HEAT SINK MODULE AND SIPHON HEAT SINK THEREOF
A heat sink module and its siphon heat sink includes a transverse pipe member, a tilt pipe member, a first vertical pipe, second vertical pipes, fins, and a working fluid. The tilt pipe member having a low section and a high section is installed at the top of the transverse pipe member. Both ends of the first vertical pipe are coupled and communicated to the transverse pipe member and the low section respectively. Both ends of each second vertical pipe are coupled and communicated to the transverse pipe member and the high section respectively. The transverse pipe member, tilt pipe member, first vertical pipe and second vertical pipes jointly form a return pipeline. Each fin is coupled to the second vertical pipe. The working fluid is filled in the return pipeline. Therefore, the effects of separating gas and liquid channels and improving the heat dissipating efficiency can be achieved.
The technical field relates to a heat sink, more particularly to a heat sink module and its siphon heat sink.
BACKGROUND OF THE INVENTIONAs science and technology advance, the computation speed of electronic components such as a central processing unit (CPU), a graphics processing unit (GPU), a north bridge chip or a random access memory (RAM) becomes increasingly faster, and the heat dissipation problem of the electronic component becomes more serious.
To enhance the heat dissipating efficiency, a siphon heat sink as shown in
However, the aforementioned siphon heat sink still has the following drawbacks. Since the process for the gas-phase working fluid C6 to flow upward and the liquid-phase working fluid C6 to flow downward is achieved by the vertical pipe C3, therefore the content contained in the vertical pipe C3 may conflict with the gas-phase working fluid C6 flowing upward and the liquid-phase working fluid C6 flowing downward. Even worse, the gas-phase and liquid-phase working fluids C6 may conflict with each other clog the vertical pipe C3, and lower the heat dissipating efficiency of the siphon heat sink.
In view of the aforementioned drawbacks of the prior art, the discloser of this disclosure based on years of experience in the industry to conduct extensive researches and experiments and finally provided a feasible solution to overcome the drawbacks of the prior art effectively.
SUMMARY OF THE INVENTIONIt is a primary objective of this disclosure to provide a heat sink module and a siphon heat sink thereof, and the principle of a liquid-phase working fluid flowing to a low position and a gas-phase working fluid flowing to a high position is used, so that the liquid-phase working fluid naturally flows towards a first vertical pipe and a gas-phase working fluid naturally flows towards a second vertical pipe, so as to achieve the effects of separating gas and liquid channels, preventing the gas-phase and liquid-phase working fluids from conflicting with each other or clogging the pipeline, and improving the heat dissipating efficiency of a siphon heat sink.
To achieve the aforementioned and other objectives, this disclosure provides a siphon heat sink, comprising: a transverse pipe member; a tilt pipe member, installed at the top of the transverse pipe member, and having a low section and a high section higher than the low section; a first vertical pipe, with both ends coupled and communicated to the transverse pipe member and the low section respectively; a plurality of second vertical pipes, with both ends coupled and communicated to the transverse pipe member and the high section respectively, such that the transverse pipe member, the tilt pipe member, the first vertical pipe and the second vertical pipes jointly forming a return pipeline; and a plurality of fins, coupled to the second vertical pipes.
To achieve the aforementioned and other objectives, this disclosure further provides a heat sink module applied to a heat generating component, and the heat sink module comprises: a casing, having a through opening, a first channel and a second channel communicated with each other and arranged in upper and lower rows respectively, and the heat generating component being contained in the first channel; a fan, installed at the second channel, and having an air outlet; and a siphon heat sink, comprising a transverse pipe member, a tilt pipe member, a first vertical pipe, a plurality of second vertical pipes, a plurality of fins and a working fluid, and the tilt pipe being installed at the top of the transverse pipe member, and the tilt pipe member having a low section and a high section higher than the low section, and both ends of the first vertical pipe being coupled and communicated to the transverse pipe member and the low section respectively, and both ends of each second vertical pipe being coupled and communicated to the transverse pipe member and the high section respectively, and the transverse pipe member, the tilt pipe member, the first vertical pipe and the second vertical pipes jointly forming a return pipeline, and each fin being coupled to the second vertical pipes, and the working fluid being filled in the return pipeline, and the transverse pipe member being configured to be corresponsive to the air outlet, and the first vertical pipe and the second vertical pipes passed and installed into the through opening, and the tilt pipe member being exposed from the through opening.
This disclosure has the following effects:
1. The first vertical pipe has a diameter greater than the diameter of each second vertical pipe, so that the liquid-phase working fluid flows to the first vertical pipe easily and the gas-phase working fluid flows to the second vertical pipe naturally, so as to improve the effect of separating the gas and liquid channels.
2. The transverse pipe member, a part of the first vertical pipes, and a part of the second vertical pipes jointly define the heating surface, and the heating surface is tilted with respect to the air outlet, so as to increase the surface area of the heating surface and improve the heat dissipating efficiency of the heat sink module.
The technical contents of this disclosure will become apparent with the detailed description of preferred embodiments accompanied with the illustration of related drawings as follows. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.
With reference to
In
In
In
Specifically, the tilt pipe member 2 includes a second joint 23 and one or two tilt pipes 24 communicated with one another, and the tilt pipe 24 tilts gradually upward in a direction away from the second joint 23, so that the low section 21 is formed at the second joint 23, and the high section 22 is formed at the tilt pipe 24. In the first to third preferred embodiments, the quantity of tilt pipes 24 is equal to two, and the two tilt pipes 24 are coupled to both ends of the second joint 23 respectively.
In
In
Specifically, the second vertical pipes 4 are arranged apart and parallel to one another, and both ends of each second vertical pipe 4 are coupled and communicated to the transverse pipe 12 and the tilt pipe 24 respectively. In addition, the first vertical pipe 3 has a diameter a greater than the diameter b of each second vertical pipe 4.
With reference to
In
In
Further, the casing 20 has a partition plate 204 installed therein, and the first channel 202 and the second channel 203 are separated and disposed on upper and lower sides of the partition plate 204 respectively, and a first vent 205 and a second vent 206 communicated with the first channel 202 and the second channel 203 respectively are formed between the casing 20 and the partition plate 204.
In
In addition, the transverse pipe member 1, a part of the first vertical pipes 3, and a part of the second vertical pipes 4 jointly define a heating surface s1, and the heating surface s1 is tilted with respect to the air outlet 301.
In addition, the tilt pipe member 2 exposed from the through opening 201, a part of the first vertical pipes 3 and a part of the second vertical pipes 4 jointly define a cooling surface s2, and the cooling surface s2 is exposed to the outside to provide a cooling effect.
With reference to
In
In addition, the first vertical pipe 3 has a diameter a greater than the diameter b of each second vertical pipe 4, so that the liquid-phase working fluid 6 flows towards the first vertical pipe 3 with a larger diameter a more easily, and flows to the second vertical pipe 4 with a smaller diameter b less easily. Since the second vertical pipe 4 does not have the liquid-phase working fluid 6, the resistance in the pipe is low, and the gas-phase working fluid 6 naturally flows towards the second vertical pipe 4 to achieve the effect of improving the effect of separating the gas and liquid channels.
In
With reference to
Therefore, the heat of the heat generating component 200 is guided to the air outlet 301 and blown out by the fan 30, and the heat is transferred to the transverse pipe member 1, and the working fluid 6 inside the transverse pipe member 1 is heated into a gas-phase working fluid 6, and the gas-phase working fluid 6 flows from each second vertical pipe 4 to the tilt pipe member 2. Since the tilt pipe member 2 is exposed from the through opening 201, and the tilt pipe member 2 is exposed to the outside, therefore the working fluid 6 of the tilt pipe member 2 can be condensed into a liquid phase, and the liquid-phase working fluid 6 returns to the transverse pipe member 1 from the first vertical pipe 3 to form a return pipeline p.
In
In summation of the description above, the heat sink module and its siphon heat sink in accordance with this disclosure are novel and inventive and comply with patent application requirements, and thus this disclosure is filed for patent application.
While this disclosure has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of this disclosure set forth in the claims.
Claims
1. A siphon heat sink, comprising:
- a transverse pipe member;
- a tilt pipe member, installed at the top of the transverse pipe member, and having a low section and a high section higher than the low section;
- a first vertical pipe, with both ends coupled and communicated to the transverse pipe member and the low section respectively;
- a plurality of second vertical pipes, each with both ends coupled and communicated to the transverse pipe member and the high section respectively, such that the transverse pipe member, the tilt pipe, the first vertical pipe and the second vertical pipes jointly forming a return pipeline; and
- a plurality of fins, coupled to the second vertical pipes.
2. The heat sink module according to claim 1, wherein the first vertical pipe has a diameter greater than the diameter of each second vertical pipe.
3. The heat sink module according to claim 2, wherein the transverse pipe member includes a first joint and a transverse pipe communicated with each other, and the tilt pipe member includes a second joint and a tilt pipe communicated with each other, and the tilt pipe gradually tilts upward in a direction away from the second joint, so that the low section is formed at the second joint, and the high section is formed at the tilt pipe, and both ends of the first vertical pipe are coupled and communicated to the first joint and the second joint respectively, and both ends of each second vertical pipe are coupled and communicated to the transverse pipe and the tilt pipe respectively.
4. The heat sink module according to claim 3, wherein the transverse pipe, the high section, and the tilt pipe come with a quantity of two each, and the two transverse pipes are coupled to both ends of the first joint respectively, and the two tilt pipes are coupled to both ends of the second joint respectively.
5. The heat sink module according to claim 3, wherein the first joint and the transverse pipe are configured linearly with respect to each other.
6. The heat sink module according to claim 3, wherein the transverse pipe tilts gradually upward in a direction away from the first joint.
7. The heat sink module according to claim 3, wherein the transverse pipe tilts gradually downward in a direction away from the first joint.
8. A heat sink module, applied to a heat generating component, comprising:
- a casing, having a through opening, and a first channel and a second channel communicated with each other, and respectively and parallelly arranged at upper and lower rows, and the heat generating component being contained in the first channel;
- a fan, installed at the second channel, and having an air outlet; and
- a siphon heat sink, comprising: a transverse pipe member; a tilt pipe member, installed at the top of the transverse pipe member, and having a low section and a high section higher than the low section; a first vertical pipe, with both ends coupled and communicated to the transverse pipe member and the low section respectively; a plurality of second vertical pipes, each with both ends coupled and communicated to the transverse pipe member and the high section respectively, such that the transverse pipe member, the tilt pipe member, the first vertical pipe and the second vertical pipes jointly forming a return pipeline; and a plurality of fins, coupled to the second vertical pipes, wherein the transverse pipe member being configured to be corresponsive to the air outlet, and the first vertical pipe and the second vertical pipes passed and installed into the through opening, and the tilt pipe member being exposed from the through opening.
9. The heat sink module according to claim 8, wherein the first vertical pipe has a diameter greater than the diameter of each second vertical pipe.
10. The heat sink module according to claim 9, wherein the transverse pipe member includes a first joint and a transverse pipe communicated with each other, and the tilt pipe member includes a second joint and a tilt pipe communicated with each other, and the tilt pipe tilts gradually upward in a direction away from the second joint, so that the low section is formed at the second joint, and the high section is formed at the tilt pipe, and both ends of the first vertical pipe are coupled and communicated to the first joint and the second joint respectively, and both ends of each second vertical pipes are coupled and communicated to the transverse pipe and the tilt pipe respectively.
11. The heat sink module according to claim 10, wherein the transverse pipe, the high section, and the tilt pipe come with a quantity of two each, and the two transverse pipes are coupled to both ends of the first joint respectively, and the two tilt pipes are coupled to both ends of the second joint respectively.
12. The heat sink module according to claim 10, wherein the first joint and the transverse pipe are configured linearly with respect to each other.
13. The heat sink module according to claim 10, wherein the transverse pipe tilts gradually upward in a direction away from the first joint.
14. The heat sink module according to claim 10, wherein the transverse pipe tilts gradually downward in a direction away from the first joint.
15. The heat sink module according to claim 8, wherein the transverse pipe member, a part of the first vertical pipe, and a part of the second vertical pipes jointly define a heating surface, and the heating surface is tilted with respect to the air outlet.
16. The heat sink module according to claim 8, wherein the casing contains a partition plate installed therein, and the first channel and the second channel are separated and disposed at the upper and lower sides of the partition plate respectively, and a first vent and a second vent communicated with the first channel and the second channel respectively are formed between the casing and the partition plate.
Type: Application
Filed: Dec 3, 2015
Publication Date: Jul 28, 2016
Inventor: Chia-Chun CHENG (NEW TAIPEI CITY)
Application Number: 14/957,794