SHOCK PALLET WITH ADJUSTABLE ANTI-TIP MECHANISM
A shock pallet assembly allows transport or movement of tall rack-mounted information handling systems (IHSes) without tipping. The shock pallet assembly can resiliently, manually or automatically retract for placement near a wall of a transport conveyance to achieve a greater shipping density of IHSes. The shock pallet assembly can include a bottom structure having a pair of parallel apertures to receive tines of a forklift. Resilient padding is positioned on a top surface of the bottom structure to provide shock dampening. A top deck is attached on top of the resilient padding and bottom structure to form a shock pallet that receives a racked-mounted IHS for transport and movement. An anti-tip mechanism is attached to a lateral side of the shock pallet to prevent tipping of the rack-mounted IHS.
Latest DELL PRODUCTS, L.P. Patents:
1. Technical Field
This disclosure generally relates to transport and movement of information handling systems (IHSes), and more particular to shock pallets for transporting and moving IHSes.
2. Description of the Related Art
As the value and use of information continue to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems (IHSs). An IHS generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes, thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, IHSs may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in IHSs allow for IHSs to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, IHSs may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
An Original Equipment Manufacturer (OEM) of rack-mounted IHSes can ship hundreds of fully integrated racks a year. Each rack can contain as much as $1 M of Information Technology (IT) hardware. Each rack can range in weight from as little as 700 lbs. to over 3800 lbs. These fully integrated racks are often shipped to an end user/customer and thus must be sufficiently robust to survive the transportation environment as the racks are shipped worldwide by truck, plane and/or boat. A shock pallet is the primary protection provided for the IT hardware in the rack. In addition to providing shock dampening, the width of the shock pallet needs to be wide enough to prevent tipping. For example, to maintain the tip safety factor in packaging for a tall 52 U rack, the width needs to increase significantly over that for a 48 U rack. This increased width reduces by up to 50% the overseas shipping density of rack-mounted IHSes being transported/shipped by air, water and/or over land. Reduced shipping density substantially increases logistics cost.
BRIEF SUMMARYThe illustrative embodiments of the present disclosure provide an anti-tip mechanism that can be attached to a shock pallet to form a shock pallet assembly that can be used when transporting or moving taller loads. The anti-tip mechanism maintains a safety margin to prevent tipping for a shock pallet that would otherwise be too narrow. When not needed for additional safety, the anti-tip mechanism can be retracted to allow placement of shock pallet assemblies integrated with respective taller loads into a denser configuration.
According to at least one aspect of the present disclosure, a pallet assembly is provided for rack-mounted information handling systems (IHSes). In one embodiment, the pallet assembly includes a bottom structure having a pair of parallel apertures to receive tines of a forklift. The pallet assembly includes resilient padding that is positioned on a top surface of the bottom structure to provide shock dampening. The pallet assembly includes a top deck attached on top of the resilient padding and bottom structure forming a shock pallet to receive a rack-mounted IHS during transporting or moving of the IHS. The pallet assembly includes an anti-tip mechanism having a base extender and a positioning member. The base extender is attachable at a first end to the shock pallet. A second end of the base extender is positionable between a retracted position proximate to the lateral side of the pallet assembly and an extended position to rigidly contact a spaced-apart portion of an underlying surface that also supports the bottom structure. The positioning member is attached to the base extender to selectably extend the base extender between the retracted position and the extended position to prevent tipping of the rack-mounted IHS.
According to at least one aspect of the present disclosure, a method is provided of constructing a pallet assembly to ship rack-mounted IHSes. In one embodiment, the method includes forming a pair of parallel apertures to receive tines of a forklift in a bottom structure. The method includes positioning resilient padding on a top surface of the bottom structure to provide shock dampening. The method includes attaching a top deck on top of the resilient padding to the bottom structure to form a shock pallet to receive a racked-mounted IHS for transport and movement. The method includes attaching anti-tipping mechanism to the pallet assembly to prevent tipping during transport or movement of the rack-mounted IHS that is attached to the top deck.
The above presents a general summary of several aspects of the disclosure in order to provide a basic understanding of at least some aspects of the disclosure. The above summary contains simplifications, generalizations and omissions of detail and is not intended as a comprehensive description of the claimed subject matter but, rather, is intended to provide a brief overview of some of the functionality associated therewith. The summary is not intended to delineate the scope of the claims, and the summary merely presents some concepts of the disclosure in a general form as a prelude to the more detailed description that follows. Other systems, methods, functionality, features and advantages of the claimed subject matter will be or will become apparent to one with skill in the art upon examination of the following figures and detailed written description.
The description of the illustrative embodiments can be read in conjunction with the accompanying figures. It will be appreciated that for simplicity and clarity of illustration, elements illustrated in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements are exaggerated relative to other elements. Embodiments incorporating teachings of the present disclosure are shown and described with respect to the figures presented herein, in which:
The present disclosure provides a shock pallet assembly that can be utilized to ship tall rack-mounted information handling systems (IHSes) without tipping by manually or automatically widening the shock pallet assembly. When the IHS can be attached to a support structure proximate to a lateral side of the shock pallet assembly, the shock pallet assembly can manually or automatically retract to achieve a greater shipping density of IHSes. In one embodiment, the shock pallet assembly can include a bottom structure having a pair of parallel apertures to receive tines of a forklift. Resilient padding is positioned on a top surface of the bottom structure to provide shock dampening. A top deck is attached on top of the resilient padding and bottom structure to form a pallet assembly that receives a racked-mounted IHS. A selectively-extended base extender is attachable to a lateral side of the pallet assembly to prevent tipping during transport or movement of the rack-mounted IHS.
In the following detailed description of exemplary embodiments of the disclosure, specific exemplary embodiments in which the disclosure may be practiced are described in sufficient detail to enable those skilled in the art to practice the disclosed embodiments. For example, specific details such as specific method orders, structures, elements, and connections have been presented herein. However, it is to be understood that the specific details presented need not be utilized to practice embodiments of the present disclosure. It is also to be understood that other embodiments may be utilized and that logical, architectural, programmatic, mechanical, electrical and other changes may be made without departing from general scope of the disclosure. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims and equivalents thereof.
References within the specification to “one embodiment,” “an embodiment,” “embodiments”, or “one or more embodiments” are intended to indicate that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. The appearance of such phrases in various places within the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not other embodiments.
It is understood that the use of specific component, device and/or parameter names and/or corresponding acronyms thereof, such as those of the executing utility, logic, and/or firmware described herein, are for example only and not meant to imply any limitations on the described embodiments. The embodiments may thus be described with different nomenclature and/or terminology utilized to describe the components, devices, parameters, methods and/or functions herein, without limitation. References to any specific protocol or proprietary name in describing one or more elements, features or concepts of the embodiments are provided solely as examples of one implementation, and such references do not limit the extension of the claimed embodiments to embodiments in which different element, feature, protocol, or concept names are utilized. Thus, each term utilized herein is to be given its broadest interpretation given the context in which that terms is utilized.
Anti-tip mechanisms 106 can selectively extend a base extender 107 that includes a pallet safety arm 108 to effectively increase a width of a shock pallet 110 for pallet tip safety. A generally known safety standard is for withstanding a tipping of 15° from a vertical axis 109 although others may be appropriate by jurisdiction or mode of transportation. In one embodiment, a shock pallet 110 provides sufficient fixed width for a fully integrated rack of height 48 U. The shock pallet 110 is constructed with a base or bottom structure 112 upon which dampening or compliance components 114 are placed and secured under a top deck 116. The shock pallet assembly 104 illustrates a left pair of anti-tip mechanisms 106 that extend sufficiently far to achieve a determined safety factor for a fully-integrated rack 102 of height 52 U.
A right pair of anti-tip mechanisms 106 is retracted for greater storage density and consequently allows for reduced shipping cost. The shock pallet assembly 104 is illustrated as being close to a wall 118 of a truck, trailer, or shipping container on the right side and can thus rely upon other packaging 120 in contact with the wall 118 to prevent tipping to the right.
In one embodiment,
In the above described flow chart of
One or more of the embodiments of the disclosure described can be implementable, at least in part, using a software-controlled programmable processing device, such as a microprocessor, digital signal processor or other processing device, data processing apparatus or system. Thus, it is appreciated that a computer program for configuring a programmable device, apparatus or system to implement the foregoing described methods is envisaged as an aspect of the present disclosure. The computer program may be embodied as source code or undergo compilation for implementation on a processing device, apparatus, or system. Suitably, the computer program is stored on a carrier device in machine or device readable form, for example in solid-state memory, magnetic memory such as disk or tape, optically or magneto-optically readable memory such as compact disk or digital versatile disk, flash memory, etc. The processing device, apparatus or system utilizes the program or a part thereof to configure the processing device, apparatus, or system for operation.
While the disclosure has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications may be made to adapt a particular system, device or component thereof to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiments disclosed for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope of the disclosure. The described embodiments were chosen and described in order to best explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.
Claims
1. A pallet assembly for rack-mounted information handling systems (IHSes), the pallet assembly comprising:
- a bottom structure having a pair of parallel apertures to receive tines of a forklift;
- resilient padding that is positioned on a top surface of the bottom structure to provide shock dampening;
- a top deck attached on top of the resilient padding and bottom structure forming a shock pallet to receive a racked-mounted IHS during transporting or moving of the IHS; and
- an anti-tip mechanism comprising: a base extender that is attachable at a first end to the shock pallet and that has a second end that is positionable between a retracted position proximate to a lateral side of the shock pallet and an extended position to rigidly contact a spaced-apart portion of an underlying surface that also supports the bottom structure; and a positioning member attached to the base extender to selectably extend the base extender between the retracted position and the extended position to prevent tipping of the rack-mounted IHS.
2. The pallet assembly of claim 1, wherein the positioning member comprises a passively resilient component that has a relaxed state in the extended position of the base extender and that has a constrained state in the retracted position of the base extender.
3. The pallet assembly of claim 2, wherein:
- the base extender comprises a vertical spindle that is attachable to the pallet assembly and comprises a pallet safety arm having the first end received by the vertical spindle for horizontal rotation and having the second end to rigidly contact the underlying surface; and
- the resilient component of the positioning member comprises a torsion spring received around the vertical spindle and having a moving end attached to the pallet safety arm and having a fixed end coupled to the shock pallet.
4. The pallet assembly of claim 2, wherein:
- the base extender comprises a pallet safety arm slideably attached to the shock pallet for horizontal translation; and
- the resilient component of the positioning member comprises a compression spring having a moving end attached to the pallet safety arm and having a fixed end attached to the shock pallet.
5. The pallet assembly of claim 2, wherein:
- the base extender comprises a piston slideably received for horizontal translation within a bore that is attached to the shock pallet;
- the resilient component comprises compressed gas; and
- the positioning member comprises a pneumatic pressure system to receive and to contain the compressed gas between the bore and the piston.
6. The pallet assembly of claim 2, wherein:
- the base extender comprises a bladder;
- the resilient component comprises compressed gas or fluid; and
- the positioning member comprises an inflation system to receive the compressed gas or fluid into the bladder to extend and make rigid the bladder.
7. The pallet assembly of claim 1, wherein the positioning member comprises a manually actuated mechanism.
8. The pallet assembly of claim 7, wherein:
- the base extender comprises a scissoring extension bracket; and
- the manually actuated mechanism of the positioning member comprises a jack screw mechanism.
9. The pallet assembly of claim 7, wherein:
- the base extender comprises a pilot safety arm; and
- the manually actuated mechanism of the positioning member comprises fasteners to attach the first end of the pilot safety arm to the shock pallet, wherein the retracted position of the base extender comprises a stowed state.
10. The pallet assembly of claim 1, wherein the positioning member comprises an electrically-powered actuator.
11. The pallet assembly of claim 10, further comprising:
- a proximity sensor to detect a surface within an extension area that is proximate to the lateral side of the shock pallet;
- wherein the positioning member comprises an electrically-powered actuator; and
- a processor in communication with the proximity sensor and the electrically-powered actuator to respond to the proximity sensor not detecting the surface within the extension area by controlling the electrically-powered actuator to extend the base extender.
12. (canceled)
13. A method of constructing a pallet assembly for rack-mounted information handling systems (IHSes), the method comprising:
- forming a pair of parallel apertures to receive tines of a forklift in a bottom structure;
- positioning resilient padding on a top surface of the bottom structure to provide shock dampening;
- attaching a top deck on top of the resilient padding to the bottom structure to form a shock pallet to receive a racked-mounted IHS for transport and movement; and
- attaching anti-tipping mechanism to the pallet assembly to prevent tipping during transport or movement of the rack-mounted IHS that is attached to the top deck, wherein attaching the anti-tipping mechanism includes: attaching a first end of a base extender to the shock pallet, wherein the base extender has a second end that is positionable between a retracted position proximate to a lateral side of the pallet assembly and an extended position to rigidly contact a spaced-apart portion of an underlying surface that also supports the bottom structure; and attaching a positioning member to the base extender to selectably extend the base extender between the retracted position and the extended position to prevent tipping of the rack-mounted IHS.
14. The method of claim 13, wherein the positioning member comprises a passively resilient component that has a relaxed state in the extended position of the base extender and that has a constrained state in the retracted position of the base extender.
15. The method of claim 13, wherein the positioning member comprises a manually actuated mechanism.
16. The method of claim 13, wherein the positioning member comprises an electrically-powered actuator.
17. The method of claim 16, wherein:
- the positioning member comprises an electrically-powered actuator; and
- attaching the position system comprises: providing a proximity sensor to detect a surface within an extension area that is proximate to the lateral side of the pallet assembly; and providing a processor in communication with the proximity sensor and the electrically-powered actuator to respond to the proximity sensor not detecting the surface within the extension area by controlling the electrically-powered actuator to extend the base extender.
Type: Application
Filed: Feb 3, 2015
Publication Date: Aug 4, 2016
Applicant: DELL PRODUCTS, L.P. (Round Rock, TX)
Inventors: STEVEN EMBLETON (AUSTIN, TX), JAMES DON CURLEE (ROUND ROCK, TX)
Application Number: 14/612,449