattcaaagagtattatgattcactggcagcc acctgctccagccacacaaaatgggcagattactggctacaagattcgctaccgaaa ggcctcccgaaagagtgatgtcactgagaccttggtaagcgggacacagctgtctca gctgattgaaggtcttgatcgggggactgagtataatttccgagtggctgctctaac aatcaatggtacaggcccggcaactgactggctgtctgctgaaacttttgaaagtga cctagatgaaactcgtgttcctgaagtgcctagctctcttcacgtacgcccgctcgt tactagcatcgtagtgagctggactcctccagagaatcagaacattgtggtcagagg ttacgccattggttatggcattggcagccctcatgcccagaccatcaaagtggacta taaacagcgctattacaccattgaaaatctggatcccagctctcactatgtgattac cctgaaagcatttaataacgtgggtgaaggcatccccctgtatgagagtgctgtgac caggcctcacacagacacttctgaagttgatttatttgttattaatgctccatacac tccagtgccagatcccactcccatgatgccaccagtgggagttcaggcttccattct gagtcatgacaccatcaggattacgtgggcagacaactcgctgcccaagcaccagaa gattacagactcccgatactacaccgtccgatggaaaaccaacatcccagcaaacac caagtacaagaatgcaaatgcaaccactttgagttatttggtgactggtttaaagcc gaatacactctatgaattctctgtgatggtgaccaaaggtcgaagatcaagtacatg gagtatgacagcccatgggaccacctttgaattagttccgacttctccacccaagga tgtgactgttgtgagtaaagaggggaaacctaagaccataattgtgaattggcagcc tccctccgaagccaatggcaaaattacaggttacatcatatattacagtacagatgt gaatgcagagatacatgactgggttattgagcctgttgtgggaaacagactgactca ccagatacaagagttaactcttgacacaccatactacttcaaaatccaggcacggaa ctcaaagggcatgggacccatgtctgaagctgtccaattcagaacacctaaagcgga ctcctctgataaaatgcctaatgatcaagcctcagggtctggagggaaaggaagccg gctgccagacctaggatccgactacaaacctccaatgagcggcagtaacagccctca tgggagccccacctctcctctggacagtaatatgctgctggtcataattgtttctgt tggcgtcatcaccatcgtggtggttgtgattatcgctgtcttttgtacccgtcgtac cacctctcaccagaaaaagaaacgagctgcctgcaaatcagtgaatggctctcataa gtacaaagggaattccaaagatgtgaaacctccagatctctggatccatcatgagag actggagctgaaacccattgataagtctccagacccaaaccccatcatgactgatac tccaattcctcgcaactctcaagatatcacaccagttgacaactccatggacagcaa tatccatcaaaggcgaaattcatacagagggcatgagtcagaggacagcatgtctac actggctggaaggcgaggaatgagaccaaaaatgatgatgccctttgactcccagcc accccagcctgtgattagtgcccatcccatccattccctcgataaccctcaccatca tttccactccagcagcctcgcttctccagctcgcagtcatctctaccacccgggcag cccatggcccattggcacatccatgtccctttcagacagggccaattccacagaatc cgttcgaaatacccccagcactgacaccatgccagcctcttcgtctcaaacatgctg cactgatcaccaggaccctgaaggtgctaccagctcctcttacttggccagctccca agaggaagattcaggccagagtcttcccactgcccatgttcgcccttcccacccatt gaagagcttcgccgtgccagcaatcccgcctccaggacctcccacctatgatcctgc attgccaagcacaccattactgtcccagcaagctctgaaccatcacattcactcagt gaagacagcctccatcgggactctaggaaggagccggcctcctatgccagtggttgt tcccagtgcccctgaagtgcaggagaccacaaggatgttggaagactccgagagtag ctatgaaccagatgagctgaccaaagagatggcccacctggaaggactaatgaagga cctaaacgctatcacaacagcatgacgaccttcaccaggacctgacttcaaacctga gtctggaagtcttggaacttacccttgaaaacaaggaattgtacagagtacgagagg acagcacttgagaacacagaatgagccagcagactggccagcgcctctgtgtagggc tggctccaggcatggccacctgccttcccctggtcagcctggaagaagcctgtgtcg aggcagcttccctttgcctgctgatattctgcaggactgggcaccatgggccaaaat tttgtgtccagggaagaggcgagaagtgcaacctgcatttcactttgtggtcaggcc gtgtctttgtgctgtgactgcatcacctttatggagtgtagacattggcatttatgt acaattttatttgtgtcttattttattttaccttcaaaaacaaaaacgccatccaaa accaaggaagtccttggtgttctccacaagtggttgacatttgactgcttgttccaa ttatgtatggaaagtctttgacagtgtgggtcgttcctggggttggcttgttttttg gtttcatttttattttttaattctgagtcattgcatcctctaccagctgttaatcca tcactctgagggggaggaaatgttgcattgctgtttgtaagctttttttattatttt tttattataattattaaaggcctgactctttcctctcatcactgtgagattacagat ctatttgaattgaatgaaatgtaacattgaaaagacttgtttgttgctttctgtgca gtttcagtattggggcgggtggggggctgggggttggtaataggaaatggaggggct gctgaggtcctgtgaatgtttctgtcattgtactttcttccagaagcctgcagagaa tggaagcatcttctttattgtcctttcctggcatgtccatccttattgtcactacgt tgcaactggagtttgatttggatctggttttaaaattcttctgtgcaatagatgggt ttgaggatttagcggccctgatgtcttggtcatagcctggtaagaatgtccatgctg aggagccagatgttgtatttctaactgcctgagtcacacagaatagggtaagagcct gaccccattctgtaaatcagaaagcaaggatggagaccctttcctgctgctattatt ggctctctttgaggaagttggaggttaaggaaggaacttgtttgtttccgtatacga ctccttcttctctctagttcagtcttcagccagtccagcgctctcttccacacttca gagccccttcagagaaagcattagcaggaatgagacaaggcagagctgcagtgcccc ctgaggcttccacacatctttctgaatattatttttcaagtaacaagggcagggaca gcggaaacagctgcccaccccccccatcccagcagctcagctaagccctgatgagaa tgaagccacaggagttgtctgaggtgaacccagccgctcagccacacatggaagcca ttgcctttgcacatagttcttgggttctttttcctaaaaaggtaaggagctgaggtg tgtggttttttaatattaagaatatataatggaaaacacacgactgacgctcaggca tcttcccctactccccaacagatccccagaagacagcgtggaaggcagtgtagacag taaatcgggcttcagttctatagccaagaagagatcagctgctgaaaccaccagtgg gtaccccaggccacctgcctttgaacttggggatttgccatgtttgatcttgtcaca tacttgcttttttacaagatgaactctttgtatttatgatttggggggcaatgaaag gtgcaatgcaggaactgctgctgccgagctcgctggtcacatgggggtgccaggcgg gattctggaaaaccagtgcacttaaactgatcctgaagagagctgtcccagcactct ggccaccaggagggccagattccccagaaactaccttttgcccaaagaacatgctca gtatttggggcatttcctcccacaaaccctgactgcttctgttacctcagggccttg gtacctggatactgccacagaattggggcgggtgggggaggggcctatttttaaata aaataactgttcaaagttgggggttttttaaaaaattaagaaaaaggaaagctattc tgtattgcaccttttcacaatttaatacattttcttacattttcctgtgattttcga aactaaaccattgtgtgtcctgtagtgtcctggttgagctgccgctcagcagcttcc tcggggggatttggaacacctgtgtctgtcgccgcactgcctgtgggaggggcccag agggctgctgggactggcgtctgtacacacttgtttggccttttctgtagttgatgc tgtaaactctatggctttttaaaaacgatttcatgtttttatttagtattggaaatc caatacacttttttaatccaatcaaaaaaaaaaaaaaaaaaaaaaa 29 Mouse NEO1 - gcccccctcgctctaccgtgaggagcccgagtcggcggcgggtggcggcgcctggaa NM_001042752.1 cctggagagaccgagccaccccccggctctcggccggaatgtactgattctcctctg ctctcctccccgccccgctgcaggagggaggcgcccggagtctttccccctgggcgc gcgagggggccgcgcgggccgggccgggccgggctggagccgagccctgcggcgcag agaccggctgaggcgcgctgagggaagggcgcgagcgctccgcggcgctatcgccgc cgccgccgccgccactcgtggggtagagatggcggcggagcgcgaagccgggcgact cctctgcacctcctcctcccggcgctgctgtccgccaccgccgctgctgctgttgct gccgctgctgctgctgctcggacgcccggcgtccggcgccgcggccacgaagagcgg ctccccgccgcagtccgcaggagccagtgttcgaacattcactccgttttattttct ggtggagccagtagacaccctctcagttagaggctcttctgttatattaaattgctc ggcatattctgagccctctccaaacattgaatggaagaaagatgggacttttttaaa cttagaatcagatgatcgacgccagctactcccagatggatctttattcatcagcaa cgtggtgcattccaaacacaataagcctgacgaaggtttctatcagtgtgtagccac tgtggataatcttggaaccattgtcagcagaacagccaagctcacagtagcaggtct tccaagatttaccagccaaccagaaccttcttcagtctatgttggaaacagtgcaat tctgaattgtgaagttaatgcagatttggtcccatttgttaggtgggaacagaatcg acagccccttcttctagatgacaggattgtcaaacttccaagtggaacactggttat cagcaatgctactgaaggagatgggggactctaccgctgcattgttgaaagtggtgg gccaccaaagtttagtgacgaagctgaattgaaagttcttcaagatcctgaggaaat tgtagacttggtatttctgatgcgaccatcttctatgatgaaagtcactggtcagag tgcagtgttgccatgtgttgtctcagggcttcctgctccagttgttagatggatgaa aaacgaagaagtgcttgacacagaaagctctggcaggttggtcttgctagcaggagg ttgcttggagatcagtgatgtcactgaggatgatgctgggacttatttttgcatagc tgataatggaaataagacagttgaagctcaggcggagcttactgtgcaagtgccacc tggattcctgaaacaacctgctaacatatatgctcacgaatccatggacattgtatt tgaatgtgaagtcactgggaagccaactccaactgtgaagtgggtcaagaatgggga tgtggttatccccagtgattactttaaaattgtaaaggaacataatcttcaagtttt gggtctggtgaaatcagatgaagggttctatcaatgcattgctgagaatgatgttgg aaatgcacaagctggagcccagctgataatccttgagcatgatgttgccatcccaac attacctcccacttcactgaccagtgccactactgaccatctagcaccagccacaac gggaccattaccttcagctcctcgagacgtcgtggcctccctggtctctactcgctt cattaaattgacatggcgtacacctgcatcagaccctcatggagacaatctcaccta ctctgtgttctacaccaaggaaggggttgctagggagcgtgttgagaataccagcca gccaggagagatgcaggtgactattcaaaacttgatgccagcaactgtgtacatctt caaagttatggctcaaaataagcatggctctggagaaagttcagctcctcttcgagt agagacacagcctgaggttcagctccctggcccagcacctaatatccgtgcttatgc aacgtcacctacttctatcactgtcacctgggaaacaccgttatctggcaatgggga aattcaaaattacaaattgtactacatggaaaaaggaactgataaagaacaggatat tgatgtttcaagtcactcctacaccattaatggactgaagaaatacacagaatacag tttccgagtggtggcctacaataaacatggtcctggagtttctacacaagatgttgc tgttcgaacattatcagatgttcccagtgctgctcctcagaatctgtccttagaagt gagaaattcaaagagtatagtgatccactggcagcccccttcctcaaccacacaaaa tgggcagataactggctacaagattcgatatcgaaaggcctcccgaaaaagtgatgt cactgagaccttggtaactgggacacagctgtctcagctgattgaaggtcttgatcg ggggacagaatataacttccgagtcgctgctctcacagtcaatggtacaggtccagc aactgattggctgtctgctgaaacttttgaaagcgacctagatgaaactcgtgttcc tgaagtgcccagctctcttcatgtccgtccgctcgtcactagcattgtagtgagctg gactcctccagagaaccagaacattgtggtccgaggttatgccatcggttacggcat tggcagccctcatgcccagaccatcaaagtggactataaacaacgttattacaccat cgaaaacttggatccaagctctcattacgtgattaccttgaaagcatttaacaatgt tggcgaaggcatccccctttatgagagtgctgtgaccagacctcacacagtgccaga tcccactcccatgatgccaccagtgggagttcaggcttccattctgagtcacgacac cataaggattacctgggcagacaactccctgcccaaacaccagaagattacagactc ccgctactacacagtccggtggaagaccaacatcccagcaaacacgaagtacaagaa tgcaaatgcaacgacgttaagctatttggttactggtttaaagccaaatacgctcta tgagttctctgtgatggtgaccaaaggcagaaggtcaagcacgtggagtatgacagc tcatggcgctacctttgaattagttcctacttctccacctaaggatgtgacagttgt gagtaaggaaggaaaacctagaaccatcatagtgaattggcagcctccctctgaagc taacggcaagattacaggttacatcatctattacagcacggatgtgaatgcagagat acatgactgggttattgaaccagttgtgggaaacagactgactcaccagattcaaga gttaacacttgatacgccatactacttcaaaatccaggcccggaactcaaagggcat ggggcccatgtctgaagctgtacagttcagaacacctaaagccttagggtcagcagg aaaaggaagccgactaccagacctgggatctgactacaaacctccaatgagtggcag caacagccctcacgggagccccacctcccctctggacagcaacatgctgctggtcat cattgtctctgttggcgtcatcactatcgtggtggttgtggtcattgctgtcttttg tacccggcgcaccacctctcaccagaagaagaaacgagctgcgtgcaaatcagtgaa tggctcccataagtacaagggcaattgcaaagatgtgaagcctccagacctatggat ccatcacgagagactagagttgaagcctattgacaagtctccagatcctaaccctgt catgactgatactccaatccctcgaaactctcaagatatcacaccagtggacaattc catggatagcaatatccatcaaaggcggaattcatacagagggcatgagtcagagga cagcatgtctacactggctggaaggaggggaatgagaccaaaaatgatgatgccctt tgactctcagccacctcagcctgtgattagtgcccatcccatccattccctcgataa ccctcaccatcatttccactccagcagcctcgcttctccagcccgcagtcatctcta ccacccaagcagcccatggcccattggcacatccatgtccctttcagacagggccaa ttccacagaatctgttcgaaatacccccagcacggacaccatgccagcgtcctcgtc tcagacgtgctgcactgaccatcaggaccctgagggtgctactagctcctcttactt ggccagctcccaagaggaagactcaggccagagtcttcccacagcccatgtccgccc ttcccaccctctgaagagcttcgctgtgccagcaatcccacccccaggacctcctct ctatgatcctgcactgccaagcacaccattactgtcccagcaagctctgaaccatca cattcactcagtgaaaacagcctccatcgggacgttaggaaggagccggcctcctat gccagtggttgttccgagtgcccctgaagtacaggagaccaccaggatgctggaaga ctccgagagtagctatgaaccagatgagctgaccaaagagatggcccacctggaagg actaatgaaggacctaaatgccatcacaacagcctgatgaccttcgcctggacatga ctccaagcctgagtctacaagtctcggaacttaaccttgaaaacaaggaattgtaca gagtacgagaggacagcacttgagagcaggagccagcaaaccagccagtgcctccat gtggggttggctccaggcacagccacctgccttctcctggtcagcctggattacact tgtgtggaggcagcttccctttgcctgctgagagcctgcaggactgggcactatggg ccaaaattttgtgtccagggaagaggcaagaagtacgacctgccttttgctttgtgg tcagtggcttgtgtctttgtgctgcaactgcatcacttttatggagtgtagacattg gcatttatgtacaattttgtgtcctattttattttaccttaaaacactatcagaagc caagggagtctgtgatgttctctcaagcagttgacacttgactgtggttccagttac ttacggaaagtcatcaacagtgaggttgtttgacaccactgacaggcattggcttgt tgtgggtttcatttttattcttaattctgagacattgcatcctctgccagctgttaa tccatcactttgaggggaggacatgttgcattgctgtttgtaagcttttttattatt tttttattataattattaaaggcctgactttctcctctcatcactgtgagattacag atctatttgaatgaaatgtaacattgaaaagacttgtttgttgctttctgtgcagat tcagtattggggtgggattggggattgggaataggaaatggaggggctgctgaggcc ctgtgaatgtttctgtcaatgtactttgttccagaagcctgccgagaatgaaagcag catctttagtgtcctttcctggcatttccatcttcgtgtcactgcatagcaactgga gttttgtttggatctggttataaattcttgtacagtggatgactttggtgatttagc tgccctggtatcttggtcatttcctctttggagtgtccacactgaggtctctatcaa tgtatgtttaattgcttgagagatgccaagtagaaccagagcctgactgtgctctga gaagctacaaagcacagggtggagactccctttgtgttgctagtattggttctctct ggaaggttaaaatctaaggcaggatcttggtttcctattccaaataggatgcctgct tctctgggcaccagtcctcagccaggcagctctcgtggcattgcagaggctctcctg aaaaacatcaaccagggtgagagccaagatggggtggcacccatgacgcttccccac atgtttcttcaaggagcagaggacagagatagtggaaagagggtcagcagaagcagg tgccttcatctatcccagcagctcagccaaaccccagttagaatgaggcagcaggag attccaggtgtgctgagggttcagccacacgcagaagacgttgcagagtgttaaaga ggtaagctgaggtgtgtatttggttggctttgttgttgttgttaatgtataatgaaa agtataagactaaccctcaggcctcatgttctccaatagatccctggaagacagtat agaaagtcagtcgggcttgggctccttagccagtgagactactcagaccaccagtgg ctagcctagcctacctgtccttgaacatgggtgattttacccctttgaggtcttaac cctttttttactttcaacaagatgagctctttgtatgattgcgggcgggggatatga aaatgcaatgatctaactcctgttgctcttctagctggtcacatgacggcaccaggc agggttctgggacacccggtgtgctttgactgttctacaaaaagctgtcagagcgtt ctggcctcctggaggctagattcctcagaaactgtctagcctttgcccacagagcat gctatgtaattagagcactccttcccatgaaccccagcacttgtgttacctcagggc cttggtacctggatactgccacagaatttccatggggcgggaagggatgtattttta aataaagtaacttaaaagttggggaaattttttaaattcagaaaatgcaaagctatt ctgtattacaccatttcacaatttaatatgtcttatattttcctgtgactctggaaa ctaaaccattgtgtgtcttgtcgtgtcctagttgagctggggcctagcagcttcctt ccagtgggtgtggagcaaacgtgtatgtcgcctcgctacctgcttgaggggtccgaa gggctgctgggactgagttctgtacacacttgtttggccttttctgtagttgatgct gtaaaactctatggctttttaaaaacaatttcatgtttttattttgtattggaagtc caatacacttttttaatccaatcaaactggtctggtcaaaaagttctttcccttaaa agttcaggggctcctacttccagcttccgatgacttctctgtggctctcactgctat aaagcaggatttagaatggcaatctgggcagaggtaataaaagaaatgtctgactgc cagccccaaaa

TABLE 2 siRNA targeting HAMP 3′ UTR SEQ SEQ Duplex ID Sense ID Antisense name Start NO (5′-3′) NO (5′-3′) 307-325_s 307 53 GGAUGUGCUGCAAGACGUA 96 UACGUCUUGCAGCACAU CC 309-327_s 309 54 AUGUGCUGCAAGACGUAGA 97 UCUACGUCUUGCAGCAC AU 310-328_s 310 55 UGUGCUGCAAGACGUAGAA 98 UUCUACGUCUUGCAGCA CA 313-331_s 313 56 GCUGCAAGACGUAGAACCU 99 AGGUUCUACGUCUUGCA GC AD- 314 57 CUGCAAGACGUAGAACCUA 100 UAGGUUCUACGUCUUGC 11439.1_314-332_s AG 322-340_s 322 58 CGUAGAACCUACCUGCCCU 101 AGGGCAGGUAGGUUCUA CG 347-365_s_G1A 347 59 GUCCCCUCCCUUCCUUAUU 102 AAUAAGGAAGGGAGGGG AC 348-366_s 348 60 UCCCCUCCCUUCCUUAUUU 103 AAAUAAGGAAGGGAGGG GA 349-367_s 349 61 CCCCUCCCUUCCUUAUUUA 104 UAAAUAAGGAAGGGAGG GG 350-368_s 350 62 CCCUCCCUUCCUUAUUUAU 105 AUAAAUAAGGAAGGGAG GG 351-369_s 351 63 CCUCCCUUCCUUAUUUAUU 106 AAUAAAUAAGGAAGGGA GG 352-370_s_C19A 352 64 CUCCCUUCCUUAUUUAUUA 107 UAAUAAAUAAGGAAGGG AG 352-370_s_C19U 352 65 CUCCCUUCCUUAUUUAUUU 108 AAAUAAAUAAGGAAGGG AG 354-372_s 354 66 CCCUUCCUUAUUUAUUCCU 109 AGGAAUAAAUAAGGAAG GG 355-373_s_G19A 355 67 CCUUCCUUAUUUAUUCCUA 110 UAGGAAUAAAUAAGGAA GG 355-373_s_G19U 355 68 CCUUCCUUAUUUAUUCCUU 111 AAGGAAUAAAUAAGGAA GG 356-374_s_C19A 356 69 CUUCCUUAUUUAUUCCUGA 112 UCAGGAAUAAAUAAGGA AG 356-374_s_C19U 356 70 CUUCCUUAUUUAUUCCUGU 113 ACAGGAAUAAAUAAGGA AG 357-375_s 357 71 UUCCUUAUUUAUUCCUGCU 114 AGCAGGAAUAAAUAAGG AA 358-376_s_G19A 358 72 UCCUUAUUUAUUCCUGCUA 115 UAGCAGGAAUAAAUAAG GA 358-376_s_G19U 358 73 UCCUUAUUUAUUCCUGCUU 116 AAGCAGGAAUAAAUAAG GA 359-377_s_C19A 359 74 CCUUAUUUAUUCCUGCUGA 117 UCAGCAGGAAUAAAUAA GG 359-377_s_C19U 359 75 CCUUAUUUAUUCCUGCUGU 118 ACAGCAGGAAUAAAUAA GG 363-381_s 363 76 AUUUAUUCCUGCUGCCCCA 119 UGGGGCAGCAGGAAUAA AU 365-383_s 365 77 UUAUUCCUGCUGCCCCAGA 120 UCUGGGGCAGCAGGAAU AA 366-384_s 366 78 UAUUCCUGCUGCCCCAGAA 121 UUCUGGGGCAGCAGGAA UA 369-387_s 369 79 UCCUGCUGCCCCAGAACAU 122 AUGUUCUGGGGCAGCAG GA 370-388_s 370 80 CCUGCUGCCCCAGAACAUA 123 UAUGUUCUGGGGCAGCA GG 373-391_s 373 81 GCUGCCCCAGAACAUAGGU 124 ACCUAUGUUCUGGGGCA GC 375-393_s 375 82 UGCCCCAGAACAUAGGUCU 125 AGACCUAUGUUCUGGGG CA 376-394_s 376 83 GCCCCAGAACAUAGGUCUU 126 AAGACCUAUGUUCUGGG GC 379-397_s 379 84 CCAGAACAUAGGUCUUGGA 127 UCCAAGACCUAUGUUCU GG 380-398_s 380 85 CAGAACAUAGGUCUUGGAA 128 UUCCAAGACCUAUGUUC UG 381-399_s 381 86 AGAACAUAGGUCUUGGAAU 129 AUUCCAAGACCUAUGUU CU AD- 382 87 GAACAUAGGUCUUGGAAUA 130 UAUUCCAAGACCUAUGU 11442.1_382-400_s UC 383-401_s 383 88 AACAUAGGUCUUGGAAUAA 131 UUAUUCCAAGACCUAUG UU 396-414_s 396 89 GAAUAAAAUGGCUGGUUCU 132 AGAACCAGCCAUUUUAU UC 398-416_s 398 90 AUAAAAUGGCUGGUUCUUU 133 AAAGAACCAGCCAUUUU AU 399-417_s 399 91 UAAAAUGGCUGGUUCUUUU 134 AAAAGAACCAGCCAUUU UA 402-420_s 402 92 AAUGGCUGGUUCUUUUGUU 135 AACAAAAGAACCAGCCA UU 403-421_s 403 93 AUGGCUGGUUCUUUUGUUU 136 AAACAAAAGAACCAGCC AU 407-425_s 407 94 CUGGUUCUUUUGUUUUCCA 137 UGGAAAACAAAAGAACC AG AD- 291 95 CAUCGAUCAAAGUGUGGGA 138 UCCCACACUUUGAUCGA 11436.1_291-309_s UG Note that an overhang (e.g. TT, dTsdT) can be added to the 3′ end of any duplex.

TABLE 3 siRNA targeting HAMP CDS SEQ SEQ Duplex ID Sense ID Antisense name Start NO (5′-3′) NO (5′-3′) 62-80_s_G19U 62 139 AGACGGCACGAUGGCA 186 AAGUGCCAUCGUGC CUU CGUCU 67-85_s_C19A 67 140 GCACGAUGGCACUGAG 187 UAGCUCAGUGCCAU CUA CGUGC 67-85_s_C19U 67 141 GCACGAUGGCACUGAG 188 AAGCUCAGUGCCAU CUU CGUGC 74-92_s_C19A 74 142 GGCACUGAGCUCCCAG 189 UAUCUGGGAGCUCA AUA GUGCC 74-92_s_C19U 74 143 GGCACUGAGCUCCCAG 190 AAUCUGGGAGCUCA AUU GUGCC 76-94_s_G19A 76 144 CACUGAGCUCCCAGAU 191 UAGAUCUGGGAGCU CUA CAGUG 76-94_s_G19U 76 145 CACUGAGCUCCCAGAU 192 AAGAUCUGGGAGCU CUU CAGUG 132-150_s 132 146 CUGACCAGUGGCUCUG 193 AAACAGAGCCACUG UUU GUCAG 140-158_s 140 147 UGGCUCUGUUUUCCCA 194 UUGUGGGAAAACAG CAA AGCCA 146-164_s_hcU1C_G19A 146 148 UGUUUUCCCACAACAG 195 UGUCUGUUGUGGGA ACA AAACA 146-164_s_hcU1C_G19U 146 149 UGUUUUCCCACAACAG 196 AGUCUGUUGUGGGA ACU AAACA 155-173_s 155 150 ACAACAGACGGGACAA 197 AAGUUGUCCCGUCU CUU GUUGU 157-175_s_C19A 157 151 AACAGACGGGACAACU 198 UCAAGUUGUCCCGU UGA CUGUU 157-175_s_C19U 157 152 AACAGACGGGACAACU 199 ACAAGUUGUCCCGU UGU CUGUU 160-178_s 160 153 AGACGGGACAACUUGC 200 UCUGCAAGUUGUCC AGA CGUCU 161-179_s_G19A 161 154 GACGGGACAACUUGCA 201 UUCUGCAAGUUGUC GAA CCGUC 161-179_s_G19U 161 155 GACGGGACAACUUGCA 202 AUCUGCAAGUUGUC GAU CCGUC 162-180_s_C19A 162 156 ACGGGACAACUUGCAG 203 UCUCUGCAAGUUGU AGA CCCGU 162-180_s_C19U 162 157 ACGGGACAACUUGCAG 204 ACUCUGCAAGUUGU AGU CCCGU 242-260_s_C19A 242 158 GAGGCGAGACACCCAC 205 UAAGUGGGUGUCUC UUA GCCUC 242-260_s_C19U 242 159 GAGGCGAGACACCCAC 206 AAAGUGGGUGUCUC UUU GCCUC 253-271_s 253 160 CCCACUUCCCCAUCUG 207 AUGCAGAUGGGGAA CAU GUGGG 258-276_s 258 161 UUCCCCAUCUGCAUUU 208 AGAAAAUGCAGAUG UCU GGGAA 261-279_s 261 162 CCCAUCUGCAUUUUCU 209 AGCAGAAAAUGCAG GCU AUGGG 275-293_s 275 163 CUGCUGCGGCUGCUGU 210 AUGACAGCAGCCGC CAU AGCAG 276-294_s_C19A 276 164 UGCUGCGGCUGCUGUC 211 UAUGACAGCAGCCG AUA CAGCA 276-294_s_C19U 276 165 UGCUGCGGCUGCUGUC 212 AAUGACAGCAGCCG AUU CAGCA 278-296_s 278 166 CUGCGGCUGCUGUCAU 213 UCGAUGACAGCAGC CGA CGCAG 279-297_s 279 167 UGCGGCUGCUGUCAUC 214 AUCGAUGACAGCAG GAU CCGCA 280-298_s_C19A 280 168 GCGGCUGCUGUCAUCG 215 UAUCGAUGACAGCA AUA GCCGC 280-298_s_C19U 280 169 GCGGCUGCUGUCAUCG 216 AAUCGAUGACAGCA AUU GCCGC 281-299_s 281 170 CGGCUGCUGUCAUCGA 217 UGAUCGAUGACAGC UCA AGCCG AD- 282 171 GGCUGCUGUCAUCGAU 218 UUGAUCGAUGACAG 11443.1_282-300_s CAA CAGCC AD- 283 172 GCUGCUGUCAUCGAUC 219 UUUGAUCGAUGACA 11432.1_283-301_s AAA GCAGC 284-302_s_G19A 284 173 CUGCUGUCAUCGAUCA 220 UUUUGAUCGAUGAC AAA AGCAG 284-302_s_G19U 284 174 CUGCUGUCAUCGAUCA 221 AUUUGAUCGAUGAC AAU AGCAG AD- 285 175 UGCUGUCAUCGAUCAA 222 ACUUUGAUCGAUGA 11441.1_285-303_s AGU CAGCA 286-304_s_G19A 286 176 GCUGUCAUCGAUCAAA 223 UACUUUGAUCGAUG GUA ACAGC 286-304_s_G19U 286 177 GCUGUCAUCGAUCAAA 224 AACUUUGAUCGAUG GUU ACAGC AD- 287 178 CUGUCAUCGAUCAAAG 225 ACACUUUGAUCGAU 11447.1_287-305_s UGU GACAG 288-306_s_G19A 288 179 UGUCAUCGAUCAAAGU 226 UACACUUUGAUCGA GUA UGACA 288-306_s_G19U 288 180 UGUCAUCGAUCAAAGU 227 AACACUUUGAUCGA GUU UGACA 290-308_s_G19A 290 181 UCAUCGAUCAAAGUGU 228 UCCACACUUUGAUC GGA GAUGA 290-308_s_G19U 290 182 UCAUCGAUCAAAGUGU 229 ACCACACUUUGAUC GGU GAUGA 295-313_s_G19A 295 183 GAUCAAAGUGUGGGAU 230 UACAUCCCACACUU GUA UGAUC 295-313_s_G19U 295 184 GAUCAAAGUGUGGGAU 231 AACAUCCCACACUU GUU UGAUC 299-317_s_C19U 299 185 AAAGUGUGGGAUGUGC 232 ACAGCACAUCCCAC UGU ACUUU Note that an overhang (e.g. TT, dTsdT) can be added to the 3′ end of any duplex.

TABLE 4 HAMP modified sequences Table 4 Duplex Start Sense SEQ ID Antisense SEQ ID Target ID Position Name Sense Sequence NO Name Antisense Sequence NO HAMP AD- 2 A-94166.1 AcuGucAcucGGucccAGAdT 233 A-94167.1 UCUGGGACCGAGUGA 458 45073 sdT cAGUdTsdT HAMP AD- 7 A-94168.1 cAcucGGucccAGAcAccAdTs 234 A-94169.1 UGGUGUCUGGGACCG 459 45079 dT AGUGdTsdT HAMP AD- 16 A-94170.1 ccAGAcAccAGAGcAAGcudT 235 A-94171.1 AGCUUGCUCUGGUGU 460 45085 sdT CUGGdTsdT HAMP AD- 43 A-66808.1 AGcAGuGGGAcAGccAGAcd 236 A-66809.1 GUCUGGCUGUCCcAC 461 29928 TsdT UGCUdTsdT HAMP AD- 43 A-95618.1 AGcAGuGGGAcAGccAGAAd 237 A-95619.1 UUCUGGCUGUCCcAC 462 45674 TsdT UGCUdTsdT HAMP AD- 43 A-95620.1 AGcAGuGGGAcAGccAGAud 238 A-95621.1 AUCUGGCUGUCCcAC 463 45680 TsdT UGCUdTsdT HAMP AD- 48 A-95622.1 uGGGAcAGccAGAcAGAcGd 239 A-95623.1 CGUCUGUCUGGCUGU 464 45686 TsdT CCcAdTsdT HAMP AD- 48 A-95626.1 uGGGAcAGccAGAcAGAcud 240 A-95627.1 AGUCUGUCUGGCUGU 465 45698 TsdT CCcAdTsdT HAMP AD- 48 A-95624.1 uGGGAcAGccAGAcAGAcAd 241 A-95625.1 UGUCUGUCUGGCUGU 466 45692 TsdT CCcAdTsdT HAMP AD- 51 A-94701.1 GAcAGccAGAcAGAcGGcAd 242 A-94702.1 UGCCGUCUGUCUGGC 467 45354 TsdT UGUCdTsdT HAMP AD- 54 A-66810.1 AGccAGAcAGAcGGcAcGAd 243 A-66811.1 UCGUGCCGUCUGUCU 468 29929 TsdT GGCUdTsdT HAMP AD- 55 A-94172.1 GccAGAcAGAcGGcAcGAud 244 A-94173.1 AUCGUGCCGUCUGUC 469 45091 TsdT UGGCdTsdT HAMP AD- 59 A-66812.1 GAcAGAcGGcAcGAuGGcAd 245 A-66813.1 UGCcAUCGUGCCGUC 470 29930 TsdT UGUCdTsdT HAMP AD- 60 A-66814.1 AcAGAcGGcAcGAuGGcAcd 246 A-66815.1 GUGCcAUCGUGCCGU 471 29931 TsdT CUGUdTsdT HAMP AD- 60 A-95628.1 AcAGAcGGcAcGAuGGcAAd 247 A-95629.1 UUGCcAUCGUGCCGU 472 45704 TsdT CUGUdTsdT HAMP AD- 60 A-95630.1 AcAGAcGGcAcGAuGGcAud 248 A-95631.1 AUGCcAUCGUGCCGU 473 45710 TsdT CUGUdTsdT HAMP AD- 61 A-66816.1 cAGAcGGcAcGAuGGcAcud 249 A-66817.1 AGUGCcAUCGUGCCG 474 29932 TsdT UCUGdTsdT HAMP AD- 62 A-98344.1 AGACfGGCfACfGAUfGGCfA 250 A-98345.1 AAGUGCCfAUCGUGCC 475 47031 CfUfUfdTsdT GUCUdTsdT HAMP AD- 62 A-66818.1 AGAcGGcAcGAuGGcAcuGd 251 A-66819.1 cAGUGCcAUCGUGCCG 476 29933 TsdT UCUdTsdT HAMP AD- 62 A-95634.1 AGAcGGcAcGAuGGcAcuud 250 A-95635.1 AAGUGCcAUCGUGCC 475 45675 TsdT GUCUdTsdT HAMP AD- 62 A-95632.1 AGAcGGcAcGAuGGcAcuAd 252 A-95633.1 uAGUGCcAUCGUGCC 477 45716 TsdT GUCUdTsdT HAMP AD- 63 A-66820.1 GAcGGcAcGAuGGcAcuGAd 253 A-66821.1 UcAGUGCcAUCGUGCC 478 29934 TsdT GUCdTsdT HAMP AD- 64 A-66822.1 AcGGcAcGAuGGcAcuGAGd 254 A-66823.1 CUcAGUGCcAUCGUGC 479 29935 TsdT CGUdTsdT HAMP AD- 64 A-95638.1 AcGGcAcGAuGGcAcuGAud 255 A-95639.1 AUcAGUGCcAUCGUG 480 45687 TsdT CCGUdTsdT HAMP AD- 64 A-95636.1 AcGGcAcGAuGGcAcuGAAd 256 A-95637.1 UUcAGUGCcAUCGUG 481 45681 TsdT CCGUdTsdT HAMP AD- 66 A-66824.1 GGcAcGAuGGcAcuGAGcud 257 A-66825.1 AGCUcAGUGCcAUCG 482 29936 TsdT UGCCdTsdT HAMP AD- 67 A-98348.1 GCfACfGAUfGGCfACfUfGA 258 A-98349.1 AAGCUCfAGUGCCfAU 483 47043 GCfUfUfdTsdT CGUGCdTsdT HAMP AD- 67 A-98346.1 GCfACfGAUfGGCfACfUfGA 259 A-98347.1 CfAGCUCfAGUGCCfAU 484 47037 GCfUfAdTsdT CGUGCdTsdT HAMP AD- 67 A-66826.1 GcAcGAuGGcAcuGAGcucdT 260 A-66827.1 GAGCUcAGUGCcAUC 485 29937 sdT GUGCdTsdT HAMP AD- 67 A-95642.1 GcAcGAuGGcAcuGAGcuud 258 A-95643.1 AAGCUcAGUGCcAUCG 483 45699 TsdT UGCdTsdT HAMP AD- 67 A-95640.1 GcAcGAuGGcAcuGAGcuAd 259 A-95641.1 uAGCUcAGUGCcAUCG 486 45693 TsdT UGCdTsdT HAMP AD- 68 A-95646.1 cAcGAuGGcAcuGAGcucAdT 261 A-95647.1 UGAGCUcAGUGCcAU 487 45711 sdT CGUGdTsdT HAMP AD- 68 A-95648.1 cAcGAuGGcAcuGAGcucudT 262 A-95649.1 AGAGCUcAGUGCcAUC 488 45717 sdT GUGdTsdT HAMP AD- 68 A-95644.1 cAcGAuGGcAcuGAGcuccdT 263 A-95645.1 GGAGCUcAGUGCcAU 489 45705 sdT CGUGdTsdT HAMP AD- 69 A-95652.1 AcGAuGGcAcuGAGcuccAdT 264 A-95653.1 UGGAGCUcAGUGCcA 490 45682 sdT UCGUdTsdT HAMP AD- 69 A-95654.1 AcGAuGGcAcuGAGcuccudT 265 A-95655.1 AGGAGCUcAGUGCcA 491 45688 sdT UCGUdTsdT HAMP AD- 69 A-95650.1 AcGAuGGcAcuGAGcucccdT 266 A-95651.1 GGGAGCUcAGUGCcA 492 45676 sdT UCGUdTsdT HAMP AD- 70 A-94703.1 cGAuGGcAcuGAGcucccAdT 267 A-94704.1 UGGGAGCUcAGUGCc 493 45360 sdT AUCGdTsdT HAMP AD- 71 A-94705.1 GAuGGcAcuGAGcucccAGdT 268 A-94706.1 CUGGGAGCUcAGUGC 494 45366 sdT cAUCdTsdT HAMP AD- 72 A-66828.1 AuGGcAcuGAGcucccAGAdT 269 A-66829.1 UCUGGGAGCUcAGUG 495 29938 sdT CcAUdTsdT HAMP AD- 73 A-94707.1 uGGcAcuGAGcucccAGAudT 270 A-94708.1 AUCUGGGAGCUcAGU 496 45372 sdT GCcAdTsdT HAMP AD- 74 A-98352.1 GGCfACfUfGAGCfUfCfCfCfA 271 A-98353.1 AAUCUGGGAGCUCfA 497 47055 GAUfUfdTsdT GUGCCdTsdT HAMP AD- 74 A-98350.1 GGCfACfUfGAGCfUfCfCfCfA 272 A-98351.1 CfAUCUGGGAGCUCfA 498 47049 GAUfAdTsdT GUGCCdTsdT HAMP AD- 74 A-95658.1 GGcAcuGAGcucccAGAuudT 271 A-95659.1 AAUCUGGGAGCUcAG 497 45700 sdT UGCCdTsdT HAMP AD- 74 A-66830.1 GGcAcuGAGcucccAGAucdT 273 A-66831.1 GAUCUGGGAGCUcAG 499 29939 sdT UGCCdTsdT HAMP AD- 74 A-95656.1 GGcAcuGAGcucccAGAuAdT 272 A-95657.1 uAUCUGGGAGCUcAG 500 45694 sdT UGCCdTsdT HAMP AD- 75 A-66832.1 GcAcuGAGcucccAGAucudT 274 A-66833.1 AGAUCUGGGAGCUcA 501 29940 sdT GUGCdTsdT HAMP AD- 76 A-98356.1 CfACfUfGAGCfUfCfCfCfAGA 275 A-98357.1 AAGAUCUGGGAGCUC 502 47067 UfCfUfUfdTsdT fAGUGdTsdT HAMP AD- 76 A-98354.1 CfACfUfGAGCfUfCfCfCfAGA 276 A-98355.1 CfAGAUCUGGGAGCUC 503 47061 UfCfUfAdTsdT fAGUGdTsdT HAMP AD- 76 A-95662.1 cAcuGAGcucccAGAucuudTs 275 A-95663.1 AAGAUCUGGGAGCUc 502 45712 dT AGUGdTsdT HAMP AD- 76 A-66834.1 cAcuGAGcucccAGAucuGdT 277 A-66835.1 cAGAUCUGGGAGCUc 503 29941 sdT AGUGdTsdT HAMP AD- 76 A-95660.1 cAcuGAGcucccAGAucuAdTs 276 A-95661.1 uAGAUCUGGGAGCUc 504 45706 dT AGUGdTsdT HAMP AD- 88 A-94174.1 AGAucuGGGccGcuuGccudT 278 A-94175.1 AGGcAAGCGGCCcAGA 505 45097 sdT UCUdTsdT HAMP AD- 91 A-94176.1 ucuGGGccGcuuGccuccudTs 279 A-94177.1 AGGAGGcAAGCGGCCc 506 45103 dT AGAdTsdT HAMP AD- 116 A-94709.1 ccuccuccucGccAGccuGdTsdT 280 A-94710.1 cAGGCUGGCGAGGAG 507 45378 GAGGdTsdT HAMP AD- 117 A-94711.1 cuccuccucGccAGccuGAdTs 281 A-94712.1 UcAGGCUGGCGAGGA 508 45383 dT GGAGdTsdT HAMP AD- 118 A-94713.1 uccuccucGccAGccuGAcdTs 282 A-94714.1 GUcAGGCUGGCGAGG 509 45388 dT AGGAdTsdT HAMP AD- 120 A-94715.1 cuccucGccAGccuGAccAdTs 283 A-94716.1 UGGUcAGGCUGGCGA 510 45393 dT GGAGdTsdT HAMP AD- 121 A-94717.1 uccucGccAGccuGAccAGdTs 284 A-94718.1 CUGGUcAGGCUGGCG 511 45355 dT AGGAdTsdT HAMP AD- 122 A-94719.1 ccucGccAGccuGAccAGudTs 285 A-94720.1 ACUGGUcAGGCUGGC 512 45361 dT GAGGdTsdT HAMP AD- 123 A-94721.1 cucGccAGccuGAccAGuGdTs 286 A-94722.1 cACUGGUcAGGCUGG 513 45367 dT CGAGdTsdT HAMP AD- 126 A-94723.1 GccAGccuGAccAGuGGcudT 287 A-94724.1 AGCcACUGGUcAGGC 514 45373 sdT UGGCdTsdT HAMP AD- 132 A-94178.1 cuGAccAGuGGcucuGuuudT 288 A-94179.1 AAAcAGAGCcACUGGU 515 45109 sdT cAGdTsdT HAMP AD- 140 A-98360.1 UfGGCfUfCfUfGUfUfUfUfCf 289 A-98361.1 UUGUGGGAAAACfAG 516 47032 CfCfACfAAdTsdT AGCCfAdTsdT HAMP AD- 140 A-94180.1 uGGcucuGuuuucccAcAAdTs 289 A-94181.1 UUGUGGGAAAAcAGA 516 45115 dT GCcAdTsdT HAMP AD- 142 A-94182.1 GcucuGuuuucccAcAAcAdTs 290 A-94183.1 UGUUGUGGGAAAAcA 517 45074 dT GAGCdTsdT HAMP AD- 146 A-98362.1 UfGUfUfUfUfCfCfCfACfAAC 291 A-98363.1 UGUCUGUUGUGGGA 518 47038 fAGACfAdTsdT AAACfAdTsdT HAMP AD- 146 A-98364.1 UfGUfUfUfUfCfCfCfACfAAC 292 A-98365.1 AGUCUGUUGUGGGA 519 47044 fAGACfUfdTsdT AAACfAdTsdT HAMP AD- 146 A-95666.1 uGuuuucccAcAAcAGAcAdT 291 A-95667.1 UGUCUGUUGUGGGA 518 45677 sdT AAAcAdTsdT HAMP AD- 146 A-95668.1 uGuuuucccAcAAcAGAcudTs 292 A-95669.1 AGUCUGUUGUGGGA 519 45683 dT AAAcAdTsdT HAMP AD- 146 A-95664.1 uGuuuucccAcAAcAGAcGdT 293 A-95665.1 CGUCUGUUGUGGGAA 520 45718 sdT AAcAdTsdT HAMP AD- 149 A-94184.1 uuucccAcAAcAGAcGGGAdT 294 A-94185.1 UCCCGUCUGUUGUGG 521 45080 sdT GAAAdTsdT HAMP AD- 150 A-94725.1 uucccAcAAcAGAcGGGAcdT 295 A-94726.1 GUCCCGUCUGUUGUG 522 45379 sdT GGAAdTsdT HAMP AD- 151 A-66836.1 ucccAcAAcAGAcGGGAcAdT 296 A-66837.1 UGUCCCGUCUGUUGU 523 29942 sdT GGGAdTsdT HAMP AD- 152 A-66838.1 cccAcAAcAGAcGGGAcAAdT 297 A-66839.1 UUGUCCCGUCUGUUG 524 29943 sdT UGGGdTsdT HAMP AD- 153 A-66840.1 ccAcAAcAGAcGGGAcAAcdT 298 A-15142.2 GUUGUCCCGUCUGUU 525 29944 sdT GUGGdTsdT HAMP AD- 153 A-95672.1 ccAcAAcAGAcGGGAcAAudT 299 A-95673.1 AUUGUCCCGUCUGUU 526 45695 sdT GUGGdTsdT HAMP AD- 153 A-95670.1 ccAcAAcAGAcGGGAcAAAd 300 A-95671.1 UUUGUCCCGUCUGUU 527 45689 TsdT GUGGdTsdT HAMP AD- 154 A-66841.1 cAcAAcAGAcGGGAcAAcudT 301 A-15116.1 AGUUGUCCCGUCUGU 528 29945 sdT UGUGdTsdT HAMP AD- 155 A-98366.1 ACfAACfAGACfGGGACfAAC 302 A-15182.3 AAGUUGUCCCGUCUG 529 47050 fUfUfdTsdT UUGUdTsdT HAMP AD- 155 A-66842.1 AcAAcAGAcGGGAcAAcuud 302 A-15182.1 AAGUUGUCCCGUCUG 529 29946 TsdT UUGUdTsdT HAMP AD- 157 A-98369.1 AACfAGACfGGGACfAACfUf 303 A-98370.1 ACfAAGUUGUCCCGUC 530 47062 UfGUfdTsdT UGUUdTsdT HAMP AD- 157 A-98367.1 AACfAGACfGGGACfAACfUf 304 A-98368.1 UCfAAGUUGUCCCGUC 531 47056 UfGAdTsdT UGUUdTsdT HAMP AD- 157 A-95678.1 AAcAGAcGGGAcAAcuuGud 303 A-95679.1 AcAAGUUGUCCCGUC 530 45713 TsdT UGUUdTsdT HAMP AD- 157 A-95676.1 AAcAGAcGGGAcAAcuuGAd 304 A-95677.1 UcAAGUUGUCCCGUC 531 45707 TsdT UGUUdTsdT HAMP AD- 157 A-95674.1 AAcAGAcGGGAcAAcuuGcd 305 A-95675.1 GcAAGUUGUCCCGUC 532 45701 TsdT UGUUdTsdT HAMP AD- 159 A-94727.1 cAGAcGGGAcAAcuuGcAGd 306 A-94728.1 CUGcAAGUUGUCCCG 533 45384 TsdT UCUGdTsdT HAMP AD- 160 A-98371.1 AGACfGGGACfAACfUfUfGC 307 A-98372.1 UCUGCfAAGUUGUCCC 534 47068 fAGAdTsdT GUCUdTsdT HAMP AD- 160 A-94729.1 AGAcGGGAcAAcuuGcAGAd 307 A-94730.1 UCUGcAAGUUGUCCC 534 45389 TsdT GUCUdTsdT HAMP AD- 161 A-98375.1 GACfGGGACfAACfUfUfGCf 308 A-98376.1 AUCUGCfAAGUUGUC 535 47033 AGAUfdTsdT CCGUCdTsdT HAMP AD- 161 A-98373.1 GACfGGGACfAACfUfUfGCf 309 A-98374.1 UUCUGCfAAGUUGUC 536 47074 AGAAdTsdT CCGUCdTsdT HAMP AD- 161 A-95682.1 GAcGGGAcAAcuuGcAGAud 308 A-95683.1 AUCUGcAAGUUGUCC 535 45678 TsdT CGUCdTsdT HAMP AD- 161 A-95680.1 GAcGGGAcAAcuuGcAGAAd 309 A-95681.1 UUCUGcAAGUUGUCC 536 45719 TsdT CGUCdTsdT HAMP AD- 161 A-66843.1 GAcGGGAcAAcuuGcAGAGd 310 A-66844.1 CUCUGcAAGUUGUCC 537 29947 TsdT CGUCdTsdT HAMP AD- 162 A-98377.1 ACfGGGACfAACfUfUfGCfA 311 A-98378.1 UCUCUGCfAAGUUGU 538 47039 GAGAdTsdT CCCGUdTsdT HAMP AD- 162 A-98379.1 ACfGGGACfAACfUfUfGCfA 312 A-98380.1 ACUCUGCfAAGUUGU 539 47045 GAGUfdTsdT CCCGUdTsdT HAMP AD- 162 A-95686.1 AcGGGAcAAcuuGcAGAGAd 311 A-95687.1 UCUCUGcAAGUUGUC 538 45690 TsdT CCGUdTsdT HAMP AD- 162 A-95688.1 AcGGGAcAAcuuGcAGAGud 312 A-95689.1 ACUCUGcAAGUUGUC 539 45696 TsdT CCGUdTsdT HAMP AD- 162 A-95684.1 AcGGGAcAAcuuGcAGAGcd 313 A-95685.1 GCUCUGcAAGUUGUC 540 45684 TsdT CCGUdTsdT HAMP AD- 163 A-66845.1 cGGGAcAAcuuGcAGAGcud 314 A-66846.1 AGCUCUGcAAGUUGU 541 30016 TsdT CCCGdTsdT HAMP AD- 164 A-94731.1 GGGAcAAcuuGcAGAGcuGd 315 A-94732.1 cAGCUCUGcAAGUUG 542 45394 TsdT UCCCdTsdT HAMP AD- 165 A-95690.1 GGAcAAcuuGcAGAGcuGcd 316 A-95691.1 GcAGCUCUGcAAGUU 543 45702 TsdT GUCCdTsdT HAMP AD- 165 A-95692.1 GGAcAAcuuGcAGAGcuGAd 317 A-95693.1 UcAGCUCUGcAAGUU 544 45708 TsdT GUCCdTsdT HAMP AD- 165 A-95694.1 GGAcAAcuuGcAGAGcuGud 318 A-95695.1 AcAGCUCUGcAAGUU 545 45714 TsdT GUCCdTsdT HAMP AD- 166 A-66847.1 GAcAAcuuGcAGAGcuGcAd 319 A-66848.1 UGcAGCUCUGcAAGU 546 29949 TsdT UGUCdTsdT HAMP AD- 167 A-94186.1 AcAAcuuGcAGAGcuGcAAd 320 A-94187.1 UUGcAGCUCUGcAAG 547 45086 TsdT UUGUdTsdT HAMP AD- 168 A-94733.1 cAAcuuGcAGAGcuGcAAcdT 321 A-94734.1 GUUGcAGCUCUGcAA 548 45356 sdT GUUGdTsdT HAMP AD- 169 A-95700.1 AAcuuGcAGAGcuGcAAcudT 322 A-95701.1 AGUUGcAGCUCUGcA 549 45685 sdT AGUUdTsdT HAMP AD- 169 A-95698.1 AAcuuGcAGAGcuGcAAcAd 323 A-95699.1 UGUUGcAGCUCUGcA 550 45679 TsdT AGUUdTsdT HAMP AD- 169 A-95696.1 AAcuuGcAGAGcuGcAAccdT 324 A-95697.1 GGUUGcAGCUCUGcA 551 45720 sdT AGUUdTsdT HAMP AD- 170 A-95706.1 AcuuGcAGAGcuGcAAccudT 325 A-95707.1 AGGUUGcAGCUCUGc 552 45703 sdT AAGUdTsdT HAMP AD- 170 A-95704.1 AcuuGcAGAGcuGcAAccAdT 326 A-95705.1 UGGUUGcAGCUCUGc 553 45697 sdT AAGUdTsdT HAMP AD- 170 A-95702.1 AcuuGcAGAGcuGcAAcccdT 327 A-95703.1 GGGUUGcAGCUCUGc 554 45691 sdT AAGUdTsdT HAMP AD- 189 A-94735.1 cAGGAcAGAGcuGGAGccAd 328 A-94736.1 UGGCUCcAGCUCUGU 555 45362 TsdT CCUGdTsdT HAMP AD- 190 A-94737.1 AGGAcAGAGcuGGAGccAG 329 A-94738.1 CUGGCUCcAGCUCUG 556 45368 dTsdT UCCUdTsdT HAMP AD- 199 A-94739.1 cuGGAGccAGGGccAGcuGd 330 A-94740.1 cAGCUGGCCCUGGCU 557 45374 TsdT CcAGdTsdT HAMP AD- 222 A-94188.1 cccAuGuuccAGAGGcGAAdT 331 A-94189.1 UUCGCCUCUGGAAcA 558 45092 sdT UGGGdTsdT HAMP AD- 228 A-95712.1 uuccAGAGGcGAAGGAGGu 332 A-95713.1 ACCUCCUUCGCCUCU 559 45721 dTsdT GGAAdTsdT HAMP AD- 228 A-95710.1 uuccAGAGGcGAAGGAGGA 333 A-95711.1 UCCUCCUUCGCCUCU 560 45715 dTsdT GGAAdTsdT HAMP AD- 228 A-95708.1 uuccAGAGGcGAAGGAGGcd 334 A-95709.1 GCCUCCUUCGCCUCU 561 45709 TsdT GGAAdTsdT HAMP AD- 230 A-94741.1 ccAGAGGcGAAGGAGGcGA 335 A-94742.1 UCGCCUCCUUCGCCU 562 45380 dTsdT CUGGdTsdT HAMP AD- 231 A-94743.1 cAGAGGcGAAGGAGGcGAG 336 A-94744.1 CUCGCCUCCUUCGCC 563 45385 dTsdT UCUGdTsdT HAMP AD- 232 A-66849.1 AGAGGcGAAGGAGGcGAGA 337 A-66850.1 UCUCGCCUCCUUCGC 564 29950 dTsdT CUCUdTsdT HAMP AD- 233 A-94745.1 GAGGcGAAGGAGGcGAGAc 338 A-94746.1 GUCUCGCCUCCUUCG 565 45390 dTsdT CCUCdTsdT HAMP AD- 234 A-66851.1 AGGcGAAGGAGGcGAGAcA 339 A-66852.1 UGUCUCGCCUCCUUC 566 29951 dTsdT GCCUdTsdT HAMP AD- 235 A-94747.1 GGcGAAGGAGGcGAGAcAc 340 A-94748.1 GUGUCUCGCCUCCUU 567 45395 dTsdT CGCCdTsdT HAMP AD- 239 A-95714.1 AAGGAGGcGAGAcAcccAAd 341 A-95715.1 UUGGGUGUCUCGCCU 568 45727 TsdT CCUUdTsdT HAMP AD- 239 A-95716.1 AAGGAGGcGAGAcAcccAud 342 A-95717.1 AUGGGUGUCUCGCCU 569 45732 TsdT CCUUdTsdT HAMP AD- 239 A-66853.1 AAGGAGGcGAGAcAcccAcd 343 A-66854.1 GUGGGUGUCUCGCCU 570 29952 TsdT CCUUdTsdT HAMP AD- 240 A-66855.1 AGGAGGcGAGAcAcccAcud 344 A-66856.1 AGUGGGUGUCUCGCC 571 29953 TsdT UCCUdTsdT HAMP AD- 241 A-66857.1 GGAGGcGAGAcAcccAcuud 345 A-66858.1 AAGUGGGUGUCUCGC 572 30017 TsdT CUCCdTsdT HAMP AD- 242 A-98383.1 GAGGCfGAGACfACfCfCfACf 346 A-95721.2 AAAGUGGGUGUCUCG 573 47057 UfUfUfdTsdT CCUCdTsdT HAMP AD- 242 A-98381.1 GAGGCfGAGACfACfCfCfACf 347 A-98382.1 CfAAGUGGGUGUCUC 574 47051 UfUfAdTsdT GCCUCdTsdT HAMP AD- 242 A-66859.1 GAGGcGAGAcAcccAcuucdT 348 A-66860.1 GAAGUGGGUGUCUCG 575 30018 sdT CCUCdTsdT HAMP AD- 242 A-95718.1 GAGGcGAGAcAcccAcuuAdT 347 A-95719.1 uAAGUGGGUGUCUCG 576 45737 sdT CCUCdTsdT HAMP AD- 246 A-66861.1 cGAGAcAcccAcuuccccAdTs 349 A-66862.1 UGGGGAAGUGGGUG 577 29956 dT UCUCGdTsdT HAMP AD- 247 A-94749.1 GAGAcAcccAcuuccccAudTs 350 A-94750.1 AUGGGGAAGUGGGU 578 45357 dT GUCUCdTsdT HAMP AD- 248 A-94751.1 AGAcAcccAcuuccccAucdTsdT 351 A-94752.1 GAUGGGGAAGUGGG 579 45363 UGUCUdTsdT HAMP AD- 251 A-95722.1 cAcccAcuuccccAucuGcdTsdT 352 A-95723.1 GcAGAUGGGGAAGUG 580 45747 GGUGdTsdT HAMP AD- 251 A-95724.1 cAcccAcuuccccAucuGAdTsdT 353 A-95725.1 UcAGAUGGGGAAGUG 581 45752 GGUGdTsdT HAMP AD- 251 A-95726.1 cAcccAcuuccccAucuGudTsdT 354 A-95727.1 AcAGAUGGGGAAGUG 582 45757 GGUGdTsdT HAMP AD- 252 A-66863.1 AcccAcuuccccAucuGcAdTsdT 355 A-66864.1 UGcAGAUGGGGAAGU 583 29957 GGGUdTsdT HAMP AD- 253 A-98384.1 CfCfCfACfUfUfCfCfCfCfAUfC 356 A-98385.1 AUGCfAGAUGGGGAA 584 47063 fUfGCfAUfdTsdT GUGGGdTsdT HAMP AD- 253 A-94753.1 cccAcuuccccAucuGcAudTsdT 356 A-94754.1 AUGcAGAUGGGGAAG 584 45399 UGGGdTsdT HAMP AD- 255 A-94190.1 cAcuuccccAucuGcAuuudTs 357 A-94191.1 AAAUGcAGAUGGGGA 585 45098 dT AGUGdTsdT HAMP AD- 256 A-94755.1 AcuuccccAucuGcAuuuudTs 358 A-94756.1 AAAAUGcAGAUGGGG 586 45400 dT AAGUdTsdT HAMP AD- 257 A-94757.1 cuuccccAucuGcAuuuucdTs 359 A-94758.1 GAAAAUGcAGAUGGG 587 45381 dT GAAGdTsdT HAMP AD- 258 A-98386.1 UfUfCfCfCfCfAUfCfUfGCfAU 360 A-98387.1 AGAAAAUGCfAGAUG 588 47069 fUfUfUfCfUfdTsdT GGGAAdTsdT HAMP AD- 258 A-94759.1 uuccccAucuGcAuuuucudTs 360 A-94760.1 AGAAAAUGcAGAUGG 588 45401 dT GGAAdTsdT HAMP AD- 261 A-98388.1 CfCfCfAUfCfUfGCfAUfUfUf 361 A-98389.1 AGCfAGAAAAUGCfAG 589 47075 UfCfUfGCfUfdTsdT AUGGGdTsdT HAMP AD- 261 A-66865.1 cccAucuGcAuuuucuGcudTs 361 A-66866.1 AGcAGAAAAUGcAGA 589 29958 dT UGGGdTsdT HAMP AD- 262 A-94761.1 ccAucuGcAuuuucuGcuGdTs 362 A-94762.1 cAGcAGAAAAUGcAGA 590 45391 dT UGGdTsdT HAMP AD- 267 A-66867.1 uGcAuuuucuGcuGcGGcudT 363 A-66868.1 AGCCGcAGcAGAAAAU 591 29959 sdT GcAdTsdT HAMP AD- 268 A-66869.1 GcAuuuucuGcuGcGGcuGdT 364 A-66870.1 cAGCCGcAGcAGAAAA 592 29960 sdT UGCdTsdT HAMP AD- 270 A-66871.1 AuuuucuGcuGcGGcuGcudT 365 A-66872.1 AGcAGCCGcAGcAGAA 593 30019 sdT AAUdTsdT HAMP AD- 271 A-94763.1 uuuucuGcuGcGGcuGcuGdT 366 A-94764.1 cAGcAGCCGcAGcAGA 594 45396 sdT AAAdTsdT HAMP AD- 272 A-94765.1 uuucuGcuGcGGcuGcuGudT 367 A-94766.1 AcAGcAGCCGcAGcAG 595 45358 sdT AAAdTsdT HAMP AD- 273 A-94767.1 uucuGcuGcGGcuGcuGucdT 368 A-94768.1 GAcAGcAGCCGcAGcA 596 45364 sdT GAAdTsdT HAMP AD- 274 A-66873.1 ucuGcuGcGGcuGcuGucAdT 369 A-66874.1 UGAcAGcAGCCGcAGc 597 29962 sdT AGAdTsdT HAMP AD- 275 A-98390.1 CfUfGCfUfGCfGGCfUfGCfUf 370 A-98391.1 AUGACfAGCfAGCCGCf 598 47034 GUfCfAUfdTsdT AGCfAGdTsdT HAMP AD- 275 A-94769.1 cuGcuGcGGcuGcuGucAudT 370 A-94770.1 AUGAcAGcAGCCGcAG 598 45370 sdT cAGdTsdT HAMP AD- 276 A-98394.1 UfGCfUfGCfGGCfUfGCfUfG 371 A-98395.1 AAUGACfAGCfAGCCG 599 47046 UfCfAUfUfdTsdT CfAGCfAdTsdT HAMP AD- 276 A-98392.1 UfGCfUfGCfGGCfUfGCfUfG 372 A-98393.1 CfAUGACfAGCfAGCCG 600 47040 UfCfAUfAdTsdT CfAGCfAdTsdT HAMP AD- 276 A-95730.1 uGcuGcGGcuGcuGucAuudT 371 A-95731.1 AAUGAcAGcAGCCGcA 599 45728 sdT GcAdTsdT HAMP AD- 276 A-95728.1 uGcuGcGGcuGcuGucAuAdT 372 A-95729.1 uAUGAcAGcAGCCGcA 601 45722 sdT GcAdTsdT HAMP AD- 276 A-66875.1 uGcuGcGGcuGcuGucAucdT 373 A-66876.1 GAUGAcAGcAGCCGcA 602 29963 sdT GcAdTsdT HAMP AD- 278 A-94192.1 cuGcGGcuGcuGucAucGAdT 374 A-94193.1 UCGAUGAcAGcAGCCG 603 45104 sdT cAGdTsdT HAMP AD- 279 A-98398.1 UfGCfGGCfUfGCfUfGUfCfA 375 A-98399.1 AUCGAUGACfAGCfAG 604 47058 UfCfGAUfdTsdT CCGCfAdTsdT HAMP AD- 279 A-66877.1 uGcGGcuGcuGucAucGAudT 375 A-66878.1 AUCGAUGAcAGcAGCC 604 29964 sdT GcAdTsdT HAMP AD- 280 A-98402.1 GCfGGCfUfGCfUfGUfCfAUf 376 A-98403.1 AAUCGAUGACfAGCfA 605 47070 CfGAUfUfdTsdT GCCGCdTsdT HAMP AD- 280 A-98400.1 GCfGGCfUfGCfUfGUfCfAUf 377 A-98401.1 CfAUCGAUGACfAGCfA 606 47064 CfGAUfAdTsdT GCCGCdTsdT HAMP AD- 280 A-95734.1 GcGGcuGcuGucAucGAuudT 376 A-95735.1 AAUCGAUGAcAGcAGC 605 45738 sdT CGCdTsdT HAMP AD- 280 A-95732.1 GcGGcuGcuGucAucGAuAd 377 A-95733.1 uAUCGAUGAcAGcAGC 607 45733 TsdT CGCdTsdT HAMP AD- 281 A-98404.1 CfGGCfUfGCfUfGUfCfAUfCf 378 A-98405.1 UGAUCGAUGACfAGCf 608 47076 GAUfCfAdTsdT AGCCGdTsdT HAMP AD- 281 A-66879.1 cGGcuGcuGucAucGAucAdT 378 A-66880.1 UGAUCGAUGAcAGcA 608 29965 sdT GCCGdTsdT HAMP AD- 282 A-98406.1 GGCfUfGCfUfGUfCfAUfCfG 379 A-98407.1 UUGAUCGAUGACfAG 609 47035 AUfCfAAdTsdT CfAGCCdTsdT HAMP AD- 283 A-98408.1 GCfUfGCfUfGUfCfAUfCfGA 380 A-98409.1 UUUGAUCGAUGACfA 610 47041 UfCfAAAdTsdT GCfAGCdTsdT HAMP AD- 283 A-18260.1 GcuGcuGucAucGAucAAAdT 380 A-18261.1 UUUGAUCGAUGAcAG 610 30020 sdT cAGCdTsdT HAMP AD- 284 A-98412.1 CfUfGCfUfGUfCfAUfCfGAUf 381 A-98413.1 AUUUGAUCGAUGACf 611 47053 CfAAAUfdTsdT AGCfAGdTsdT HAMP AD- 284 A-98410.1 CfUfGCfUfGUfCfAUfCfGAUf 382 A-98411.1 UUUUGAUCGAUGACf 612 47047 CfAAAAdTsdT AGCfAGdTsdT HAMP AD- 284 A-95738.1 cuGcuGucAucGAucAAAudT 381 A-95739.1 AUUUGAUCGAUGAcA 611 45748 sdT GcAGdTsdT HAMP AD- 284 A-95736.1 cuGcuGucAucGAucAAAAdT 382 A-95737.1 UUUUGAUCGAUGAcA 612 45743 sdT GcAGdTsdT HAMP AD- 284 A-18284.1 cuGcuGucAucGAucAAAGdT 383 A-18285.1 CUUUGAUCGAUGAcA 613 30021 sdT GcAGdTsdT HAMP AD- 285 A-98414.1 UfGCfUfGUfCfAUfCfGAUfCf 384 A-98415.1 ACUUUGAUCGAUGAC 614 47059 AAAGUfdTsdT fAGCfAdTsdT HAMP AD- 285 A-18278.3 uGcuGucAucGAucAAAGud 384 A-18279.2 ACUUUGAUCGAUGAC 614 11441 TsdT AGcAdTsdT HAMP AD- 286 A-98418.1 GCfUfGUfCfAUfCfGAUfCfA 385 A-98419.1 AACUUUGAUCGAUGA 615 47071 AAGUfUfdTsdT CfAGCdTsdT HAMP AD- 286 A-98416.1 GCfUfGUfCfAUfCfGAUfCfA 386 A-98417.1 CfACUUUGAUCGAUG 616 47065 AAGUfAdTsd TACfAGCdTsdT HAMP AD- 286 A-95742.1 GcuGucAucGAucAAAGuud 385 A-95743.1 AACUUUGAUCGAUGA 615 45758 TsdT cAGCdTsdT HAMP AD- 286 A-95740.1 GcuGucAucGAucAAAGuAd 386 A-95741.1 uACUUUGAUCGAUGA 617 45753 TsdT cAGCdTsdT HAMP AD- 286 A-18288.2 GcuGucAucGAucAAAGuGd 387 A-18289.1 cACUUUGAUCGAUGA 616 29968 TsdT cAGCdTsdT HAMP AD- 287 A-98420.1 CfUfGUfCfAUfCfGAUfCfAA 388 A-98421.1 ACfACUUUGAUCGAU 618 47077 AGUfGUfdTsdT GACfAGdTsdT HAMP AD- 287 A-18290.3 cuGucAucGAucAAAGuGud 388 A-18291.1 AcACUUUGAUCGAUG 618 29969 TsdT AcAGdTsdT HAMP AD- 288 A- UGucAucGAucAAAGuGuud 389 A-100243.1 AACACUUUgAuCgAuG 619 48208 100241.2 TdT aCadTdT HAMP AD- 288 A-98424.1 UfGUfCfAUfCfGAUfCfAAAG 389 A-98425.1 AACfACUUUGAUCGA 619 47042 UfGUfUfdTsdT UGACfAdTsdT HAMP AD- 288 A- uGucAucGAucAAAGuGuud 389 A-100242.1 AACACuuUGauCGAuG 619 48202 100241.1 TdT acadTdT HAMP AD- 288 A-98422.1 UfGUfCfAUfCfGAUfCfAAAG 390 A-98423.1 CfACfACUUUGAUCGA 620 47036 UfGUfAdTsdT UGACfAdTsdT HAMP AD- 288 A-95746.1 uGucAucGAucAAAGuGuud 389 A-95747.1 AAcACUUUGAUCGAU 619 45729 TsdT GAcAdTsdT HAMP AD- 288 A-95744.1 uGucAucGAucAAAGuGuAd 390 A-95745.1 uAcACUUUGAUCGAU 621 45723 TsdT GAcAdTsdT HAMP AD- 288 A-66881.1 uGucAucGAucAAAGuGuGd 391 A-66882.1 cAcACUUUGAUCGAU 620 29970 TsdT GAcAdTsdT HAMP AD- 290 A-98426.1 UfCfAUfCfGAUfCfAAAGUfG 392 A-98427.1 UCCfACfACUUUGAUC 622 47048 UfGGAdTsdT GAUGAdTsdT HAMP AD- 290 A-98428.1 UfCfAUfCfGAUfCfAAAGUfG 393 A-98429.1 ACCfACfACUUUGAUC 623 47054 UfGGUfdTsdT GAUGAdTsdT HAMP AD- 290 A-95752.1 ucAucGAucAAAGuGuGGud 393 A-95753.1 ACcAcACUUUGAUCGA 623 45744 TsdT UGAdTsdT HAMP AD- 290 A-95750.1 ucAucGAucAAAGuGuGGAd 392 A-95751.1 UCcAcACUUUGAUCGA 622 45739 TsdT UGAdTsdT HAMP AD- 290 A-95748.1 ucAucGAucAAAGuGuGGGd 394 A-95749.1 CCcAcACUUUGAUCGA 624 45734 TsdT UGAdTsdT HAMP AD- 291 A-98342.1 CfAUfCfGAUfCfAAAGUfGUf 395 A-98343.1 UCCCfACfACUUUGAU 625 47005 GGGAdTsdT CGAUGdTsdT HAMP AD- 291 A-18268.1 cAucGAucAAAGuGuGGGAd 395 A-18269.1 UCCcAcACUUUGAUCG 625 11436 TsdT AUGdTsdT HAMP AD- 291 A-18268.1 cAucGAucAAAGuGuGGGAd 395 A-18269.1 UCCcAcACUUUGAUCG 625 11436 TsdT AUGdTsdT HAMP AD- 291 A-18268.1 cAucGAucAAAGuGuGGGAd 395 A-18269.1 UCCcAcACUUUGAUCG 625 29971 TsdT AUGdTsdT HAMP AD- 292 A-94771.1 AucGAucAAAGuGuGGGAud 396 A-94772.1 AUCCcAcACUUUGAUC 626 45376 TsdT GAUdTsdT HAMP AD- 293 A-94773.1 ucGAucAAAGuGuGGGAuG 397 A-94774.1 cAUCCcAcACUUUGAU 627 45382 dTsdT CGAdTsdT HAMP AD- 294 A-66883.1 cGAucAAAGuGuGGGAuGu 398 A-66884.1 AcAUCCcAcACUUUGA 628 29972 dTsdT UCGdTsdT HAMP AD- 295 A-98432.1 GAUfCfAAAGUfGUfGGGAU 399 A-98433.1 AACfAUCCCfACfACUU 629 47066 fGUfUfdTsdT UGAUCdTsdT HAMP AD- 295 A-98430.1 GAUfCfAAAGUfGUfGGGAU 400 A-98431.1 CfACfAUCCCfACfACUU 630 47060 fGUfAdTsdT UGAUCdTsdT HAMP AD- 295 A-95756.1 GAucAAAGuGuGGGAuGuu 399 A-95757.1 AAcAUCCcAcACUUUG 629 45754 dTsdT AUCdTsdT HAMP AD- 295 A-95754.1 GAucAAAGuGuGGGAuGuA 400 A-95755.1 uAcAUCCcAcACUUUG 631 45749 dTsdT AUCdTsdT HAMP AD- 295 A-66885.1 GAucAAAGuGuGGGAuGuG 401 A-66886.1 cAcAUCCcAcACUUUG 630 29973 dTsdT AUCdTsdT HAMP AD- 296 A-95762.1 AucAAAGuGuGGGAuGuGu 402 A-95763.1 AcAcAUCCcAcACUUU 632 45730 dTsdT GAUdTsdT HAMP AD- 296 A-95760.1 AucAAAGuGuGGGAuGuGA 403 A-95761.1 UcAcAUCCcAcACUUU 633 45724 dTsdT GAUdTsdT HAMP AD- 296 A-95758.1 AucAAAGuGuGGGAuGuGc 404 A-95759.1 GcAcAUCCcAcACUUU 634 45759 dTsdT GAUdTsdT HAMP AD- 297 A-94194.1 ucAAAGuGuGGGAuGuGcud 405 A-94195.1 AGcAcAUCCcAcACUU 635 45110 TsdT UGAdTsdT HAMP AD- 298 A-94775.1 cAAAGuGuGGGAuGuGcuG 406 A-94776.1 cAGcAcAUCCcAcACUU 636 45387 dTsdT UGdTsdT HAMP AD- 299 A-98434.1 AAAGUfGUfGGGAUfGUfGC 407 A-98435.1 ACfAGCfACfAUCCCfAC 637 47072 fUfGUfdTsdT fACUUUdTsdT HAMP AD- 299 A-95766.1 AAAGuGuGGGAuGuGcuGA 408 A-95767.1 UcAGcAcAUCCcAcACU 638 45740 dTsdT UUdTsdT HAMP AD- 299 A-95768.1 AAAGuGuGGGAuGuGcuGu 407 A-95769.1 AcAGcAcAUCCcAcACU 637 45745 dTsdT UUdTsdT HAMP AD- 299 A-95764.1 AAAGuGuGGGAuGuGcuGc 409 A-95765.1 GcAGcAcAUCCcAcACU 639 45735 dTsdT UUdTsdT HAMP AD- 300 A-66887.1 AAGuGuGGGAuGuGcuGcA 410 A-66888.1 UGcAGcAcAUCCcAcAC 640 29974 dTsdT UUdTsdT HAMP AD- 301 A-66889.1 AGuGuGGGAuGuGcuGcAA 411 A-66890.1 UUGcAGcAcAUCCcAc 641 29975 dTsdT ACUdTsdT HAMP AD- 306 A-94196.1 GGGAuGuGcuGcAAGAcGud 412 A-94197.1 ACGUCUUGcAGcAcAU 642 45116 TsdT CCCdTsdT HAMP AD- 307 A-98258.1 GGAUfGUfGCfUfGCfAAGAC 413 A-98259.1 CfACGUCUUGCfAGCfA 643 46988 fGUfAdTsdT CfAUCCdTsdT HAMP AD- 307 A-94198.1 GGAuGuGcuGcAAGAcGuAd 413 A-94199.1 uACGUCUUGcAGcAcA 644 45075 TsdT UCCdTsdT HAMP AD- 309 A-98260.1 AUfGUfGCfUfGCfAAGACfG 414 A-98261.1 UCCfACGUCUUGCfAG 645 46994 UfAGAdTsdT CfACfAUdTsdT HAMP AD- 309 A-94200.1 AuGuGcuGcAAGAcGuAGAd 414 A-94201.1 UCuACGUCUUGcAGcA 646 45081 TsdT cAUdTsdT HAMP AD- 310 A-98262.1 UfGUfGCfUfGCfAAGACfGUf 415 A-98263.1 UUCCfACGUCUUGCfA 647 47000 AGAAdTsdT GCfACfAdTsdT HAMP AD- 310 A-94202.1 uGuGcuGcAAGAcGuAGAAd 415 A-94203.1 UUCuACGUCUUGcAGc 648 45087 TsdT AcAdTsdT HAMP AD- 313 A-98264.1 GCfUfGCfAAGACfGUfAGAA 416 A-98265.1 AGGUUCCfACGUCUU 649 47006 CfCfUfdTsdT GCfAGCdTsdT HAMP AD- 313 A-94204.1 GcuGcAAGAcGuAGAAccud 416 A-94205.1 AGGUUCuACGUCUUG 650 45093 TsdT cAGCdTsdT HAMP AD- 314 A-98266.1 CfUfGCfAAGACfGUfAGAACf 417 A-98267.1 CfAGGUUCCfACGUCU 651 47011 CfUfAdTsdT UGCfAGdTsdT HAMP AD- 322 A-98268.1 CfGUfAGAACfCfUfACfCfUfG 418 A-98269.1 AGGGCfAGGCfAGGUU 652 47016 CfCfCfUfdTsdT CCfACGdTsdT HAMP AD- 322 A-94206.1 cGuAGAAccuAccuGcccudTs 418 A-94207.1 AGGGcAGGuAGGUUC 653 45099 dT uACGdTsdT HAMP AD- 347 A-98270.1 GUfCfCfCfCfUfCfCfCfUfUfCf 419 A-98271.1 AACfAAGGAAGGGAG 654 47021 CfUfUfAUfUfdTsdT GGGACdTsdT HAMP AD- 348 A-98272.1 UfCfCfCfCfUfCfCfCfUfUfCfC 420 A-98273.1 AAACfAAGGAAGGGAG 655 47026 fUfUfAUfUfUfdTsdT GGGAdTsdT HAMP AD- 349 A-98274.1 CfCfCfCfUfCfCfCfUfUfCfCfU 421 A-98275.1 CfAAACfAAGGAAGGG 656 46989 fUfAUfUfUfAdTsdT AGGGGdTsdT HAMP AD- 350 A-98276.1 CfCfCfUfCfCfCfUfUfCfCfUfU 422 A-98277.1 ACfAAACfAAGGAAGG 657 46995 fAUfUfUfAUfdTsdT GAGGGdTsdT HAMP AD- 351 A-98278.1 CfCfUfCfCfCfUfUfCfCfUfUfA 423 A-98279.1 AACfAAACfAAGGAAG 658 47001 UfUfUfAUfUfdTsdT GGAGGdTsdT HAMP AD- 352 A-98282.1 CfUfCfCfCfUfUfCfCfUfUfAU 424 A-98283.1 AAACfAAACfAAGGAA 659 47012 fUfUfAUfUfUfdTsdT GGGAGdTsdT HAMP AD- 352 A-98280.1 CfUfCfCfCfUfUfCfCfUfUfAU 425 A-98281.1 CfAACfAAACfAAGGAA 660 47007 fUfUfAUfUfAdTsdT GGGAGdTsdT HAMP AD- 354 A-98284.1 CfCfCfUfUfCfCfUfUfAUfUfU 426 A-98285.1 AGGAACfAAACfAAGG 661 47017 fAUfUfCfCfUfdTsdT AAGGGdTsdT HAMP AD- 355 A-98286.1 CfCfUfUfCfCfUfUfAUfUfUfA 427 A-98287.1 CfAGGAACfAAACfAAG 662 47022 UfUfCfCfUfAdTsdT GAAGGdTsdT HAMP AD- 355 A-98288.1 CfCfUfUfCfCfUfUfAUfUfUfA 428 A-98289.1 AAGGAACfAAACfAAG 663 47027 UfUfCfCfUfUfdTsdT GAAGGdTsdT HAMP AD- 356 A-98292.1 CfUfUfCfCfUfUfAUfUfUfAUf 429 A-98293.1 ACfAGGAACfAAACfAA 664 46996 UfCfCfUfGUfdTsdT GGAAGdTsdT HAMP AD- 356 A-98290.1 CfUfUfCfCfUfUfAUfUfUfAUf 430 A-98291.1 UCfAGGAACfAAACfAA 665 46990 UfCfCfUfGAdTsdT GGAAGdTsdT HAMP AD- 357 A-98294.1 UfUfCfCfUfUfAUfUfUfAUfU 431 A-98295.1 AGCfAGGAACfAAACfA 666 47002 fCfCfUfGCfUfdTsdT AGGAAdTsdT HAMP AD- 358 A-98298.1 UfCfCfUfUfAUfUfUfAUfUfCf 432 A-98299.1 AAGCfAGGAACfAAACf 667 47013 CfUfGCfUfUfdTsdT AAGGAdTsdT HAMP AD- 358 A-98296.1 UfCfCfUfUfAUfUfUfAUfUfCf 433 A-98297.1 CfAGCfAGGAACfAAAC 668 47008 CfUfGCfUfAdTsdT fAAGGAdTsdT HAMP AD- 359 A-98302.1 CfCfUfUfAUfUfUfAUfUfCfCf 434 A-98303.1 ACfAGCfAGGAACfAAA 669 47023 UfGCfUfGUfdTsdT CfAAGGdTsdT HAMP AD- 359 A-98300.1 CfCfUfUfAUfUfUfAUfUfCfCf 435 A-98301.1 UCfAGCfAGGAACfAAA 670 47018 UfGCfUfGAdTsdT CfAAGGdTsdT HAMP AD- 363 A-98304.1 AUfUfUfAUfUfCfCfUfGCfUf 436 A-98305.1 UGGGGCfAGCfAGGAA 671 47028 GCfCfCfCfAdTsdT CfAAAUdTsdT HAMP AD- 365 A-98306.1 UfUfAUfUfCfCfUfGCfUfGCf 437 A-98307.1 UCUGGGGCfAGCfAGG 672 46991 CfCfCfAGAdTsdT AACfAAdTsdT HAMP AD- 366 A-98308.1 UfAUfUfCfCfUfGCfUfGCfCf 438 A-98309.1 UUCUGGGGCfAGCfAG 673 46997 CfCfAGAAdTsdT GAACfAdTsdT HAMP AD- 369 A-98310.1 UfCfCfUfGCfUfGCfCfCfCfAG 439 A-98311.1 AUGUUCUGGGGCfAG 674 47003 AACfAUfdTsdT CfAGGAdTsdT HAMP AD- 369 A-94208.1 uccuGcuGccccAGAAcAudTs 439 A-94209.1 AUGUUCUGGGGcAGc 674 45105 dT AGGAdTsdT HAMP AD- 370 A-98312.1 CfCfUfGCfUfGCfCfCfCfAGA 440 A-98313.1 CfAUGUUCUGGGGCfA 675 47009 ACfAUfAdTsdT GCfAGGdTsdT HAMP AD- 370 A-94210.1 ccuGcuGccccAGAAcAuAdTs 440 A-94211.1 uAUGUUCUGGGGcAG 676 45111 dT cAGGdTsdT HAMP AD- 373 A-98314.1 GCfUfGCfCfCfCfAGAACfAUf 441 A-98315.1 ACCCfAUGUUCUGGG 677 47014 AGGUfdTsdT GCfAGCdTsdT HAMP AD- 373 A-94212.1 GcuGccccAGAAcAuAGGudT 441 A-94213.1 ACCuAUGUUCUGGGG 678 45117 sdT cAGCdTsdT HAMP AD- 375 A-98316.1 UfGCfCfCfCfAGAACfAUfAG 442 A-98317.1 AGACCCfAUGUUCUG 679 47019 GUfCfUfdTsdT GGGCfAdTsdT HAMP AD- 375 A-94214.1 uGccccAGAAcAuAGGucudT 442 A-94215.1 AGACCuAUGUUCUGG 680 45076 sdT GGcAdTsdT HAMP AD- 376 A- GccccAGAAcAuAGGucuudT 443 A-100245.1 AAGACCuAUGUUCUG 681 48214 100244.1 dT GGGCdTdT HAMP AD- 376 A- GcCCCAGAAcAuAGGucuud 443 A-100247.1 AAGACCuaUGuuCUGG 681 48219 100246.1 TdT GGcdTdT HAMP AD- 376 A-98318.1 GCfCfCfCfAGAACfAUfAGGU 443 A-98319.1 AAGACCCfAUGUUCUG 682 47024 fCfUfUfdTsdT GGGCdTsdT HAMP AD- 376 A-94216.1 GccccAGAAcAuAGGucuudT 443 A-94217.1 AAGACCuAUGUUCUG 681 45082 sdT GGGCdTsdT HAMP AD- 379 A- ccAGAAcAuAGGucuuGGAd 444 A-100249.1 UCcAAGACCuAUGUUC 683 48224 100248.1 TdT UCGdTdT HAMP AD- 379 A- ccAGAAcAuAGGucuuGGAd 444 A-100250.1 uCCAAGACCuAUGuUC 684 48187 100248.2 TdT uggdTdT HAMP AD- 379 A-98320.1 CfCfAGAACfAUfAGGUfCfUf 444 A-98321.1 UCCfAAGACCCfAUGU 685 47029 UfGGAdTsdT UCUGGdTsdT HAMP AD- 379 A- ccAGAAcAuAGGucuuGGAd 444 A-100251.1 uCCAAGACCUaUgUuC 684 48192 100248.3 TdT uGgdTdT HAMP AD- 379 A-94218.1 ccAGAAcAuAGGucuuGGAd 444 A-94219.1 UCcAAGACCuAUGUUC 684 45088 TsdT UGGdTsdT HAMP AD- 380 A-98322.1 CfAGAACfAUfAGGUfCfUfUf 445 A-98323.1 UUCCfAAGACCCfAUG 686 46992 GGAAdTsdT UUCUGdTsdT HAMP AD- 380 A-94220.1 cAGAAcAuAGGucuuGGAAd 445 A-94221.1 UUCcAAGACCuAUGU 687 45094 TsdT UCUGdTsdT HAMP AD- 381 A-98324.1 AGAACfAUfAGGUfCfUfUfG 446 A-98325.1 AUUCCfAAGACCCfAU 688 46998 GAAUfdTsdT GUUCUdTsdT HAMP AD- 381 A-94222.1 AGAAcAuAGGucuuGGAAud 446 A-94223.1 AUUCcAAGACCuAUG 689 45100 TsdT UUCUdTsdT HAMP AD- 382 A- GAAcAuAGGUCUUGGAAUA 30 A-98136.7 UAUUCCAAGACCUAU 44 48137 100195.1 dTdT GUUCdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100228.1 UAuUCCAAGaCCuAuG 44 48196 100179.22 TdT uucdTdT HAMP AD- 382 A-98135.8 GAACAUAGGUCUUGGAAU 30 A-100218.1 UAUUcCaAgAcCuAuG 44 48195 AdTdT uUcdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100229.1 UAUUCCAAGaCCuAuG 44 48201 100179.23 TdT uucdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100230.1 UAUUCCAAgAcCuAuG 44 48207 100179.24 TdT uucdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100184.1 UAUUCCAAGACCUAu 44 48159 100179.5 TdT GuUCdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100182.1 UAUUCcAAGACCuAuG 44 48147 100179.3 TdT uUCdTdT HAMP AD- 382 A-98135.4 GAACAUAGGUCUUGGAAU 30 A-100188.2 UAUUCCAAGACCUAu 44 48161 AdTdT GuUcdTdT HAMP AD- 382 A- GAAcAuAGGucUUGGAAUA 30 A-98136.5 UAUUCCAAGACCUAU 44 48172 100193.1 dTdT GUUCdTdT HAMP AD- 382 A- GAAcAuAGGuCUUGGAAUA 30 A-100188.3 UAUUCCAAGACCUAu 44 48156 100194.4 dTdT GuUcdTdT HAMP AD- 382 A-98135.8 GAACAUAGGUCUUGGAAU 30 A-100218.1 UAUUcCaAgAcCuAuG 44 48195 AdTdT uUcdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100187.1 UAUUCCAAGACCUAU 44 48136 100179.9 TdT GuUcdTdT HAMP AD- 382 A- GAAcAuAGGucuUGGAAUA 30 A-98136.4 UAUUCCAAGACCUAU 44 48166 100192.1 dTdT GUUCdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100231.1 UAuUCCAAgAcCuAuG 44 48213 100179.25 TdT uucdTdT HAMP AD- 382 A-98135.6 GAACAUAGGUCUUGGAAU 30 A-100190.2 UAUUCCAAGACcuAuG 44 48173 AdTdT uUcdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100190.1 UAUUCCAAGACcuAuG 44 48154 100179.12 TdT uUcdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100181.1 UAuUCcAAGACCuAuG 44 48141 100179.2 TdT uUCdTdT HAMP AD- 382 A- GAAcAuAGGuCUUGGAAUA 30 A-100215.3 UAUUCCAAGACcuAuG 44 48216 100217.3 dTsdT uUcdTsdT HAMP AD- 382 A- GAAcAuAGGuCUUGGAAUA 30 A-100183.2 UAUUCCAAGACCuAu 44 48180 100194.8 dTdT GuUCdTdT HAMP AD- 382 A- GAAcAUAGGUCUUGGAAU 30 A-98136.8 UAUUCCAAGACCUAU 44 48143 100196.1 AdTdT GUUCdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100188.1 UAUUCCAAGACCUAu 44 48142 100179.10 TdT GuUcdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-15168.3 UAUUCCAAGACCUAU 44 48221 18280.13 TsdT GUUCdTsdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-98136.2 UAUUCCAAGACCUAU 44 48171 100179.7 TdT GUUCdTdT HAMP AD- 382 A- GAAcAuAGGUCUUGGAAUA 30 A-100183.3 UAUUCCAAGACCuAu 44 48145 100195.4 dTdT GuUCdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAUA 30 A-98136.3 UAUUCCAAGACCUAU 44 48160 100191.1 dTdT GUUCdTdT HAMP AD- 382 A- GAAcAuAGGuCUUGGAAUA 30 A-100190.5 UAUUCCAAGACcuAuG 44 48144 100194.2 dTdT uUcdTdT HAMP AD- 382 A-98135.5 GAACAUAGGUCUUGGAAU 30 A-100189.2 UAUUCCAAGACCuAu 44 48167 AdTdT GuUcdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100186.1 UAUUCCAAGACCUAU 44 48177 100179.8 TdT GUUcdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100183.1 UAUUCCAAGACCuAu 44 48153 100179.4 TdT GuUCdTdT HAMP AD- 382 A- GAAcAuAGGuCUUGGAAUA 30 A-98136.6 UAUUCCAAGACCUAU 44 48178 100194.1 dTdT GUUCdTdT HAMP AD- 382 A-98135.3 GAACAUAGGUCUUGGAAU 30 A-100187.2 UAUUCCAAGACCUAU 44 48155 AdTdT GuUcdTdT HAMP AD- 382 A- GAAcAuAGGuCUUGGAAUA 30 A-100197.1 UAUUCCAAGACcuAuG 44 48174 100194.7 dTdT uUCdTdT HAMP AD- 382 A-15167.2 GAACAUAGGUCUUGGAAU 30 A-100215.2 UAUUCCAAGACcuAuG 44 48205 AdTsdT uUcdTsdT HAMP AD- 382 A- GAAcAUAGGUCUUGGAAU 30 A-100190.3 UAUUCCAAGACcuAuG 44 48179 100196.2 AdTdT uUcdTdT HAMP AD- 382 A- GAAcAuAGGuCUUGGAAUA 30 A-100186.3 UAUUCCAAGACCUAU 44 48168 100194.6 dTdT GUUcdTdT HAMP AD- 382 A-98135.2 GAACAUAGGUCUUGGAAU 30 A-100186.2 UAUUCCAAGACCUAU 44 48149 AdTdT GUUcdTdT HAMP AD- 382 A- GAAcAuAGGuCUUGGAAUA 30 A-100214.2 UAUUCCAAGACCuAu 44 48211 100217.2 dTsdT GuUCdTsdT HAMP AD- 382 A- GAAcAuAGGuCUUGGAAUA 30 A-15168.2 UAUUCCAAGACCUAU 44 48200 100217.1 dTsdT GUUCdTsdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100205.1 UAuUCcAAGACCuAuG 44 48188 100179.20 TdT uUcdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100214.1 UAUUCCAAGACCuAu 44 48183 18280.10 TsdT GuUCdTsdT HAMP AD- 382 A- GAAcAuAGGuCUUGGAAUA 30 A-100189.3 UAUUCCAAGACCuAu 44 48150 100194.3 dTdT GuUcdTdT HAMP AD- 382 A- GAAcAuAGGuCUUGGAAUA 30 A-100187.3 UAUUCCAAGACCUAU 44 48162 100194.5 dTdT GuUcdTdT HAMP AD- 382 A- GAAcAuAGGUCUUGGAAUA 30 A-100197.2 UAUUCCAAGACcuAuG 44 48139 100195.3 dTdT uUCdTdT HAMP AD- 382 A-15167.1 GAACAUAGGUCUUGGAAU 30 A-15168.1 UAUUCCAAGACCUAU 44 9942 AdTsdT GUUCdTsdT HAMP AD- 382 A- GAAcAuAGGUCUUGGAAUA 30 A-100190.4 UAUUCCAAGACcuAuG 44 48138 100195.2 dTdT uUcdTdT HAMP AD- 382 A-18280.2 GAAcAuAGGucuuGGAAuAd 30 A-18304.1 uAuUCcAAGACCuAuG 44 11459 TsdT uUCdTsdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100215.1 UAUUCCAAGACcuAuG 44 48189 18280.11 TsdT uUcdTsdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100189.1 UAUUCCAAGACCuAu 44 48148 100179.11 TdT GuUcdTdT HAMP AD- 382 A-18280.8 GAAcAuAGGucuuGGAAuAd 30 A-100212.1 UAuUCcAAGACCuAuG 44 48215 TsdT uUCdTsdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100232.1 uAuUCCAAgAcCuAuG 44 48218 100179.26 TdT uucdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100180.1 uAuUCcAAGACCuAuG 44 48135 100179.1 TdT uUCdTdT HAMP AD- 382 A-98326.1 GAACfAUfAGGUfCfUfUfGG 30 A-98327.1 CfAUUCCfAAGACCCfA 690 47004 AAUfAdTsdT UGUUCdTsdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100216.1 uAUUCCAAGACCuAuG 44 48194 18280.12 TsdT uUCdTsdT HAMP AD- 382 A- GAAcAuAGGuCdTUdGGdA 447 A-100240.1 dTAdTUdCCdAAdGAC 691 48197 100239.1 AdTAdTdT CuAuGuucdTdT HAMP AD- 382 A-18280.2 GAAcAuAGGucuuGGAAuAd 30 A-18304.1 uAuUCcAAGACCuAuG 44 11459 TsdT uUCdTsdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100201.1 uAUUCcAAGACCuAuG 44 48164 100179.16 TdT uUCdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100200.1 uAUUCCAAGACCuAuG 44 48158 100179.15 TdT uUCdTdT HAMP AD- 382 A- GAAcAcAGGucuuGGAAuAd 448 A-100209.1 uAuUCcAAGACCuGuG 692 48204 100208.1 TdT uUCdTdT HAMP AD- 382 A- GAAcAuAGGucuUGGAAUA 30 A-100180.7 uAuUCcAAGACCuAuG 44 48181 100192.2 dTdT uUCdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAuu 449 A-100234.1 uAuUCcAAGACCuAuG 706 48223 100233.1 uUCuu HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100227.1 uAuUCCAAGaCCuAuG 44 48190 100179.21 TdT uucdTdT HAMP AD- 382 A- GAAcAuAGGUCUUGGAAUA 30 A-100180.4 uAuUCcAAGACCuAuG 44 48163 100195.5 dTdT uUCdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAUA 30 A-100180.8 uAuUCcAAGACCuAuG 44 48140 100191.2 dTdT uUCdTdT HAMP AD- 382 A- GAAcAuAGGuCUUGGAAUA 30 A-100180.5 uAuUCcAAGACCuAuG 44 48169 100194.9 dTdT uUCdTdT HAMP AD- 382 A-18280.9 GAAcAuAGGucuuGGAAuAd 30 A-100213.1 uAuUCcAAGACCuAuG 44 48220 TsdT uUcdTsdT HAMP AD- 382 A-15167.3 GAACAUAGGUCUUGGAAU 30 A-18304.6 uAuUCcAAGACCuAuG 44 48184 AdTsdT uUCdTsdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100203.1 uAUUCCAAGACCuAuG 44 48176 100179.18 TdT uUcdTdT HAMP AD- 382 A- GAAcAuAGGucUUGGAAUA 30 A-100180.6 uAuUCcAAGACCuAuG 44 48175 100193.2 dTdT uUCdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100198.1 uAUUCCAAGACCUAU 44 48146 100179.13 TdT GUUcdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100204.1 uAuUCcAAGACCuAuG 44 48182 100179.19 TdT uUcdTdT HAMP AD- 382 A- GAAcAuAGGUCUUGGAAuA 30 A- uAuUCcAAGACCuAuG 44 48199 100207.1 dTdT 100180.10 uUCdTdT HAMP AD- 382 A- GAAcAUAGGUCUUGGAAU 30 A-100180.3 uAuUCcAAGACCuAuG 44 48157 100196.3 AdTdT uUCdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 448 A-100220.1 uAuUCcAAGACCuGuG 692 48206 100219.1 TsdT uUCdTsdT HAMP AD- 382 A- GAAcAuAGGuCuuGGAAuA 30 A-100180.9 uAuUCcAAGACCuAuG 44 48193 100206.1 dTdT uUCdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100199.1 uAUUCCAAGACCUAU 44 48152 100179.14 TdT GUUCdTdT HAMP AD- 382 A-98135.7 GAACAUAGGUCUUGGAAU 30 A-100180.2 uAuUCcAAGACCuAuG 44 48151 AdTdT uUCdTdT HAMP AD- 382 A- GAAcAuAGGucuuGGAAuAd 30 A-100202.1 uAuUCUAAGACCuAuG 693 48170 100179.17 TdT uUCdTdT HAMP AD- 383 A-98328.1 AACfAUfAGGUfCfUfUfGGA 450 A-98329.1 UCfAUUCCfAAGACCCf 694 47010 AUfAAdTsdT AUGUUdTsdT HAMP AD- 383 A-94224.1 AAcAuAGGucuuGGAAuAAd 450 A-94225.1 UuAUUCcAAGACCuAU 695 45106 TsdT GUUdTsdT HAMP AD- 385 A- CAUAGGUCUUGGAAUAAA 451 A-100225.1 UUUUAUUCCAAGACC 696 48222 100224.1 AdTdT UAUGdTdT HAMP AD- 385 A- cAuAGGucuuGGAAuAAAAd 451 A-100223.1 UUUuAUUCcAAGACCu 696 48217 100221.2 TdT AUGdTdT HAMP AD- 385 A- cAuAGGucuuGGAAuAAAAd 451 A-100226.1 uUUUAuuCCaaGACCU 696 48185 100221.3 TdT augdTdT HAMP AD- 385 A- cAuAGGucuuGGAAuAAAAd 451 A-100222.1 UuUuAuUCcAAGACCu 696 48212 100221.1 TdT AuGdTdT HAMP AD- 396 A- GAAuAAAAuGGcuGGuucud 452 A-100253.1 AGAACcAGCcAUUUuA 697 48198 100252.1 TdT UUCdTdT HAMP AD- 396 A- GAAuAAAAuGGcuGGuucud 452 A-100255.1 AGAACCAGcCaUuUuA 697 48209 100252.3 TdT uUcdTdT HAMP AD- 396 A- GAAuAAAAuGGcuGGuucud 452 A-100254.1 AGAACcAGCCAuuUUA 697 48203 100252.2 TdT uucdTdT HAMP AD- 396 A-98330.1 GAAUfAAAAUfGGCfUfGGUf 452 A-98331.1 AGAACCfAGCCfAUUU 698 47015 UfCfUfdTsdT CfAUUCdTsdT HAMP AD- 396 A-94226.1 GAAuAAAAuGGcuGGuucud 452 A-94227.1 AGAACcAGCcAUUUuA 697 45112 TsdT UUCdTsdT HAMP AD- 398 A-98332.1 AUfAAAAUfGGCfUfGGUfUf 453 A-98333.1 AAAGAACCfAGCCfAU 699 47020 CfUfUfUfdTsdT UUCfAUdTsdT HAMP AD- 398 A-94228.1 AuAAAAuGGcuGGuucuuud 453 A-94229.1 AAAGAACcAGCcAUUU 700 45118 TsdT uAUdTsdT HAMP AD- 399 A-98334.1 UfAAAAUfGGCfUfGGUfUfCf 454 A-98335.1 AAAAGAACCfAGCCfA 701 47025 UfUfUfUfdTsdT UUUCfAdTsdT HAMP AD- 399 A-94230.1 uAAAAuGGcuGGuucuuuud 454 A-94231.1 AAAAGAACcAGCcAUU 702 45077 TsdT UuAdTsdT HAMP AD- 402 A-98336.1 AAUfGGCfUfGGUfUfCfUfUf 455 A-98337.1 AACfAAAAGAACCfAGC 703 47030 UfUfGUfUfdTsdT CfAUUdTsdT HAMP AD- 402 A-94232.1 AAuGGcuGGuucuuuuGuud 455 A-94233.1 AAcAAAAGAACcAGCc 703 45083 TsdT AUUdTsdT HAMP AD- 403 A-98338.1 AUfGGCfUfGGUfUfCfUfUfU 456 A-98339.1 AAACfAAAAGAACCfA 704 46993 fUfGUfUfUfdTsdT GCCfAUdTsdT HAMP AD- 403 A-94234.1 AuGGcuGGuucuuuuGuuud 456 A-94235.1 AAAcAAAAGAACcAGC 704 45089 TsdT cAUdTsdT HAMP AD- 407 A-98340.1 CfUfGGUfUfCfUfUfUfUfGUf 457 A-98341.1 UGGAAAACfAAAAGAA 705 46999 UfUfUfCfCfAdTsdT CCfAGdTsdT It should be noted that unmodified versions of each of the modified sequences shown are included within the scope of the invention

TABLE 5 HAMP unmodified sequences Table 5 Duplex Start Antisense Antisense SEQ ID Sense SEQ ID Target ID Position Name Sequence NO Name Sense Sequence NO HAMP AD- 62 A-98153.1 AGACGGCACGAU 250 A-98154.1 AAGUGCCAUCG 475 47121 GGCACUUdTdT UGCCGUCUdTdT HAMP AD- 67 A-98157.1 GCACGAUGGCAC 258 A-98158.1 AAGCUCAGUGC 483 47133 UGAGCUUdTdT CAUCGUGCdTdT HAMP AD- 67 A-98155.1 GCACGAUGGCAC 259 A-98156.1 UAGCUCAGUGC 486 47127 UGAGCUAdTdT CAUCGUGCdTdT HAMP AD- 74 A-98161.1 GGCACUGAGCUCC 271 A-98162.1 AAUCUGGGAGC 497 47145 CAGAUUdTdT UCAGUGCCdTdT HAMP AD- 74 A-98159.1 GGCACUGAGCUCC 272 A-98160.1 UAUCUGGGAGC 500 47139 CAGAUAdTdT UCAGUGCCdTdT HAMP AD- 76 A-98165.1 CACUGAGCUCCCA 275 A-98166.1 AAGAUCUGGGA 502 47157 GAUCUUdTdT GCUCAGUGdTdT HAMP AD- 76 A-98163.1 CACUGAGCUCCCA 276 A-98164.1 UAGAUCUGGGA 504 47151 GAUCUAdTdT GCUCAGUGdTdT HAMP AD- 132 A-98167.1 CUGACCAGUGGC 288 A-98168.1 AAACAGAGCCA 515 47163 UCUGUUUdTdT CUGGUCAGdTdT HAMP AD- 140 A-98169.1 UGGCUCUGUUUU 289 A-98170.1 UUGUGGGAAA 516 47122 CCCACAAdTdT ACAGAGCCAdTdT HAMP AD- 146 A-98171.1 UGUUUUCCCACA 291 A-98172.1 UGUCUGUUGU 518 47128 ACAGACAdTdT GGGAAAACAdTdT HAMP AD- 146 A-98173.1 UGUUUUCCCACA 292 A-98174.1 AGUCUGUUGU 519 47134 ACAGACUdTdT GGGAAAACAdTdT HAMP AD- 155 A-98175.1 ACAACAGACGGGA 302 A-98176.1 AAGUUGUCCCG 529 47140 CAACUUdTdT UCUGUUGUdTdT HAMP AD- 157 A-98179.1 AACAGACGGGACA 303 A-98180.1 ACAAGUUGUCC 530 47152 ACUUGUdTdT CGUCUGUUdTdT HAMP AD- 157 A-98177.1 AACAGACGGGACA 304 A-98178.1 UCAAGUUGUCC 531 47146 ACUUGAdTdT CGUCUGUUdTdT HAMP AD- 160 A-98181.1 AGACGGGACAAC 307 A-98182.1 UCUGCAAGUUG 534 47158 UUGCAGAdTdT UCCCGUCUdTdT HAMP AD- 161 A-98183.1 GACGGGACAACU 309 A-98184.1 UUCUGCAAGUU 536 47164 UGCAGAAdTdT GUCCCGUCdTdT HAMP AD- 161 A-98185.1 GACGGGACAACU 308 A-98186.1 AUCUGCAAGUU 535 47123 UGCAGAUdTdT GUCCCGUCdTdT HAMP AD- 162 A-98189.1 ACGGGACAACUU 312 A-98190.1 ACUCUGCAAGU 539 47135 GCAGAGUdTdT UGUCCCGUdTdT HAMP AD- 162 A-98187.1 ACGGGACAACUU 311 A-98188.1 UCUCUGCAAGU 538 47129 GCAGAGAdTdT UGUCCCGUdTdT HAMP AD- 242 A-98191.1 GAGGCGAGACACC 347 A-98192.1 UAAGUGGGUG 576 47141 CACUUAdTdT UCUCGCCUCdT dT HAMP AD- 242 A-98193.1 GAGGCGAGACACC 346 A-98194.1 AAAGUGGGUG 573 47147 CACUUUdTdT UCUCGCCUCdT dT HAMP AD- 253 A-98195.1 CCCACUUCCCCAU 356 A-98196.1 AUGCAGAUGGG 584 47153 CUGCAUdTdT GAAGUGGGdTdT HAMP AD- 258 A-98197.1 UUCCCCAUCUGCA 360 A-98198.1 AGAAAAUGCAG 588 47159 UUUUCUdTdT AUGGGGAAdTdT HAMP AD- 261 A-98199.1 CCCAUCUGCAUU 361 A-98200.1 AGCAGAAAAUG 589 47165 UUCUGCUdTdT CAGAUGGGdTdT HAMP AD- 275 A-98201.1 CUGCUGCGGCUG 370 A-98202.1 AUGACAGCAGC 598 47124 CUGUCAUdTdT CGCAGCAGdTdT HAMP AD- 276 A-98205.1 UGCUGCGGCUGC 371 A-98206.1 AAUGACAGCAG 599 47136 UGUCAUUdTdT CCGCAGCAdTdT HAMP AD- 276 A-98203.1 UGCUGCGGCUGC 372 A-98204.1 UAUGACAGCAG 601 47130 UGUCAUAdTdT CCGCAGCAdTdT HAMP AD- 278 A-98207.1 CUGCGGCUGCUG 374 A-98208.1 UCGAUGACAGC 603 47142 UCAUCGAdTdT AGCCGCAGdTdT HAMP AD- 279 A-98209.1 UGCGGCUGCUGU 375 A-98210.1 AUCGAUGACAG 604 47148 CAUCGAUdTdT CAGCCGCAdTdT HAMP AD- 280 A-98213.1 GCGGCUGCUGUC 376 A-98214.1 AAUCGAUGACA 605 47160 AUCGAUUdTdT GCAGCCGCdTdT HAMP AD- 280 A-98211.1 GCGGCUGCUGUC 377 A-98212.1 UAUCGAUGACA 607 47154 AUCGAUAdTdT GCAGCCGCdTdT HAMP AD- 281 A-98215.1 CGGCUGCUGUCA 378 A-98216.1 UGAUCGAUGAC 608 47166 UCGAUCAdTdT AGCAGCCGdTdT HAMP AD- 282 A-98217.1 GGCUGCUGUCAU 379 A-98218.1 UUGAUCGAUGA 609 47125 CGAUCAAdTdT CAGCAGCCdTdT HAMP AD- 283 A-98219.1 GCUGCUGUCAUC 380 A-98220.1 UUUGAUCGAU 610 47131 GAUCAAAdTdT GACAGCAGCdT dT HAMP AD- 284 A-98221.1 CUGCUGUCAUCG 382 A-98222.1 UUUUGAUCGA 612 47137 AUCAAAAdTdT UGACAGCAGdT dT HAMP AD- 284 A-98223.1 CUGCUGUCAUCG 381 A-98224.1 AUUUGAUCGA 611 47143 AUCAAAUdTdT UGACAGCAGdT dT HAMP AD- 285 A-98225.1 UGCUGUCAUCGA 384 A-98226.1 ACUUUGAUCGA 614 47149 UCAAAGUdTdT UGACAGCAdTdT HAMP AD- 286 A-98229.1 GCUGUCAUCGAU 385 A-98230.1 AACUUUGAUCG 615 47161 CAAAGUUdTdT AUGACAGCdTdT HAMP AD- 286 A-98227.1 GCUGUCAUCGAU 386 A-98228.1 UACUUUGAUCG 617 47155 CAAAGUAdTdT AUGACAGCdTdT HAMP AD- 287 A-98231.1 CUGUCAUCGAUC 388 A-98232.1 ACACUUUGAUC 618 47167 AAAGUGUdTdT GAUGACAGdTdT HAMP AD- 288 A-98235.1 UGUCAUCGAUCA 389 A-98236.1 AACACUUUGAU 619 47132 AAGUGUUdTdT CGAUGACAdTdT HAMP AD- 288 A-98233.1 UGUCAUCGAUCA 390 A-98234.1 UACACUUUGAU 621 47126 AAGUGUAdTdT CGAUGACAdTdT HAMP AD- 290 A-98237.1 UCAUCGAUCAAA 392 A-98238.1 UCCACACUUUG 622 47138 GUGUGGAdTdT AUCGAUGAdTdT HAMP AD- 290 A-98239.1 UCAUCGAUCAAA 393 A-98240.1 ACCACACUUUG 623 47144 GUGUGGUdTdT AUCGAUGAdTdT HAMP AD- 291 A-98151.1 CAUCGAUCAAAG 395 A-98152.1 UCCCACACUUU 625 47095 UGUGGGAdTdT GAUCGAUGdTdT HAMP AD- 295 A-98243.1 GAUCAAAGUGUG 399 A-98244.1 AACAUCCCACAC 629 47156 GGAUGUUdTdT UUUGAUCdTdT HAMP AD- 295 A-98241.1 GAUCAAAGUGUG 400 A-98242.1 UACAUCCCACA 631 47150 GGAUGUAdTdT CUUUGAUCdTdT HAMP AD- 299 A-98245.1 AAAGUGUGGGAU 407 A-98246.1 ACAGCACAUCC 637 47162 GUGCUGUdTdT CACACUUUdTdT HAMP AD- 307 A-98067.1 GGAUGUGCUGCA 413 A-98068.1 UACGUCUUGCA 644 47078 AGACGUAdTdT GCACAUCCdTdT HAMP AD- 309 A-98069.1 AUGUGCUGCAAG 414 A-98070.1 UCUACGUCUUG 646 47084 ACGUAGAdTdT CAGCACAUdTdT HAMP AD- 310 A-98071.1 UGUGCUGCAAGA 415 A-98072.1 UUCUACGUCUU 648 47090 CGUAGAAdTdT GCAGCACAdTdT HAMP AD- 313 A-98073.1 GCUGCAAGACGU 416 A-98074.1 AGGUUCUACGU 650 47096 AGAACCUdTdT CUUGCAGCdTdT HAMP AD- 314 A-98075.1 CUGCAAGACGUA 417 A-98076.1 UAGGUUCUACG 707 47101 GAACCUAdTdT UCUUGCAGdTdT HAMP AD- 322 A-98077.1 CGUAGAACCUACC 418 A-98078.1 AGGGCAGGUAG 653 47106 UGCCCUdTdT GUUCUACGdTdT HAMP AD- 347 A-98079.1 GUCCCCUCCCUUC 419 A-98080.1 AAUAAGGAAGG 1358 47111 CUUAUUdTdT GAGGGGACdTdT HAMP AD- 348 A-98081.1 UCCCCUCCCUUCC 420 A-98082.1 AAAUAAGGAAG 1359 47116 UUAUUUdTdT GGAGGGGAdTdT HAMP AD- 349 A-98083.1 CCCCUCCCUUCCU 421 A-98084.1 UAAAUAAGGAA 1360 47079 UAUUUAdTdT GGGAGGGGdTdT HAMP AD- 350 A-98085.1 CCCUCCCUUCCUU 422 A-98086.1 AUAAAUAAGGA 1361 47085 AUUUAUdTdT AGGGAGGGdTdT HAMP AD- 351 A-98087.1 CCUCCCUUCCUUA 423 A-98088.1 AAUAAAUAAGG 1362 47091 UUUAUUdTdT AAGGGAGGdTdT HAMP AD- 352 A-98089.1 CUCCCUUCCUUAU 425 A-98090.1 UAAUAAAUAAG 1363 47097 UUAUUAdTdT GAAGGGAGdTdT HAMP AD- 352 A-98091.1 CUCCCUUCCUUAU 424 A-98092.1 AAAUAAAUAAG 1364 47102 UUAUUUdTdT GAAGGGAGdTdT HAMP AD- 354 A-98093.1 CCCUUCCUUAUU 426 A-98094.1 AGGAAUAAAUA 1365 47107 UAUUCCUdTdT AGGAAGGGdTdT HAMP AD- 355 A-98095.1 CCUUCCUUAUUU 427 A-98096.1 UAGGAAUAAAU 1366 47112 AUUCCUAdTdT AAGGAAGGdTdT HAMP AD- 355 A-98097.1 CCUUCCUUAUUU 428 A-98098.1 AAGGAAUAAAU 1367 47117 AUUCCUUdTdT AAGGAAGGdTdT HAMP AD- 356 A-98101.1 CUUCCUUAUUUA 429 A-98102.1 ACAGGAAUAAA 1368 47086 UUCCUGUdTdT UAAGGAAGdTdT HAMP AD- 356 A-98099.1 CUUCCUUAUUUA 430 A-98100.1 UCAGGAAUAAA 1369 47080 UUCCUGAdTdT UAAGGAAGdTdT HAMP AD- 357 A-98103.1 UUCCUUAUUUAU 431 A-98104.1 AGCAGGAAUAA 1370 47092 UCCUGCUdTdT AUAAGGAAdTdT HAMP AD- 358 A-98107.1 UCCUUAUUUAUU 432 A-98108.1 AAGCAGGAAUA 1371 47103 CCUGCUUdTdT AAUAAGGAdTdT HAMP AD- 358 A-98105.1 UCCUUAUUUAUU 433 A-98106.1 UAGCAGGAAUA 1372 47098 CCUGCUAdTdT AAUAAGGAdTdT HAMP AD- 359 A-98111.1 CCUUAUUUAUUC 434 A-98112.1 ACAGCAGGAAU 1373 47113 CUGCUGUdTdT AAAUAAGGdTdT HAMP AD- 359 A-98109.1 CCUUAUUUAUUC 435 A-98110.1 UCAGCAGGAAU 1374 47108 CUGCUGAdTdT AAAUAAGGdTdT HAMP AD- 363 A-98113.1 AUUUAUUCCUGC 436 A-98114.1 UGGGGCAGCAG 1375 47118 UGCCCCAdTdT GAAUAAAUdTdT HAMP AD- 365 A-98115.1 UUAUUCCUGCUG 437 A-98116.1 UCUGGGGCAGC 1376 47081 CCCCAGAdTdT AGGAAUAAdTdT HAMP AD- 366 A-98117.1 UAUUCCUGCUGC 438 A-98118.1 UUCUGGGGCAG 1377 47087 CCCAGAAdTdT CAGGAAUAdTdT HAMP AD- 369 A-98119.1 UCCUGCUGCCCCA 439 A-98120.1 AUGUUCUGGG 674 47093 GAACAUdTdT GCAGCAGGAdT dT HAMP AD- 370 A-98121.1 CCUGCUGCCCCAG 440 A-98122.1 UAUGUUCUGG 676 47099 AACAUAdTdT GGCAGCAGGdT dT HAMP AD- 373 A-98123.1 GCUGCCCCAGAAC 441 A-98124.1 ACCUAUGUUCU 678 47104 AUAGGUdTdT GGGGCAGCdTdT HAMP AD- 375 A-98125.1 UGCCCCAGAACAU 442 A-98126.1 AGACCUAUGUU 680 47109 AGGUCUdTdT CUGGGGCAdTdT HAMP AD- 376 A-98127.1 GCCCCAGAACAUA 443 A-98128.1 AAGACCUAUGU 681 47114 GGUCUUdTdT UCUGGGGCdTdT HAMP AD- 379 A-98129.1 CCAGAACAUAGG 444 A-98130.1 UCCAAGACCUA 684 47119 UCUUGGAdTdT UGUUCUGGdTdT HAMP AD- 380 A-98131.1 CAGAACAUAGGU 445 A-98132.1 UUCCAAGACCU 687 47082 CUUGGAAdTdT AUGUUCUGdTdT HAMP AD- 381 A-98133.1 AGAACAUAGGUC 446 A-98134.1 AUUCCAAGACC 689 47088 UUGGAAUdTdT UAUGUUCUdTdT HAMP AD- 382 A-98135.1 GAACAUAGGUCU 30 A-98136.1 UAUUCCAAGAC 44 47094 UGGAAUAdTdT CUAUGUUCdTdT HAMP AD- 382 A-98135.1 GAACAUAGGUCU 30 A-98136.1 UAUUCCAAGAC 44 47094 UGGAAUAdTdT CUAUGUUCdTdT HAMP AD- 382 A- GAACACAGGUCU 448 A- UAUUCCAAGAC 692 48210 100210.1 UGGAAUAdTdT 100211.1 CUGUGUUCdTdT HAMP AD- 383 A-98137.1 AACAUAGGUCUU 450 A-98138.1 UUAUUCCAAGA 695 47100 GGAAUAAdTdT CCUAUGUUdTdT HAMP AD- 396 A-98139.1 GAAUAAAAUGGC 452 A-98140.1 AGAACCAGCCA 697 47105 UGGUUCUdTdT UUUUAUUCdTdT HAMP AD- 398 A-98141.1 AUAAAAUGGCUG 453 A-98142.1 AAAGAACCAGC 700 47110 GUUCUUUdTdT CAUUUUAUdTdT HAMP AD- 399 A-98143.1 UAAAAUGGCUGG 454 A-98144.1 AAAAGAACCAG 702 47115 UUCUUUUdTdT CCAUUUUAdTdT HAMP AD- 402 A-98145.1 AAUGGCUGGUUC 455 A-98146.1 AACAAAAGAAC 703 47120 UUUUGUUdTdT CAGCCAUUdTdT HAMP AD- 403 A-98147.1 AUGGCUGGUUCU 456 A-98148.1 AAACAAAAGAA 704 47083 UUUGUUUdTdT CCAGCCAUdTdT HAMP AD- 407 A-98149.1 CUGGUUCUUUUG 457 A-98150.1 UGGAAAACAAA 705 47089 UUUUCCAdTdT AGAACCAGdTdT

TABLE 6 HAMP single dose screen (Modified Duplexes, Dual Luciferase Assay) Table 6 Start Duplex Posi- 10 nM 0.1 nM 0.01 nM Target ID tion Avg SD Avg SD Avg SD HAMP AD-45073 2 107.73 0.50 92.94 7.41 HAMP AD-45079 7 110.26 7.14 101.78 5.79 HAMP AD-45085 16 90.81 0.48 96.06 2.19 HAMP AD-29928 43 102.01 15.80 96.01 1.70 HAMP AD-45674 43 94.81 4.68 108.44 7.69 HAMP AD-45680 43 109.80 2.04 111.06 5.64 HAMP AD-45686 48 89.78 15.04 110.29 0.29 HAMP AD-45698 48 103.33 8.83 112.53 1.57 HAMP AD-45692 48 110.03 6.99 115.05 0.14 HAMP AD-45354 51 111.45 7.56 105.64 4.49 HAMP AD-29929 54 99.33 11.26 104.08 6.92 HAMP AD-45091 55 116.71 3.20 102.27 0.81 HAMP AD-29930 59 88.47 0.38 102.18 7.79 HAMP AD-29931 60 104.54 3.36 104.80 3.55 HAMP AD-45704 60 142.74 0.80 122.02 1.37 HAMP AD-45710 60 135.87 3.55 129.05 1.72 HAMP AD-29932 61 103.48 6.29 108.36 1.31 HAMP AD-29933 62 110.13 1.03 104.36 6.68 HAMP AD-45675 62 113.15 1.01 107.56 0.54 HAMP AD-45716 62 111.06 12.39 113.09 8.16 HAMP AD-29934 63 101.68 3.60 96.37 6.01 HAMP AD-29935 64 100.63 8.13 93.98 8.75 HAMP AD-45687 64 103.09 8.83 105.61 3.09 HAMP AD-45681 64 117.87 2.59 111.72 1.69 HAMP AD-29936 66 98.38 12.53 98.56 13.20 HAMP AD-29937 67 93.41 2.34 97.50 10.28 HAMP AD-45699 67 47.01 9.59 98.55 3.80 HAMP AD-45693 67 84.68 3.15 113.79 5.11 HAMP AD-45711 68 113.03 9.72 108.10 3.83 HAMP AD-45717 68 99.40 12.84 110.38 0.04 HAMP AD-45705 68 110.22 3.84 117.90 9.96 HAMP AD-45682 69 96.60 3.60 103.41 1.06 HAMP AD-45688 69 100.44 9.14 104.93 5.18 HAMP AD-45676 69 106.83 9.15 106.73 1.89 HAMP AD-45360 70 92.88 0.12 93.73 2.85 HAMP AD-45366 71 92.46 2.58 99.04 0.39 HAMP AD-29938 72 62.08 21.83 75.55 6.85 HAMP AD-45372 73 59.85 2.76 96.31 5.86 HAMP AD-45700 74 12.85 5.11 63.97 14.79 HAMP AD-29939 74 36.40 19.57 67.18 9.10 HAMP AD-45694 74 17.85 4.97 90.43 0.13 HAMP AD-29940 75 49.83 6.31 76.05 7.08 HAMP AD-45712 76 32.07 2.85 63.27 3.48 HAMP AD-29941 76 81.10 0.03 97.49 9.32 HAMP AD-45706 76 43.48 6.67 97.60 1.61 HAMP AD-45097 88 50.62 0.50 71.18 1.94 HAMP AD-45103 91 53.20 9.02 96.52 7.45 HAMP AD-45378 116 95.96 1.21 103.17 3.99 HAMP AD-45383 117 99.99 2.44 104.79 5.38 HAMP AD-45388 118 98.52 4.10 105.96 3.21 HAMP AD-45393 120 103.62 5.17 102.44 6.38 HAMP AD-45355 121 73.28 0.51 96.56 1.06 HAMP AD-45361 122 98.67 0.23 99.82 4.47 HAMP AD-45367 123 90.48 1.28 102.75 4.07 HAMP AD-45373 126 106.01 8.36 99.38 4.05 HAMP AD-45109 132 85.86 5.55 95.06 3.75 HAMP AD-45115 140 100.97 1.25 90.90 9.28 HAMP AD-45074 142 95.53 2.12 95.37 2.74 HAMP AD-45677 146 58.20 5.06 80.37 5.46 HAMP AD-45683 146 67.80 1.12 88.08 7.96 HAMP AD-45718 146 76.16 3.48 100.37 3.35 HAMP AD-45080 149 52.89 1.28 84.16 0.02 HAMP AD-45379 150 48.97 3.64 103.43 1.19 HAMP AD-29942 151 88.17 4.85 97.49 7.95 HAMP AD-29943 152 43.37 9.93 73.15 23.90 HAMP AD-29944 153 80.38 9.90 92.54 7.85 HAMP AD-45695 153 65.57 2.52 92.72 5.87 HAMP AD-45689 153 72.67 0.78 93.00 2.67 HAMP AD-29945 154 69.81 13.13 76.49 17.11 HAMP AD-29946 155 75.80 1.18 80.39 14.15 HAMP AD-45713 157 70.69 1.76 94.45 0.39 HAMP AD-45707 157 71.62 6.17 94.94 2.22 HAMP AD-45701 157 79.39 1.97 101.46 0.70 HAMP AD-45384 159 89.86 1.67 102.53 2.37 HAMP AD-45389 160 41.14 0.44 90.29 3.94 HAMP AD-45678 161 55.04 0.96 76.03 3.63 HAMP AD-45719 161 55.02 5.94 84.45 2.01 HAMP AD-29947 161 81.45 6.55 89.78 7.92 HAMP AD-45690 162 105.99 3.29 97.21 2.61 HAMP AD-45696 162 105.48 0.08 99.13 0.28 HAMP AD-45684 162 96.14 6.48 104.09 2.52 HAMP AD-30016 163 57.89 8.28 90.60 14.06 HAMP AD-45394 164 87.68 5.01 108.27 2.32 HAMP AD-45702 165 70.60 2.02 93.12 5.12 HAMP AD-45708 165 74.75 3.73 98.51 2.26 HAMP AD-45714 165 73.26 2.24 102.34 12.47 HAMP AD-29949 166 102.90 8.09 91.62 0.16 HAMP AD-45086 167 120.81 3.27 106.79 7.19 HAMP AD-45356 168 81.17 4.40 93.13 0.76 HAMP AD-45685 169 114.45 9.16 98.53 0.41 HAMP AD-45679 169 105.22 9.07 101.56 5.80 HAMP AD-45720 169 121.03 5.25 110.57 1.75 HAMP AD-45703 170 44.33 1.60 79.12 4.45 HAMP AD-45697 170 46.91 2.65 87.12 1.48 HAMP AD-45691 170 54.15 1.94 92.73 6.86 HAMP AD-45362 189 40.88 0.51 88.62 2.54 HAMP AD-45368 190 31.23 1.19 95.59 2.85 HAMP AD-45374 199 101.82 3.03 101.10 0.65 HAMP AD-45092 222 87.17 5.48 98.58 1.36 HAMP AD-45721 228 46.67 6.31 81.09 9.13 HAMP AD-45715 228 49.86 3.40 88.14 4.98 HAMP AD-45709 228 77.17 5.09 98.27 3.31 HAMP AD-45380 230 62.83 3.09 103.76 1.31 HAMP AD-45385 231 98.28 0.86 102.61 0.12 HAMP AD-29950 232 55.13 8.89 67.22 10.51 HAMP AD-45390 233 43.22 3.42 94.61 0.86 HAMP AD-29951 234 37.28 9.48 53.43 13.93 HAMP AD-45395 235 60.56 0.93 96.88 1.63 HAMP AD-45727 239 41.79 5.36 73.07 5.68 HAMP AD-45732 239 40.15 8.90 73.60 14.88 HAMP AD-29952 239 97.66 18.17 104.87 4.70 HAMP AD-29953 240 86.68 10.48 88.35 7.38 HAMP AD-30017 241 33.76 16.25 60.73 30.76 HAMP AD-30018 242 41.44 14.83 70.97 23.75 HAMP AD-45737 242 17.97 4.49 71.13 9.76 HAMP AD-29956 246 89.56 4.13 97.82 5.97 HAMP AD-45357 247 82.69 2.17 93.22 4.53 HAMP AD-45363 248 93.32 5.91 91.24 0.20 HAMP AD-45747 251 70.65 8.85 97.73 2.26 HAMP AD-45752 251 89.51 3.39 98.35 2.19 HAMP AD-45757 251 82.94 6.75 102.34 3.76 HAMP AD-29957 252 81.99 11.58 93.00 9.35 HAMP AD-45399 253 64.38 0.64 97.91 2.54 HAMP AD-45098 255 82.48 2.01 76.84 2.07 HAMP AD-45400 256 41.85 0.69 73.87 3.09 HAMP AD-45381 257 33.48 1.75 76.90 0.24 HAMP AD-45401 258 20.19 1.67 47.65 3.20 HAMP AD-29958 261 56.65 14.92 84.66 28.04 HAMP AD-45391 262 24.94 0.82 89.45 2.12 HAMP AD-29959 267 31.48 11.63 63.85 30.99 HAMP AD-29960 268 79.91 12.47 93.49 6.68 HAMP AD-30019 270 63.27 10.61 74.99 18.30 HAMP AD-45396 271 119.24 2.30 111.41 3.10 HAMP AD-45358 272 94.71 8.18 101.07 2.21 HAMP AD-45364 273 84.76 0.19 96.53 5.62 HAMP AD-29962 274 76.15 9.81 86.71 13.14 HAMP AD-45370 275 72.03 3.07 96.93 2.90 HAMP AD-45728 276 16.69 2.26 33.05 13.53 HAMP AD-45722 276 14.19 2.15 36.38 8.98 HAMP AD-29963 276 33.66 10.79 68.80 33.38 HAMP AD-45104 278 68.72 2.74 87.22 0.49 HAMP AD-29964 279 71.02 18.87 76.03 27.29 HAMP AD-45738 280 50.02 8.64 70.44 7.26 HAMP AD-45733 280 57.29 5.28 84.47 5.76 HAMP AD-29965 281 55.85 8.35 72.34 23.30 HAMP AD-30020 283 68.86 8.88 66.02 23.24 HAMP AD-45748 284 21.85 1.77 35.95 6.98 HAMP AD-45743 284 29.01 1.73 42.99 5.69 HAMP AD-30021 284 42.30 7.75 66.28 27.47 HAMP AD-11441 285 15.04 8.59 34.60 10.87 63.42 16.67 HAMP AD-45758 286 17.08 0.43 33.34 3.43 HAMP AD-45753 286 25.19 4.02 80.83 6.73 HAMP AD-29968 286 57.05 12.26 85.22 13.56 HAMP AD-29969 287 81.97 16.19 102.53 21.58 HAMP AD-45729 288 9.67 1.06 32.83 13.93 HAMP AD-45723 288 20.87 3.89 66.57 4.73 HAMP AD-29970 288 65.21 1.72 84.12 5.99 HAMP AD-45744 290 40.34 1.92 56.56 8.09 HAMP AD-45739 290 29.46 2.77 67.24 9.80 HAMP AD-45734 290 53.39 2.32 83.49 1.19 HAMP AD-11436 291 19.18 8.22 42.74 14.18 76.43 23.00 HAMP AD-29971 291 29.02 9.90 52.08 14.09 HAMP AD-45376 292 47.54 0.51 87.50 1.26 HAMP AD-45382 293 37.05 0.44 93.25 4.03 HAMP AD-29972 294 32.08 7.08 53.51 17.12 HAMP AD-45754 295 30.78 4.04 62.74 0.50 HAMP AD-45749 295 48.49 11.81 92.97 1.08 HAMP AD-29973 295 101.69 8.46 97.65 8.24 HAMP AD-45730 296 78.23 2.00 86.13 5.69 HAMP AD-45724 296 82.07 4.46 86.67 2.23 HAMP AD-45759 296 92.10 6.68 97.71 2.40 HAMP AD-45110 297 69.77 2.74 90.01 2.11 HAMP AD-45387 298 98.34 5.75 108.20 1.85 HAMP AD-45740 299 124.12 4.66 101.03 6.78 HAMP AD-45745 299 131.69 10.22 103.23 1.76 HAMP AD-45735 299 111.96 3.19 103.86 6.46 HAMP AD-29974 300 34.04 6.78 53.98 24.23 HAMP AD-29975 301 53.80 12.05 67.73 22.08 HAMP AD-45116 306 25.93 2.21 55.49 5.82 HAMP AD-45075 307 19.84 2.98 63.83 1.45 HAMP AD-45081 309 14.66 0.55 38.67 3.25 HAMP AD-45087 310 11.95 0.17 29.23 1.61 HAMP AD-45093 313 14.07 0.68 45.44 2.30 HAMP AD-45099 322 108.37 1.23 107.51 2.82 HAMP AD-45105 369 102.93 6.40 101.31 4.27 HAMP AD-45111 370 117.00 3.72 104.04 2.33 HAMP AD-45117 373 99.33 0.61 102.95 0.52 HAMP AD-45076 375 62.84 4.39 90.32 1.71 HAMP AD-45082 376 75.58 1.59 95.17 0.21 HAMP AD-45088 379 83.27 12.84 101.84 1.83 HAMP AD-45094 380 99.51 2.23 102.51 2.51 HAMP AD-45100 381 112.68 6.11 107.46 7.75 HAMP AD-45106 383 138.19 1.98 112.49 0.89 HAMP AD-45112 396 128.11 6.65 106.21 3.64 HAMP AD-45118 398 116.86 12.51 103.78 4.53 HAMP AD-45077 399 98.64 1.22 103.30 2.55 HAMP AD-45083 402 114.82 2.26 104.50 0.17 HAMP AD-45089 403 107.59 7.70 103.43 1.69 Data are expressed as percent of mock or AD-1955.

TABLE 7 HAMP single dose screen (Unmodified Duplexes, Human Endogenous) Table 7 Start Duplex Posi- 10 nM 0.1 nM 0.01 nM Target ID tion Avg SD Avg SD Avg SD HAMP AD-47121 62 22.18 1.49 60.31 16.26 HAMP AD-47133 67 27.53 1.12 53.58 2.92 HAMP AD-47127 67 20.45 4.63 54.16 7.57 HAMP AD-47145 74 19.51 6.65 54.67 10.88 HAMP AD-47139 74 20.72 0.17 58.12 2.90 HAMP AD-47157 76 10.07 0.35 28.24 6.49 HAMP AD-47151 76 12.08 1.83 33.95 2.14 HAMP AD-47163 132 8.58 0.51 44.65 17.97 HAMP AD-47122 140 25.66 0.45 72.63 2.29 HAMP AD-47128 146 30.88 3.04 64.36 2.04 HAMP AD-47134 146 48.07 0.91 72.33 12.48 HAMP AD-47140 155 15.20 1.25 34.69 0.30 HAMP AD-47152 157 13.21 6.55 28.17 1.17 HAMP AD-47146 157 14.77 0.68 32.02 1.58 HAMP AD-47158 160 9.73 1.66 32.92 1.87 HAMP AD-47164 161 5.71 0.44 32.90 2.89 HAMP AD-47123 161 7.88 3.02 39.31 19.09 HAMP AD-47135 162 26.84 0.87 74.06 15.78 HAMP AD-47129 162 27.18 1.57 83.62 13.59 HAMP AD-47141 242 110.80 16.98 127.17 42.39 HAMP AD-47147 242 116.01 9.55 132.52 28.61 HAMP AD-47153 253 34.69 7.47 66.88 2.08 HAMP AD-47159 258 33.41 1.23 57.26 7.97 HAMP AD-47165 261 25.12 0.71 85.70 6.86 HAMP AD-47124 275 36.35 7.66 87.65 11.44 HAMP AD-47136 276 6.06 0.70 40.72 13.94 HAMP AD-47130 276 8.76 0.58 46.31 13.29 HAMP AD-47142 278 24.10 2.89 56.75 18.44 HAMP AD-47148 279 19.36 1.09 57.95 18.21 HAMP AD-47160 280 8.75 0.73 35.24 4.98 HAMP AD-47154 280 15.01 3.91 36.32 0.45 HAMP AD-47166 281 11.98 0.47 51.40 12.88 HAMP AD-47125 282 14.62 1.15 54.37 11.47 HAMP AD-47131 283 8.74 0.45 42.66 12.21 HAMP AD-47137 284 9.97 0.73 36.35 5.96 HAMP AD-47143 284 9.66 0.84 39.72 8.37 HAMP AD-47149 285 13.85 0.47 47.21 9.13 HAMP AD-47161 286 7.28 0.89 31.75 8.03 HAMP AD-47155 286 8.27 0.74 36.03 14.37 HAMP AD-47167 287 8.98 0.14 41.61 6.60 HAMP AD-47132 288 9.08 0.17 38.01 4.01 HAMP AD-47126 288 8.59 3.66 40.28 10.49 HAMP AD-47138 290 41.75 1.27 81.70 14.64 HAMP AD-47144 290 60.81 13.34 107.58 15.10 HAMP AD-47095 291 34.79 5.48 58.98 7.36 HAMP AD-47156 295 39.09 4.26 90.08 4.38 HAMP AD-47150 295 53.01 9.58 99.42 9.61 HAMP AD-47162 299 122.90 8.44 123.74 15.71 HAMP AD-47078 307 26.81 9.00 59.79 15.73 HAMP AD-47084 309 31.16 5.91 59.33 19.95 HAMP AD-47090 310 15.07 5.19 49.74 11.70 HAMP AD-47096 313 49.34 9.86 68.64 0.71 HAMP AD-47101 314 13.36 5.68 38.13 10.64 HAMP AD-47106 322 29.91 1.99 61.30 1.25 HAMP AD-47111 347 21.57 4.45 46.65 10.06 HAMP AD-47116 348 32.95 7.34 65.00 10.06 HAMP AD-47079 349 10.10 2.16 24.36 4.46 HAMP AD-47085 350 8.08 5.13 20.39 9.47 HAMP AD-47091 351 20.73 6.86 42.28 5.15 HAMP AD-47097 352 10.57 2.97 24.58 3.18 HAMP AD-47102 352 15.48 7.81 25.60 8.37 HAMP AD-47107 354 50.89 12.39 61.80 6.52 HAMP AD-47112 355 42.93 6.42 53.00 3.93 HAMP AD-47117 355 33.82 2.18 60.78 7.57 HAMP AD-47086 356 16.50 3.69 34.88 9.79 HAMP AD-47080 356 13.76 3.39 38.95 7.09 HAMP AD-47092 357 35.01 5.39 48.61 6.81 HAMP AD-47103 358 45.09 9.10 66.18 7.81 HAMP AD-47098 358 63.20 11.74 70.69 1.23 HAMP AD-47113 359 27.42 9.95 49.88 7.22 HAMP AD-47108 359 30.30 9.89 52.33 12.30 HAMP AD-47118 363 7.45 0.35 19.20 1.31 HAMP AD-47081 365 4.25 1.97 22.94 6.70 HAMP AD-47087 366 9.49 2.18 37.51 12.04 HAMP AD-47093 369 4.75 1.38 23.36 3.30 HAMP AD-47099 370 5.05 0.01 17.71 7.66 HAMP AD-47104 373 32.32 8.82 37.72 8.15 HAMP AD-47109 375 25.45 4.46 35.56 1.25 HAMP AD-47114 376 10.65 4.55 17.30 6.01 HAMP AD-47119 379 7.99 0.50 17.44 6.45 HAMP AD-47082 380 13.13 1.08 27.19 8.88 HAMP AD-47088 381 5.80 2.75 12.26 7.13 HAMP AD-47094 382 5.59 2.35 11.95 7.39 HAMP AD-47094 382 8.63 3.05 14.02 2.30 22.83 0.56 HAMP AD-48210 382 7.43 7.88 17.06 4.17 30.21 0.63 HAMP AD-47100 383 3.80 2.75 8.41 3.86 HAMP AD-47105 396 6.56 2.25 12.11 4.90 HAMP AD-47110 398 10.42 5.14 21.44 0.24 HAMP AD-47115 399 4.86 0.27 9.25 1.57 HAMP AD-47120 402 5.78 0.12 15.68 0.67 HAMP AD-47083 403 4.36 1.88 14.49 5.26 HAMP AD-47089 407 17.68 1.22 21.61 6.91 Data are expressed as percent of mock.

TABLE 8 HAMP single dose screen (Modified Duplexes, Human Endogenous) Table 8 Start Duplex Posi- 10 nM 0.1 nM 0.01 nM Target ID tion Avg SD Avg SD Avg SD HAMP AD-47031 62 15.53 6.23 42.68 4.24 HAMP AD-47043 67 21.87 1.62 50.05 4.67 HAMP AD-47037 67 23.85 4.92 53.84 0.43 HAMP AD-47055 74 31.38 2.06 59.08 4.48 HAMP AD-47049 74 30.11 3.10 64.35 3.66 HAMP AD-47067 76 8.71 1.38 28.60 2.87 HAMP AD-47061 76 11.78 3.07 29.53 0.18 HAMP AD-47032 140 37.89 8.04 60.90 3.74 HAMP AD-47038 146 33.92 2.79 53.24 7.14 HAMP AD-47044 146 39.99 7.45 60.74 5.99 HAMP AD-47050 155 14.55 1.46 35.51 0.33 HAMP AD-47062 157 13.42 1.10 45.34 3.82 HAMP AD-47056 157 23.31 0.44 46.02 0.80 HAMP AD-47068 160 24.68 0.67 56.12 4.66 HAMP AD-47033 161 11.56 4.54 36.94 0.19 HAMP AD-47074 161 9.99 1.07 44.47 0.95 HAMP AD-47039 162 63.29 2.38 80.39 15.70 HAMP AD-47045 162 86.89 5.22 96.60 14.33 HAMP AD-47057 242 66.74 2.06 82.90 10.89 HAMP AD-47051 242 72.68 0.12 86.34 3.07 HAMP AD-47063 253 26.21 0.40 58.94 7.25 HAMP AD-47069 258 30.01 3.26 41.02 3.03 HAMP AD-47075 261 30.80 2.74 75.66 1.48 HAMP AD-47034 275 54.15 10.01 75.48 16.26 HAMP AD-47046 276 13.55 0.80 30.18 6.37 HAMP AD-47040 276 18.09 3.87 40.15 14.54 HAMP AD-47058 279 36.00 4.98 64.23 1.93 HAMP AD-47070 280 12.74 1.13 34.84 9.02 HAMP AD-47064 280 17.08 0.13 49.50 0.21 HAMP AD-47076 281 12.07 1.81 36.35 5.58 HAMP AD-47035 282 31.01 7.32 61.60 1.15 HAMP AD-47041 283 16.92 0.64 39.03 10.75 HAMP AD-47053 284 10.31 0.77 23.40 7.24 HAMP AD-47047 284 12.12 0.18 30.96 7.74 HAMP AD-47059 285 20.79 0.79 45.23 6.52 HAMP AD-47071 286 15.36 1.48 36.67 8.67 HAMP AD-47065 286 19.45 0.16 53.77 19.91 HAMP AD-47077 287 9.85 0.40 45.43 2.39 HAMP AD-48208 288 9.71 4.88 14.16 3.25 40.26 4.14 HAMP AD-47042 288 9.47 2.61 24.02 11.39 HAMP AD-48202 288 11.49 3.71 27.05 3.20 69.29 1.70 HAMP AD-47036 288 10.22 1.87 38.40 8.79 HAMP AD-47048 290 38.00 2.44 80.14 9.40 HAMP AD-47054 290 46.82 5.24 87.19 6.81 HAMP AD-47005 291 34.54 2.08 63.87 11.34 HAMP AD-11436 291 43.37 7.53 74.23 14.15 HAMP AD-47066 295 37.84 6.67 66.36 3.03 HAMP AD-47060 295 52.68 4.93 83.68 16.47 HAMP AD-47072 299 74.58 22.86 117.51 7.68 HAMP AD-46988 307 39.46 7.63 78.38 1.82 HAMP AD-46994 309 91.00 6.12 100.96 9.30 HAMP AD-47000 310 42.88 7.35 65.34 6.09 HAMP AD-47006 313 27.81 0.36 71.03 9.01 HAMP AD-47011 314 24.50 4.38 63.98 14.14 HAMP AD-47016 322 65.73 3.26 90.84 9.34 HAMP AD-47021 347 80.76 0.51 86.40 9.24 HAMP AD-47026 348 71.64 5.09 81.58 5.61 HAMP AD-46989 349 90.45 10.46 99.05 11.53 HAMP AD-46995 350 20.68 3.39 75.89 9.25 HAMP AD-47001 351 74.47 1.50 80.49 21.50 HAMP AD-47012 352 71.82 13.01 84.03 5.63 HAMP AD-47007 352 82.28 15.46 89.63 9.85 HAMP AD-47017 354 66.26 8.83 100.80 21.89 HAMP AD-47022 355 63.73 4.49 87.39 9.12 HAMP AD-47027 355 68.87 6.64 108.08 32.59 HAMP AD-46996 356 37.91 1.83 48.04 6.32 HAMP AD-46990 356 41.87 4.92 54.43 6.70 HAMP AD-47002 357 16.19 0.33 42.98 3.19 HAMP AD-47013 358 22.95 0.97 44.27 7.76 HAMP AD-47008 358 20.38 2.71 50.46 16.50 HAMP AD-47023 359 77.40 10.19 95.51 9.29 HAMP AD-47018 359 95.24 14.37 97.19 8.72 HAMP AD-47028 363 28.25 2.86 62.93 4.48 HAMP AD-46991 365 15.53 2.49 29.41 0.30 HAMP AD-46997 366 31.51 3.85 48.07 6.21 HAMP AD-47003 369 9.85 2.64 34.31 6.01 HAMP AD-47009 370 6.69 1.11 24.11 3.57 HAMP AD-47014 373 55.85 3.19 60.89 10.51 HAMP AD-47019 375 28.54 1.87 49.45 14.83 HAMP AD-48214 376 12.63 3.25 16.69 1.38 29.21 0.40 HAMP AD-48219 376 15.92 0.02 18.92 0.48 33.17 2.16 HAMP AD-47024 376 19.61 1.81 42.20 5.93 HAMP AD-48224 379 22.20 5.60 33.45 1.62 52.72 1.81 HAMP AD-48187 379 25.57 5.25 46.92 0.04 73.94 0.20 HAMP AD-47029 379 24.31 0.26 47.37 6.54 HAMP AD-48192 379 19.69 0.78 55.32 4.62 88.04 0.76 HAMP AD-46992 380 23.41 3.32 37.52 4.13 HAMP AD-46998 381 26.55 2.19 49.95 0.87 HAMP AD-48137 382 8.66 0.33 11.24 1.02 26.89 1.08 HAMP AD-48196 382 6.92 3.59 11.81 1.33 22.33 0.98 HAMP AD-48195 382 6.10 2.66 12.50 3.26 26.60 1.17 HAMP AD-48201 382 12.95 1.61 13.01 2.07 25.66 6.95 HAMP AD-48207 382 7.91 2.77 13.17 0.62 21.22 1.42 HAMP AD-48159 382 15.26 0.13 13.59 1.45 28.89 4.67 HAMP AD-48147 382 14.28 0.17 13.65 0.38 25.68 3.81 HAMP AD-48161 382 9.61 3.69 13.77 1.67 22.95 0.59 HAMP AD-48172 382 11.67 0.41 13.98 1.39 27.28 5.22 HAMP AD-48156 382 12.14 0.96 14.06 1.75 28.85 2.18 HAMP AD-48195 382 6.81 0.62 14.14 0.37 27.99 0.61 HAMP AD-48136 382 10.81 4.42 14.16 1.41 29.89 1.13 HAMP AD-48166 382 8.74 2.41 14.22 0.42 25.21 2.09 HAMP AD-48213 382 8.35 1.61 14.49 3.71 22.38 0.33 HAMP AD-48173 382 12.84 3.32 14.51 0.96 27.87 5.30 HAMP AD-48154 382 9.93 2.07 14.80 0.75 23.47 0.94 HAMP AD-48141 382 12.73 2.32 14.92 0.32 26.97 5.76 HAMP AD-48216 382 10.39 0.95 15.18 2.11 22.38 1.02 HAMP AD-48180 382 7.71 0.47 15.20 1.30 29.01 1.11 HAMP AD-48143 382 7.00 2.73 15.44 1.88 24.35 2.09 HAMP AD-48142 382 10.10 3.42 15.50 0.90 25.84 2.08 HAMP AD-48221 382 9.54 1.43 15.56 0.24 23.59 1.06 HAMP AD-48171 382 13.46 5.06 15.67 0.63 26.44 6.58 HAMP AD-48145 382 10.87 0.68 15.70 2.69 28.65 2.93 HAMP AD-48160 382 10.77 0.26 15.74 1.29 28.12 4.11 HAMP AD-48144 382 9.88 0.46 15.75 0.94 33.60 0.84 HAMP AD-48167 382 10.83 1.48 15.87 3.03 24.90 2.15 HAMP AD-48177 382 15.05 2.15 15.87 0.86 28.68 8.05 HAMP AD-48153 382 12.07 5.83 15.92 1.04 31.19 3.85 HAMP AD-48178 382 11.02 0.05 16.06 0.45 27.12 2.27 HAMP AD-48155 382 12.92 0.25 16.32 4.70 27.64 0.32 HAMP AD-48174 382 11.50 2.09 16.39 0.74 27.90 4.46 HAMP AD-48205 382 7.46 7.62 16.39 2.29 24.17 1.56 HAMP AD-48179 382 10.80 3.42 16.50 0.71 27.82 3.57 HAMP AD-48168 382 12.14 4.14 16.63 1.58 27.25 1.24 HAMP AD-48149 382 10.42 0.41 16.71 3.88 28.30 1.91 HAMP AD-48211 382 9.46 4.30 16.80 1.44 25.08 0.20 HAMP AD-48200 382 9.05 1.30 16.97 2.20 28.99 0.38 HAMP AD-48188 382 11.09 3.14 16.99 2.41 32.42 1.58 HAMP AD-48183 382 9.79 11.87 17.20 0.54 42.02 0.63 HAMP AD-48150 382 9.99 8.19 17.30 2.27 35.68 0.32 HAMP AD-48162 382 8.48 2.96 17.38 1.26 29.63 0.85 HAMP AD-48139 382 10.35 1.92 17.78 0.51 36.00 2.79 HAMP AD-9942 382 8.96 1.21 18.03 1.85 30.09 0.13 HAMP AD-48138 382 10.06 2.32 18.04 1.88 26.97 1.56 HAMP AD-11459 382 7.07 0.09 18.93 3.13 HAMP AD-48189 382 8.39 0.33 19.16 0.02 26.30 0.33 HAMP AD-48148 382 10.68 1.22 19.23 3.07 32.33 1.11 HAMP AD-48215 382 12.87 3.87 19.50 0.69 35.59 3.70 HAMP AD-48218 382 12.77 1.57 22.32 2.42 48.01 5.44 HAMP AD-48135 382 13.43 1.45 26.06 4.80 57.92 1.12 HAMP AD-47004 382 10.04 1.61 26.68 3.90 HAMP AD-48194 382 13.40 1.06 27.15 1.41 44.44 2.80 HAMP AD-48197 382 13.40 6.22 27.28 1.85 47.77 5.73 HAMP AD-11459 382 14.32 0.61 28.20 2.18 50.13 0.65 HAMP AD-48164 382 16.52 2.52 28.92 3.09 55.94 0.41 HAMP AD-48158 382 11.63 2.57 29.78 1.47 51.55 0.47 HAMP AD-48204 382 11.53 13.16 29.90 1.81 68.66 2.16 HAMP AD-48181 382 11.31 3.03 30.04 2.07 65.39 3.38 HAMP AD-48223 382 12.35 5.46 30.39 3.74 60.92 1.91 HAMP AD-48190 382 10.09 1.16 30.78 0.29 61.44 0.86 HAMP AD-48163 382 13.43 2.71 31.64 4.03 60.73 1.22 HAMP AD-48140 382 11.77 2.88 31.73 2.21 57.59 0.57 HAMP AD-48169 382 12.50 0.13 32.00 4.43 60.20 3.22 HAMP AD-48220 382 15.52 3.73 32.05 1.48 58.71 2.57 HAMP AD-48184 382 13.23 0.16 33.25 3.63 56.78 2.43 HAMP AD-48176 382 16.68 3.88 34.04 1.12 68.51 2.16 HAMP AD-48175 382 13.60 9.49 34.34 2.07 63.89 2.17 HAMP AD-48146 382 13.16 4.10 35.07 0.23 61.14 1.09 HAMP AD-48182 382 13.71 8.96 36.24 0.98 71.73 0.19 HAMP AD-48199 382 11.16 0.69 36.33 1.26 66.19 0.94 HAMP AD-48157 382 11.27 0.12 36.54 2.61 71.05 0.88 HAMP AD-48206 382 10.51 2.71 36.79 4.47 61.74 0.21 HAMP AD-48193 382 13.00 3.25 37.58 2.12 73.07 0.26 HAMP AD-48152 382 21.49 5.83 39.17 6.15 68.81 10.01 HAMP AD-48151 382 13.62 10.83 39.31 6.55 66.68 1.47 HAMP AD-48170 382 14.54 2.27 47.27 4.01 70.43 2.22 HAMP AD-47010 383 41.47 1.29 64.00 4.87 HAMP AD-48222 385 9.49 0.13 10.82 1.20 18.78 2.86 HAMP AD-48217 385 14.39 3.84 14.26 0.55 19.91 0.71 HAMP AD-48185 385 14.22 4.44 18.35 1.29 37.50 0.03 HAMP AD-48212 385 20.56 4.86 22.61 3.43 26.13 0.41 HAMP AD-48198 396 8.31 23.06 13.10 3.95 50.72 1.39 HAMP AD-48209 396 8.76 5.65 14.85 3.44 33.81 2.06 HAMP AD-48203 396 9.38 2.78 15.08 2.34 35.67 2.38 HAMP AD-47015 396 16.43 2.26 30.67 1.14 HAMP AD-47020 398 50.18 1.59 68.91 17.54 HAMP AD-47025 399 13.04 0.87 19.74 1.31 HAMP AD-47030 402 5.12 0.55 12.72 0.67 HAMP AD-46993 403 5.82 2.21 12.55 1.15 HAMP AD-46999 407 11.34 1.35 15.21 1.41 Data are expressed as percent of mock.

TABLE 9 HAMP dose-response (Dual Luciferase, HepG2, Cyno primary hepatocytes; Unmodified & Modified duplexes) Table 9 Start Duplex posi- Modification IC50 (nM) Target ID tion status Luc HepG2 Cyno HAMP AD-29939 74 Modified 0.288 HAMP AD-45700 74 Modified 0.752 HAMP AD-29940 75 Modified 0.929 HAMP AD-29943 152 Modified 0.567 HAMP AD-29950 232 Modified 1.527 HAMP AD-29951 234 Modified 0.408 HAMP AD-30017 241 Modified 0.163 HAMP AD-30018 242 Modified 0.517 HAMP AD-29959 267 Modified 0.147 HAMP AD-29963 276 Modified 0.155 HAMP AD-45722 276 Modified 0.299 HAMP AD-29965 281 Modified 1.149 HAMP AD-30020 283 Modified 39.122 HAMP AD-30021 284 Modified 0.308 HAMP AD-11441 285 Modified 0.042 0.135 0.027 HAMP AD-11458 285 Modified 0.358 HAMP AD-45729 288 Modified 0.068 0.016 HAMP AD-48208 288 Modified 0.012 0.016 HAMP AD-11436 291 Modified 0.054 >10 nM HAMP AD-11453 291 Modified 0.134 HAMP AD-29971 291 Modified 0.108 HAMP AD-29972 294 Modified 0.154 HAMP AD-29974 300 Modified 0.137 HAMP AD-29975 301 Modified 1.392 HAMP AD-45081 309 Modified >10 nM HAMP AD-45087 310 Modified >10 nM HAMP AD-45093 313 Modified >10 nM HAMP AD-29979 352 Modified >10 nM HAMP AD-45750 352 Modified 1.558 HAMP AD-45755 352 Modified 0.296 HAMP AD-45725 355 Modified >10 nM HAMP AD-29981 357 Modified >10 nM HAMP AD-45761 359 Modified >10 nM HAMP AD-45377 364 Modified >10 nM HAMP AD-29982 365 Modified 1.723 HAMP AD-29983 366 Modified >10 nM HAMP AD-47099 370 Unmodified 0.017 0.081 HAMP AD-47114 376 Unmodified 0.008 0.036 HAMP AD-48214 376 Modified 0.008 1.575 HAMP AD-47119 379 Unmodified 0.004 0.040 HAMP AD-47088 381 Unmodified 0.007 >10 nM HAMP AD-11442 382 Modified 0.028 0.010 HAMP AD-11459 382 Unmodified 0.038 0.045 HAMP AD-45062 382 Modified 0.088 0.030 HAMP AD-47094 382 Unmodified 0.005 0.039 HAMP AD-48141 382 Modified 0.004 0.023 HAMP AD-48147 382 Modified 0.007 0.008 HAMP AD-48154 382 Modified 0.006 0.019 HAMP AD-48189 382 Modified 0.005 0.145 HAMP AD-48195 382 Modified 0.011 0.009 HAMP AD-48196 382 Modified 0.017 0.031 HAMP AD-48201 382 Modified 0.007 0.009 HAMP AD-48205 382 Modified 0.014 0.022 HAMP AD-48207 382 Modified 0.007 0.017 HAMP AD-48213 382 Modified 0.009 0.027 HAMP AD-48216 382 Modified 0.014 0.035 HAMP AD-47100 383 Unmodified 0.007 0.172 HAMP AD-48217 385 Modified 0.028 0.021 HAMP AD-47105 396 Unmodified 0.005 >10 nM HAMP AD-48209 396 Modified 0.013 >10 nM HAMP AD-47115 399 Unmodified 0.007 >10 nM HAMP AD-47030 402 Modified 0.015 >10 nM HAMP AD-47120 402 Unmodified 0.006 >10 nM HAMP AD-46993 403 Modified 0.015 >10 nM HAMP AD-47083 403 Unmodified 0.007 >10 nM HAMP AD-46999 407 Modified 0.011 >10 nM

Tables 10A and 10B: Secondary Target sequences

TABLE 10A Duplex Start Sense SEQ Antisense SEQ ID Target ID Position Name Sense Sequence ID NO Name Antisense Sequence NO HFE2 AD- 177 A- AGAGuAGGGAAucAu 31 A- AGCcAUGAUUCCCuAC 33 47391 98855.1 GGcudTsdT 98856.1 UCUdTsdT HFE2 AD- 193 A- GcuGGAGAAuuGGAu 708 A- UGCuAUCcAAUUCUCc 753 47397 98857.1 AGcAdTsdT 98858.1 AGCdTsdT HFE2 AD- 195 A- uGGAGAAuuGGAuA 709 A- UCUGCuAUCcAAUUCU 754 47403 98859.1 GcAGAdTsdT 98860.1 CcAdTsdT HFE2 AD- 199 A- GAAuuGGAuAGcAGA 710 A- UuACUCUGCuAUCcAA 755 47409 98861.1 GuAAdTsdT 98862.1 UUCdTsdT HFE2 AD- 200 A- AAuuGGAuAGcAGAG 711 A- AUuACUCUGCuAUCcA 756 47415 98863.1 uAAudTsdT 98864.1 AUUdTsdT HFE2 AD- 206 A- AuAGcAGAGuAAuGu 712 A- UcAAAcAUuACUCUGC 757 47421 98865.1 uuGAdTsdT 98866.1 uAUdTsdT HFE2 AD- 211 A- AGAGuAAuGuuuGAcc 713 A- AGAGGUcAAAcAUuAC 758 47427 98867.1 ucudTsdT 98868.1 UCUdTsdT HFE2 AD- 244 A- ucAuAuuuAAGAAcAu 714 A- UGcAUGUUCUuAAAuA 759 47433 98869.1 GcAdTsdT 98870.1 UGAdTsdT HFE2 AD- 257 A- cAuGcAGGAAuGcAuu 715 A- AUcAAUGcAUUCCUGc 760 47392 98871.1 GAudTsdT 98872.1 AUGdTsdT HFE2 AD- 261 A- cAGGAAuGcAuuGAuc 716 A- UCUGAUcAAUGcAUUC 761 47398 98873.1 AGAdTsdT 98874.1 CUGdTsdT HFE2 AD- 290 A- GGcuGAGGuGGAuAA 717 A- AAGAUuAUCcACCUcA 762 47404 98875.1 ucuudTsdT 98876.1 GCCdTsdT HFE2 AD- 360 A- uccAGuuuGucGAuucA 718 A- UUUGAAUCGAcAAAC 763 47410 98877.1 AAdTsdT 98878.1 UGGAdTsdT HFE2 AD- 367 A- uGucGAuucAAAcuGcu 719 A- UuAGcAGUUUGAAUCG 764 47416 98879.1 AAdTsdT 98880.1 AcAdTsdT HFE2 AD- 404 A- GAuccAAGcuGccuAc 720 A- AAUGuAGGcAGCUUGG 765 47422 98881.1 AuudTsdT 98882.1 AUCdTsdT HFE2 AD- 415 A- ccuAcAuuGGcAcAAcu 721 A- AuAGUUGUGCcAAUGu 766 47428 98883.1 AudTsdT 98884.1 AGGdTsdT HFE2 AD- 417 A- uAcAuuGGcAcAAcuA 722 A- UuAuAGUUGUGCcAAU 767 47434 98885.1 uAAdTsdT 98886.1 GuAdTsdT HFE2 AD- 472 A- ucAAGGuAGcAGAGG 723 A- AcAUCCUCUGCuACCU 768 47393 98887.1 AuGudTsdT 98888.1 UGAdTsdT HFE2 AD- 585 A- GGAGcuAuAAccAuuG 724 A- uAUcAAUGGUuAuAGC 769 47399 98889.1 AuAdTsdT 98890.1 UCCdTsdT HFE2 AD- 587 A- AGcuAuAAccAuuGAu 725 A- AGuAUcAAUGGUuAuA 770 47405 98891.1 AcudTsdT 98892.1 GCUdTsdT HFE2 AD- 638 A- GGAAGAuGcuuAcuuc 726 A- AUGGAAGuAAGcAUCU 771 47417 98895.1 cAudTsdT 98896.1 UCCdTsdT HFE2 AD- 642 A- GAuGcuuAcuuccAuucc 727 A- AGGAAUGGAAGuAAGc 772 47423 98897.1 udTsdT 98898.1 AUCdTsdT HFE2 AD- 646 A- cuuAcuuccAuuccuGuG 728 A- AcAcAGGAAUGGAAGu 773 47429 98899.1 udTsdT 98900.1 AAGdTsdT HFE2 AD- 656 A- uuccuGuGucuuuGAuG 729 A- AAcAUcAAAGAcAcAG 774 47435 98901.1 uudTsdT 98902.1 GAAdTsdT HFE2 AD- 657 A- uccuGuGucuuuGAuGu 730 A- AAAcAUcAAAGAcAcA 775 47394 98903.1 uudTsdT 98904.1 GGAdTsdT HFE2 AD- 678 A- AuuucuGGuGAucccAA 731 A- AGUUGGGAUcACcAGA 776 47400 98905.1 cudTsdT 98906.1 AAUdTsdT HFE2 AD- 1121 A- ccAuuuAcuGcAGAuuu 732 A- UGAAAUCUGcAGuAAA 777 47406 98907.1 cAdTsdT 98908.1 UGGdTsdT HFE2 AD- 1151 A- uuAGAGGucAuGAAG 733 A- AAACCUUcAUGACCUC 778 47412 98909.1 GuuudTsdT 98910.1 uAAdTsdT HFE2 AD- 1152 A- uAGAGGucAuGAAGG 734 A- AAAACCUUcAUGACCU 779 47418 98911.1 uuuudTsdT 98912.1 CuAdTsdT HFE2 AD- 1203 A- uuAAGAGGcAAGAGc 735 A- UUcAGCUCUUGCCUCU 780 47424 98913.1 uGAAdTsdT 98914.1 uAAdTsdT HFE2 AD- 1228 A- AGAcAuGAucAuuAGc 736 A- AUGGCuAAUGAUcAUG 781 47430 98915.1 cAudTsdT 98916.1 UCUdTsdT HFE2 AD- 1230 A- AcAuGAucAuuAGccA 737 A- UuAUGGCuAAUGAUcA 782 47436 98917.1 uAAdTsdT 98918.1 UGUdTsdT HFE2 AD- 1233 A- uGAucAuuAGccAuAA 738 A- UUCUuAUGGCuAAUGA 783 47395 98919.1 GAAdTsdT 98920.1 UcAdTsdT HFE2 AD- 1272 A- AuuAGGGAAAGAAG 739 A- AuAGACUUCUUUCCCu 784 47401 98921.1 ucuAudTsdT 98922.1 AAUdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUUCUUUCCC 785 47407 98923.1 uAuudTsdT 98924.1 uAAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGu 740 A- AAuAGACUUCUUUCCC 785 51740 107281.4 CuAuUdTsdT 107275.3 uAadTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUuCUuUCcCu 785 51747 107280.6 uAuUdTsdT 107277.2 AAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGu 740 A- AAuAGACUuCUuUCCC 785 51744 107281.5 CuAuUdTsdT 107276.3 uAAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUUCUuUCCC 785 51731 107280.2 uAuUdTsdT 107273.2 uAAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGu 740 A- AAuAGACUUCUUUCcC 785 51736 107281.3 CuAuUdTsdT 107274.3 uAAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGu 740 A- AAuAGACUUCUuUCCC 785 51732 107281.2 CuAuUdTsdT 107273.3 uAAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUUCUUUCcC 785 51734 98923.4 uAuudTsdT 107274.1 uAAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGu 740 A- AAuAGACUuCUuUCcCu 785 51748 107281.6 CuAuUdTsdT 107277.3 AAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUUCUUUCcC 785 51735 107280.3 uAuUdTsdT 107274.2 uAAdTsdT HFE2 AD- 1273 A- uuAgGGAAAGAAGuC 740 A- AAuAGACUuCUuUCcCu 785 51749 107282.6 uAuUdTsdT 107277.4 AAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGu 740 A- AAuAGACUuCUuUCcCu 785 51752 107281.7 CuAuUdTsdT 107278.3 AadTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUUCUUUCCC 785 51738 98923.5 uAuudTsdT 107275.1 uAadTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUUCUuUCCC 785 51730 98923.3 uAuudTsdT 107273.1 uAAdTsdT HFE2 AD- 1273 A- uuAgGGAAAGAAGuC 740 A- AAuAGACUuCUuUCCC 785 51745 107282.5 uAuUdTsdT 107276.4 uAAdTsdT HFE2 AD- 1273 A- uuAgGGAAAGAAGuC 740 A- AAuAGACUUCUUUCcC 785 51737 107282.3 uAuUdTsdT 107274.4 uAAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUuCUuUCCC 785 51743 107280.5 uAuUdTsdT 107276.2 uAAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUuCUuUCcCu 785 51751 107280.7 uAuUdTsdT 107278.2 AadTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUuCUuUCcCu 785 51750 98923.8 uAuudTsdT 107278.1 AadTsdT HFE2 AD- 1273 A- uuAgGGAAAGAAGuC 740 A- AAuAGACUUCUUUCCC 785 51741 107282.4 uAuUdTsdT 107275.4 uAadTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUuCUuUCCC 785 51742 98923.6 uAuudTsdT 107276.1 uAAdTsdT HFE2 AD- 1273 A- uuAgGGAAAGAAGuC 740 A- AAuAGACUUCUuUCCC 785 51733 107282.2 uAuUdTsdT 107273.4 uAAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAUAGACUuCUuUCcC 785 51755 107280.8 uAuUdTsdT 107279.2 uAadTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGu 740 A- AAUAGACUuCUuUCcC 785 51756 107281.8 CuAuUdTsdT 107279.3 uAadTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGu 740 A- AAuAGACUuCUUUCCC 785 51728 107281.1 CuAuUdTsdT 107272.3 uAAdTsdT HFE2 AD- 1273 A- uuAgGGAAAGAAGuC 740 A- AAuAGACUuCUUUCCC 785 51729 107282.1 uAuUdTsdT 107272.4 uAAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUuCUUUCCC 785 51726 98923.2 uAuudTsdT 107272.1 uAAdTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUuCUuUCcCu 785 51746 98923.7 uAuudTsdT 107277.1 AAdTsdT HFE2 AD- 1273 A- uuAgGGAAAGAAGuC 740 A- AAUAGACUuCUuUCcC 785 51757 107282.8 uAuUdTsdT 107279.4 uAadTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUuCUUUCCC 785 51727 107280.1 uAuUdTsdT 107272.2 uAAdTsdT HFE2 AD- 1273 A- uuAgGGAAAGAAGuC 740 A- AAuAGACUuCUuUCcCu 785 51753 107282.7 uAuUdTsdT 107278.4 AadTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAUAGACUuCUuUCcC 785 51754 98923.9 uAuudTsdT 107279.1 uAadTsdT HFE2 AD- 1273 A- uuAGGGAAAGAAGuc 740 A- AAuAGACUUCUUUCCC 785 51739 107280.4 uAuUdTsdT 107275.2 uAadTsdT HFE2 AD- 1274 A- uAGGGAAAGAAGucu 741 A- AAAuAGACUUCUUUC 786 47413 98925.1 AuuudTsdT 98926.1 CCuAdTsdT HFE2 AD- 1279 A- AAAGAAGucuAuuuG 742 A- UcAUcAAAuAGACUUC 787 47419 98927.1 AuGAdTsdT 98928.1 UUUdTsdT HFE2 AD- 1280 A- AAGAAGucuAuuuGA 743 A- UUcAUcAAAuAGACUU 788 47425 98929.1 uGAAdTsdT 98930.1 CUUdTsdT HFE2 AD- 1303 A- uGuGuGuAAGGuAuG 744 A- AGAAcAuACCUuAcAcA 789 47431 98931.1 uucudTsdT 98932.1 cAdTsdT HFE2 AD- 1366 A- GuGAAGGGAGucucu 745 A- AAGcAGAGACUCCCUU 790 47437 98933.1 GcuudTsdT 98934.1 cACdTsdT HFE2 AD- 1367 A- uGAAGGGAGucucuGc 746 A- AAAGcAGAGACUCCCU 791 47396 98935.1 uuudTsdT 98936.1 UcAdTsdT HFE2 AD- 1396 A- cAcAGGuAGGAcAGA 747 A- uACUUCUGUCCuACCU 792 47402 98937.1 AGuAdTsdT 98938.1 GUGdTsdT HFE2 AD- 1397 A- AcAGGuAGGAcAGA 748 A- AuACUUCUGUCCuACC 793 47408 98939.1 AGuAudTsdT 98940.1 UGUdTsdT HFE2 AD- 1399 A- AGGuAGGAcAGAAG 749 A- UGAuACUUCUGUCCuA 794 47414 98941.1 uAucAdTsdT 98942.1 CCUdTsdT HFE2 AD- 1400 A- GGuAGGAcAGAAGu 750 A- AUGAuACUUCUGUCCu 795 47420 98943.1 AucAudTsdT 98944.1 ACCdTsdT HFE2 AD- 1404 A- GGAcAGAAGuAucAu 751 A- AGGGAUGAuACUUCU 796 47426 98945.1 cccudTsdT 98946.1 GUCCdTsdT HFE2 AD- 1441 A- uAuuAAAGcuAcAAAu 752 A- AGAAUUUGuAGCUUuA 797 47432 98947.1 ucudTsdT 98948.1 AuAdTsdT It should be noted that unmodified versions of each of the modified sequences shown are included within the scope of the invention.

TABLE 10B SEQ SEQ Start Sense ID Antisense ID Target Duplex ID Position Name Sense Sequence NO: Name Antisense Sequence NO: TFR2 AD-47814 64 A- uccAGAGAGcGcAAcAAcud 798 A- AGUUGUUGCGCUCUCUG 841 99594.1 TsdT 99595.1 GAdTsdT TFR2 AD-47820 66 A- cAGAGAGcGcAAcAAcuGu 799 A- AcAGUUGUUGCGCUCUCU 842 99596.1 dTsdT 99597.1 GdTsdT TFR2 AD-47826 239 A- cAGGcAGccAAAccucAuud 35 A- AAUGAGGUUUGGCUGCC 38 99598.1 TsdT 99599.1 UGdTsdT TFR2 AD-47819 772 A- AGcuGGuGuAcGcccAcuAd 800 A- uAGUGGGCGuAcACcAGCU 843 99674.1 TsdT 99675.1 dTsdT TFR2 AD-47832 884 A- ccAGAAGGuGAccAAuGcu 801 A- AGcAUUGGUcACCUUCUG 844 99600.1 dTsdT 99601.1 GdTsdT TFR2 AD-47838 886 A- AGAAGGuGAccAAuGcucA 802 A- UGAGcAUUGGUcACCUUC 845 99602.1 dTsdT 99603.1 UdTsdT TFR2 AD-47844 915 A- GcucAAGGAGuGcucAuAud 803 A- AuAUGAGcACUCCUUGAG 846 99604.1 TsdT 99605.1 CdTsdT TFR2 AD-47849 916 A- cucAAGGAGuGcucAuAuAd 804 A- uAuAUGAGcACUCCUUGA 847 99606.1 TsdT 99607.1 GdTsdT TFR2 AD-47854 920 A- AGGAGuGcucAuAuAcccAd 805 A- UGGGuAuAUGAGcACUCC 848 99608.1 TsdT 99609.1 UdTsdT TFR2 AD-47815 922 A- GAGuGcucAuAuAcccAGAd 806 A- UCUGGGuAuAUGAGcACU 849 99610.1 TsdT 99611.1 CdTsdT TFR2 AD-47825 1004 A- AcAuGuGcAccuGGGAAcud 807 A- AGUUCCcAGGUGcAcAUG 850 99676.1 TsdT 99677.1 UdTsdT TFR2 AD-47821 1048 A- cuuccuucAAucAAAcccAdTs 808 A- UGGGUUUGAUUGAAGGA 851 99612.1 dT 99613.1 AGdTsdT TFR2 AD-47827 1050 A- uccuucAAucAAAcccAGudT 809 A- ACUGGGUUUGAUUGAAG 852 99614.1 sdT 99615.1 GAdTsdT TFR2 AD-47833 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACUGGGUUUGAUUGAA 48 99616.1 sdT 99617.1 GGdTsdT TFR2 AD-51696 1051 A- ccuucAAucAAAcccAGuUdT 47 A- AACUGGGUUUGAuUGAA 48 107271.3 sdT 107257.2 GGdTsdT TFR2 AD-51708 1051 A- ccuucAAucAAAcccAGuUdT 47 A- AACUGGGUuUGAuUGAAG 48 107271.5 sdT 107259.2 GdTsdT TFR2 AD-51700 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACUGGGUuUGAUUGAA 48 99616.5 sdT 107258.1 GGdTsdT TFR2 AD-51701 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACuGGGUuUGAUUGAAG 48 99616.13 sdT 107266.1 GdTsdT TFR2 AD-51702 1051 A- ccuucAAucAAAcccAGuUdT 47 A- AACUGGGUuUGAUUGAA 48 107271.4 sdT 107258.2 GGdTsdT TFR2 AD-51707 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACuGGGUuUGAuUGAAG 48 99616.14 sdT 107267.1 GdTsdT TFR2 AD-51694 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACUGGGUUUGAuUGAA 48 99616.4 sdT 107257.1 GGdTsdT TFR2 AD-51706 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACUGGGUuUGAuUGAAG 48 99616.6 sdT 107259.1 GdTsdT TFR2 AD-51695 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACuGGGUUUGAuUGAAG 48 99616.12 sdT 107265.1 GdTsdT TFR2 AD-51713 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACuGGGUuUGAuuGAAG 48 99616.15 sdT 107268.1 GdTsdT TFR2 AD-51714 1051 A- ccuucAAucAAAcccAGuUdT 47 A- AACUGGGUuUGAuuGAAG 48 107271.6 sdT 107260.2 GdTsdT TFR2 AD-51683 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACuGGGUUUGAUUGAA 48 99616.10 sdT 107263.1 GgdTsdT TFR2 AD-51712 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACUGGGUuUGAuuGAAG 48 99616.7 sdT 107260.1 GdTsdT TFR2 AD-51720 1051 A- ccuucAAucAAAcccAGuUdT 47 A- AACUGGGUuUGAuuGAAG 48 107271.7 sdT 107261.2 gdTsdT TFR2 AD-51719 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACuGGGUuUGAuuGAAGg 48 99616.16 sdT 107269.1 dTsdT TFR2 AD-51684 1051 A- ccuucAAucAAAcccAGuUdT 47 A- AACUGGGUUUGAUUGAA 48 107271.1 sdT 107255.2 GgdTsdT TFR2 AD-51690 1051 A- ccuucAAucAAAcccAGuUdT 47 A- AACUGGGUUUGAUuGAA 48 107271.2 sdT 107256.2 GGdTsdT TFR2 AD-51689 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACuGGGUUUGAUuGAAG 48 99616.11 sdT 107264.1 GdTsdT TFR2 AD-51682 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACUGGGUUUGAUUGAA 48 99616.2 sdT 107255.1 GgdTsdT TFR2 AD-51688 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACUGGGUUUGAUuGAA 48 99616.3 sdT 107256.1 GGdTsdT TFR2 AD-51718 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACUGGGUuUGAuuGAAG 48 99616.8 sdT 107261.1 gdTsdT TFR2 AD-51725 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACuGGGUuUGAUuGAAG 48 99616.17 sdT 107270.1 gdTsdT TFR2 AD-51724 1051 A- ccuucAAucAAAcccAGuudT 47 A- AACUGGGUuUGAUuGAAG 48 99616.9 sdT 107262.1 gdTsdT TFR2 AD-47839 1067 A- GuucccuccAGuuGcAucAdTs 810 A- UGAUGcAACUGGAGGGAA 853 99618.1 dT 99619.1 CdTsdT TFR2 AD-47845 1068 A- uucccuccAGuuGcAucAudTs 811 A- AUGAUGcAACUGGAGGGA 854 99620.1 dT 99621.1 AdTsdT TFR2 AD-47850 1299 A- cGcucAGAGccAGAucAcud 812 A- AGUGAUCUGGCUCUGAG 855 99622.1 TsdT 99623.1 CGdTsdT TFR2 AD-47855 1355 A- AGGAGcAGcuAAAuccGcu 813 A- AGCGGAUUuAGCUGCUCC 856 99624.1 dTsdT 99625.1 UdTsdT TFR2 AD-47816 1441 A- cccGcAGAAGucuccucuudTs 814 A- AAGAGGAGACUUCUGCG 857 99626.1 dT 99627.1 GGdTsdT TFR2 AD-47831 1548 A- GuGuAcGuGAGccuGGAcA 815 A- UGUCcAGGCUcACGuAcAC 858 99678.1 dTsdT 99679.1 dTsdT TFR2 AD-47822 1584 A- GAcAAGuuucAuGccAAGA 816 A- UCUUGGcAUGAAACUUGU 859 99628.1 dTsdT 99629.1 CdTsdT TFR2 AD-47828 1612 A- uucuGAcAAGucucAuuGAd 817 A- UcAAUGAGACUUGUcAGA 860 99630.1 TsdT 99631.1 AdTsdT TFR2 AD-47834 1614 A- cuGAcAAGucucAuuGAGAd 818 A- UCUcAAUGAGACUUGUcA 861 99632.1 TsdT 99633.1 GdTsdT TFR2 AD-47840 1616 A- GAcAAGucucAuuGAGAGu 819 A- ACUCUcAAUGAGACUUGU 862 99634.1 dTsdT 99635.1 CdTsdT TFR2 AD-47846 1618 A- cAAGucucAuuGAGAGuGud 820 A- AcACUCUcAAUGAGACUU 863 99636.1 TsdT 99637.1 GdTsdT TFR2 AD-47851 2140 A- AGcGAcuGAcAcGcAuGuA 821 A- uAcAUGCGUGUcAGUCGC 864 99638.1 dTsdT 99639.1 UdTsdT TFR2 AD-47856 2142 A- cGAcuGAcAcGcAuGuAcAd 822 A- UGuAcAUGCGUGUcAGUC 865 99640.1 TsdT 99641.1 GdTsdT TFR2 AD-47817 2143 A- GAcuGAcAcGcAuGuAcAA 823 A- UUGuAcAUGCGUGUcAGU 866 99642.1 dTsdT 99643.1 CdTsdT TFR2 AD-47823 2146 A- uGAcAcGcAuGuAcAAcGud 824 A- ACGUUGuAcAUGCGUGUc 867 99644.1 TsdT 99645.1 AdTsdT TFR2 AD-47837 2151 A- cGcAuGuAcAAcGuGcGcAd 825 A- UGCGcACGUUGuAcAUGC 868 99680.1 TsdT 99681.1 GdTsdT TFR2 AD-47843 2152 A- GcAuGuAcAAcGuGcGcAud 826 A- AUGCGcACGUUGuAcAUG 869 99682.1 TsdT 99683.1 CdTsdT TFR2 AD-47829 2154 A- AuGuAcAAcGuGcGcAuAA 827 A- UuAUGCGcACGUUGuAcAU 870 99646.1 dTsdT 99647.1 dTsdT TFR2 AD-47835 2155 A- uGuAcAAcGuGcGcAuAAud 828 A- AUuAUGCGcACGUUGuAcA 871 99648.1 TsdT 99649.1 dTsdT TFR2 AD-47841 2170 A- uAAuGcGGGuGGAGuucuA 829 A- uAGAACUCcACCCGcAUuA 872 99650.1 dTsdT 99651.1 dTsdT TFR2 AD-51703 2170 A- uAAuGcGGGuGGAGuucuA 829 A- UAGAACuCcACCCGcAUuA 872 99650.6 dTsdT 107249.1 dTsdT TFR2 AD-51710 2170 A- uAAuGcGGGuGGAGuUCu 829 A- UAGAACUCcACCCGcAuuA 872 107254.2 AdTsdT 107246.3 dTsdT TFR2 AD-51697 2170 A- uAAuGcGGGuGGAGuucuA 829 A- UAGAACUCcACCCGcAuuad 872 99650.5 dTsdT 107248.1 TsdT TFR2 AD-51692 2170 A- uAAuGcGGGuGGAGuuCuA 829 A- UAGAACUCcACCCGcAUua 872 107253.3 dTsdT 107247.2 dTsdT TFR2 AD-51685 2170 A- uAAuGcGGGuGGAGuucuA 829 A- UAGAACUCcACCCGcAuuA 872 99650.3 dTsdT 107246.1 dTsdT TFR2 AD-51691 2170 A- uAAuGcGGGuGGAGuucuA 829 A- UAGAACUCcACCCGcAUua 872 99650.4 dTsdT 107247.1 dTsdT TFR2 AD-51698 2170 A- uAAuGcGGGuGGAGuuCuA 829 A- UAGAACUCcACCCGcAuuad 872 107253.4 dTsdT 107248.2 TsdT TFR2 AD-51686 2170 A- uAAuGcGGGuGGAGuuCuA 829 A- UAGAACUCcACCCGcAuuA 872 107253.2 dTsdT 107246.2 dTsdT TFR2 AD-51709 2170 A- uAAuGcGGGuGGAGuucuA 829 A- UAGAACuCcACCCGcAuuA 872 99650.7 dTsdT 107250.1 dTsdT TFR2 AD-51679 2170 A- uAAuGcGGGuGGAGuucuA 829 A- UAGAACUCcACCCGcAUuA 872 99650.2 dTsdT 107245.1 dTsdT TFR2 AD-51705 2170 A- uAAuGcGGGuGGAGuUCu 829 A- UAGAACuCcACCCGcAUuA 872 107254.5 AdTsdT 107249.3 dTsdT TFR2 AD-51704 2170 A- uAAuGcGGGuGGAGuUCu 829 A- UAGAACUCcACCCGcAUuA 872 107254.1 AdTsdT 107245.3 dTsdT TFR2 AD-51687 2170 A- uAAuGcGGGuGGAGuuCuA 829 A- UAGAACuCcACCCGcAuuA 872 107253.6 dTsdT 107250.2 dTsdT TFR2 AD-51681 2170 A- uAAuGcGGGuGGAGuuCuA 829 A- UAGAACuCcACCCGcAUuA 872 107253.5 dTsdT 107249.2 dTsdT TFR2 AD-51716 2170 A- uAAuGcGGGuGGAGuUCu 829 A- UAGAACUCcACCCGcAUua 872 107254.3 AdTsdT 107247.3 dTsdT TFR2 AD-51693 2170 A- uAAuGcGGGuGGAGuuCuA 829 A- UAGAACuCcACCCGcAUuad 872 107253.7 dTsdT 107251.2 TsdT TFR2 AD-51711 2170 A- uAAuGcGGGuGGAGuUCu 829 A- UAGAACuCcACCCGcAuuA 872 107254.6 AdTsdT 107250.3 dTsdT TFR2 AD-51699 2170 A- uAAuGcGGGuGGAGuuCuA 829 A- UAGAACuCcACCCGcAuuad 872 107253.8 dTsdT 107252.2 TsdT TFR2 AD-51722 2170 A- uAAuGcGGGuGGAGuUCu 829 A- UAGAACUCcACCCGcAuuad 872 107254.4 AdTsdT 107248.3 TsdT TFR2 AD-51715 2170 A- uAAuGcGGGuGGAGuucuA 829 A- UAGAACuCcACCCGcAUuad 872 99650.8 dTsdT 107251.1 TsdT TFR2 AD-51680 2170 A- uAAuGcGGGuGGAGuuCuA 829 A- UAGAACUCcACCCGcAUuA 872 107253.1 dTsdT 107245.2 dTsdT TFR2 AD-51717 2170 A- uAAuGcGGGuGGAGuUCu 829 A- UAGAACuCcACCCGcAUuad 872 107254.7 AdTsdT 107251.3 TsdT TFR2 AD-51723 2170 A- uAAuGcGGGuGGAGuUCu 829 A- UAGAACuCcACCCGcAuuad 872 107254.8 AdTsdT 107252.3 TsdT TFR2 AD-51721 2170 A- uAAuGcGGGuGGAGuucuA 829 A- UAGAACuCcACCCGcAuuad 872 99650.9 dTsdT 107252.1 TsdT TFR2 AD-47847 2178 A- GuGGAGuucuAcuuccuuudTs 830 A- AAAGGAAGuAGAACUCcA 873 99652.1 dT 99653.1 CdTsdT TFR2 AD-47852 2224 A- cGuuccGccAcAucuucAudTs 831 A- AUGAAGAUGUGGCGGAA 874 99654.1 dT 99655.1 CGdTsdT TFR2 AD-47857 2425 A- GGAAcAuuGAuAAcAAcuu 832 A- AAGUUGUuAUcAAUGUUC 875 99656.1 dTsdT 99657.1 CdTsdT TFR2 AD-47818 2602 A- cAGcAcAGAuAuccAcAcAd 833 A- UGUGUGGAuAUCUGUGCU 876 99658.1 TsdT 99659.1 GdTsdT TFR2 AD-47824 2656 A- GGucAuAcuGucGGuuAAud 834 A- AUuAACCGAcAGuAUGAC 877 99660.1 TsdT 99661.1 CdTsdT TFR2 AD-47830 2658 A- ucAuAcuGucGGuuAAucAd 835 A- UGAUuAACCGAcAGuAUG 878 99662.1 TsdT 99663.1 AdTsdT TFR2 AD-47836 2660 A- AuAcuGucGGuuAAucAGAd 836 A- UCUGAUuAACCGAcAGuA 879 99664.1 TsdT 99665.1 UdTsdT TFR2 AD-47842 2662 A- AcuGucGGuuAAucAGAGA 837 A- UCUCUGAUuAACCGAcAG 880 99666.1 dTsdT 99667.1 UdTsdT TFR2 AD-47848 2719 A- GGuccuccAuAccuAGAGAd 838 A- UCUCuAGGuAUGGAGGAC 881 99668.1 TsdT 99669.1 CdTsdT TFR2 AD-47853 2795 A- ucGcuGGcAccAuAGccuudT 839 A- AAGGCuAUGGUGCcAGCG 882 99670.1 sdT 99671.1 AdTsdT TFR2 AD-47858 2802 A- cAccAuAGccuuAuGGccAdT 840 A- UGGCcAuAAGGCuAUGGU 883 99672.1 sdT 99673.1 GdTsdT It should be noted that unmodified versions of each of the modified sequences shown are included within the scope of the invention.

TABLE 11 Secondary Target single-dose Table 11 Start Duplex Posi- 10 nM overall 0.1 nM overall 0.01 nM overall Target Reactivity Name tion Avg SD Avg SD Avg SD HFE2 Human AD-47391 177 97.5 10.8 111.9 21.2 HFE2 Human AD-47397 193 27.3 4.2 36.9 3.3 HFE2 Human AD-47403 195 31.2 10.0 48.6 7.6 HFE2 Human AD-47409 199 82.3 15.8 89.5 11.4 HFE2 Human AD-47415 200 44.8 5.9 51.1 7.0 HFE2 Human AD-47421 206 27.8 8.1 28.8 0.9 HFE2 Human AD-47427 211 96.4 25.8 79.8 18.2 HFE2 Human AD-47433 244 7.5 1.3 21.2 4.0 HFE2 Human AD-47392 257 8.0 2.0 20.5 8.1 HFE2 Human AD-47398 261 30.0 6.5 45.9 6.4 HFE2 Human AD-47404 290 9.3 2.8 20.5 0.5 HFE2 Human AD-47410 360 28.7 9.8 36.7 1.8 HFE2 Human AD-47416 367 72.3 12.5 79.2 19.3 HFE2 Human AD-47422 404 20.4 2.5 35.4 2.5 HFE2 Human AD-47428 415 66.8 22.5 80.6 11.4 HFE2 Human AD-47434 417 34.7 5.9 28.6 3.4 HFE2 Human AD-47393 472 96.3 9.7 99.8 31.3 HFE2 Human AD-47399 585 10.0 6.6 16.3 0.6 HFE2 Human AD-47405 587 11.3 2.1 14.0 0.4 HFE2 Human AD-47417 638 39.3 2.0 62.6 7.6 HFE2 Human AD-47423 642 109.4 4.1 58.5 0.9 HFE2 Human AD-47429 646 56.0 13.0 76.3 21.8 HFE2 Human AD-47435 656 17.7 1.4 29.3 9.4 HFE2 Human AD-47394 657 8.8 7.3 9.8 6.3 HFE2 Human AD-47400 678 21.2 2.8 25.1 8.4 HFE2 Human AD-47406 1121 12.9 1.4 20.5 1.3 HFE2 Human AD-47412 1151 16.5 5.2 11.8 3.2 HFE2 Human AD-47418 1152 16.0 1.6 8.4 2.2 HFE2 Human AD-47424 1203 9.2 1.6 14.0 2.4 HFE2 Human AD-47430 1228 14.8 2.7 19.2 0.9 HFE2 Human AD-47436 1230 17.9 9.6 19.7 1.4 HFE2 Human AD-47395 1233 15.3 2.1 12.7 2.2 HFE2 Human AD-47401 1272 6.3 1.2 10.5 0.9 HFE2 Human AD-47407 1273 5.6 1.8 5.6 0.8 HFE2 Human AD-51740 1273 5.7 0.0 6.5 0.7 6.3 0.4 HFE2 Human AD-51747 1273 7.1 1.6 6.0 0.1 7.0 0.1 HFE2 Human AD-51744 1273 11.8 5.8 18.4 14.1 7.7 0.0 HFE2 Human AD-51731 1273 6.2 0.7 7.1 0.2 8.1 3.2 HFE2 Human AD-51736 1273 6.3 0.3 7.2 0.7 8.2 0.5 HFE2 Human AD-51732 1273 6.0 1.0 8.2 0.5 8.3 0.6 HFE2 Human AD-51734 1273 6.9 0.3 14.5 13.3 8.4 1.4 HFE2 Human AD-51748 1273 6.6 0.2 7.7 0.9 8.5 1.3 HFE2 Human AD-51735 1273 6.4 1.5 6.3 0.3 8.5 0.7 HFE2 Human AD-51749 1273 6.8 1.0 8.3 0.4 8.7 2.2 HFE2 Human AD-51752 1273 12.7 6.4 10.3 3.6 8.8 1.0 HFE2 Human AD-51738 1273 5.8 0.6 9.2 3.0 8.9 1.4 HFE2 Human AD-51730 1273 7.6 1.7 7.8 1.0 9.3 0.5 HFE2 Human AD-51745 1273 5.8 0.4 6.5 1.6 9.5 1.2 HFE2 Human AD-51737 1273 5.9 0.1 19.8 18.4 9.6 1.3 HFE2 Human AD-51743 1273 6.5 1.6 7.0 1.5 9.9 2.0 HFE2 Human AD-51751 1273 6.4 1.4 7.5 1.6 10.3 1.6 HFE2 Human AD-51750 1273 6.9 0.2 8.8 0.3 10.7 1.0 HFE2 Human AD-51741 1273 6.0 2.1 8.5 1.1 10.8 4.0 HFE2 Human AD-51742 1273 7.0 1.0 6.1 0.2 11.0 0.9 HFE2 Human AD-51733 1273 6.7 1.1 7.2 0.1 11.0 1.3 HFE2 Human AD-51755 1273 6.1 0.8 13.4 6.9 11.2 2.8 HFE2 Human AD-51756 1273 9.8 0.3 8.9 0.4 11.6 0.3 HFE2 Human AD-51728 1273 7.1 0.8 8.2 0.2 11.6 0.6 HFE2 Human AD-51729 1273 6.8 1.2 8.9 0.4 11.7 0.5 HFE2 Human AD-51726 1273 7.1 0.6 9.0 1.0 12.6 2.4 HFE2 Human AD-51746 1273 7.3 1.4 14.9 6.0 12.6 5.5 HFE2 Human AD-51757 1273 9.1 2.0 10.4 0.6 13.1 1.9 HFE2 Human AD-51727 1273 6.7 1.0 8.5 1.1 13.8 0.4 HFE2 Human AD-51753 1273 7.2 0.3 13.6 8.4 14.2 7.8 HFE2 Human AD-51754 1273 6.9 0.4 10.1 1.0 14.7 2.8 HFE2 Human AD-51739 1273 6.1 0.1 8.2 0.1 14.8 8.9 HFE2 Human AD-47413 1274 7.2 0.2 6.4 0.9 HFE2 Human AD-47419 1279 8.6 2.3 10.0 2.2 HFE2 Human AD-47425 1280 14.5 1.0 14.1 0.8 HFE2 Human AD-47431 1303 49.5 0.6 72.2 0.7 HFE2 Human AD-47437 1366 6.4 4.2 11.4 2.4 HFE2 Human AD-47396 1367 4.6 0.1 10.0 0.2 HFE2 Human AD-47402 1396 11.8 0.2 19.9 4.4 HFE2 Human AD-47408 1397 12.0 3.4 13.7 0.2 HFE2 Human AD-47414 1399 5.6 1.5 8.2 0.1 HFE2 Human AD-47420 1400 3.6 1.0 5.7 0.8 HFE2 Human AD-47426 1404 13.7 3.8 27.1 3.1 HFE2 Human AD-47432 1441 3.8 0.0 5.6 1.0 TFR2 Human AD-47814 64 7.8 0.4 16.3 0.1 TFR2 Human AD-47820 66 13.7 2.5 25.1 3.7 TFR2 Human AD-47826 239 13.5 1.8 25.4 4.3 TFR2 Human AD-47819 772 112.4 2.9 102.9 3.8 TFR2 Human AD-47832 884 24.2 1.8 52.4 2.7 TFR2 Human AD-47838 886 23.6 0.4 39.0 1.6 TFR2 Human AD-47844 915 19.5 3.9 40.9 4.5 TFR2 Human AD-47849 916 14.2 6.9 22.8 0.5 TFR2 Human AD-47854 920 69.4 4.2 88.3 0.8 TFR2 Human AD-47815 922 66.3 6.7 71.2 8.8 TFR2 Human AD-47825 1004 23.9 2.9 46.2 3.8 TFR2 Human AD-47821 1048 57.4 15.9 78.5 5.0 TFR2 Human AD-47827 1050 18.9 8.3 37.9 2.9 TFR2 Human AD-47833 1051 8.3 4.3 19.7 5.4 TFR2 Human AD-51696 1051 8.0 2.1 21.1 2.1 27.2 0.5 TFR2 Human AD-51708 1051 8.8 1.2 17.7 0.8 28.5 3.7 TFR2 Human AD-51700 1051 9.3 1.2 19.8 3.7 30.1 5.0 TFR2 Human AD-51701 1051 9.4 0.6 22.3 8.1 30.8 2.7 TFR2 Human AD-51702 1051 8.7 2.1 19.7 0.1 30.9 1.4 TFR2 Human AD-51707 1051 8.1 2.5 19.1 2.6 32.2 8.2 TFR2 Human AD-51694 1051 9.3 1.9 19.3 2.5 38.8 0.0 TFR2 Human AD-51706 1051 8.4 0.3 19.5 1.5 39.9 6.9 TFR2 Human AD-51695 1051 10.1 1.6 19.9 2.4 40.1 4.2 TFR2 Human AD-51713 1051 14.6 1.8 45.3 2.5 59.0 1.6 TFR2 Human AD-51714 1051 22.1 0.1 44.2 1.5 62.8 1.7 TFR2 Human AD-51683 1051 9.7 0.6 36.5 2.4 66.0 2.4 TFR2 Human AD-51712 1051 21.2 2.6 44.1 4.5 67.1 5.9 TFR2 Human AD-51720 1051 34.5 6.1 58.3 10.4 67.4 0.0 TFR2 Human AD-51719 1051 38.6 1.2 57.7 1.2 68.8 3.2 TFR2 Human AD-51684 1051 14.7 3.5 48.3 1.9 69.3 3.5 TFR2 Human AD-51690 1051 19.7 0.0 49.8 0.5 74.1 12.6 TFR2 Human AD-51689 1051 40.5 2.4 53.1 9.7 75.0 6.4 TFR2 Human AD-51682 1051 12.7 1.1 42.3 10.1 75.7 6.0 TFR2 Human AD-51688 1051 34.9 2.9 62.2 6.9 78.1 3.2 TFR2 Human AD-51718 1051 31.6 6.6 53.1 6.5 80.2 1.3 TFR2 Human AD-51725 1051 47.9 5.0 76.1 1.8 83.7 3.2 TFR2 Human AD-51724 1051 52.0 1.2 66.1 32.9 87.8 14.9 TFR2 Human AD-47839 1067 54.0 3.1 71.5 8.4 TFR2 Human AD-47845 1068 105.7 20.1 98.0 3.0 TFR2 Human AD-47850 1299 16.7 4.8 21.3 3.2 TFR2 Human AD-47855 1355 64.6 0.5 66.1 8.0 TFR2 Human AD-47816 1441 10.6 2.6 30.6 6.9 TFR2 Human AD-47831 1548 22.8 0.2 36.6 9.5 TFR2 Human AD-47822 1584 57.2 7.0 72.6 1.6 TFR2 Human AD-47828 1612 38.2 5.9 61.2 9.9 TFR2 Human AD-47834 1614 9.2 3.6 20.1 3.0 TFR2 Human AD-47840 1616 50.1 3.7 55.6 3.8 TFR2 Human AD-47846 1618 75.0 7.9 94.6 4.3 TFR2 Human AD-47851 2140 94.1 0.4 101.3 10.6 TFR2 Human AD-47856 2142 63.3 4.1 60.7 3.1 TFR2 Human AD-47817 2143 50.2 2.7 50.3 6.5 TFR2 Human AD-47823 2146 26.1 2.3 40.9 3.3 TFR2 Human AD-47837 2151 119.5 21.7 89.5 6.9 TFR2 Human AD-47843 2152 20.6 1.7 34.9 7.8 TFR2 Human AD-47829 2154 53.4 4.1 60.3 0.5 TFR2 Human AD-47835 2155 15.5 1.8 18.3 2.4 TFR2 Human AD-47841 2170 26.6 1.5 24.7 2.0 TFR2 Human AD-51703 2170 25.2 2.8 27.9 3.5 23.2 1.1 TFR2 Human AD-51710 2170 22.1 3.4 23.1 0.5 24.0 0.6 TFR2 Human AD-51697 2170 30.9 3.6 25.3 0.9 24.5 0.8 TFR2 Human AD-51692 2170 23.1 1.3 24.6 1.2 24.9 6.4 TFR2 Human AD-51685 2170 24.6 2.2 23.9 0.6 25.6 1.7 TFR2 Human AD-51691 2170 29.1 3.2 21.3 0.2 26.4 3.7 TFR2 Human AD-51698 2170 23.1 2.3 25.8 3.0 26.8 2.8 TFR2 Human AD-51686 2170 20.7 2.5 24.7 0.7 27.5 1.4 TFR2 Human AD-51709 2170 23.1 1.3 25.1 2.7 27.7 2.1 TFR2 Human AD-51679 2170 27.4 2.2 26.4 4.3 28.3 5.1 TFR2 Human AD-51705 2170 27.8 5.3 24.6 2.0 28.8 2.4 TFR2 Human AD-51704 2170 23.9 2.1 26.1 0.5 29.2 4.6 TFR2 Human AD-51687 2170 20.8 3.9 27.7 2.8 29.4 1.0 TFR2 Human AD-51681 2170 30.0 1.8 31.2 1.8 29.5 4.7 TFR2 Human AD-51716 2170 20.0 1.7 25.9 2.2 30.2 1.1 TFR2 Human AD-51693 2170 26.2 0.8 26.1 1.0 30.6 0.6 TFR2 Human AD-51711 2170 20.8 0.5 24.8 3.2 31.3 3.0 TFR2 Human AD-51699 2170 20.9 0.7 27.3 1.5 31.7 5.1 TFR2 Human AD-51722 2170 28.3 3.7 30.0 0.5 32.1 1.2 TFR2 Human AD-51715 2170 22.2 6.1 30.4 0.6 34.6 1.3 TFR2 Human AD-51680 2170 26.4 2.5 26.7 5.4 36.6 2.6 TFR2 Human AD-51717 2170 28.2 6.2 24.6 0.2 37.2 7.7 TFR2 Human AD-51723 2170 25.9 4.0 30.7 4.0 40.7 3.1 TFR2 Human AD-51721 2170 30.7 1.6 28.1 0.9 40.8 0.3 TFR2 Human AD-47847 2178 21.7 2.1 25.1 3.5 TFR2 Human AD-47852 2224 71.4 2.2 66.7 7.1 TFR2 Human AD-47857 2425 37.4 4.8 29.5 5.4 TFR2 Human AD-47818 2602 48.3 4.8 50.8 4.3 TFR2 Human AD-47824 2656 19.9 3.3 25.7 0.1 TFR2 Human AD-47830 2658 25.8 7.7 25.8 6.4 TFR2 Human AD-47836 2660 34.6 0.1 37.4 6.1 TFR2 Human AD-47842 2662 19.2 6.8 26.3 1.1 TFR2 Human AD-47848 2719 76.8 2.2 90.1 9.7 TFR2 Human AD-47853 2795 28.1 6.3 43.7 3.8 TFR2 Human AD-47858 2802 66.9 8.2 73.6 3.4 Data are expressed as percent of control (Mock transfected or 1955).

TABLE 12 Secondary Target dose-response Table 12 Target Reactivity Duplex Name Start Position IC50 (nM) HFE2 HumaWn AD-47394 657 0.004 HFE2 Human AD-47395 1233 0.011 HFE2 Human AD-47407 1273 0.002 HFE2 Human AD-51747 1273 0.001 HFE2 Human AD-51736 1273 0.001 HFE2 Human AD-51734 1273 0.001 HFE2 Human AD-51732 1273 0.002 HFE2 Human AD-51731 1273 0.002 HFE2 Human AD-51744 1273 0.002 HFE2 Human AD-51748 1273 0.002 HFE2 Human AD-51735 1273 0.002 HFE2 Human AD-47407 1273 0.002 HFE2 Human AD-51740 1273 0.003 HFE2 Human AD-47413 1274 0.003 HFE2 Human AD-47425 1280 0.021 HFE2 Human AD-47437 1366 0.015 HFE2 Human AD-47396 1367 0.013 HFE2 Human AD-47414 1399 0.005 HFE2 Human AD-47420 1400 0.010 HFE2 Human AD-47432 1441 0.004 TFR2 Human AD-47814 64 0.012 TFR2 Human AD-47820 66 0.011 TFR2 Human AD-47826 239 0.014 TFR2 Human AD-47849 916 0.067 TFR2 Human AD-47833 1051 0.013 TFR2 Human AD-51701 1051 0.015 TFR2 Human AD-51708 1051 0.017 TFR2 Human AD-51700 1051 0.017 TFR2 Human AD-47833 1051 0.023 TFR2 Human AD-51696 1051 0.024 TFR2 Human AD-47850 1299 0.011 TFR2 Human AD-47834 1614 0.014 TFR2 Human AD-47835 2155 0.023 TFR2 Human AD-47841 2170 0.009 TFR2 Human AD-51710 2170 0.003 TFR2 Human AD-51703 2170 0.005 TFR2 Human AD-51697 2170 0.006 TFR2 Human AD-51692 2170 0.010 TFR2 Human AD-47841 2170 0.024 TFR2 Human AD-47847 2178 0.013

TABLE 13 TFR2 Duplex Sequences Table SEQ SEQ 13 Start Sense ID Antisense ID Target Duplex ID Position Name Sense Sequence NO: Name Antisense Sequence NO: TFR2 AD-52549 64 A- uccAGAGAGcGcAAcAAcUdTsdT 798 A-108798.2 AGUUGUUGCGCUCUCuGGAdTsdT 841 108802.1 TFR2 AD-52550 64 A- uccAGAGAGcGcAAcAAcUdTsdT 798 A-108803.2 AGUUGUUGCGCUCUCuGGadTsdT 841 108802.5 TFR2 AD-52555 64 A- uccAGAGAGcGcAAcAAcUdTsdT 798 A-108799.2 AGUUGUUGCGCUCuCuGGAdTsdT 841 108802.2 TFR2 AD-52556 64 A- uccAGAGAGcGcAAcAAcUdTsdT 798 A-108804.2 AGUUGUUGCGCUCuCuGGadTsdT 841 108802.6 TFR2 AD-52561 64 A- uccAGAGAGcGcAAcAAcUdTsdT 798 A-108800.2 AGUUGUUGCGCuCuCuGGAdTsdT 841 108802.3 TFR2 AD-52562 64 A- uccAGAGAGcGcAAcAAcUdTsdT 798 A-108805.2 AGUUGUUGCGCuCuCuGGadTsdT 841 108802.7 TFR2 AD-52567 64 A- uccAGAGAGcGcAAcAAcUdTsdT 798 A-108801.2 AGUUGuUGCGCuCuCuGGAdTsdT 841 108802.4 TFR2 AD-52568 64 A- uccAGAGAGcGcAAcAAcUdTsdT 798 A-108806.2 AGUUGuUGCGCuCuCuGGadTsdT 841 108802.8 TFR2 AD-52572 64 A-99594.2 uccAGAGAGcGcAAcAAcudTsdT 798 A-108798.1 AGUUGUUGCGCUCUCuGGAdTsdT 841 TFR2 AD-52573 64 A-99594.6 uccAGAGAGcGcAAcAAcudTsdT 798 A-108803.1 AGUUGUUGCGCUCUCuGGadTsdT 841 TFR2 AD-52577 64 A-99594.3 uccAGAGAGcGcAAcAAcudTsdT 798 A-108799.1 AGUUGUUGCGCUCuCuGGAdTsdT 841 TFR2 AD-52578 64 A-99594.7 uccAGAGAGcGcAAcAAcudTsdT 798 A-108804.1 AGUUGUUGCGCUCuCuGGadTsdT 841 TFR2 AD-52582 64 A-99594.4 uccAGAGAGcGcAAcAAcudTsdT 798 A-108800.1 AGUUGUUGCGCuCuCuGGAdTsdT 841 TFR2 AD-52583 64 A-99594.8 uccAGAGAGcGcAAcAAcudTsdT 798 A-108805.1 AGUUGUUGCGCuCuCuGGadTsdT 841 TFR2 AD-52587 64 A-99594.5 uccAGAGAGcGcAAcAAcudTsdT 798 A-108801.1 AGUUGuUGCGCuCuCuGGAdTsdT 841 TFR2 AD-52588 64 A-99594.9 uccAGAGAGcGcAAcAAcudTsdT 798 A-108806.1 AGUUGuUGCGCuCuCuGGadTsdT 841 TFR2 AD-52551 239 A- cAGGcAGccAAAccucAuUdTsdT 35 A-108810.2 AAUGAGGUuUGGCuGcCuGdTsdT 38 108811.1 TFR2 AD-52552 239 A- cAGGcAGccAAAccucAuUdTsdT 35 A-108816.1 AAuGAGGUuUGGCUGcCugdTsdT 38 108811.3 TFR2 AD-52557 239 A- cAGGcAGccAAAccuCAuUdTsdT 35 A-108810.3 AAUGAGGUuUGGCuGcCuGdTsdT 38 108812.1 TFR2 AD-52558 239 A- cAGGcAGccAAAccuCAuUdTsdT 35 A-108816.2 AAuGAGGUuUGGCUGcCugdTsdT 38 108812.3 TFR2 AD-52563 239 A- cAGGcAGccAAAcCuCAuUdTsdT 35 A-108810.4 AAUGAGGUuUGGCuGcCuGdTsdT 38 108813.1 TFR2 AD-52564 239 A- cAGGcAGccAAAcCuCAuUdTsdT 35 A-108816.3 AAuGAGGUuUGGCUGcCugdTsdT 38 108813.3 TFR2 AD-52569 239 A- cAGGcAGcCAAAcCuCAuUdTsdT 35 A-108810.5 AAUGAGGUuUGGCuGcCuGdTsdT 38 108814.1 TFR2 AD-52570 239 A- cAGGcAGcCAAAcCuCAuUdTsdT 35 A-108816.4 AAuGAGGUuUGGCUGcCugdTsdT 38 108814.3 TFR2 AD-52574 239 A-99598.2 cAGGcAGccAAAccucAuudTsdT 35 A-108807.1 AAUGAGGUUUGGCUGCCuGdTsdT 38 TFR2 AD-52575 239 A- cAGGcAGccAAAccucAuUdTsdT 35 A-108815.1 AAUGAGGUuUGGCUGcCugdTsdT 38 108811.2 TFR2 AD-52579 239 A-99598.3 cAGGcAGccAAAccucAuudTsdT 35 A-108808.1 AAUGAGGUUUGGCUGcCuGdTsdT 38 TFR2 AD-52580 239 A- cAGGcAGccAAAccuCAuUdTsdT 35 A-108815.2 AAUGAGGUuUGGCUGcCugdTsdT 38 108812.2 TFR2 AD-52584 239 A-99598.4 cAGGcAGccAAAccucAuudTsdT 35 A-108809.1 AAUGAGGUUUGGCuGcCuGdTsdT 38 TFR2 AD-52585 239 A- cAGGcAGccAAAcCuCAuUdTsdT 35 A-108815.3 AAUGAGGUuUGGCUGcCugdTsdT 38 108813.2 TFR2 AD-52589 239 A-99598.5 cAGGcAGccAAAccucAuudTsdT 35 A-108810.1 AAUGAGGUuUGGCuGcCuGdTsdT 38 TFR2 AD-52590 239 A- cAGGcAGcCAAAcCuCAuUdTsdT 35 A-108815.4 AAUGAGGUuUGGCUGcCugdTsdT 38 108814.2 It should be noted that unmodified versions of each of the modified sequences shown are included within the scope of the invention.

TABLE 14 TFR2 Dose Response Table 14 Target Reactivity Duplex Name Start Position IC50 (nM) TFR2 Human AD-47814 64 0.019 TFR2 Human AD-52549 64 0.034 TFR2 Human AD-52572 64 0.059 TFR2 Human AD-52550 64 0.062 TFR2 Human AD-52573 64 0.102 TFR2 Human AD-52570 239 0.035 TFR2 Human AD-47826 239 0.036 TFR2 Human AD-52590 239 0.038 TFR2 Human AD-52574 239 0.065 TFR2 Human AD-52558 239 0.236

TABLE 15 SMAD4 Unmodified Duplexes Table 15 SEQ SEQ Duplex Sense Oligo ID Antis Oligo ID Name Start Target Name Trans Seq NO: Name Trans Seq NO: AD-48090.1 481 SMAD4 A-100350.1 AUGCCUGUCUGAGCAUUGU 884 A-100351.1 ACAAUGCUCAGACAGGCAU 929 AD-48091.1 772 SMAD4 A-100366.1 AUGUUAAAUAUUGUCAGUA 885 A-100367.1 UACUGACAAUAUUUAACAU 930 AD-48092.1 817 SMAD4 A-100382.1 UCUGUGUGAAUCCAUAUCA 886 A-100383.1 UGAUAUGGAUUCACACAGA 931 AD-48093.1 1212 SMAD4 A-100398.1 ACUUACCAUCAUAACAGCA 887 A-100399.1 UGCUGUUAUGAUGGUAAGU 932 AD-48094.1 1351 SMAD4 A-100414.1 ACAAUGAGCUUGCAUUCCA 888 A-100415.1 UGGAAUGCAAGCUCAUUGU 933 AD-48095.1 1712 SMAD4 A-100430.1 UGUUCAUAAGAUCUACCCA 889 A-100431.1 UGGGUAGAUCUUAUGAACA 934 AD-48096.1 590 SMAD4 A-100352.1 AAAAGAUGAAUUGGAUUCU 890 A-100353.1 AGAAUCCAAUUCAUCUUUU 935 AD-48097.1 773 SMAD4 A-100368.1 UGUUAAAUAUUGUCAGUAU 891 A-100369.1 AUACUGACAAUAUUUAACA 936 AD-48098.1 819 SMAD4 A-100384.1 UGUGUGAAUCCAUAUCACU 892 A-100385.1 AGUGAUAUGGAUUCACACA 937 AD-48099.1 1232 SMAD4 A-100400.1 UACCACCUGGACUGGAAGU 893 A-100401.1 ACUUCCAGUCCAGGUGGUA 938 AD-48100.1 1362 SMAD4 A-100416.1 GCAUUCCAGCCUCCCAUUU 894 A-100417.1 AAAUGGGAGGCUGGAAUGC 939 AD-48101.1 1713 SMAD4 A-100432.1 GUUCAUAAGAUCUACCCAA 895 A-100433.1 UUGGGUAGAUCUUAUGAAC 940 AD-48102.1 602 SMAD4 A-100354.1 GGAUUCUUUAAUAACAGCU 896 A-100355.1 AGCUGUUAUUAAAGAAUCC 941 AD-48103.1 777 SMAD4 A-100370.1 AAAUAUUGUCAGUAUGCGU 897 A-100371.1 ACGCAUACUGACAAUAUUU 942 AD-48104.1 820 SMAD4 A-100386.1 GUGUGAAUCCAUAUCACUA 898 A-100387.1 UAGUGAUAUGGAUUCACAC 943 AD-48105.1 1238 SMAD4 A-100402.1 CUGGACUGGAAGUAGGACU 899 A-100403.1 AGUCCUACUUCCAGUCCAG 944 AD-48106.1 1367 SMAD4 A-100418.1 CCAGCCUCCCAUUUCCAAU 900 A-100419.1 AUUGGAAAUGGGAGGCUGG 945 AD-48107.1 2816 SMAD4 A-100434.1 UAUUUCUAGGCACAAGGUU 901 A-100435.1 AACCUUGUGCCUAGAAAUA 946 AD-48108.1 608 SMAD4 A-100356.1 UUUAAUAACAGCUAUAACU 902 A-100357.1 AGUUAUAGCUGUUAUUAAA 947 AD-48109.1 778 SMAD4 A-100372.1 AAUAUUGUCAGUAUGCGUU 903 A-100373.1 AACGCAUACUGACAAUAUU 948 AD-48110.1 861 SMAD4 A-100388.1 AUUGAUCUCUCAGGAUUAA 904 A-100389.1 UUAAUCCUGAGAGAUCAAU 949 AD-48111.1 1250 SMAD4 A-100404.1 UAGGACUGCACCAUACACA 905 A-100405.1 UGUGUAUGGUGCAGUCCUA 950 AD-48112.1 1370 SMAD4 A-100420.1 GCCUCCCAUUUCCAAUCAU 906 A-100421.1 AUGAUUGGAAAUGGGAGGC 951 AD-48113.1 2984 SMAD4 A-100436.1 AAUAUUUUGGAAACUGCUA 907 A-100437.1 UAGCAGUUUCCAAAAUAUU 952 AD-48114.1 611 SMAD4 A-100358.1 AAUAACAGCUAUAACUACA 908 A-100359.1 UGUAGUUAUAGCUGUUAUU 953 AD-48115.1 781 SMAD4 A-100374.1 AUUGUCAGUAUGCGUUUGA 909 A-100375.1 UCAAACGCAUACUGACAAU 954 AD-48116.1 1090 SMAD4 A-100390.1 CUGUGGCUUCCACAAGUCA 910 A-100391.1 UGACUUGUGGAAGCCACAG 955 AD-48117.1 1257 SMAD4 A-100406.1 GCACCAUACACACCUAAUU 911 A-100407.1 AAUUAGGUGUGUAUGGUGC 956 AD-48118.1 1601 SMAD4 A-100422.1 GUUGGAAUGUAAAGGUGAA 912 A-100423.1 UUCACCUUUACAUUCCAAC 957 AD-48119.1 3013 SMAD4 A-100438.1 UAAAUACUGUGCAGAAUAA 913 A-100439.1 UUAUUCUGCACAGUAUUUA 958 AD-48120.1 659 SMAD4 A-100360.1 CAUACAGAGAACAUUGGAU 914 A-100361.1 AUCCAAUGUUCUCUGUAUG 959 AD-48121.1 783 SMAD4 A-100376.1 UGUCAGUAUGCGUUUGACU 915 A-100377.1 AGUCAAACGCAUACUGACA 960 AD-48122.1 1137 SMAD4 A-100392.1 AGUGAAGGACUGUUGCAGA 916 A-100393.1 UCUGCAACAGUCCUUCACU 961 AD-48123.1 1262 SMAD4 A-100408.1 AUACACACCUAAUUUGCCU 917 A-100409.1 AGGCAAAUUAGGUGUGUAU 962 AD-48124.1 1633 SMAD4 A-100424.1 UCAGGUGCCUUAGUGACCA 918 A-100425.1 UGGUCACUAAGGCACCUGA 963 AD-48125.1 698 SMAD4 A-100362.1 UCGGAAAGGAUUUCCUCAU 919 A-100363.1 AUGAGGAAAUCCUUUCCGA 964 AD-48126.1 784 SMAD4 A-100378.1 GUCAGUAUGCGUUUGACUU 920 A-100379.1 AAGUCAAACGCAUACUGAC 965 AD-48126.2 784 SMAD4 A-100378.2 GUCAGUAUGCGUUUGACUU 920 A-100379.2 AAGUCAAACGCAUACUGAC 965 AD-48127.1 1207 SMAD4 A-100394.1 CAGCUACUUACCAUCAUAA 921 A-100395.1 UUAUGAUGGUAAGUAGCUG 966 AD-48128.1 1272 SMAD4 A-100410.1 AAUUUGCCUCACCACCAAA 922 A-100411.1 UUUGGUGGUGAGGCAAAUU 967 AD-48129.1 1650 SMAD4 A-100426.1 CACGCGGUCUUUGUACAGA 923 A-100427.1 UCUGUACAAAGACCGCGUG 968 AD-48130.1 771 SMAD4 A-100364.1 CAUGUUAAAUAUUGUCAGU 924 A-100365.1 ACUGACAAUAUUUAACAUG 969 AD-48131.1 791 SMAD4 A-100380.1 UGCGUUUGACUUAAAAUGU 925 A-100381.1 ACAUUUUAAGUCAAACGCA 970 AD-48132.1 1209 SMAD4 A-100396.1 GCUACUUACCAUCAUAACA 926 A-100397.1 UGUUAUGAUGGUAAGUAGC 971 AD-48133.1 1273 SMAD4 A-100412.1 AUUUGCCUCACCACCAAAA 927 A-100413.1 UUUUGGUGGUGAGGCAAAU 972 AD-48134.1 1652 SMAD4 A-100428.1 CGCGGUCUUUGUACAGAGU 928 A-100429.1 ACUCUGUACAAAGACCGCG 973 Note that an overhang (e.g. TT, dTsdT) can be added to the 3′ end of any duplex.

TABLE 16 SMAD4 Modified Duplexes Table Sense SEQ SEQ 16 Duplex Oligo ID Antis Oligo ID Target Name Start Name Oligo Seq NO: Name Oligo Seq NO: SMAD4 AD-48090.1 481 A-100350.1 AuGccuGucuGAGcAuuGud 974 A-100351.1 AcAAUGCUcAGAcAGGcAUdTsdT 1020 TsdT SMAD4 AD-48091.1 772 A-100366.1 AuGuuAAAuAuuGucAGuAd 975 A-100367.1 uACUGAcAAuAUUuAAcAUdTsdT 1021 TsdT SMAD4 AD-48092.1 817 A-100382.1 ucuGuGuGAAuccAuAucAd 976 A-100383.1 UGAuAUGGAUUcAcAcAGAdTsdT 1022 TsdT SMAD4 AD-48093.1 1212 A-100398.1 AcuuAccAucAuAAcAGcAd 977 A-100399.1 UGCUGUuAUGAUGGuAAGUdTsdT 1023 TsdT SMAD4 AD-48094.1 1351 A-100414.1 AcAAuGAGcuuGcAuuccAd 978 A-100415.1 UGGAAUGcAAGCUcAUUGUdTsdT 1024 TsdT SMAD4 AD-48095.1 1712 A-100430.1 uGuucAuAAGAucuAcccAd 979 A-100431.1 UGGGuAGAUCUuAUGAAcAdTsdT 1025 TsdT SMAD4 AD-48096.1 590 A-100352.1 AAAAGAuGAAuuGGAuucud 980 A-100353.1 AGAAUCcAAUUcAUCUUUUdTsdT 1026 TsdT SMAD4 AD-48097.1 773 A-100368.1 uGuuAAAuAuuGucAGuAud 981 A-100369.1 AuACUGAcAAuAUUuAAcAdTsdT 1027 TsdT SMAD4 AD-48098.1 819 A-100384.1 uGuGuGAAuccAuAucAcud 982 A-100385.1 AGUGAuAUGGAUUcAcAcAdTsdT 1028 TsdT SMAD4 AD-48099.1 1232 A-100400.1 uAccAccuGGAcuGGAAGud 983 A-100401.1 ACUUCcAGUCcAGGUGGuAdTsdT 1029 TsdT SMAD4 AD-48100.1 1362 A-100416.1 GcAuuccAGccucccAuuud 984 A-100417.1 AAAUGGGAGGCUGGAAUGCdTsdT 1030 TsdT SMAD4 AD-48101.1 1713 A-100432.1 GuucAuAAGAucuAcccAAd 985 A-100433.1 UUGGGuAGAUCUuAUGAACdTsdT 1031 TsdT SMAD4 AD-48102.1 602 A-100354.1 GGAuucuuuAAuAAcAGcud 986 A-100355.1 AGCUGUuAUuAAAGAAUCCdTsdT 1032 TsdT SMAD4 AD-48103.1 777 A-100370.1 AAAuAuuGucAGuAuGcGud 987 A-100371.1 ACGcAuACUGAcAAuAUUUdTsdT 1033 TsdT SMAD4 AD-48104.1 820 A-100386.1 GuGuGAAuccAuAucAcuAd 988 A-100387.1 uAGUGAuAUGGAUUcAcACdTsdT 1034 TsdT SMAD4 AD-48105.1 1238 A-100402.1 cuGGAcuGGAAGuAGGAcud 989 A-100403.1 AGUCCuACUUCcAGUCcAGdTsdT 1035 TsdT SMAD4 AD-48106.1 1367 A-100418.1 ccAGccucccAuuuccAAud 990 A-100419.1 AUUGGAAAUGGGAGGCUGGdTsdT 1036 TsdT SMAD4 AD-48107.1 2816 A-100434.1 uAuuucuAGGcAcAAGGuud 991 A-100435.1 AACCUUGUGCCuAGAAAuAdTsdT 1037 TsdT SMAD4 AD-48108.1 608 A-100356.1 uuuAAuAAcAGcuAuAAcud 992 A-100357.1 AGUuAuAGCUGUuAUuAAAdTsdT 1038 TsdT SMAD4 AD-48109.1 778 A-100372.1 AAuAuuGucAGuAuGcGuud 993 A-100373.1 AACGcAuACUGAcAAuAUUdTsdT 1039 TsdT SMAD4 AD-48110.1 861 A-100388.1 AuuGAucucucAGGAuuAAd 994 A-100389.1 UuAAUCCUGAGAGAUcAAUdTsdT 1040 TsdT SMAD4 AD-48111.1 1250 A-100404.1 uAGGAcuGcAccAuAcAcAd 995 A-100405.1 UGUGuAUGGUGcAGUCCuAdTsdT 1041 TsdT SMAD4 AD-48112.1 1370 A-100420.1 GccucccAuuuccAAucAud 996 A-100421.1 AUGAUUGGAAAUGGGAGGCdTsdT 1042 TsdT SMAD4 AD-48113.1 2984 A-100436.1 AAuAuuuuGGAAAcuGcuAd 997 A-100437.1 uAGcAGUUUCcAAAAuAUUdTsdT 1043 TsdT SMAD4 AD-48114.1 611 A-100358.1 AAuAAcAGcuAuAAcuAcAd 998 A-100359.1 UGuAGUuAuAGCUGUuAUUdTsdT 1044 TsdT SMAD4 AD-48115.1 781 A-100374.1 AuuGucAGuAuGcGuuuGAd 999 A-100375.1 UcAAACGcAuACUGAcAAUdTsdT 1045 TsdT SMAD4 AD-48116.1 1090 A-100390.1 cuGuGGcuuccAcAAGucAd 1000 A-100391.1 UGACUUGUGGAAGCcAcAGdTsdT 1046 TsdT SMAD4 AD-48117.1 1257 A-100406.1 GcAccAuAcAcAccuAAuud 1001 A-100407.1 AAUuAGGUGUGuAUGGUGCdTsdT 1047 TsdT SMAD4 AD-48118.1 1601 A-100422.1 GuuGGAAuGuAAAGGuGAAd 1002 A-100423.1 UUcACCUUuAcAUUCcAACdTsdT 1048 TsdT SMAD4 AD-48119.1 3013 A-100438.1 uAAAuAcuGuGcAGAAuAAd 1003 A-100439.1 UuAUUCUGcAcAGuAUUuAdTsdT 1049 TsdT SMAD4 AD-48120.1 659 A-100360.1 cAuAcAGAGAAcAuuGGAud 1004 A-100361.1 AUCcAAUGUUCUCUGuAUGdTsdT 1050 TsdT SMAD4 AD-48121.1 783 A-100376.1 uGucAGuAuGcGuuuGAcud 1005 A-100377.1 AGUcAAACGcAuACUGAcAdTsdT 1051 TsdT SMAD4 AD-48122.1 1137 A-100392.1 AGuGAAGGAcuGuuGcAGAd 1006 A-100393.1 UCUGcAAcAGUCCUUcACUdTsdT 1052 TsdT SMAD4 AD-48123.1 1262 A-100408.1 AuAcAcAccuAAuuuGccud 1007 A-100409.1 AGGcAAAUuAGGUGUGuAUdTsdT 1053 TsdT SMAD4 AD-48124.1 1633 A-100424.1 ucAGGuGccuuAGuGAccAd 1008 A-100425.1 UGGUcACuAAGGcACCUGAdTsdT 1054 TsdT SMAD4 AD-48125.1 698 A-100362.1 ucGGAAAGGAuuuccucAud 1009 A-100363.1 AUGAGGAAAUCCUUUCCGAdTsdT 1055 TsdT SMAD4 AD-48126.1 784 A-100378.1 GucAGuAuGcGuuuGAcuud 1010 A-100379.1 AAGUcAAACGcAuACUGACdTsdT 1056 TsdT SMAD4 AD-48126.2 784 A-100378.2 GucAGuAuGcGuuuGAcuud 1011 A-100379.2 AAGUcAAACGcAuACUGACdTsdT 1057 TsdT SMAD4 AD-48127.1 1207 A-100394.1 cAGcuAcuuAccAucAuAAd 1012 A-100395.1 UuAUGAUGGuAAGuAGCUGdTsdT 1058 TsdT SMAD4 AD-48128.1 1272 A-100410.1 AAuuuGccucAccAccAAAd 1013 A-100411.1 UUUGGUGGUGAGGcAAAUUdTsdT 1059 TsdT SMAD4 AD-48129.1 1650 A-100426.1 cAcGcGGucuuuGuAcAGAd 1014 A-100427.1 UCUGuAcAAAGACCGCGUGdTsdT 1060 TsdT SMAD4 AD-48130.1 771 A-100364.1 cAuGuuAAAuAuuGucAGud 1015 A-100365.1 ACUGAcAAuAUUuAAcAUGdTsdT 1061 TsdT SMAD4 AD-48131.1 791 A-100380.1 uGcGuuuGAcuuAAAAuGud 1016 A-100381.1 AcAUUUuAAGUcAAACGcAdTsdT 1062 TsdT SMAD4 AD-48132.1 1209 A-100396.1 GcuAcuuAccAucAuAAcAd 1017 A-100397.1 UGUuAUGAUGGuAAGuAGCdTsdT 1063 TsdT SMAD4 AD-48133.1 1273 A-100412.1 AuuuGccucAccAccAAAAd 1018 A-100413.1 UUUUGGUGGUGAGGcAAAUdTsdT 1064 TsdT SMAD4 AD-48134.1 1652 A-100428.1 cGcGGucuuuGuAcAGAGud 1019 A-100429.1 ACUCUGuAcAAAGACCGCGdTsdT 1065 TsdT It should be noted that unmodified versions of each of the modified sequences shown are included within the scope of the invention.

TABLE 17 NEO1 Unmodified Duplexes Table 17 Duplex Sense SEQ ID Antis Oligo SEQ ID Target Name Start OligoName Trans Seq NO: Name Trans Seq NO: NEO1 AD-48273.1 4618 A-100622.1 CUCCGAGAGUAGCUAUGAA 1066 A-100623.1 UUCAUAGCUACUCUCGGAG 1110 NEO1 AD-48287.1 546 A-100564.1 GCUCUUCUGUUAUAUUAAA 1067 A-100565.1 UUUAAUAUAACAGAAGAGC 1111 NEO1 AD-48274.1 5060 A-100638.1 GAGUGUAGACAUUGGCAUU 1068 A-100639.1 AAUGCCAAUGUCUACACUC 1112 NEO1 AD-48309.1 4778 A-100634.1 GGAAUUGUACAGAGUACGA 1069 A-100635.1 UCGUACUCUGUACAAUUCC 1113 NEO1 AD-48309.2 4778 A-100634.2 GGAAUUGUACAGAGUACGA 1070 A-100635.2 UCGUACUCUGUACAAUUCC 1114 NEO1 AD-48297.1 4674 A-100630.1 GACUAAUGAAGGACCUAAA 1071 A-100631.1 UUUAGGUCCUUCAUUAGUC 1115 NEO1 AD-48296.1 4495 A-100614.1 GAACCAUCACAUUCACUCA 1072 A-100615.1 UGAGUGAAUGUGAUGGUUC 1116 NEO1 AD-48280.1 5062 A-100640.1 GUGUAGACAUUGGCAUUUA 1073 A-100641.1 UAAAUGCCAAUGUCUACAC 1117 NEO1 AD-48275.1 535 A-100560.1 CUCAGUUAGAGGCUCUUCU 1074 A-100561.1 AGAAGAGCCUCUAACUGAG 1118 NEO1 AD-48276.1 1283 A-100576.1 GAUGAUGCUGGGACUUAUU 1075 A-100577.1 AAUAAGUCCCAGCAUCAUC 1119 NEO1 AD-48269.1 533 A-100558.1 CUCUCAGUUAGAGGCUCUU 1076 A-100559.1 AAGAGCCUCUAACUGAGAG 1120 NEO1 AD-48286.1 5069 A-100642.1 CAUUGGCAUUUAUGUACAA 1077 A-100643.1 UUGUACAUAAAUGCCAAUG 1121 NEO1 AD-48299.1 791 A-100568.1 GCAGGUCUUCCAAGAUUUA 1078 A-100569.1 UAAAUCUUGGAAGACCUGC 1122 NEO1 AD-48295.1 2602 A-100598.1 CCUAGAUGAAACUCGUGUU 1079 A-100599.1 AACACGAGUUUCAUCUAGG 1123 NEO1 AD-48292.1 5329 A-100644.1 GCAUUGCUGUUUGUAAGCU 1080 A-100645.1 AGCUUACAAACAGCAAUGC 1124 NEO1 AD-48293.1 686 A-100566.1 GUGGUGCAUUCCAAACACA 1081 A-100567.1 UGUGUUUGGAAUGCACCAC 1125 NEO1 AD-48288.1 1535 A-100580.1 GUUUUGGGUCUGGUGAAAU 1082 A-100581.1 AUUUCACCAGACCCAAAAC 1126 NEO1 AD-48307.1 4066 A-100602.1 GCCUGUGAUUAGUGCCCAU 1083 A-100603.1 AUGGGCACUAAUCACAGGC 1127 NEO1 AD-48270.1 1282 A-100574.1 GGAUGAUGCUGGGACUUAU 1084 A-100575.1 AUAAGUCCCAGCAUCAUCC 1128 NEO1 AD-48300.1 1949 A-100584.1 GCUCAAAAUAAGCAUGGCU 1085 A-100585.1 AGCCAUGCUUAUUUUGAGC 1129 NEO1 AD-48306.1 2227 A-100586.1 CCGAGUGGUGGCCUACAAU 1086 A-100587.1 AUUGUAGGCCACCACUCGG 1130 NEO1 AD-48315.1 5059 A-100636.1 GGAGUGUAGACAUUGGCAU 1087 A-100637.1 AUGCCAAUGUCUACACUCC 1131 NEO1 AD-48291.1 4673 A-100628.1 GGACUAAUGAAGGACCUAA 1088 A-100629.1 UUAGGUCCUUCAUUAGUCC 1132 NEO1 AD-48272.1 4096 A-100606.1 CCUCGAUAACCCUCACCAU 1089 A-100607.1 AUGGUGAGGGUUAUCGAGG 1133 NEO1 AD-48271.1 2273 A-100590.1 GAUGUUGCUGUUCGAACAU 1090 A-100591.1 AUGUUCGAACAGCAACAUC 1134 NEO1 AD-48294.1 1540 A-100582.1 GGGUCUGGUGAAAUCAGAU 1091 A-100583.1 AUCUGAUUUCACCAGACCC 1135 NEO1 AD-48278.1 4123 A-100608.1 CUCCAGCAGCCUCGCUUCU 1092 A-100609.1 AGAAGCGAGGCUGCUGGAG 1136 NEO1 AD-48277.1 2312 A-100592.1 GCUCCUCAGAAUCUGUCCU 1093 A-100593.1 AGGACAGAUUCUGAGGAGC 1137 NEO1 AD-48313.1 4086 A-100604.1 CCAUCCAUUCCCUCGAUAA 1094 A-100605.1 UUAUCGAGGGAAUGGAUGG 1138 NEO1 AD-48289.1 2484 A-100596.1 CUCAGCUGAUUGAAGGUCU 1095 A-100597.1 AGACCUUCAAUCAGCUGAG 1139 NEO1 AD-48290.1 4179 A-100612.1 GGCCCAUUGGCACAUCCAU 1096 A-100613.1 AUGGAUGUGCCAAUGGGCC 1140 NEO1 AD-48284.1 4174 A-100610.1 CCCAUGGCCCAUUGGCACA 1097 A-100611.1 UGUGCCAAUGGGCCAUGGG 1141 NEO1 AD-48298.1 6731 A-100646.1 GUACCUGGAUACUGCCACA 1098 A-100647.1 UGUGGCAGUAUCCAGGUAC 1142 NEO1 AD-48311.1 852 A-100572.1 CAAUUCUGAAUUGUGAAGU 1099 A-100573.1 ACUUCACAAUUCAGAAUUG 1143 NEO1 AD-48285.1 4664 A-100626.1 CACCUGGAAGGACUAAUGA 1100 A-100627.1 UCAUUAGUCCUUCCAGGUG 1144 NEO1 AD-48282.1 1448 A-100578.1 CCAACUCCAACUGUGAAGU 1101 A-100579.1 ACUUCACAGUUGGAGUUGG 1145 NEO1 AD-48302.1 4542 A-100616.1 GAAGGAGCCGGCCUCCUAU 1102 A-100617.1 AUAGGAGGCCGGCUCCUUC 1146 NEO1 AD-48303.1 4767 A-100632.1 CUUGAAAACAAGGAAUUGU 1103 A-100633.1 ACAAUUCCUUGUUUUCAAG 1147 NEO1 AD-48279.1 4629 A-100624.1 GCUAUGAACCAGAUGAGCU 1104 A-100625.1 AGCUCAUCUGGUUCAUAGC 1148 NEO1 AD-48301.1 3361 A-100600.1 GAUACAUGACUGGGUUAUU 1105 A-100601.1 AAUAACCCAGUCAUGUAUC 1149 NEO1 AD-48314.1 4613 A-100620.1 GAAGACUCCGAGAGUAGCU 1106 A-100621.1 AGCUACUCUCGGAGUCUUC 1150 NEO1 AD-48312.1 2236 A-100588.1 GGCCUACAAUAAACAUGGU 1107 A-100589.1 ACCAUGUUUAUUGUAGGCC 1151 NEO1 AD-48304.1 7033 A-100648.1 GUACACACUUGUUUGGCCU 1108 A-100649.1 AGGCCAAACAAGUGUGUAC 1152 NEO1 AD-48310.1 7043 A-100650.1 GUUUGGCCUUUUCUGUAGU 1109 A-100651.1 ACUACAGAAAAGGCCAAAC 1153 Note that an overhang (e.g. TT, dTsdT) can be added to the 3′ end of any duplex.

TABLE 18 NEO1 Modified Duplexes Table 18 SEQ SEQ Duplex Sense Oligo ID Antis Oligo ID Name Target Start Name Oligo Seq NO: Name Oligo Seq NO: AD-48273.1 NEO1 4618 A-100622.1 cuccGAGAGuAGcuAuGAAd 1154 A-100623.1 UUcAuAGCuACUCUCGGAGdTsdT 1198 TsdT AD-48287.1 NEO1 546 A-100564.1 GcucuucuGuuAuAuuAAAd 1155 A-100565.1 UUuAAuAuAAcAGAAGAGCdTsdT 1199 TsdT AD-48274.1 NEO1 5060 A-100638.1 GAGuGuAGAcAuuGGcAuud 1156 A-100639.1 AAUGCcAAUGUCuAcACUCdTsdT 1200 TsdT AD-48309.1 NEO1 4778 A-100634.1 GGAAuuGuAcAGAGuAcGAd 1157 A-100635.1 UCGuACUCUGuAcAAUUCCdTsdT 1201 TsdT AD-48309.2 NEO1 4778 A-100634.2 GGAAuuGuAcAGAGuAcGAd 1158 A-100635.2 UCGuACUCUGuAcAAUUCCdTsdT 1202 TsdT AD-48297.1 NEO1 4674 A-100630.1 GAcuAAuGAAGGAccuAAAd 1159 A-100631.1 UUuAGGUCCUUcAUuAGUCdTsdT 1203 TsdT AD-48296.1 NEO1 4495 A-100614.1 GAAccAucAcAuucAcucAd 1160 A-100615.1 UGAGUGAAUGUGAUGGUUCdTsdT 1204 TsdT AD-48280.1 NEO1 5062 A-100640.1 GuGuAGAcAuuGGcAuuuAd 1161 A-100641.1 uAAAUGCcAAUGUCuAcACdTsdT 1205 TsdT AD-48275.1 NEO1 535 A-100560.1 cucAGuuAGAGGcucuucud 1162 A-100561.1 AGAAGAGCCUCuAACUGAGdTsdT 1206 TsdT AD-48276.1 NEO1 1283 A-100576.1 GAuGAuGcuGGGAcuuAuud 1163 A-100577.1 AAuAAGUCCcAGcAUcAUCdTsdT 1207 TsdT AD-48269.1 NEO1 533 A-100558.1 cucucAGuuAGAGGcucuud 1164 A-100559.1 AAGAGCCUCuAACUGAGAGdTsdT 1208 TsdT AD-48286.1 NEO1 5069 A-100642.1 cAuuGGcAuuuAuGuAcAAd 1165 A-100643.1 UUGuAcAuAAAUGCcAAUGdTsdT 1209 TsdT AD-48299.1 NEO1 791 A-100568.1 GcAGGucuuccAAGAuuuAd 1166 A-100569.1 uAAAUCUUGGAAGACCUGCdTsdT 1210 TsdT AD-48295.1 NEO1 2602 A-100598.1 ccuAGAuGAAAcucGuGuud 1167 A-100599.1 AAcACGAGUUUcAUCuAGGdTsdT 1211 TsdT AD-48292.1 NEO1 5329 A-100644.1 GcAuuGcuGuuuGuAAGcud 1168 A-100645.1 AGCUuAcAAAcAGcAAUGCdTsdT 1212 TsdT AD-48293.1 NEO1 686 A-100566.1 GuGGuGcAuuccAAAcAcAd 1169 A-100567.1 UGUGUUUGGAAUGcACcACdTsdT 1213 TsdT AD-48288.1 NEO1 1535 A-100580.1 GuuuuGGGucuGGuGAAAud 1170 A-100581.1 AUUUcACcAGACCcAAAACdTsdT 1214 TsdT AD-48307.1 NEO1 4066 A-100602.1 GccuGuGAuuAGuGcccAud 1171 A-100603.1 AUGGGcACuAAUcAcAGGCdTsdT 1215 TsdT AD-48270.1 NEO1 1282 A-100574.1 GGAuGAuGcuGGGAcuuAud 1172 A-100575.1 AuAAGUCCcAGcAUcAUCCdTsdT 1216 TsdT AD-48300.1 NEO1 1949 A-100584.1 GcucAAAAuAAGcAuGGcud 1173 A-100585.1 AGCcAUGCUuAUUUUGAGCdTsdT 1217 TsdT AD-48306.1 NEO1 2227 A-100586.1 ccGAGuGGuGGccuAcAAud 1174 A-100587.1 AUUGuAGGCcACcACUCGGdTsdT 1218 TsdT AD-48315.1 NEO1 5059 A-100636.1 GGAGuGuAGAcAuuGGcAud 1175 A-100637.1 AUGCcAAUGUCuAcACUCCdTsdT 1219 TsdT AD-48291.1 NEO1 4673 A-100628.1 GGAcuAAuGAAGGAccuAAd 1176 A-100629.1 UuAGGUCCUUcAUuAGUCCdTsdT 1220 TsdT AD-48272.1 NEO1 4096 A-100606.1 ccucGAuAAcccucAccAud 1177 A-100607.1 AUGGUGAGGGUuAUCGAGGdTsdT 1221 TsdT AD-48271.1 NEO1 2273 A-100590.1 GAuGuuGcuGuucGAAcAud 1178 A-100591.1 AUGUUCGAAcAGcAAcAUCdTsdT 1222 TsdT AD-48294.1 NEO1 1540 A-100582.1 GGGucuGGuGAAAucAGAud 1179 A-100583.1 AUCUGAUUUcACcAGACCCdTsdT 1223 TsdT AD-48278.1 NEO1 4123 A-100608.1 cuccAGcAGccucGcuucud 1180 A-100609.1 AGAAGCGAGGCUGCUGGAGdTsdT 1224 TsdT AD-48277.1 NEO1 2312 A-100592.1 GcuccucAGAAucuGuccud 1181 A-100593.1 AGGAcAGAUUCUGAGGAGCdTsdT 1225 TsdT AD-48313.1 NEO1 4086 A-100604.1 ccAuccAuucccucGAuAAd 1182 A-100605.1 UuAUCGAGGGAAUGGAUGGdTsdT 1226 TsdT AD-48289.1 NEO1 2484 A-100596.1 cucAGcuGAuuGAAGGucud 1183 A-100597.1 AGACCUUcAAUcAGCUGAGdTsdT 1227 TsdT AD-48290.1 NEO1 4179 A-100612.1 GGcccAuuGGcAcAuccAud 1184 A-100613.1 AUGGAUGUGCcAAUGGGCCdTsdT 1228 TsdT AD-48284.1 NEO1 4174 A-100610.1 cccAuGGcccAuuGGcAcAd 1185 A-100611.1 UGUGCcAAUGGGCcAUGGGdTsdT 1229 TsdT AD-48298.1 NEO1 6731 A-100646.1 GuAccuGGAuAcuGccAcAd 1186 A-100647.1 UGUGGcAGuAUCcAGGuACdTsdT 1230 TsdT AD-48311.1 NEO1 852 A-100572.1 cAAuucuGAAuuGuGAAGud 1187 A-100573.1 ACUUcAcAAUUcAGAAUUGdTsdT 1231 TsdT AD-48285.1 NEO1 4664 A-100626.1 cAccuGGAAGGAcuAAuGAd 1188 A-100627.1 UcAUuAGUCCUUCcAGGUGdTsdT 1232 TsdT AD-48282.1 NEO1 1448 A-100578.1 ccAAcuccAAcuGuGAAGud 1189 A-100579.1 ACUUcAcAGUUGGAGUUGGdTsdT 1233 TsdT AD-48302.1 NEO1 4542 A-100616.1 GAAGGAGccGGccuccuAud 1190 A-100617.1 AuAGGAGGCCGGCUCCUUCdTsdT 1234 TsdT AD-48303.1 NEO1 4767 A-100632.1 cuuGAAAAcAAGGAAuuGud 1191 A-100633.1 AcAAUUCCUUGUUUUcAAGdTsdT 1235 TsdT AD-48279.1 NEO1 4629 A-100624.1 GcuAuGAAccAGAuGAGcud 1192 A-100625.1 AGCUcAUCUGGUUcAuAGCdTsdT 1236 TsdT AD-48301.1 NEO1 3361 A-100600.1 GAuAcAuGAcuGGGuuAuud 1193 A-100601.1 AAuAACCcAGUcAUGuAUCdTsdT 1237 TsdT AD-48314.1 NEO1 4613 A-100620.1 GAAGAcuccGAGAGuAGcud 1194 A-100621.1 AGCuACUCUCGGAGUCUUCdTsdT 1238 TsdT AD-48312.1 NEO1 2236 A-100588.1 GGccuAcAAuAAAcAuGGud 1195 A-100589.1 ACcAUGUUuAUUGuAGGCCdTsdT 1239 TsdT AD-48304.1 NEO1 7033 A-100648.1 GuAcAcAcuuGuuuGGccud 1196 A-100649.1 AGGCcAAAcAAGUGUGuACdTsdT 1240 TsdT AD-48310.1 NEO1 7043 A-100650.1 GuuuGGccuuuucuGuAGud 1197 A-100651.1 ACuAcAGAAAAGGCcAAACdTsdT 1241 TsdT It should be noted that unmodified versions of each of the modified sequences shown are included within the scope of the invention.

TABLE 19 SMAD4 Percent Inhibition Table 19 0.1 nM (% message 10 nM (% message remaining) remaining) Target ID Avg SD Avg SD SMAD4 AD-48090 93.6 4.6 54.6 5.6 SMAD4 AD-48091 98.0 5.0 60.8 3.3 SMAD4 AD-48092 64.6 0.2 47.8 12.0 SMAD4 AD-48093 96.4 3.5 45.0 8.0 SMAD4 AD-48094 41.3 0.4 16.3 5.4 SMAD4 AD-48095 64.4 9.1 30.0 0.5 SMAD4 AD-48096 70.5 1.8 44.3 0.7 SMAD4 AD-48097 19.6 2.5 10.0 1.6 SMAD4 AD-48098 60.6 2.1 29.9 1.8 SMAD4 AD-48099 83.1 5.5 57.2 2.5 SMAD4 AD-48100 73.4 1.6 50.4 1.2 SMAD4 AD-48101 34.8 3.7 23.3 0.9 SMAD4 AD-48102 66.9 3.2 35.5 4.0 SMAD4 AD-48103 43.4 8.9 20.5 1.0 SMAD4 AD-48104 53.5 6.2 20.5 1.5 SMAD4 AD-48105 59.4 0.6 23.8 3.0 SMAD4 AD-48106 68.4 0.3 40.7 0.5 SMAD4 AD-48107 40.9 3.0 26.9 6.6 SMAD4 AD-48108 21.4 4.3 15.2 4.3 SMAD4 AD-48109 19.2 4.1 12.1 5.2 SMAD4 AD-48110 46.1 6.4 28.4 8.1 SMAD4 AD-48111 75.9 5.1 68.4 12.1 SMAD4 AD-48112 75.8 2.0 72.0 10.4 SMAD4 AD-48113 87.4 11.1 72.0 2.7 SMAD4 AD-48114 36.7 3.2 19.2 0.6 SMAD4 AD-48115 35.8 2.8 18.6 1.9 SMAD4 AD-48116 37.1 0.2 13.6 0.9 SMAD4 AD-48117 32.1 0.8 21.1 1.4 SMAD4 AD-48118 26.3 1.1 16.4 5.5 SMAD4 AD-48119 52.1 4.7 38.8 4.5 SMAD4 AD-48120 32.1 1.0 13.9 1.4 SMAD4 AD-48121 24.3 2.3 10.0 0.7 SMAD4 AD-48122 31.4 5.7 14.6 1.7 SMAD4 AD-48123 27.4 1.5 14.6 2.2 SMAD4 AD-48124 76.8 7.0 55.8 1.0 SMAD4 AD-48125 28.7 2.6 12.6 0.9 SMAD4 AD-48126 18.9 1.9 7.4 0.2 SMAD4 AD-48127 67.5 3.7 39.6 4.0 SMAD4 AD-48128 69.8 4.0 44.5 6.1 SMAD4 AD-48129 73.1 3.4 42.6 2.0 SMAD4 AD-48130 18.1 0.1 12.5 0.9 SMAD4 AD-48131 44.4 0.5 17.1 4.1 SMAD4 AD-48132 47.7 0.1 22.6 5.4 SMAD4 AD-48133 57.1 1.8 30.4 10.0 SMAD4 AD-48134 86.3 18.0 42.4 9.2

TABLE 20 NEO1 Percent Inhibition Table 20 0.1 nM (% message 10 nM (% message remaining) remaining) Target ID Avg SD Avg SD Neo1 AD-48273 8.4 0.7 9.3 3.6 Neo1 AD-48287 8.6 5.5 10.4 2.7 Neo1 AD-48274 11.0 4.3 6.5 2.2 Neo1 AD-48309 11.0 0.6 6.5 0.8 Neo1 AD-48297 12.9 1.6 8.7 2.4 Neo1 AD-48296 14.0 6.9 7.6 0.1 Neo1 AD-48280 15.6 3.7 10.8 7.1 Neo1 AD-48275 17.7 6.9 8.4 3.8 Neo1 AD-48276 17.8 9.8 6.8 2.0 Neo1 AD-48269 18.4 5.5 10.9 4.4 Neo1 AD-48286 21.4 3.8 11.7 2.1 Neo1 AD-48299 22.9 3.0 11.7 3.8 Neo1 AD-48295 36.2 16.3 12.0 0.4 Neo1 AD-48292 44.3 6.8 14.8 2.2 Neo1 AD-48293 44.7 14.1 30.7 1.8 Neo1 AD-48288 46.9 21.9 31.9 5.2 Neo1 AD-48307 50.2 10.1 16.8 3.9 Neo1 AD-48270 54.2 10.6 65.9 42.5 Neo1 AD-48300 54.6 0.1 18.6 1.9 Neo1 AD-48306 56.6 19.5 16.0 2.3 Neo1 AD-48315 57.7 3.5 17.6 8.0 Neo1 AD-48291 60.2 12.0 35.2 6.4 Neo1 AD-48272 61.9 4.1 25.2 3.2 Neo1 AD-48271 62.6 4.7 35.4 6.8 Neo1 AD-48294 62.6 2.1 22.7 11.0 Neo1 AD-48278 62.9 13.8 27.4 1.3 Neo1 AD-48277 63.2 20.4 26.1 2.6 Neo1 AD-48313 68.2 18.7 43.7 2.2 Neo1 AD-48289 70.6 15.3 53.6 12.3 Neo1 AD-48290 73.8 22.6 60.0 3.9 Neo1 AD-48284 74.0 19.2 106.9 43.7 Neo1 AD-48298 76.0 6.9 75.4 19.3 Neo1 AD-48311 77.9 22.6 23.5 11.1 Neo1 AD-48285 81.0 11.5 65.3 14.2 Neo1 AD-48282 82.7 16.3 47.0 15.3 Neo1 AD-48302 83.3 3.1 32.8 6.7 Neo1 AD-48303 85.0 16.3 29.2 7.7 Neo1 AD-48279 90.2 6.2 51.7 14.3 Neo1 AD-48301 91.8 8.5 88.2 11.1 Neo1 AD-48314 96.7 16.7 128.8 37.8 Neo1 AD-48312 107.9 30.0 94.0 27.8 Neo1 AD-48304 111.6 22.3 91.6 33.2 Neo1 AD-48310 118.0 36.4 118.8 29.0

TABLE 21 BMP6 Duplexes Table 21 duplexName sOligoSeq SEQ ID NO asOligoSeq SEQ ID NO Set AD-47955.1 GcAGAAuuccGcAu 1242 UGuAGAUGCGGAAUU 1300 humanRhesus cuAcAdTsdT CUGCdTsdT AD-47957.1 GAAuAuGGuuGuA 1243 AGCUCUuAcAACcAuA 1301 humanRhesus AGAGcudTsdT UUCdTsdT AD-47966.1 cucuucAuGcuGGA 1244 AcAGAUCcAGcAUGAA 1302 humanRhesus ucuGudTsdT GAGdTsdT AD-47989.1 GAGuucAAGuucA 1245 AuAAGUUGAACUUGA 1303 humanRhesus AcuuAudTsdT ACUCdTsdT AD-47993.1 cGuGAGuAGuuGu 1246 AGACcAAcAACuACUc 1304 humanRhesus uGGucudTsdT ACGdTsdT AD-47960.1 GGAcGAccAuGAG 1247 UuAUCUCUcAUGGUC 1305 humanRhesus AGAuAAdTsdT GUCCdTsdT AD-47997.1 ccuAGAuuAcAucu 1248 AAGGcAGAUGuAAUC 1306 humanRhesus GccuudTsdT uAGGdTsdT AD-47985.1 cAAcAGAGucGuA 1249 AGCGAUuACGACUCU 1307 humanRhesus AucGcudTsdT GUUGdTsdT AD-47983.1 GucuAucAAAGGu 1250 AAAUCuACCUUUGAu 1308 humanRhesus AGAuuudTsdT AGACdTsdT AD-47954.1 cccGGAcGAccAuG 1251 UCUCUcAUGGUCGUC 1309 humanRhesus AGAGAdTsdT CGGGdTsdT AD-47972.1 cucGucAGcGAcAc 1252 UUGUGGUGUCGCUG 1310 humanRhesus cAcAAdTsdT ACGAGdTsdT AD-47981.1 ccAcuAAcucGAAA 1253 UCUGGUUUCGAGUuA 1311 humanRhesus ccAGAdTsdT GUGGdTsdT AD-47982.1 GuAAAuGAcGuGA 1254 AACuACUcACGUcAUU 1312 humanRhesus GuAGuudTsdT uACdTsdT AD-47987.1 GGGGAcAcAcAuuc 1255 AGGcAGAAUGUGUGU 1313 humanRhesus uGccudTsdT CCCCdTsdT AD-47994.1 cGGcuGcAGAAuuc 1256 AUGCGGAAUUCUGcA 1314 humanRhesus cGcAudTsdT GCCGdTsdT AD-47973.1 GccGAcAAcAGAG 1257 UuACGACUCUGUUGU 1315 humanRhesus ucGuAAdTsdT CGGCdTsdT AD-47975.1 GGAuGccAcuAAcu 1258 UUUCGAGUuAGUGGc 1316 humanRhesus cGAAAdTsdT AUCCdTsdT AD-47979.1 ccGAcAAcAGAGuc 1259 AUuACGACUCUGUUG 1317 humanRhesus GuAAudTsdT UCGGdTsdT AD-47996.1 cGuGcuGuGcGccA 1260 UuAGUUGGCGcAcAGc 1318 humanRhesus AcuAAdTsdT ACGdTsdT AD-47968.1 cAAcGcAcAcAuGA 1261 UGcAUUcAUGUGUGC 1319 humanRhesus AuGcAdTsdT GUUGdTsdT AD-47977.1 cuGucuAucAAAGG 1262 AUCuACCUUUGAuAG 1320 humanRhesus uAGAudTsdT AcAGdTsdT AD-47995.1 GcGGGucuccAGu 1263 UGAAGcACUGGAGAC 1321 humanRhesus GcuucAdTsdT CCGCdTsdT AD-47959.1 cuGAGuuuGGAuG 1264 uAcAGAcAUCcAAACUc 1322 humanRhesus ucuGuAdTsdT AGdTsdT AD-47962.1 cAGGAAGcAuGAG 1265 AuAcAGCUcAUGCUUC 1323 humanRhesus cuGuAudTsdT CUGdTsdT AD-47967.1 GGcuGGcuGGAAu 1266 UGUcAAAUUCcAGCcA 1324 humanRhesus uuGAcAdTsdT GCCdTsdT AD-47986.1 GcAGAccuuGGuuc 1267 AAGGUGAACcAAGGU 1325 humanRhesus AccuudTsdT CUGCdTsdT AD-47988.1 GAcGuGAGuAGuu 1268 ACcAAcAACuACUcACG 1326 humanRhesus GuuGGudTsdT UCdTsdT AD-47990.1 cAGAGucGuAAuc 1269 uAGAGCGAUuACGAC 1327 humanRhesus GcucuAdTsdT UCUGdTsdT AD-47991.1 cAGAccuuGGuucA 1270 uAAGGUGAACcAAGG 1328 humanRhesus ccuuAdTsdT UCUGdTsdT AD-47956.1 GGGucuccAGuGcu 1271 UCUGAAGcACUGGAG 1329 humanRhesus ucAGAdTsdT ACCCdTsdT AD-47974.1 GcAcAcAuGAAuGc 1272 UGGUUGcAUUcAUGU 1330 humanRhesus AAccAdTsdT GUGCdTsdT AD-47976.1 GGuAAAuGAcGuG 1273 ACuACUcACGUcAUUu 1331 humanRhesus AGuAGudTsdT ACCdTsdT AD-47980.1 cAcAcAuGAAuGcA 1274 UUGGUUGcAUUcAUG 1332 humanRhesus AccAAdTsdT UGUGdTsdT AD-47984.1 cGAcAccAcAAAGA 1275 UGAACUCUUUGUGGU 1333 humanRhesus GuucAdTsdT GUCGdTsdT AD-47964.1 cucAuuAAuAAuuu 1276 UGAGcAAAUuAUuAA 1334 humanRhesus GcucAdTsdT UGAGdTsdT AD-47970.1 cAuuAAuAAuuuGc 1277 AGUGAGcAAAUuAUu 1335 humanRhesus ucAcudTsdT AAUGdTsdT AD-47971.1 GuAcuGucuAucAA 1278 uACCUUUGAuAGAcAG 1336 humanRhesus AGGuAdTsdT uACdTsdT AD-47963.1 cuuGuGGAuGccAc 1279 AGUuAGUGGcAUCcAc 1337 humanRhesus uAAcudTsdT AAGdTsdT AD-47965.1 GuucAGuAcuGucu 1280 UUGAuAGAcAGuACU 1338 humanRhesus AucAAdTsdT GAACdTsdT AD-47992.1 cuuGGAuuccuAGA 1281 UGuAAUCuAGGAAUCc 1339 humanRhesus uuAcAdTsdT AAGdTsdT AD-47998.1 GGucuGuAGcAAG 1282 ACUcAGCUUGCuAcAG 1340 humanRhesus cuGAGudTsdT ACCdTsdT AD-47958.1 GAuuuuAAAGGAc 1283 AAUGAGGUCCUUuAA 1341 humanRhesus cucAuudTsdT AAUCdTsdT AD-47961.1 cAAAcuuuucuuAu 1284 UGCUGAuAAGAAAAG 1342 humanRhesus cAGcAdTsdT UUUGdTsdT AD-47969.1 GuGGAuGccAcuA 1285 UCGAGUuAGUGGcAU 1343 humanRhesus AcucGAdTsdT CcACdTsdT AD-47978.1 GucAGcGAcAccAc 1286 UCUUUGUGGUGUCGC 1344 humanRhesus AAAGAdTsdT UGACdTsdT AD-47305.1 ucAuGAGcuuuGu 1287 AGGUUcAcAAAGCUcA 1345 humanRhesus GAAccudTsdT UGAdTsdT Mouse AD-47325.1 GAGAcGGcccuuAc 1288 UUGUCGuAAGGGCCG 1346 humanRhesus GAcAAdTsdT UCUCdTsdT Mouse AD-47329.1 AcGGcccuuAcGAc 1289 UGCUUGUCGuAAGGG 1347 humanRhesus AAGcAdTsdT CCGUdTsdT Mouse AD-47309.1 AAccuGGuGGAGu 1290 UGUCGuACUCcACcAG 1348 humanRhesus AcGAcAdTsdT GUUdTsdT Mouse AD-47317.1 GcAGAGAcGGcccu 1291 UCGuAAGGGCCGUCU 1349 humanRhesus uAcGAdTsdT CUGCdTsdT Mouse AD-47313.1 AccuGGuGGAGuA 1292 UUGUCGuACUCcACcA 1350 humanRhesus cGAcAAdTsdT GGUdTsdT Mouse AD-47321.1 AGAGAcGGcccuuA 1293 UGUCGuAAGGGCCGU 1351 humanRhesus cGAcAdTsdT CUCUdTsdT Mouse AD-47333.1 ucccAcucAAcGcAc 1294 AUGUGUGCGUUGAG 1352 humanRhesus AcAudTsdT UGGGAdTsdT Mouse AD-48038.1 ucAAcGAcGcGGAc 1295 ACcAUGUCCGCGUCG 1353 mouseRat AuGGudTsdT UUGAdTsdT AD-48010.1 GccAucucGGuucu 1296 AGuAAAGAACCGAGA 1354 mouseRat uuAcudTsdT UGGCdTsdT AD-48042.1 AAuGccAucucGGu 1297 AAAGAACCGAGAUGG 1355 mouseRat ucuuudTsdT cAUUdTsdT AD-48000.1 AAcGAcGcGGAcA 1298 UGACcAUGUCCGCGU 1356 mouseRat uGGucAdTsdT CGUUdTsdT AD-48004.1 AuGccAucucGGuu 1299 uAAAGAACCGAGAUG 1357 mouseRat cuuuAdTsdT GcAUdTsdT It should be noted that unmodified versions of each of the modified sequences shown are included within the scope of the invention.

Claims

1. A double-stranded ribonucleic acid (dsRNA) for inhibiting expression of hepcidin antimicrobial peptide (HAMP), wherein said dsRNA is selected from the dsRNAs listed in Table 2, 3, 4, or 5 with a start position of 382, 380, 379, or 385.

2. The dsRNA of claim 1, wherein the dsRNA consists of AD-48141, wherein the sense strand of AD-48141 is GAAcAuAGGucuuGGAAuAdTdT and the antisense strand of AD-48141 is UAuUCcAAGACCuAuGuUCdTdT.

3. A dsRNA for inhibiting expression of HAMP, wherein said dsRNA comprises a sense strand and an antisense strand, wherein each strand is 30 nucleotides in length or less, and wherein the antisense strand comprises at least 15 contiguous nucleotides differing by no more than 3 nucleotides from one of the antisense strand sequences listed in Table 2, 3, 4, or 5.

4.-13. (canceled)

14. The dsRNA of claim 3, wherein the sense strand comprises one of the sense strand sequences of Table 2, 3, 4, or 5 and the antisense strand comprises one of the antisense strand sequences of Table 2, 3, 4, or 5.

15. The dsRNA of claim 3, wherein the sense strand consists of one of the sense strand sequences of Table 2, 3, 4, or 5 and the antisense strand consists of one of the antisense strand sequences of Table 2, 3, 4, or 5.

16. (canceled)

17. The dsRNA of claim 3, wherein said dsRNA further comprises at least one modified nucleotide.

18. The dsRNA of claim 17, wherein at least one of said modified nucleotides is chosen from the group consisting of: a 2′-O-methyl modified nucleotide, a nucleotide comprising a 5′-phosphorothioate group, and a terminal nucleotide linked to a cholesteryl derivative or dodecanoic acid bisdecylamide group.

19. The dsRNA of claim 17, wherein said modified nucleotide is chosen from the group consisting of: a 2′-fluoro modified nucleotide, a 2′-fluoro modified nucleoside, a 2′-deoxy-2′-fluoro modified nucleotide, a 2′-deoxy-modified nucleotide, a locked nucleotide, an abasic nucleotide, 2′-amino-modified nucleotide, 2′-alkyl-modified nucleotide, morpholino nucleotide, a phosphoramidate, and a non-natural base comprising nucleotide.

20.-23. (canceled)

24. The dsRNA of claim 3, further comprising a ligand.

25. The dsRNA of claim 24, wherein the ligand is conjugated to the 3′ end of the sense strand of the dsRNA.

26. The dsRNA of claim 3, further comprising an N-Acetyl-Galactosamine (GalNac) conjugate.

27. The dsRNA of claim 3, wherein the dsRNA is formulated in a nucleic acid lipid particle formulation.

28. The dsRNA of claim 27, wherein the nucleic acid lipid particle formulation is selected from Table A.

29. The dsRNA of claim 27, wherein the nucleic acid lipid particle formulation comprises MC3.

30.-32. (canceled)

33. A pharmaceutical composition for inhibiting expression of a HAMP gene comprising the dsRNA of claim 3.

34.-103. (canceled)

104. A method of inhibiting HAMP expression in a cell, the method comprising:

(a) contacting the cell the dsRNA of claim 3; and
(b) maintaining the cell produced in step (a) for a time sufficient to obtain degradation of the mRNA transcript of a HAMP gene, thereby inhibiting expression of the HAMP gene in the cell.

105. (canceled)

106. The method of claim 104, wherein the HAMP expression is inhibited by at least 30% or at least 80%.

107. A method of treating a disorder associated with HAMP expression comprising administering to a subject in need of such treatment a therapeutically effective amount of the dsRNA of claim 3.

108.-110. (canceled)

111. The method of claim 107, wherein the subject has anemia, refractory anemia, anemia of chronic disease (ACD), or iron-restricted erythropoiesis.

112. (canceled)

113. The method of claim 107, wherein the dsRNA is administered at a concentration of 0.01 mg/kg-5 mg/kg bodyweight of the subject.

114.-272. (canceled)

Patent History
Publication number: 20160186172
Type: Application
Filed: Nov 12, 2015
Publication Date: Jun 30, 2016
Inventors: Brian Bettencourt (Groton, MA), Akin Akinc (Needham, MA), Alfica Sehgal (Allston, MA), Don Foster (Attleboro, MA), Stuart Milstein (Cambridge, MA), Satyanarayana Kuchimanchi (Acton, MA), Martin A. Maier (Belmont, MA), Klaus Charisse (Acton, MA), Kallanthottathil Rajeev (Wayland, MA)
Application Number: 14/939,985
Classifications
International Classification: C12N 15/113 (20060101);