ADAPTABLE SURGICAL INSTRUMENT HANDLE
A handle for use with a surgical instrument system can comprise a first handle housing portion comprising an output and a second handle housing portion comprising, one, an electric motor comprising a rotatable motor shaft and, two, an actuator for operating the electric motor. The handle further comprises an articulation joint, wherein the second handle housing portion is rotatably connected to the first handle housing portion about the articulation joint, and wherein the second handle housing portion is rotatable between a first grip position and a second grip position. The handle further includes a transmission configured to transmit motion between the first motor shaft and the output. In various instances, the transmission comprises a cable and a slip joint configured to adjust the length of the cable depending on the position of said second handle housing portion.
Various forms of the invention relate to surgical instruments and, in various embodiments, to surgical cutting and stapling instruments and staple cartridges therefor that are designed to cut and staple tissue.
The various features and advantages of this invention and the manner of attaining them will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate preferred embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
DETAILED DESCRIPTIONApplicant of the present application owns the following patent applications that were filed on even date herewith and which are each herein incorporated by reference in their respective entireties:
-
- U.S. patent application Ser. No. ______, entitled SURGICAL APPARATUS CONFIGURED TO TRACK AN END-OF-LIFE PARAMETER; Attorney Docket No. END7539USNP/140464;
- U.S. patent application Ser. No. ______, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING AN INSPECTION STATION; Attorney Docket No. END7542USNP/140467;
- U.S. patent application Ser. No. ______, entitled SURGICAL APPARATUS CONFIGURED TO ASSESS WHETHER A PERFORMANCE PARAMETER OF THE SURGICAL APPARATUS IS WITHIN AN ACCEPTABLE PERFORMANCE BAND; Attorney Docket No. END7547USNP/140472;
- U.S. patent application Ser. No. ______, entitled SURGICAL CHARGING SYSTEM THAT CHARGES AND/OR CONDITIONS ONE OR MORE BATTERIES; Attorney Docket No. END7545USNP/140470;
- U.S. patent application Ser. No. ______, entitled CHARGING SYSTEM THAT ENABLES EMERGENCY RESOLUTIONS FOR CHARGING A BATTERY; Attorney Docket No. END7543USNP/140468;
- U.S. patent application Ser. No. ______, entitled SYSTEM FOR MONITORING WHETHER A SURGICAL INSTRUMENT NEEDS TO BE SERVICED; Attorney Docket No. END7558USNP/140483;
- U.S. patent application Ser. No. ______, entitled REINFORCED BATTERY FOR A SURGICAL INSTRUMENT; Attorney Docket No. END7551USNP/140476;
- U.S. patent application Ser. No. ______, entitled POWER ADAPTER FOR A SURGICAL INSTRUMENT; Attorney Docket No. END7553USNP/140478; and
- U.S. patent application Ser. No. ______, entitled MODULAR STAPLING ASSEMBLY; Attorney Docket No. END7544USNP/140469.
Applicant of the present application owns the following patent applications that were filed on Dec. 18, 2014 and which are each herein incorporated by reference in their respective entireties:
-
- U.S. patent application Ser. No. 14/574,478, entitled SURGICAL INSTRUMENT SYSTEMS COMPRISING AN ARTICULATABLE END EFFECTOR AND MEANS FOR ADJUSTING THE FIRING STROKE OF A FIRING;
- U.S. patent application Ser. No. 14/574,483, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING LOCKABLE SYSTEMS;
- U.S. patent application Ser. No. 14/575,139, entitled DRIVE ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS;
- U.S. patent application Ser. No. 14/575,148, entitled LOCKING ARRANGEMENTS FOR DETACHABLE SHAFT ASSEMBLIES WITH ARTICULATABLE SURGICAL END EFFECTORS;
- U.S. patent application Ser. No. 14/575,130, entitled SURGICAL INSTRUMENT WITH AN ANVIL THAT IS SELECTIVELY MOVABLE ABOUT A DISCRETE NON-MOVABLE AXIS RELATIVE TO A STAPLE CARTRIDGE;
- U.S. patent application Ser. No. 14/575,143, entitled SURGICAL INSTRUMENTS WITH IMPROVED CLOSURE ARRANGEMENTS;
- U.S. patent application Ser. No. 14/575,117, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS;
- U.S. patent application Ser. No. 14/575,154, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND IMPROVED FIRING BEAM SUPPORT ARRANGEMENTS;
- U.S. patent application Ser. No. 14/574,493, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A FLEXIBLE ARTICULATION SYSTEM; and
- U.S. patent application Ser. No. 14/574,500, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A LOCKABLE ARTICULATION SYSTEM.
Applicant of the present application owns the following patent applications that were filed on Mar. 1, 2013 and which are each herein incorporated by reference in their respective entireties:
-
- U.S. patent application Ser. No. 13/782,295, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH CONDUCTIVE PATHWAYS FOR SIGNAL COMMUNICATION, now U.S. Patent Application Publication No. 2014/0246471;
- U.S. patent application Ser. No. 13/782,323, entitled ROTARY POWERED ARTICULATION JOINTS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246472;
- U.S. patent application Ser. No. 13/782,338, entitled THUMBWHEEL SWITCH ARRANGEMENTS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0249557;
- U.S. patent application Ser. No. 13/782,499, entitled ELECTROMECHANICAL SURGICAL DEVICE WITH SIGNAL RELAY ARRANGEMENT, now U.S. Patent Application Publication No. 2014/0246474;
- U.S. patent application Ser. No. 13/782,460, entitled MULTIPLE PROCESSOR MOTOR CONTROL FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246478;
- U.S. patent application Ser. No. 13/782,358, entitled JOYSTICK SWITCH ASSEMBLIES FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246477;
- U.S. patent application Ser. No. 13/782,481, entitled SENSOR STRAIGHTENED END EFFECTOR DURING REMOVAL THROUGH TROCAR, now U.S. Patent Application Publication No. 2014/0246479;
- U.S. patent application Ser. No. 13/782,518, entitled CONTROL METHODS FOR SURGICAL INSTRUMENTS WITH REMOVABLE IMPLEMENT PORTIONS, now U.S. Patent Application Publication No. 2014/0246475;
- U.S. patent application Ser. No. 13/782,375, entitled ROTARY POWERED SURGICAL INSTRUMENTS WITH MULTIPLE DEGREES OF FREEDOM, now U.S. Patent Application Publication No. 2014/0246473; and
- U.S. patent application Ser. No. 13/782,536, entitled SURGICAL INSTRUMENT SOFT STOP, now U.S. Patent Application Publication No. 2014/0246476.
Applicant of the present application also owns the following patent applications that were filed on Mar. 14, 2013 and which are each herein incorporated by reference in their respective entireties:
-
- U.S. patent application Ser. No. 13/803,097, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, now U.S. Patent Application Publication No. 2014/0263542;
- U.S. patent application Ser. No. 13/803,193, entitled CONTROL ARRANGEMENTS FOR A DRIVE MEMBER OF A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263537;
- U.S. patent application Ser. No. 13/803,053, entitled INTERCHANGEABLE SHAFT ASSEMBLIES FOR USE WITH A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263564;
- U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK, now U.S. Patent Application Publication No. 2014/0263541;
- U.S. patent application Ser. No. 13/803,210, entitled SENSOR ARRANGEMENTS FOR ABSOLUTE POSITIONING SYSTEM FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263538;
- U.S. patent application Ser. No. 13/803,148, entitled MULTI-FUNCTION MOTOR FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263554;
- U.S. patent application Ser. No. 13/803,066, entitled DRIVE SYSTEM LOCKOUT ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263565;
- U.S. patent application Ser. No. 13/803,117, entitled ARTICULATION CONTROL SYSTEM FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263553;
- U.S. patent application Ser. No. 13/803,130, entitled DRIVE TRAIN CONTROL ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263543; and
- U.S. patent application Ser. No. 13/803,159, entitled METHOD AND SYSTEM FOR OPERATING A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0277017.
Applicant of the present application also owns the following patent application that was filed on Mar. 7, 2014 and is herein incorporated by reference in its entirety:
-
- U.S. patent application Ser. No. 14/200,111, entitled CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263539.
Applicant of the present application also owns the following patent applications that were filed on Mar. 26, 2014 and are each herein incorporated by reference in their respective entireties:
-
- U.S. patent application Ser. No. 14/226,106, entitled POWER MANAGEMENT CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS;
- U.S. patent application Ser. No. 14/226,099, entitled STERILIZATION VERIFICATION CIRCUIT;
- U.S. patent application Ser. No. 14/226,094, entitled VERIFICATION OF NUMBER OF BATTERY EXCHANGES/PROCEDURE COUNT;
- U.S. patent application Ser. No. 14/226,117, entitled POWER MANAGEMENT THROUGH SLEEP OPTIONS OF SEGMENTED CIRCUIT AND WAKE UP CONTROL;
- U.S. patent application Ser. No. 14/226,075, entitled MODULAR POWERED SURGICAL INSTRUMENT WITH DETACHABLE SHAFT ASSEMBLIES;
- U.S. patent application Ser. No. 14/226,093, entitled FEEDBACK ALGORITHMS FOR MANUAL BAILOUT SYSTEMS FOR SURGICAL INSTRUMENTS;
- U.S. patent application Ser. No. 14/226,116, entitled SURGICAL INSTRUMENT UTILIZING SENSOR ADAPTATION;
- U.S. patent application Ser. No. 14/226,071, entitled SURGICAL INSTRUMENT CONTROL CIRCUIT HAVING A SAFETY PROCESSOR;
- U.S. patent application Ser. No. 14/226,097, entitled SURGICAL INSTRUMENT COMPRISING INTERACTIVE SYSTEMS;
- U.S. patent application Ser. No. 14/226,126, entitled INTERFACE SYSTEMS FOR USE WITH SURGICAL INSTRUMENTS;
- U.S. patent application Ser. No. 14/226,133, entitled MODULAR SURGICAL INSTRUMENT SYSTEM;
- U.S. patent application Ser. No. 14/226,081, entitled SYSTEMS AND METHODS FOR CONTROLLING A SEGMENTED CIRCUIT;
- U.S. patent application Ser. No. 14/226,076, entitled POWER MANAGEMENT THROUGH SEGMENTED CIRCUIT AND VARIABLE VOLTAGE PROTECTION;
- U.S. patent application Ser. No. 14/226,111, entitled SURGICAL STAPLING INSTRUMENT SYSTEM; and
- U.S. patent application Ser. No. 14/226,125, entitled SURGICAL INSTRUMENT COMPRISING A ROTATABLE SHAFT.
Applicant of the present application also owns the following patent applications that were filed on Sep. 5, 2014 and which are each herein incorporated by reference in their respective entireties:
-
- U.S. patent application Ser. No. 14/479,103, entitled CIRCUITRY AND SENSORS FOR POWERED MEDICAL DEVICE;
- U.S. patent application Ser. No. 14/479,119, entitled ADJUNCT WITH INTEGRATED SENSORS TO QUANTIFY TISSUE COMPRESSION;
- U.S. patent application Ser. No. 14/478,908, entitled MONITORING DEVICE DEGRADATION BASED ON COMPONENT EVALUATION;
- U.S. patent application Ser. No. 14/478,895, entitled MULTIPLE SENSORS WITH ONE SENSOR AFFECTING A SECOND SENSOR'S OUTPUT OR INTERPRETATION;
- U.S. patent application Ser. No. 14/479,110, entitled USE OF POLARITY OF HALL MAGNET DETECTION TO DETECT MISLOADED CARTRIDGE;
- U.S. patent application Ser. No. 14/479,098, entitled SMART CARTRIDGE WAKE UP OPERATION AND DATA RETENTION;
- U.S. patent application Ser. No. 14/479,115, entitled MULTIPLE MOTOR CONTROL FOR POWERED MEDICAL DEVICE; and
- U.S. patent application Ser. No. 14/479,108, entitled LOCAL DISPLAY OF TISSUE PARAMETER STABILIZATION.
Applicant of the present application also owns the following patent applications that were filed on Apr. 9, 2014 and which are each herein incorporated by reference in their respective entireties:
-
- U.S. patent application Ser. No. 14/248,590, entitled MOTOR DRIVEN SURGICAL INSTRUMENTS WITH LOCKABLE DUAL DRIVE SHAFTS, now U.S. Patent Application Publication No. 2014/0305987;
- U.S. patent application Ser. No. 14/248,581, entitled SURGICAL INSTRUMENT COMPRISING A CLOSING DRIVE AND A FIRING DRIVE OPERATED FROM THE SAME ROTATABLE OUTPUT, now U.S. Patent Application Publication No. 2014/0305989;
- U.S. patent application Ser. No. 14/248,595, entitled SURGICAL INSTRUMENT SHAFT INCLUDING SWITCHES FOR CONTROLLING THE OPERATION OF THE SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305988;
- U.S. patent application Ser. No. 14/248,588, entitled POWERED LINEAR SURGICAL STAPLER, now U.S. Patent Application Publication No. 2014/0309666;
- U.S. patent application Ser. No. 14/248,591, entitled TRANSMISSION ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305991;
- U.S. patent application Ser. No. 14/248,584, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH ALIGNMENT FEATURES FOR ALIGNING ROTARY DRIVE SHAFTS WITH SURGICAL END EFFECTOR SHAFTS, now U.S. Patent Application Publication No. 2014/0305994;
- U.S. patent application Ser. No. 14/248,587, entitled POWERED SURGICAL STAPLER, now U.S. Patent Application Publication No. 2014/0309665;
- U.S. patent application Ser. No. 14/248,586, entitled DRIVE SYSTEM DECOUPLING ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305990; and
- U.S. patent application Ser. No. 14/248,607, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH STATUS INDICATION ARRANGEMENTS, now U.S. Patent Application Publication No. 2014/0305992.
Applicant of the present application also owns the following patent applications that were filed on Apr. 16, 2013 and which are each herein incorporated by reference in their respective entireties:
-
- U.S. Provisional Patent Application Ser. No. 61/812,365, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR;
- U.S. Provisional Patent Application Ser. No. 61/812,376, entitled LINEAR CUTTER WITH POWER;
- U.S. Provisional Patent Application Ser. No. 61/812,382, entitled LINEAR CUTTER WITH MOTOR AND PISTOL GRIP;
- U.S. Provisional Patent Application Ser. No. 61/812,385, entitled SURGICAL INSTRUMENT HANDLE WITH MULTIPLE ACTUATION MOTORS AND MOTOR CONTROL; and
- U.S. Provisional Patent Application Ser. No. 61/812,372, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR.
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment”, or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation. Such modifications and variations are intended to be included within the scope of the present invention.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” referring to the portion closest to the clinician and the term “distal” referring to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the person of ordinary skill in the art will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, those of ordinary skill in the art will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongated shaft of a surgical instrument can be advanced.
Turning to the Drawings wherein like numerals denote like components throughout the several views,
Referring now to
The first and second rotary drive systems 20, 40 are powered by a motor 80 through a unique and novel “shiftable” transmission assembly 60 that essentially shifts power/motion between two power trains. The first rotary drive system 20 includes a first rotary drive shaft 22 that is rotatably supported in the housing 12 of the handle 14 and defines a first drive shaft axis “FDA-FDA”. A first drive gear 24 is keyed onto or otherwise non-rotatably affixed to the first rotary drive shaft 22 for rotation therewith about the first drive shaft axis FDA-FDA. Similarly, the second rotary drive system 40 includes a second rotary drive shaft 42 that is rotatably supported in the housing 12 of the handle 14 and defines a second drive shaft axis “SDA-SDA”. In at least one arrangement, the second drive shaft axis SDA-SDA is offset from and parallel or is substantially parallel to the first drive shaft axis FDA-FDA. As used in this context, the term “offset” means that the first and second drive shaft axes are not coaxial for example. The second rotary drive shaft 42 has a second drive gear 44 keyed onto or otherwise non-rotatably affixed to the second drive shaft 42 for rotation therewith about the second drive shaft axis SDA-SDA. In addition, the second drive shaft 42 has an intermediate drive gear 46 rotatably journaled thereon such that the intermediate drive gear 46 is freely rotatable on the second rotary drive shaft 42 about the second drive shaft axis SDA-SDA.
Referring to
Various surgical instruments disclosed herein may also include a transmission assembly 60′ that is substantially identical to transmission assembly 60, but also include a locking assembly or means (generally designated as 65) for locking the first and second drive systems 20, 40 to prevent their inadvertent actuation when they are not intended to be actuated. For example,
The control system for the motor 80, as described hereinbelow in connection with
The motor 80 may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example. In other arrangements, the motor may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor, including motors which can be autoclavable. The motor 80 may be powered by a power source 84 that in one form may comprise a power pack 86 that is removably stored in the handle 14. As can be seen in
As can also be seen in
When the clinician desires to actuate the first drive system 20, the clinician moves the firing trigger 90′ to axially move the transmission gear assembly 140 to bring the distally extending conically-shaped drive gear 148 into seated meshing engagement with the distal gear socket 150 that is attached to distal drive gear 130. See
Still referring to
The instrument 310 also includes a transmission assembly 360 that includes a transmission carriage 362 that is supported for axial travel within the instrument housing. The transmission carriage 362 operably interacts with an idler carriage 374 that is supported to move laterally in response to contact with transmission carriage 362 as the transmission carriage 362 is moved axially by the shifter solenoid 71. The idler carriage 374 includes a first idler pulley 375 and a second idler pulley 376 mounted thereon. In the illustrated arrangement, the spring 72 biases the transmission carriage 362 in the distal direction “DD” to a first drive position wherein the transmission carriage 362 causes the idler carriage 374 to move in a first lateral direction “FLD” which causes the first idler pulley 375 to remove the slack from the first drive belt 385. When in that position, the second idler pulley 376 is located out of engagement with the second drive belt 387. Thus, operation of motor 80 will result in the rotation of the first drive shaft 22. Although the second motor pulley 384 will also be rotated when the motor 80 is activated, the slack in the second drive belt 387 prevents that rotary motion from being transferred to the second drive pulley 344. Thus, no rotary motion is transferred to the second drive system 40. As discussed above, the shifter solenoid 71 may be actuated by the firing trigger 90. However, in alternative arrangements, the shifter solenoid 71 may also be replaced by a manually actuatable linkage assembly of the type described above, for example. In the illustrated arrangement, actuation of the firing trigger 90 will result in the shifter solenoid 71 pulling the transmission carriage 362 in the proximal direction “PD” to thereby laterally displace the idler carriage 374 in a second lateral direction “SLD” to bring the second idler 376 into contact with the second drive belt 387 to remove the slack therefrom. Such lateral movement of the idler carriage 374 also moves the first idler 375 out of engagement with the first drive belt 385 to permit the first drive belt 385 to slacken. Thus, when in such second drive position, actuation of the motor 80 results in the actuation of the second drive system 40. The slack in the first drive belt 385 prevents the rotary motion from being transferred to the first drive system 20.
The transmission assembly 360 may provide several distinct advantages. For example, the use of V-belts eliminates meshing gears or gear alignments with a clutch. Furthermore, such transmission arrangement may be activated or deactivated under load. In addition, the transmission assembly 360 requires little displacement to disengage and engage.
Referring now to
Still referring to
As indicated above, the instrument 410 also includes a transmission assembly 460 that includes a transmission carriage 462 that is supported for axial travel within the instrument housing. The transmission carriage 462 operably interacts with transmission shaft assembly 490 to also move the transmission shaft assembly 490 axially while the transmission shaft assembly 490 remains engaged with the motor shaft 481.
As can be seen in
In the illustrated arrangement, a second motor 750 is employed to shift the transmission assembly 760 as will be discussed in further detail below. The second motor 750 may be controlled, for example, by the various firing trigger and switch arrangements disclosed herein. The second motor 750 can be controlled in a manner similar to the way that the motor 7038 is controlled as described hereinbelow in connection with
As illustrated in
Referring now to
In one form, at least one of the male couplers 51 is movably attached to its corresponding first or second drive shaft of the surgical instrument or its corresponding first and second driven shaft of the surgical end effector. More specifically, the male coupler 51 may be attached for radial, or angular, travel on the shaft for a “first predetermined amount of radial travel” on the shaft. This may be accomplished for example, by key and keyway arrangements that are sized relative to each other to facilitate an amount of radial, or angular, travel of the male coupler 51 on the shaft. Stated another way, for example, the shaft may have a key formed thereon or otherwise mounted thereto that is smaller than a corresponding keyway formed in the male coupler 51 such that the key may move within the keyway and establish a first predetermined amount of radial travel. This first predetermined amount of radial travel is preferably sufficient enough to back drive or forward drive the coupler. For a male coupler 51 that has five ribs 53, for example, the first predetermined range of radial travel may be, for example, 5-37 degrees. Some embodiments may exist where the first predetermined range of radial travel may be less than 5° and preferably not more than 4°, for example. Such range of radial, or angular, travel may be sufficient if, for example, the corresponding female socket coupler 57 was rigidly affixed to its corresponding drive shaft and otherwise was incapable of any radial travel. However, if both the male and female couplers have the ability to radially, or angularly, adjust, such range of radial, or angular, travel may be reduced by 50% to provide each coupler (male coupler and corresponding female socket coupler) with a range of travel of about 3-16 degrees. The amount of radial, or angular, travel that a female socket coupler 57 may move on its corresponding shaft may be referred to herein as a “second predetermined amount of radial travel”. The female socket couplers 57 may also be attached to their respective drive shafts with a key and keyway arrangement as described above that provides the desired second predetermined amount of radial travel. Some embodiments may exist where the second range of predetermined radial travel may be less than 5° and preferably not more than 4°, for example.
Various combinations and mounting arrangements of the male couplers and the female socket couplers are contemplated. For example, one or both of the male couplers may be movably mounted to their respective drive shafts of the surgical instrument (or driven shafts of the surgical end effector) in the various manners described herein. Likewise one or both of the female socket couplers may be movably mounted to their respective driven shafts on the end effector (or drive shafts of the surgical instrument) in the various manners described herein. For example, a male coupler on one of the first and second drive shafts may be movably mounted thereon. The other male coupler that is attached to the other drive shaft may be non-movably mounted thereto. The female socket coupler on the driven shaft that corresponds to the movably mounted male coupler may be non-movably attached to its driven shaft and the female socket coupler mounted on the other driven shaft that corresponds to the non-movably mounted coupler may be movably mounted to its driven shaft. Thus, one of a male coupler and a female coupler socket of a “coupler pair” is movable. The term “coupler pair” refers to the male coupler and corresponding female socket coupler that is configured to be coupled together to operably couple a drive shaft of the surgical instrument to its corresponding driven shaft of the end effector. In other arrangements both the male coupler and female coupler socket of a coupler pair may both be movably coupled to their respective shafts.
Such coupler arrangements serve to provide a small amount of angular slack, for example, between the coupler components so that the components may rotate slightly for sufficient alignment which will permit simultaneous alignment of the coupler components attached to the two separate rotary drive trains. In addition, there may be a sufficient amount of backlash or slack provided in the drive trains to accommodate the coupling process. Such backlash or slack may be provided by forming keys/keyways into the gears, couplers and or mating shafts to facilitate such slight rotation of components. In addition, a switch arrangement may be employed in connection with the various shiftable transmission assemblies which may activate the motor to cause a slight rotation of the drive shafts for coupling purposes. This and other control techniques may be employed to ensure that the drive shafts in the surgical instruments are positioned in desired positions that facilitate their coupling with the corresponding drive shafts in the end effectors. The unique and novel mechanical coupling system 50 serves to provide some additional flexibility during the coupling process to enable the drive shafts to be coupled together in the event that there is some misalignment between the respective shafts. It will be understood that although the various embodiments described herein illustrate the male couplers 51 attached to the drive shafts within the surgical instrument and the female socket couplers 58 attached to the end effector drive shafts, the male couplers 51 could be attached to the end effector drive shafts and the female socket couplers 58 could be attached to the instrument drive shafts.
Referring to
The movement of the anvil portion 1042 between the open and closed positions is controlled by a first end effector drive system also referred to herein as the end effector closure system 1070. In one form, for example, the end effector closure system 1070 includes a closure shuttle 1072 that extends around the proximal body portion 1024 of the lower jaw 1020. The closure shuttle 1072 may also be referred to as a “first end effector actuator”. The closure shuttle 1072 may include a U-shape portion that includes distal upstanding walls 1074 and proximal upstanding walls 1076. Each distal upstanding wall 1074 includes an arcuate cam slot 1078 that is adapted to receive a corresponding portion of a cam pin 1048 that is attached to the upper jaw 1040. Thus, axial or linear movement of the closure shuttle 1072 relative to the lower jaw 1020 will cause the upper jaw 1040 to pivot on the fulcrum pin 1050 and about the attachment axis AA-AA by virtue of the interaction of the cam pin 1048 within the cam slots 1078.
In various forms, the closure system 1070 includes a rotary end effector closure shaft 1080 that is threaded and includes a distal end portion 1082 that is rotatably supported within the end effector housing 1010. The end effector closure shaft 1080 defines a closure shaft axis CSA-CSA. See
The end effector 1000 further includes a second end effector drive system also referred to herein as a firing system 1100 for driving a tissue cutting member 1090 and wedge sled assembly 1092 between starting and ending positions. When the wedge sled assembly 1092 is driven distally through the surgical staple cartridge 1060, the wedge sled assembly 1092 operably interacts with the drivers within the cartridge 1060 that have surgical staples supported thereon. As the wedge sled assembly 1092 is driven distally, the drivers are driven upward within their respective pockets to drive the staples supported thereon into forming engagement with the underside of the anvil portion 1042 of the upper jaw 1040. In one form, the firing system 1100 further includes a rotary threaded firing shaft 1102 that is rotatably supported in the end effector housing 1010. The firing shaft 1102 defines a firing shaft axis FSA-FSA that is parallel with or substantially parallel with the closure shaft axis CSA-CSA. See, e.g.,
The end effector 1000 may also be equipped with various sensors that are coupled to an end effector contact board 1120 mounted within the end effector housing 1010. The contact board 1120 may be positioned with the end effector housing 1020 such that when the end effector 1000 is operably coupled to the surgical instrument, the end effector contact board 1120 is electrically coupled to a surgical instrument contact board 30 mounted in the surgical instrument housing 12. See, e.g.,
Use of the end effector 1000 will now be explained in connection with surgical instrument 10. It will be appreciated, however, that the end effector 1000 may be operably coupled to various other surgical instrument arrangements disclosed herein. Prior to use, the closure shaft 1080 and the firing shaft 1102 are “clocked” or positioned in their respective starting positions to facilitate attachment to the first and second drive shafts 22, 42, respectively. To couple the end effector 1000 to the surgical instrument 10, for example, the clinician moves the end effector 1000 into a position wherein the closure shaft axis CA-CA is in axial alignment with the first drive shaft axis FDA-FDA and wherein the firing shaft axis FSA-FSA is in axial alignment with the second drive shaft axis SDA-SDA. The female socket coupler 57 on the closure shaft 1080 is inserted into operable engagement with the male coupler 51 on the first drive shaft 22. Likewise, the female socket coupler 57 on the firing shaft 1102 is inserted into operable engagement with the male coupler 51 on the second drive shaft 42. Thus, when in that position, the closure shaft 1080 is operably coupled to the first drive shaft 22 and the firing shaft 1102 is operably coupled to the second drive shaft 42. The end effector contact board 1120 is operably coupled to the surgical instrument contact board 30 so that the sensors 1122, 1124 (and any other sensors within the end effector 1000) are in operable communication with the surgical instrument's control system. To retain the end effector 1000 in coupled operable engagement with the surgical instrument 10, the end effector 1000 includes a retainer latch 1130 that is attached to the end effector housing 1010 and configured to releasably engage a portion of the instrument housing 12. The retainer latch 1130 may include a retention lug 1132 that may releasable engage a retainer cavity 15 formed in the housing 12. See
When coupled together, the closure sensor 1122 detects the position of the closure nut 1084 and the firing sensor 1124 detects the position of the firing bar 1112. That information is communicated to the surgical instrument control system. In addition, the clinician may confirm that the shiftable transmission assembly (or the transmission carriage 62 thereof) is in its first drive position. This may be confirmed by the actuation of the indicator light 77 on the housing 12 as discussed above. If the shiftable transmission assembly 60 is not in its first drive position, the clinician may actuate the firing trigger 92 to move the transmission carriage 62 into the first drive position, such that actuation of the rocker trigger 110 to actuate the motor 80 will result in actuation of the first drive system 20. Assuming that the closure system 1070 and firing system 1100 are each in their respective starting positions and the end effector 1000 has an unspent staple cartridge 1060 properly installed therein, the clinician can then position the jaws 1020, 1040 relative to the target tissue to be cut and stapled. The clinician may close the upper jaw 1040 by actuating the rocker trigger 110 to actuate the motor 80 and rotate the first drive shaft 22. Once the target tissue has been clamped between the upper jaw 1040 and the surgical staple cartridge 1060 in the lower jaw 1020, the clinician may then actuate the firing trigger 92 to move the transmission carriage 62 to its second drive position such that actuation of the motor 80 will result in the rotation of the second drive shaft 42. Once the transmission carriage 62 is moved to the second drive position, the clinician may once again actuate the rocker trigger 110 to actuate the second drive system 40 and the firing system 1100 in the end effector 1000 to drive the tissue cutting member 1090 and wedge sled assembly 1092 distally through the surgical staple cartridge 1060. As the tissue cutting member 1090 and wedge sled assembly 1092 are driven distally, the target tissue clamped between the jaws 1020, 1040 is cut and stapled. Once the tissue cutting member 1090 and wedge sled assembly 1092 have been driven to their distal-most positions in the surgical staple cartridge 1060, the clinician can actuate the rocker trigger 110 to reverse the motor rotation and return the firing system 1100 to its starting position.
When employing end effector 1000 and other end effector and surgical instruments disclosed herein containing similar jaw arrangements it can be challenging to adequately clean the anvil pockets in the underside of the anvil. In addition, the anvil pockets can gall, scive or simply wear over time making them ill-suited for reuse. Furthermore, depending upon the application, loading and removing of the surgical staple cartridge may be difficult.
Still referring to
Referring now to
The end effector 2000 further includes a first end effector drive system also referred to as end effector closure system 2070 and a second end effector drive system also referred to herein as a firing system 2100. In one form, for example, the end effector closure system 2070 includes a closure beam assembly 2072 that is sized to be slidably received between the frame struts 2022 for axial travel therebetween. The closure beam assembly 2072 may also be referred to as a first end effector actuator and has an open bottom configured to slidably receive a firing bar assembly 2112 of the firing system 2100 as will be discussed in further detail below. In one form, for example, the closure beam assembly 2072 is a molded plastic member shaped for movement and functionality as will be further discussed below. By manufacturing the closure beam assembly 2072 from plastic, manufacturing costs may be reduced and the weight of the end effector 2000 may also be reduced. In addition, the end effector 2000 may be easier to sterilize with cobalt irradiation as plastic is easier to penetrate than stainless steel. In accordance with an alternate arrangement, the closure beam assembly 2072 may be made from extruded aluminum with the final features machined into place. While an extruded aluminum closure beam assembly might not be as easy to manufacture as the plastic component, it would still have the same advantages (i.e., elimination of components, easier to assemble, lower weight, easier to sterilize).
The closure beam assembly 2072 includes a curved distal end 2074 that is sized to be received between the side walls 2027 of the supporting structure 2024. The curved distal end 2074 is sized and shaped to receive and retain a cartridge housing 2062 of the cartridge module 2060. In various forms, the proximal end of the closure beam assembly 2072 is coupled to a closure nut 2084 that is threadably received on a threaded closure shaft 2080. The closure shaft 2080 defines a closure shaft axis CSA-CSA and has a female socket coupler 57 is attached to its proximal end to facilitate coupling of the closure shaft 2080 with a male coupler 51 attached to a first drive shaft in a surgical instrument. Rotation of the closure shaft 2080 in a first direction will cause the closure nut 2084 to drive the closure beam assembly 2072 in the distal direction “DD”. Rotation of the closure shaft 2080 in an opposite direction will likewise result in the proximal travel of the closure nut 2084 and the closure beam assembly 2072.
As indicated above, the distal end 2074 of the closure beam assembly 2072 is configured to operably support the cartridge housing 2062 of a cartridge module 2060 therein. The cartridge module 2060 includes a plurality of surgical staples (not shown) on a staple driver (not shown) that, when axially advanced, drives the surgical staples out of their respective pockets 2066 positioned on each side of a slot 1068 that is configured to accommodate the passage of a knife member 2115 therethrough. The cartridge module 2060 may, for example, be somewhat similar to the cartridge modules disclosed in, for example, U.S. Pat. Nos. 6,988,650 and 7,134,587, which have both been incorporated by reference in their respective entireties herein excepted for any noted differences. The end effector 2000 may be disposed of after a single use or the end effector 2000 may be reusable by replacing the spent cartridge module during an ongoing procedure or for a new procedure after being resterilized.
The end effector 2000 further includes a firing system 2100 which includes a firing bar assembly 2112 that is configured to be slidably received within the open bottom of the closure beam assembly 2072. See
The distal end of the firing bar assembly 2112 includes a drive member 2114 and the knife member 2115 that protrudes distally therefrom. As can be seen in
The end effector 2000 also includes a tissue retaining pin actuation mechanism 2160. The tissue retaining pin actuation mechanism 2160 includes a saddle shaped slide 2162 that is positioned on a top portion of the housing 2010. The slide 2162 is pivotally connected to a push rod driver 2163 that is slidably supported within the housing 2010. The push rod driver 2163 is restrained for longitudinal movement along the long axis of the end effector 2000. The push rod driver 2163 is connected to a push rod 2164 by a circumferential groove 2165 on the push rod 2164 that snaps into a slot 2166 of the push rod driver 2163. See
In one form, the retaining pin actuation mechanism 2160 includes a yoke 2190 rotationally or pivotally supported within the housing 2010 via a pivot pin 2192. The closure beam assembly 2072 further includes posts or lugs 2073 which extend laterally on both sides of the closure beam assembly 2072 inside the housing 2010. These posts 2073 are slidably received within corresponding arcuate slots 2194 in the yoke 2190. The yoke 2190 contains cam pins 2196 positioned to push camming surfaces 2168 on the push rod driver 2163. The yoke 2190 is not directly attached to the retaining pin 2180 so the surgeon, if they chose, can advance the retaining pin 2180 manually. The retaining pin 2180 will advance automatically if the surgeon chooses to leave the retaining pin 2180 alone when the closure beam assembly 2072 is advanced distally to a closed position. The surgeon must retract the retaining pin 2180 manually. By constructing the retaining pin actuation mechanism 2160 in this manner, manual closing and retracting of the retaining pin 2180 is permitted. If the surgeon does not manually close the retaining pin 21280, the present retaining pin actuation mechanism 2160 will do it automatically during instrument clamping. Further details regarding actuation and use of the retaining pin may be found in U.S. Pat. Nos. 6,988,650 and 7,134,587.
The end effector 2000 may also be equipped with various sensors that are coupled to an end effector contact board 2120 mounted within the end effector housing 2010. For example, the end effector 2000 may include a closure sensor 2122 that is mounted within the end effector housing 2010 and is electrically coupled to the end effector contact board 2120 such that when the end effector 2000 is operably coupled to the surgical instrument, the closure sensor 2122 is in communication with the surgical instrument's control system. The closure sensor 2122 may comprise a Hall effect sensor 7028 as shown hereinbelow in connection with
Use of the end effector 2000 will now be explained in connection with surgical instrument 10. It will be appreciated, however, that the end effector 2000 may be operably coupled to various other surgical instrument arrangements disclosed herein. Prior to use, the closure shaft 2080 and the firing shaft 2102 are “clocked” or positioned in their starting positions to facilitate attachment to the first and second drive shafts 22, 42, respectively. To couple the end effector 2000 to the surgical instrument 10, for example, the clinician moves the end effector 2000 into a position wherein the closure shaft axis CSA-CSA is in axial alignment with the first drive shaft axis FDA-FDA and wherein the firing shaft axis FSA-FSA is in axial alignment with the second drive shaft axis SDA-SDA. The female socket coupler 57 on the closure shaft 2080 is inserted into operable engagement with the male coupler 51 on the first drive shaft 22. Likewise, the female socket coupler 57′ on the firing shaft 2102 is inserted into operable engagement with the male coupler 51 on the second drive shaft 42. Thus, when in that position, the closure shaft 2080 is operably coupled to the first drive shaft 22 and the firing shaft 2102 is operably coupled to the second drive shaft 42. The end effector contact board 1120 is operably coupled to the surgical instrument contact board 30 so that the sensors within the end effector 2000 are in operable communication with the surgical instrument's control system. To retain the end effector 2000 in coupled operable engagement with the surgical instrument 10, the end effector 2000 includes a retainer latch 2130 that is attached to the end effector housing 2010 and is configured to releasably engage a portion of the instrument housing 12. The retainer latch 2130 may include a retention lug 2132 that may releasable engage a retainer cavity 15 formed in the housing 12. See
The clinician may move the closure beam assembly 2072 distally by actuating the rocker trigger 110 to actuate the motor 80 and rotate the first drive shaft 22. This actuation moves the cartridge module 2060 toward the anvil assembly 2140 to clamp the target tissue therebetween. As the closure beam 2072 moves distally, the interaction of the posts 2073 and the yoke 2190 will cause actuation of the tissue retaining actuation mechanism 2160 to drive the retaining pin 2180 distally through the deck portion 2161 and through the anvil assembly 2140 into a pin pocket 2141 (See
As shown in
In one form, the shaft assembly 3020 includes a compression shaft 3030, a distal compression shaft portion 3032, and a tension band assembly 3040 that are operably supported within the outer tubular shroud 3022. A trocar tip 3042 is attached to a distal end of the tension band assembly 3040 by fasteners 3041. As is known, the trocar tip 3042 may be inserted into the anvil shaft 3324 of the anvil 3320 and retained in engagement by trocar retaining clips 3330.
The surgical end effector 3000 further includes a closure system 3070 and a firing system 3100. In at least one form, the closure system 3070 includes a closure nut assembly 3084 that is attached to the proximal end of the tension band 3040. As can be seen in
As can be seen in
The end effector 3000 may also be equipped with various sensors that are coupled to an end effector contact board 3120 mounted within the end effector housing 3010. For example, the end effector 3000 may include closure sensor(s) 3122 that are mounted within the end effector housing 3010 and are electrically coupled to the end effector contact board 3120 such that when the end effector 3000 is operably coupled to the surgical instrument, the closure sensor(s) 3122 are in communication with the surgical instrument's control system. The closure sensor(s) 3122 may comprise Hall effect sensors 7028 as described hereinbelow in connection with
Use of the end effector 3000 will now be explained in connection with surgical instrument 10. It will be appreciated, however, that the end effector 3000 may be operably coupled to various other surgical instrument arrangements disclosed herein. Prior to use, the closure shaft 3080 and the firing shaft 3102 are “clocked” or positioned in their starting positions to facilitate attachment to the first and second drive shafts 22, 42, respectively. To couple the end effector 3000 to the surgical instrument 10, for example, the clinician moves the end effector 3000 into a position wherein the closure shaft axis CSA-CSA is in axial alignment with the first drive shaft axis FDA-FDA and wherein the firing shaft axis FSA-FSA is in axial alignment with the second drive shaft axis SDA-SDA. The female socket coupler 57 on the closure shaft 3080 is inserted into operable engagement with the male coupler 51 on the first drive shaft 22. Likewise, the female socket coupler 57 on the firing shaft 3102 is inserted into operable engagement with the male coupler 51 on the second drive shaft 42. Thus, when in that position, the closure shaft 3080 is operably coupled to the first drive shaft 22 and the firing shaft 3102 is operably coupled to the second drive shaft 42. The end effector contact board 3120 is operably coupled to the surgical instrument contact board 30 so that the sensors 3122, 3124 within the end effector 3000 are in operable communication with the surgical instrument's control system. To retain the end effector 3000 in coupled operable engagement with the surgical instrument 10, the end effector 3000 includes a retainer latch 3130 that is attached to the end effector housing 3010 and configured to releasably engage a portion of the instrument housing 12. The retainer latch 3130 may include a retention lug 3132 that may releasable engage a retainer cavity 15 formed in the housing 12. See
As is known, when performing an anastomosis using a circular stapler, the intestine may be stapled using a conventional surgical stapler with multiple rows of staples being emplaced on either side of a target section (i.e., specimen) of the intestine. The target section is typically simultaneously cut as the section is stapled. After removing the target specimen, the clinician inserts the anvil 3320 into the proximal portion of the intestine, proximal of the staple line. This may be done by inserting the anvil body 3322 into an entry port cut into the proximal intestine portion or the anvil 3320 can be placed trans-anally, by placing the anvil 3320 on the distal end of the end effector 3000 and inserting the instrument through the rectum. Next, the clinician attaches the anvil shaft 3324 to the trocar tip 3042 of the end effector 3000 and inserts the anvil 3320 into the distal portion of the intestine. The clinician may then tie the distal end of the proximal section of the intestine to the anvil shaft 3324 using a suture or other conventional tying device and also tie the proximal end of the distal intestine portion around the anvil shaft 3324 using another suture.
The clinician may then move the tension band assembly 3040, trocar tip 3042 and anvil 3320 attached thereto proximally by actuating the rocker trigger 110 to actuate the motor 80 and rotate the first drive shaft 22. This actuation moves the anvil 3320 toward the cartridge 3306 supported in the casing member 3302 of the stapler head 3300 to close the gap therebetween and thereby engages the proximal end of the distal intestine portion with the distal end of the proximal intestine portion in the gap therebetween. The clinician continues to actuate the first drive system 20 until a desired amount of tissue compression is attained. Once the intestine portions have been clamped between the anvil assembly 3320 and the stapler head 3300, the clinician may then actuate the firing trigger 92 to move the transmission carriage 62 to its second drive position such that actuation of the motor 80 will result in the rotation of the second drive shaft 42. Once the transmission carriage 62 is moved to the second drive position, the clinician may once again actuate the rocker trigger 110 to actuate the second drive system 40 and the firing system 3100 in the end effector 3000 to drive the compression shaft 3030 distally which also drives the circular staple driver assembly 3304 and the circular knife member 3308 distally. Such action serves to cut the clamped pieces of intestine and drive the surgical staples through both clamped ends of the intestine, thereby joining the portions of intestine and forming a tubular pathway. Simultaneously, as the staples are driven and formed, the circular knife 3308 is driven through the intestinal tissue ends, cutting the ends adjacent to the inner row of staples. The clinician may then withdraw the end effector 3000 from the intestine and the anastomosis is complete.
In the depicted embodiment, the drive disengagement assembly 3090 is used in connection with the closure system 3070′ so that in the event that the distal portion of the closure system becomes inadvertently jammed or otherwise disabled, the clinician may quickly mechanically separate the distal drive train portion from the proximal drive train portion of the closure system. More specifically and with reference to
While the drive disengagement assembly 3090 has been described in connection with the closure system 3070′ of the end effector 3000′, the drive disengagement assembly could, in the alternative, be employed in connection with the firing system 3100 of the end effector 3000′. In other arrangements, a drive disengagement assembly 3090 could be associated with the closure system and a second drive disengagement assembly may be associated with the firing system. Thus, one or both of the proximal drive train portions may be selectively mechanically separated from their respective distal drive train portions. Further, such drive disengagement assembly may be effectively employed in connection with the closure and/or firing systems of at least some of other surgical end effectors disclosed herein including but not necessarily limited to, for example, end effector 1000 and end effector 2000 and their respective equivalent arrangements.
More particularly and with reference to
The closure system status assembly 2090 and the firing system status assembly 2130 reveal the mechanical state of the closure system 2070 and the firing system 2100. The mechanical state of the distal end of the end effector can generally be observed by the clinician, but it sometimes is covered or obstructed by tissue. The mechanical state of the proximal portion of the end effector cannot be seen without a window arrangement or protruding indicator. Color coding on the exterior of the shaft arrangement and or on the indicator may also be employed to provide the clinician confirmation that the end effector has been fully closed or fired (e.g., indicator on green for fully closed). For example, the closure indicator member 2092 may have a closure mark 2093 thereon that is viewable through the closure indicator window 2094. In addition, the housing 2010 may have a first closure indicia 2095 and a second closure indicia 2096 adjacent to the closure indicator window 2094 to assess the position of the closure indicator 2092. For example, the first closure indicia 2095 may comprise a first bar that has a first color (e.g., range, red, etc.) and the second closure indicia may comprise a bar or section of a second color that differs from the first color (e.g., green). When the closure mark 2093 on the closure indicator member 2092 is aligned on the proximal-most end of the first closure indicia bar 2095 (this position is represented by element number 2097 in
Similarly, the firing indicator member 2132 may have a firing mark 2133 thereon that is viewable through the firing indicator window 2134. In addition, the housing segment 2014′ may have a first firing indicia 2135 and a second firing indicia 2136 adjacent to the firing indicator window 2134 to assess the position of the firing indicator 2132. For example, the first firing indicia 2135 may comprise a first firing bar that has a first firing color (e.g., orange, red, etc.) and the second firing indicia may comprise a second firing bar or section of a second firing color that differs from the first firing color (e.g., green). When the firing mark 2133 on the firing indicator member 2132 is aligned on the proximal-most end of the first firing indicia bar 2135 (this position is represented by element number 2137 in
In alternative arrangement, the indicator windows 2094 and 2134 may be provided in the end effector housing 2010′ such that when the closure system 2070 and firing system 2100′ are in their starting or unactuated positions, their respective indicators 2092, 2132 may be in full view in the indicator windows 2094, 2134, respectively. As the closure system 2070 and firing system 2100′ are actuated, their indicators 2092, 2132 will move out of their indicator windows 2094, 2134. The clinician may then assess how far each of the systems 2070, 2100′ have been actuated by observing how much of the indicators 2092, 2132 are viewable through the windows 2094, 2134.
The closure system status assembly 2090 and the firing system status assembly 2130 reveal the mechanical state of the closure system 2070 and the firing system 2100 whether the end effector 2000′ is attached to the surgical instrument handle or housing or not. When the end effector 2000 is attached to the handle or housing, the closure system status assembly 2090 and the firing system status assembly 2130 will afford the clinician with the opportunity to determine the mechanical states of those systems as a primary or secondary check to the state shown on the surgical instrument handle or housing. The closure system status assembly 2090 and the firing system status assembly 2130 also serve as a primary check when the end effector 2000′ is detached from the surgical instrument handle or housing. Further, such closure system and firing system status assemblies may be effectively employed in connection with the closure and/or firing systems of at least some of other surgical end effectors disclosed herein including but not necessarily limited to, for example, end effector 1000 and end effector 3000 and their respective equivalent arrangements.
In the depicted embodiment, the drive disengagement assembly 2200 is used in connection with the closure system 2070″ of the end effector 2000″ so that in the event that the distal portion of the closure system becomes inadvertently jammed or otherwise disabled, the clinician may quickly mechanically separate the distal drive train portion from the proximal drive train portion of the closure system. More specifically and with reference to
In at least one form, the drive disengagement assembly 2200 includes a drive coupler pin 2220 that serves to couple the lower portion 2214 of the closure nut assembly 2084″ to the upper portion 2210. As can be seen in
Accordingly, turning now to
In the illustrated example, the electrical subsystem 7006 of the handle portion 7002 is electrically coupled to various electrical elements 7012 and a display 7014. In one instance, the display 7014 is an organic light emitting diode (OLED) display, although the display 7014 should not be limited in this context. The electrical subsystem 7008 of the shaft portion 7004 is electrically coupled to various electrical elements 7016, which will be described in detail hereinbelow.
In one aspect, the electrical subsystem 7006 of the handle portion 7002 comprises a solenoid driver 7018, an accelerometer 7020, a motor controller/driver 7022, a handle processor 7024, a voltage regulator 7026, and is configured to receive inputs from a plurality of switches 7028. Although, in the illustrated embodiment, the switches 7028 are designated as Hall switches, the switches 7028 are not limited in this context. In various aspects, the Hall effect sensors or switches 7028 may be located either in the end effector portion of the instrument, the shaft, and/or the handle.
In one aspect, the electrical subsystem 7006 of the handle portion 7002 is configured to receive signals from a solenoid 7032, a clamp position switch 7034, a fire position switch 7036, a motor 7038, a battery 7040, an OLED interface board 7042, and open switch 7044, close switch 7046, and fire switch 7048. In one aspect, the motor 7038 is a brushless DC motor, although in various aspects the motor is not limited in this context. Nevertheless, the description of the motor 7038 may be applicable to the motors 80, 480, 580, 680, 750, and 780 previously described. The solenoid 7032 is representative example of the previously described shifter solenoid 71.
In one aspect, the electrical subsystem 7008 of the shaft portion 7004 comprises a shaft processor 7030. The electrical subsystem 7008 of the shaft is configured to receive signals from various switches and sensors located in the end effector portion of the instrument that are indicative of the status of the clamp jaws and cutting element in the end effector. As illustrated in
In one aspect, the handle processor 7024 may be a general purpose microcontroller suitable for medical and surgical instrument applications and including motion control. In one instance, the handle processor 7024 may be a TM4C123BH6ZRB microcontroller provided by Texas Instruments. The handle processor 7024 may comprise a 32-bit ARM® Cortex™-M4 80-MHz processor core with System Timer (SysTick), integrated nested vectored interrupt controller (NVIC), wake-up interrupt controller (WIC) with clock gating, memory protection unit (MPU), IEEE754-compliant single-precision floating-point unit (FPU), embedded trace macro and trace port, system control block (SCB) and thumb-2 instruction set, among other features. The handle processor 7024 may comprise on-chip memory, such as 256 KB single-cycle Flash up to 40 MHz. A prefetch buffer can be provided to improve performance above 40 MHz. Additional memory includes a 32 KB single-cycle SRAM, internal ROM loaded with TivaWare™ for C Series software, 2 KB EEPROM, among other features, such as two Controller Area Network (CAN) modules, using CAN protocol version 2.0 part A/B and with bit rates up to 1 Mbps.
In one aspect, the handle processor 7024 also may comprise advanced serial integration including eight universal asynchronous receiver/transmitters (UARTs) with IrDA, 9-bit, and ISO 7816 support (one UART with modem status and modem flow control). Four Synchronous Serial Interface (SSI) modules are provided to support operation for Freescale SPI, MICROWIRE or Texas Instruments synchronous serial interfaces. Additionally, six Inter-Integrated Circuit (I2C) modules provide Standard (100 Kbps) and Fast (400 Kbps) transmission and support for sending and receiving data as either a master or a slave, for example.
In one aspect, the handle processor 7024 also comprises an ARM PrimeCell® 32-channel configurable μDMA controller, providing a way to offload data transfer tasks from the Cortex™-M4 processor, allowing for more efficient use of the processor and the available bus bandwidth. Analog support functionality includes two 12-bit Analog-to-Digital Converters (ADC) with 24 analog input channels and a sample rate of one million samples/second, three analog comparators, 16 digital comparators, and an on-chip voltage regulator, for example.
In one aspect, the handle processor 7024 also comprises advanced motion control functionality such as eight Pulse Width Modulation (PWM) generator blocks, each with one 16-bit counter, two PWM comparators, a PWM signal generator, a dead-band generator, and an interrupt/ADC-trigger selector. Eight PWM fault inputs are provided to promote low-latency shutdown. Two quadrature encoder interface (QEI) modules are provided, with a position integrator to track encoder position and velocity capture using built-in timer.
In one aspect, two ARM FiRM-compliant watchdog timers are provided along with six 32-bit general-purpose timers (up to twelve 16-bit). Six wide 64-bit general-purpose timers (up to twelve 32-bit) are provided as well as 12 16/32-bit and 12 32/64-bit capture compare PWM (CCP) pins, for example. Up to 120 general purpose input/outputs (GPIOs) can be provided depending on configuration, with programmable control for GPIO interrupts and pad configuration, and highly flexible pin multiplexing. The handle processor 7024 also comprises lower-power battery-backed hibernation module with real-time clock. Multiple clock sources are provided for the microcontroller system clock and include a precision oscillator (PIOSC), main oscillator (MOSC), 32.768-kHz external oscillator for the hibernation module, and an internal 30-kHz oscillator.
In one aspect, the accelerometer 7020 portion of the electrical subsystem 7006 of the handle portion 7002 may be a micro-electromechanical system (MEMS) based motion sensor. As is well known, MEMS technology combines computers with tiny mechanical devices such as sensors, valves, gears, mirrors, and actuators embedded in semiconductor chips. In one example, the MEMS based accelerometer 7020 may comprise an ultra low power 8 bit 3-axis digital accelerometer such as the LIS331DLM provided by STMicroelectronics, for example.
In one aspect, the accelerometer 7020, such as the LIS331DLM, may be an ultra low-power high performance three axes linear accelerometer belonging to the “nano” family, with digital I2C/SPI serial interface standard output, with is suitable for communicating with the handle processor 7024. The accelerometer 7020 may feature ultra low-power operational modes that allow advanced power saving and smart sleep to wake-up functions. The accelerometer 7020 may include dynamically user selectable full scales of ±2 g/±4 g/±8 g and it is capable of measuring accelerations with output data rates from 0.5 Hz to 400 Hz, for example.
In one aspect, the accelerometer 7020 may include self-test capability to allow the user to check the functioning of the sensor in the final application. The accelerometer 7020 may be configured to generate an interrupt signal by inertial wake-up/free-fall events as well as by the position of the instrument itself. Thresholds and timing of interrupt generators may be programmable on the fly.
In one aspect, the motor controller/driver 7022 may comprise a three phase brushless DC (BLDC) controller and MOSFET driver, such as the A3930 motor controller/driver provided by Allegro, for example. The 3-phase brushless DC motor controller/driver 7022 may be employed with N-channel external power MOSFETs to drive the BLDC motor 7038, for example. In one instance, the motor controller/driver 7022 may incorporate circuitry required for an effective three-phase motor drive system. In one instance, the motor controller/driver 7022 comprises a charge pump regulator to provide adequate (>10 V) gate drive for battery voltages down to 7 V, and enables the motor controller/driver 7022 to operate with a reduced gate drive at battery voltages down to 5.5 V. Power dissipation in the charge pump can be minimized by switching from a voltage doubling mode at low supply voltage to a dropout mode at the nominal running voltage of 14 V. In one aspect, a bootstrap capacitor is used to provide the above-battery supply voltage required for N-channel MOSFETs. An internal charge pump for the high-side drive allows for dc (100% duty cycle) operation.
An internal fixed-frequency PWM current control circuitry regulates the maximum load current. The peak load current limit may be set by the selection of an input reference voltage and external sensing resistor. The PWM frequency can be set by a user-selected external RC timing network. For added flexibility, the PWM input can be used to provide speed and torque control, allowing the internal current control circuit to set the maximum current limit.
The efficiency of the motor controller/driver 7022 may be enhanced by using synchronous rectification. The power MOSFETs are protected from shoot-through by integrated crossover control with dead time. The dead time can be set by a single external resistor.
In one aspect, the motor controller/driver 7022 indicates a logic fault in response to the all-zero combination on the Hall inputs. Additional features of the motor controller/driver 7022 include high current 3-phase gate drive for N-channel MOSFETs, synchronous rectification, cross-conduction protection, charge pump and top-off charge pump for 100% PWM, integrated commutation decoder logic, operation over 5.5 to 50 V supply voltage range, diagnostics output, provides +5 V Hall sensor power, and has a low-current sleep mode.
In one aspect, the modular motor driven surgical instrument 7000 is equipped with a brushless DC electric motor 7038 (BLDC motors, BL motors) also known as electronically commutated motors (ECMs, EC motors). One such motor is the BLDC Motor B0610H4314 provided by Portescap. The BLDC Motor B0610H4314 can be autoclavable. The BLDC motor 7038 is a synchronous motor that is powered by a DC electric source via an integrated inverter/switching power supply, which produces an AC electric signal to drive the motor such as the motor controller/driver 7022 described in the immediately foregoing paragraphs. In this context, AC, alternating current, does not imply a sinusoidal waveform, but rather a bi-directional current with no restriction on waveform. Additional sensors and electronics control the inverter output amplitude and waveform (and therefore percent of DC bus usage/efficiency) and frequency (i.e., rotor speed).
The rotor part of the BLDC motor 7038 is a permanent magnet synchronous motor, but in other aspects, BLDC motors can also be switched reluctance motors, or induction motors. Although some brushless DC motors may be described as stepper motors, the term stepper motor tends to be used for motors that are designed specifically to be operated in a mode where they are frequently stopped with the rotor in a defined angular position.
In one aspect, the BLDC motor controller/driver 7022 must direct the rotation of the rotor. Accordingly, the BLDC motor controller/driver 7022 requires some means of determining the rotor's orientation/position (relative to the stator coils.) In one instance, the rotor part of the BLDC motor 7038 is configured with Hall effect sensors or a rotary encoder to directly measure the position of the rotor. Others measure the back electromotive force (EMF) in the undriven coils to infer the rotor position, eliminating the need for separate Hall effect sensors, and therefore are often called sensorless controllers.
In one aspect, the BLDC motor controller/driver 7022 contains 3 bi-directional outputs (i.e., frequency controlled three phase output), which are controlled by a logic circuit. Other, simpler controllers may employ comparators to determine when the output phase should be advanced, while more advanced controllers employ a microcontroller to manage acceleration, control speed and fine-tune efficiency.
Actuators that produce linear motion are called linear motors. The advantage of linear motors is that they can produce linear motion without the need of a transmission system, such as a ball-and-lead screw, rack-and-pinion, cam, gears or belts that would be necessary for rotary motors. Transmission systems are known to introduce less responsiveness and reduced accuracy. The direct drive, BLDC motor 7038 may comprise a slotted stator with magnetic teeth and a moving actuator, which has permanent magnets and coil windings. To obtain linear motion, the BLDC motor controller/driver 7022 excites the coil windings in the actuator causing an interaction of the magnetic fields resulting in linear motion.
In one aspect, the BLDC motor 7038 is a Portescap B0610 brushless DC motor that provides a combination of durability, efficiency, torque, and speed in a package suitable for use in the modular motor driven surgical instrument 7000. Such BLDC motors 7038 provide suitable torque density, speed, position control, and long life. The slotless BLDC motor 7038 uses a cylindrical ironless coil made in the same winding technique as ironless DC motors. The slotted BLDC motors 7038 also are autoclavable. The slotted BLDC motor 7038 may include a stator that consists of stacked steel laminations with windings placed in the slots that are axially cut along the inner periphery. The brushless DC slotted BLDC motor 7038 provides high torque density and heat dissipation, along with high acceleration. The three-phase configuration of the BLDC motor 7038 includes Wye connections, Hall effect sensors, supply voltage of 4.5-24V. The housing of the BLDC motor 7038 may be made of a 303SS material and the shaft may be made of a 17-4 ph material.
In one aspect, the Hall switches 7028 may be Hall effect sensors known under the trade name BU520245G and are unipolar integrated circuit type Hall effect sensors. These sensors operate over a supply voltage range of 2.4V to 3.6V.
In one aspect, the voltage regulator 7026 replaces the usual PNP pass transistor with a PMOS pass element. Because the PMOS pass element behaves as a low-value resistor, the low dropout voltage, typically 415 mV at 50 A of load current, is directly proportional to the load current. The low quiescent current (3.2 μA typically) is stable over the entire range of output load current (0 mA to 50 mA).
In one aspect, the voltage regulator 7026 is a low-dropout (LDO) voltage regulator such as the TPS71533 LDO voltage regulator provided by Texas Instruments. Such LDO voltage regulators 7026 provide the benefits of high input voltage, low-dropout voltage, low-power operation, and miniaturized packaging. The voltage regulator 7026 can operate over an input range of 2.5 V to 24 V, are stable with any capacitor (≧0.47 μF). The LDO voltage and low quiescent current allow operations at extremely low power levels and thus the voltage regulator 7026 is suitable for powering battery management integrated circuits. Specifically, the voltage regulator 7026 is enabled as soon as the applied voltage reaches the minimum input voltage and the output is quickly available to power continuously operating battery charging integrated circuits of the handle portion 7002.
In one aspect, the battery 7040 is a lithium-ion polymer (LIPO) battery, polymer lithium ion or more commonly lithium polymer batteries (abbreviated Li-poly, Li-Pol, LiPo, LIP, PLI or LiP) are rechargeable (secondary cell) batteries. The LIPO battery 7040 may comprise several identical secondary cells in parallel to increase the discharge current capability, and are often available in series “packs” to increase the total available voltage.
Additional power for the modular motor driven surgical instrument 7000 may be provided by a synchronous step down DC-DC converter 7058 (
With a wide operating input voltage range of 3V to 17V, the synchronous step down DC-DC converter 7058 (
Power sequencing is also possible by configuring the Enable and open-drain Power Good pins. In Power Save Mode, the synchronous step down DC-DC converter 7058 (
In one aspect, the OLED interface 7042 is an interface to the OLED display 7014. The OLED display 7014 comprises organic light-emitting diodes in which the emissive electroluminescent layer is a film of organic compound which emits light in response to an electric current. This layer of organic semiconductor is situated between two electrodes, where in general at least one of these electrodes is transparent. The OLED display 7014 may include OLEDs from two main families. Those based on small molecules and those employing polymers. Adding mobile ions to an OLED creates a light-emitting electrochemical cell or LEC, which has a slightly different mode of operation. The OLED display 7014 can use either passive-matrix (PMOLED) or active-matrix addressing schemes. Active-matrix OLEDs (AMOLED) require a thin-film transistor backplane to switch each individual pixel on or off, but allow for higher resolution and larger display sizes. In one instance, the OLED display 7014 works without a backlight. Thus, it can display deep black levels and can be thinner and lighter than a liquid crystal display (LCD), making it ideally suitable for use on the handle portion 7002 of the modular motor driven surgical instrument 7000.
In one aspect, the shaft processor 7030 of the electrical subsystem 7008 of the shaft portion 7004 may be implemented as an ultra-low power 16-bit mixed signal MCU, such as the MSP430FR5738 Ultra-low Power MCU provided by Texas Instruments. The shaft processor 7030 is an ultra-low power microcontroller consisting of multiple devices featuring embedded FRAM nonvolatile memory, ultra-low power 16-bit MSP430 CPU, and additional peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption. Peripherals include 10-bit A/D converter, 16-channel comparator with voltage reference generation and hysteresis capabilities, three enhanced serial channels capable of I2C, SPI, or UART protocols, internal DMA, hardware multiplier, real-time clock, five 16-bit timers, among other features.
The shaft processor 7030 includes a 16-bit RISC architecture up to 24 MHz clock and operates over a wide supply voltage range of 2 V to 3.6 V and is optimized for ultra-low power modes. The shaft processor 7030 also includes intelligent digital peripherals, an ultra-low power ferroelectric RAM, and up to 16 KB of nonvolatile memory. The embedded microcontroller provides ultra-low power writes, a fast write cycle of 125 ns per word, 16 KB in 1 ms, and includes built in Error Coding and Correction (ECC) and Memory Protection Unit (MPU).
Having described the electrical system, subsystems, and components of the handle and shaft portions 7002, 7004 of the modular motor driven surgical instrument 7000, the functional aspects of the control system will now be described. Accordingly, in operation, the electrical subsystem 7006 of the handle portion 7002 is configured to receive signals from the open switch 7044, close switch 7046, and fire switch 7048 supported on a housing of the handle portion 7002. When a signal is received from the close switch 7046 the handle processor 7024 operates the motor 7038 to initiate closing the clamp arm. Once the clamp is closed, the clamp closed status switch 7052 in the end effector sends a signal to the shaft processor 7030, which communicates the status of the clamp arm to the handle processor 7024 through the communications and power interface 7010.
Once the target tissue has been clamped, the fire switch 7048 may be actuated to generate a signal, which is received by the handle processor 7024. In response, the handle processor 7024 actuates the transmission carriage to its second drive position such that actuation of the motor 7038 will result in the rotation of a second drive shaft, as described in detail above in connection with
Actuating the first switch 7048 once again sends a signal to the handle processor 7038, which in response actuates the second drive system and the firing system in the end effector to drive the tissue cutting member and wedge sled assembly distally through the surgical staple cartridge. Once the tissue cutting member and wedge sled assembly have been driven to their distal-most positions in the surgical staple cartridge, the fire end switch 7056 sends a signal to the shaft processor 7030 which communicates the position back to the handle processor 7024 through the interface 7010. Now the fire switch 7048 may be activated to send a signal to the handle processor 7024, which operated the motor 7038 in reverse rotation to return the firing system to its starting position.
Actuating the open switch 7044 once again sends a signal to the handle processor 7024, which operates the motor 7038 to open the clamp. Once open, the clamp opened status switch 7050 located in the end effector sends a signal to the shaft processor 7030, which communicates the position of the clamp to the handle processor 7024. The clamp position switch 7034 and the fire position switch 7036 provide signals to the handle processor 7024 that indicate the respective positions of the clamp arm and the cutting member.
A tri-color LED 7072 is electrically coupled to the handle processor 7024. The handle processor 7024 energizes either the red, blue, or green LED 7072 to provide visual feedback.
Three Hall effect sensor 7028 U10, U11, U12 provide three separate Hall effect outputs U1_Hall1, U1_Hall2, U1_Hall3 which are coupled to the handle processor 7024 as shown. The U1_Hall3 output drives an onboard LED 7088. In one aspect, the Hall effect sensor outputs U1_Hall1, U1_Hal12, U1_Hal13, and the ANALOG_CLAMP signal are coupled to the handle processor 7024 to determine the position of the clamp arm and the cutting member at the end effector portion of the modular motor driven surgical instrument 7000, or the positions of other elements of the instrument 7000.
The user switch 7070 is a representative example of the previously described “rocker-trigger” 110 that is pivotally mounted to a pistol grip portion of the handle. The user switch 7070 is operable to actuate a first motor switch 7044 that is operably coupled to the handle processor 7024. The first motor switch 7044 may comprise a pressure switch which is actuated by pivoting the user switch 7070 into contact therewith. Actuation of the first motor switch 7044 will result in actuation of the motor 7038 such that the drive gear rotates in a first rotary direction. A second motor switch 7046 is also coupled to the handle processor 7024 and mounted for selective contact by the user switch 7070. Actuation of the second motor switch 7046 will result in actuation of the motor 7038 such that the drive gear is rotated in a second direction. A fire switch 7048 is coupled to handle processor 7024. Actuation of the fire switch 7048 results in the axial movement of the transmission carriage to advance the cutting element as was described above.
A Joint Test Action Group (JTAG) 7074 input is also coupled to the handle processor 7024. The JTAG 7074 input is the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture devised for integrated circuit (IC) debug ports. The handle processor 7024 implements the JTAG 7074 to perform debugging operations like single stepping and breakpointing.
A UART 7076 is coupled to the handle processor 7024. The UART 7076 translates data between parallel and serial forms. The UART 7076 is commonly used in conjunction with communication standards such as EIA, RS-232, RS-422 or RS-485. The universal designation indicates that the data format and transmission speeds are configurable. The electric signaling levels and methods (such as differential signaling etc.) are handled by a driver circuit external to the UART 7076. The UART 7076 may be an individual (or part of an) integrated circuit used for serial communications over the serial port of the handle processor 1024. The UART 7076 can be included in the handle processor 1024.
A description of the remaining functional and operational aspects of the electrical subsystem 7006 of the handle portion 7002 of the modular motor driven surgical instrument 7000 will now be provided in connection with
The motor controller 7022 receives commands from the handle processor 7024 and provides commands to the MOSFET driver 7084, which drives the 3-phase BLDC motor 7038 (
Accordingly, as described in
As shown in
In various instances, a surgical instrument can include a handle, an electric motor positioned within the handle, a shaft attachable to the handle, and an end effector extending from the shaft, wherein the electric motor is configured to motivate an end effector function at the end effector. In some instances, the surgical instrument can include a control system comprising one or more sensors and a microprocessor which can receive input signals from the sensors, monitor the operation of the surgical instrument, and operate the electric motor to perform the end effector function in view of the sensor input signals. In at least one such instance, the handle of the surgical instrument can be usable with more than one shaft. For instance, a linear stapling shaft or a circular stapling shaft could be assembled to the handle. The handle can include at least one sensor configured to detect the type of shaft that has been assembled thereto and communicate this information to the microprocessor. The microprocessor may operate the electric motor differently in response to the sensor input signals depending on the type of the shaft that has been assembled to the handle. For instance, if the electric motor is configured to operate a closing system of the end effector, the microprocessor will rotate the electric motor in a first direction to close an anvil of the circular stapler shaft and a second, or opposite, direction to close an anvil of the linear stapler shaft. Other control systems are envisioned in which the same operational control of the electric motor can be achieved without the use of a microprocessor. In at least one such instance, the shafts and/or the handle of the surgical instrument can include switches which can operate the surgical instrument differently depending on the type of the shaft that has been assembled to the handle.
In various instances, a surgical instrument system can include a power source, a first motor configured to perform a first end effector function, a second motor configured to perform a second end effector function, and a control system of switches configured to selectively place the power source in communication with the first motor and the second motor in response to the control system of switches. In various instances, such a surgical instrument system may not include a microprocessor. The first motor can comprise a closing motor of a closing system configured to close an anvil of the end effector and the second motor can comprise a firing motor of a firing system configured to fire staples from a staple cartridge of the end effector. The control system of switches can include a closure trigger switch which, when closed, can close a closure power circuit which couples the power source to the closing motor. The control system can further include a closure end-of-stroke switch which can be opened by the closure system when the anvil is in a fully closed position and open the closure power circuit to stop the closing motor and the closure drive. The control system of switches can also include a firing trigger switch which can be part of a firing power circuit which couples the power source to the firing motor. In various circumstances, the default condition of the firing power circuit can be open which can prevent the firing motor from being operated prior to firing power circuit being closed. Thus, closing the firing switch alone may not close the firing power circuit and operate the firing motor. The firing power circuit can further include a second closure end-of-stroke switch which can be closed by the closure system when the anvil is in a fully closed position. Closing the firing switch and the second closure end-of-stroke switch may close the firing power circuit and operate the firing motor. The control system can further include a firing end-of-stroke switch can be opened by the firing drive when the firing drive reaches the end of its firing stroke. The opening of the firing end-of-stroke switch can open the firing power circuit and stop the firing motor. The control system can further include a second firing end-of-stroke switch can be closed by the firing drive to close a reverse firing power circuit which reverses the polarity of the power applied to the firing motor and operates the firing motor in an opposite direction and retracts the firing drive. Closing the reverse firing power circuit may also require the firing trigger switch to be in a closed condition. When the firing drive reaches its fully-retracted position, it can close a proximal firing switch. The closure of the proximal firing switch can close a reverse closing power circuit which can reverse the polarity of the power applied to the closing motor and operate the closing motor in an opposite direction and open the anvil. Closing the reverse closure power circuit may also require the closure trigger switch to be in a closed condition. When the anvil reaches its fully-open position, the anvil can open a proximal closure switch which can open the reverse closing power circuit and stop the closing motor. This is but one example.
In various instances, as described herein, a handle of a surgical instrument can be used with several different shaft assemblies which can be selectively attached to the handle. In some instances, as also described herein, the handle can be configured to detect the type of shaft that has been assembled to the handle and operate the handle in accordance with a control system contained within the handle. For instance, a handle can include a microprocessor and at least one memory unit which can store and execute a plurality of operating programs, each of which are configured to operate a specific shaft assembly. Other embodiments are envisioned in which the handle does not include a control system; rather, the shaft assemblies can each comprise their own control system. For instance, a first shaft assembly can comprise a first control system and a second shaft assembly can comprise a second control system, and so forth. In various instances, the handle may comprise an electrical motor, a power source, such as a battery and/or an input cable, for example, and an electrical circuit configured to operate the electrical motor based on control inputs from the attached shaft assembly. The handle may further comprise an actuator which, in conjunction with the shaft control system, may control the electrical motor. In various instances, the handle may not comprise additional control logic and/or a microprocessor, for example, for controlling the electrical motor. With the exception of the handle actuator, the control system of the shaft assembly attached to the handle would include the control logic needed to operate the electrical motor. In various instances, the control system of the shaft assembly may include a microprocessor while, in other instances, it may not. In some instances, the first control system of a first shaft assembly can include a first microprocessor and the second control system of a second shaft assembly can include a second microprocessor, and so forth. In various instances, a handle can include a first electrical motor, such as a closing motor, for example, and a second electrical motor, such as a firing motor, for example, wherein the control system of the attached shaft assembly can operate the closing motor and the firing motor. In certain instances, the handle can comprise a closing actuator and a firing actuator. With the exception of the closing actuator and the firing actuator, the control system of the shaft assembly attached to the handle would include the control logic needed to operate the closing motor and the firing motor. In various instances, a handle can include a shaft interface and each shaft assembly can include a handle interface configured to engage the shaft interface. The shaft interface can include an electrical connector configured to engage an electrical connector of the handle interface when a shaft assembly is assembled to the handle. In at least one instance, each connector may comprise only one electrical contact which are mated together such that only one control path is present between the handle and the shaft assembly. In other instances, each connector may comprise only two electrical contacts which form two mated pairs when the shaft assembly is attached to the handle. In such instances, only two control paths may be present between the handle and the shaft assembly. Other embodiments are envisioned in which more than two control paths are present between the handle and the shaft assembly.
In various instances, surgical end effector attachments can be compatible with a surgical instrument handle. For example, a surgical end effector can be coupled to the handle of a surgical instrument and can deliver and/or implement a drive motion that was initiated in the handle of the surgical instrument. Referring to
The handle 8000 can include drive systems, for example, which can be configured to transfer a drive motion from the handle 8000 of the surgical instrument to a component, assembly and/or system of the end effector 8010. For example, the handle 8000 can include a first drive system 8002a and a second drive system 8004a. In certain instances, one of the drive systems 8002a, 8004a can be configured to deliver a closing drive motion to the jaw assembly of the end effector 8010 (
In various instances, the end effector assembly 8010 can include a first drive system 8002b, which can correspond to the first drive system 8002a of the handle 8000, for example, and can also include a second drive system 8004b, which can correspond to the second drive system 8004a of the handle 8000, for example. In various instances, the first drive system 8002b in the end effector 8010 can include a drive element 8012, which can be operably and releasably coupled to the drive bar 8006 of the first drive system 8002a of the handle 8000, for example, and can be configured to receive a linear motion from the drive bar 8006, for example. Additionally, the second drive system 8004b of the end effector 8010 can include a drive element 8014, which can be operably and releasably coupled to the drive bar 8008 of the second drive system 8004a of the handle 8000, for example, and can be configured to receive a linear motion from the drive bar 8008, for example.
In various instances, the handle 8000 and/or the end effector 8010 can include a coupling arrangement, which can be configured to releasably couple the drive bar 8006 to the drive element 8012, for example, and/or the drive bar 8008 to the drive element 8014, for example. In other words, the coupling arrangement can couple the first drive system 8002a of the handle 8000 to the first drive system 8002b of the end effector 8010 and the second drive system 8004a of the handle 8000 to the second drive system 8004b of the end effector 8010 such that a drive force initiated in the handle 8000 of the surgical instrument can be transferred to the appropriate drive system 8002b, 8004b of the attached surgical end effector 8010. Though the surgical system depicted in
In various instances, a coupling arrangement for coupling a drive system in the handle of a surgical instrument to a drive system in an attached end effector can include a latch, which can be configured to retain and secure the connection between the corresponding handle and end effector drive systems. As described in greater detail herein, the latch can be spring-loaded, and can be coupled to a trigger, for example, which can be configured to operably overcome the bias of a spring to unlock, open, and/or release the coupling arrangement, for example. In various instances, the coupling arrangement can include independent and/or discrete coupling mechanisms and/or joints for each drive system 8002b, 8004b in the surgical end effector 8010. In such instances, one of the drive systems 8002b, 8004b can be activated without activating the other drive system 8002b, 8004b. In other instances, the drive systems 8002b, 8004b can be activated simultaneously and/or concurrently, for example.
Referring now to
In various instances, the coupling arrangement 8100 can include a trigger 8120 in sliding engagement with the ramp 8106 of the carriage 8104. For example, the trigger 8120 can include an inclined surface 8122 that is configured to slide along the ramp 8106 of the carriage 8104 when the trigger 8120 is moved between a first, or unactuated, position (
In various instances, when the trigger 8120 is moved along the actuation path defined by at least one guide rail 8110 in a direction D1 (
In various instances, when the trigger 8120 is moved along at least one guide rail 8110 in a direction D2 (
Referring now to
In various instances, the carriage 8104 can also be configured to move and/or shift relative to a drive member socket 8130 of the coupling arrangement 8100. The drive member socket 8130 can be configured to receive one of the drive members 8172 from the handle 8170, for example. Referring primarily to
Referring still to
Referring primarily to
In various instances, the socket 8130 can include a recess 8134, which can be configured to receive a spring 8150, for example. In other instances, the socket 8136 can include more than one recess 8134, and the coupling arrangement 8100 can include more than one spring 8150, for example. Moreover, in certain instances, the socket 8130 can include more than one flexible tab 8132a, 8132b. For example, the socket 8130 can include a pair of laterally-positioned tabs 8132a, 8132b. A first tab 8132a can be positioned on a first lateral side of the socket 8130, for example, and a second tab 8132b can be positioned on a second lateral side of the socket 8130, for example. In certain instances, the tabs 8132a, 8132b can be deflected outward from the opening 8136 to accommodate entry of the drive bar 8172, for example. In other instances, the socket 8130 may not include an inwardly-biased tab and/or can include more than two tabs, for example.
In various instances, the coupling arrangement 8100 can also include a latch or sleeve 8140, which can be movably positioned relative to the socket 8130. For example, the latch 8140 can include an opening 8142 (
In various instances, when the latch 8140 is positioned to limit and/or prevent outward deflection of the tab(s) 8132a, 8132b, i.e., in the socket-latching position, outward movement of the tab(s) 8132a, 8132b away from the opening 8136 can be limited, such that the tab(s) 8132a, 8132b can block and/or otherwise prevent entry and/or release of the drive bar 8172 relative to the opening 8136 in the socket 8130, for example. Moreover, when the trigger 8120 moves from the unactuated position (
In various instances, the latch 8140 can comprise a nub or protrusion 8144. Furthermore, referring primarily to
In certain instances, the latch 8140 can include a pair of laterally-opposed nubs 8144, which can slidably engage laterally-opposed biasing members 8108 of the carriage 8104. Furthermore, in instances where the coupling arrangement 8100 couples more than one drive system between the handle 8170 and the surgical end effector, for example, the carriage 8104 can include multiple biasing members 8108, and/or multiple pairs of biasing members 8108. For example, each socket 8130 can include a pair of laterally positioned nubs 8144, and the carriage 8104 can include a biasing member 8108 for each nub 8144, for example.
Referring primarily to
Thereafter, if the trigger 8120 is released, referring now to
In various instances, a surgical instrument can include a drive system coupled to a motor. In certain instances, the motor and the drive system can affect various surgical functions. For example, the motor and the drive system can affect opening and/or closing of a surgical end effector, and can affect a cutting and/or firing stroke, for example. In certain instances, the motor and drive system can affect multiple distinct surgical functions. For example, opening and closing of the surgical end effector can be separate and distinct from cutting and/or firing of fasteners from the surgical end effector. In such instances, the drive system can include a transmission and/or clutch assembly, which can shift engagement of the drive system between different output systems, for example.
In various instances, a surgical instrument can include a drive system having multiple output shafts, and a clutch for shifting between the different output shafts. In certain instances, the output shafts can correspond to different surgical functions. For example, a first output shaft can correspond to an end effector closure motion, and a second output shaft can correspond to an end effector firing motion, for example. In various instances, the drive system can switch between engagement with the first output shaft and the second output shaft, for example, such that the surgical functions are separate and distinct and/or independent. For example, an end effector closure motion can be separate and distinct from an end effector firing motion. For example, it may be preferable to initiate a closure motion and, upon completion of the closure motion, initiate a separate firing motion. Moreover, it may be preferable to control and/or drive the independent closure motion and firing motion with a single drive system, which can be coupled to an electric motor, for example. In other instances, the first output shaft and the second output shaft can be operably coupled and the various surgical functions and/or surgical motions can occur simultaneously and/or at least partially simultaneously, for example.
Referring now to
In various instances, the drive system 8602 can include a motor assembly, which can include an electric motor 8640 and a motor shaft 8642. A drive gear 8644 can be mounted to the motor shaft 8642, for example, such that the electric motor 8640 drives and/or affects rotation of the drive gear 8644. In various instances, the first output drive system 8610 can include a first drive shaft 8612 and a first driven gear 8612. The first driven gear 8614 can be mounted to the first drive shaft 8612, for example, such that the rotation of the first driven gear 8614 affects the rotation of the first drive shaft 8612. In various instances, a linear actuator 8616 can be threadably positioned on the first drive shaft 8612, and rotation of the first drive shaft 8612 can affect linear displacement of the linear actuator 8616, for example. Moreover, in various instances, the second output drive system 8620 can include a second drive shaft 8622 and a second driven gear 8624. The second driven gear 8624 can be mounted to the second drive shaft 8622, for example, such that the rotation of the second driven gear 8624 affects the rotation of the second drive shaft 8622. In various instances, a linear actuator 8626 can be threadably positioned on the second drive shaft 8624, and rotation of the second drive shaft 8624 can affect linear displacement of the linear actuator 8626, for example.
In various instances, the drive system 8602 can further comprise a transmission or shifter assembly 8648. The shifter assembly 8648 can be configured to shift engagement of the drive gear 8644 between the first output drive system 8610 and the second output drive system 8620, for example. For certain instances, the shifter assembly 8648 can include a shifting gear 8652, which can be in meshing engagement with the drive gear 8644, for example. Additionally, the shifting gear 8652 can be configured to shift or move between a range of positions, for example, and can remain in meshing engagement with the drive gear 8644 as the shifting gear 8652 moves within the range of positions.
For example, the shifting gear 8652 can move into and/or out of engagement with at least one of the first driven gear 8614 and/or the second driven gear 8624. In various instances, the shifting gear 8652 can move into meshing engagement with the second driven gear 8624 of the second output drive system 8620. For example, when in a first position (
In various instances, the shifter assembly 8648 can further comprise an intermediate and/or transfer gear 8654. The transfer gear 8642 can be configured to transfer a drive force from the shifting gear 8652 to the first driven gear 8614, for example. In various instances, the transfer gear 8654 can be in meshing engagement with the first drive gear 8614, for example, such that the rotation of the transfer gear 8654 is transferred to the first driven gear 8614, for example. Moreover, in various instances the shifting gear 8652 can move into and/or out of engagement with the transfer gear 8654. For example, when in the first position (
In various instances, the transfer gear 8654 can be rotatably mounted on the second drive shaft 8622 of the second output drive system 8620. For example, the transfer gear 8654 can be configured to rotate relative to the second drive shaft 8622 without affecting rotation of the second drive shaft 8622 and the second driven gear 8624 fixed thereto. In various instances, the shifter assembly 8648 can include a bracket or collar 8650, which can at least partially surround the shifting gear 8652. The bracket 8650 can be positioned around the shifting gear 8652, for example, such that movement of the bracket 8650 can move the shifting gear 8652.
In various instances, the handle 8600 and/or the shifting assembly 8648 can further include a trigger or clutch 8630. The clutch 8630 can be configured to shift the bracket 8650 and/or the shifting gear 8652 within the range of positions. For example, clutch 8630 can comprise a trigger extending from the handle 8600, and can be engaged with the bracket 8650 and/or the shifting gear 8652. In various instances, the bracket 8650 can include a pin 8656, which can extend from the bracket 8640 into an aperture 8638 (
In various instances, the movement of the bracket 8650 can be constrained such that the shifting gear 8652 moves along a longitudinal axis through its range of positions. Moreover, the pivoting stroke and/or range of movement of the clutch 8630 can be restrained and/or limited, for example, such that the shifting gear 8652 remains within the range of positions as the clutch 8630 pivots. Furthermore, the aperture 8638 (
A surgical instrument can include a rotatable drive shaft configured to operate a closure drive and a firing drive of a surgical instrument. Referring to
The surgical instrument 10000 can comprise a frame 10002 and means for generating a rotary motion. In certain instances, rotary motion can be created by a manually-driven hand crank, for example, while, in various instances, rotary motion can be created by an electric motor. In either event, the generated rotary motion can be transmitted to a rotary input shaft 10010. Input shaft 10010 can include a proximal bearing portion 10011 and a distal bearing portion 10013 which are rotatably supported by the frame 10002. In various instances, the proximal bearing portion 10011 and/or the distal bearing portion 10013 can be directly supported by the frame 10002 while, in certain instances, the proximal bearing portion 10011 and/or the distal bearing portion 10013 can include a bearing positioned between the input shaft 10010 and the frame 10002. The input shaft 10010 can further include a gear 10012 mounted to and/or keyed to the input shaft 10010 such that, when input shaft 10010 is rotated in direction A (
Referring primarily to
Referring again to
Referring primarily to
Further to the above, the closure drive 10030 can be operated to move the anvil of the surgical instrument 10000 into a suitable position relative to a staple cartridge. In various instances, the surgical instrument 10000 can include an actuator which can be operated in a first direction to rotate the input shaft 10010 in direction A and the drive shaft 10020 in direction B and a second direction to rotate the input shaft 10010 in direction A′ and the drive shaft 10020 in direction B′. In other instances, the surgical instrument 10000 can include a first actuator configured to rotate the input shaft 10010 in direction A and the drive shaft 10020 in direction B, when operated, and a second actuator configured to rotate the input shaft 10010 in direction A′ and the drive shaft 10020 in direction B′, when operated. In either event, an operator of the surgical instrument 10000 can move the anvil of the surgical instrument 10000 toward and away from the staple cartridge, as needed, in order to create a desired gap between the anvil and the staple cartridge. Such a desired gap may or may not be created when the anvil is in its fully closed position.
Further to the above, the surgical instrument 10000 can include a catch configured to receive and releasably hold the drive pin 10032 when the closure system 10030 has reached its fully closed configuration. Referring primarily to
As discussed above, the entry of the drive pin 10032 into the catch aperture 10077 of the catch bar 10073 can demarcate the end of the closing stroke of the closure system 10030 and the fully closed position of the anvil. In various instances, the catch bar 10073 may not be movable relative to the frame 10002 and the catch aperture 10077 may demarcate a fixed position. In other instances, the catch bar 10073 may be movable relative to the frame 10002. In such instances, the final, closed position of the anvil will depend on the position of the catch aperture 10077. As a result, the gap between the anvil and the staple cartridge of the surgical instrument 10000 will depend on the position of the catch aperture 10077. Referring generally to
In various instances, the gap setting system 10070 can comprise a knob lock configured to releasably hold the knob 10072 in position. For instance, the frame 10002 can include a lock projection 10004 extending therefrom which can be received within one or more lock apertures 10074 defined in the knob 10072. The lock apertures 10074 can be positioned along a circumferential path. Each lock aperture 10074 can correspond with a preset position of the closure drive 10030 and a preset gap distance between the anvil and the staple cartridge of the surgical instrument 10000. For instance, when the lock projection 10004 is positioned in a first lock aperture 10074, the closure drive 10030 can be held in a first preset position and, correspondingly, the anvil can be held a first preset distance from the staple cartridge. In order to move the knob 10072 into a second preset position, the knob 10072 can be lifted away from the frame 10002 such that lock projection 10004 is no longer positioned in the first lock aperture 10074, rotated to drive the rack 10075 and the catch bar 10073, and then moved toward the frame 10002 such that the lock projection 10004 enters into a second lock aperture 10074 defined in the knob 10072. When the lock projection 10004 is positioned in the second lock aperture 10074, the closure drive 10030 can be held in a second preset position and, correspondingly, the anvil can be held a second preset distance from the staple cartridge which is different than the first preset distance. In order to move the knob 10072 into a third preset position, the knob 10072 can be lifted away from the frame 10002 such that lock projection 10004 is no longer positioned in the first or second lock aperture 10074, rotated to drive the rack 10075 and the catch bar 10073, and then moved toward the frame 10002 such that the lock projection 10004 enters into a third lock aperture 10074 defined in the knob 10072. When the lock projection 10004 is positioned in the third lock aperture 10074, the closure drive 10030 can be held in a third preset position and, correspondingly, the anvil can be held a third preset distance from the staple cartridge which is different than the first and second preset distances. The gap setting system 10070 can further include a biasing element configured to bias the knob 10072 toward the frame 10002. For instance, the gap setting system 10070 can include a spring 10076 positioned intermediate the housing 10002 and the drive gear 10071, for example, configured to bias a lock aperture 10074 into engagement with the lock projection 10004.
In certain instances, an operator of the surgical instrument 10000 may be able to discern the position of the closure system 10030 by observing the position of the anvil. In some instances, however, the anvil may not be visible in a surgical field. Referring primarily to
As discussed above, the closure system 10030 of the surgical instrument 10000 can be operated to position the anvil of the surgical instrument 10000 relative to the staple cartridge. During the operation of the closure system 10030, the firing system 10040 may not be operated. The firing system 10040 may not be operably engaged with the drive shaft 10020 until after the closure drive 10030 has reached its fully closed position. The surgical instrument 10000 can include a switch, such as switch 10060, for example, configured to switch the surgical instrument between an anvil closure operating mode and a staple firing operating mode. The closure drive 10030 can further comprise a switch pin 10031 extending from the proximal end of the closure member 10033. Upon comparing
Further to the above, the firing nut 10042 can comprise a threaded aperture 10041 defined therein which can be threadably engaged with the second thread 10026. When the closure drive 10030 is being operated, further to the above, the firing nut 10042 may be positioned proximally with respect to the second thread 10026 such that the threaded aperture 10041 is not threadably engaged with the second thread 10026. In such circumstances, the firing nut 10042 may sit idle while the drive shaft 10020 is rotated to operate the closure system 10030. When the firing nut 10042 is displaced distally, further to the above, the threaded aperture 10041 can become threadably engaged with the second thread 10026. Once the firing nut 10042 is threadably engaged with the second thread 10026, rotation of the drive shaft 10020 in direction B′ (
Referring primarily to
When the switch 10060 is rotated back into its original position, further to the above, the arms 10064 of the switch 10060 can push the switch pin 10031 and the closure member 10033 distally. The distal movement of the switch pin 10031 and the closure member 10033 can displace the drive pin 10032 from the catch aperture 10077 defined in the catch bar 10073. As the drive pin 10032 exits the catch aperture 10077, the drive pin 10032 can move downwardly against the biasing force of the spring 10035 in order to slide under the catch bar 10073. The downward movement of the drive pin 10032 can re-engage the drive pin 10032 with the first thread 10024. Further rotation of the drive shaft 10020 in direction B will displace the drive pin 10032 and the closure member 10033 distally to open the anvil of the surgical instrument 10000. At such point, the surgical instrument 10000 will have been reset for a subsequent use thereof. In various instances, the staple cartridge can be replaced and/or reloaded and the surgical instrument 10000 can be used once again.
As the reader will appreciate from the above, the drive screw 10020 can displace the drive pin 10032 to operate the closure drive 10030 and the firing nut 10042 to operate the firing drive 10040. Further to the above, the drive screw 10020 can displace the drive pin 10032 along a first length 10025 of the drive screw 10020. Similarly, the drive screw 10020 can displace the firing nut 10042 along a second length 10027 of the drive screw 10020. The first length 10025 can define a closure stroke of the closure system 10030 and the second length 10027 can define a firing stroke of the firing stroke 10040. The first length 10025 can be longer than the second length 10027, although the second length 10027 could be longer than the first length 10025 in certain circumstances. In use, the closure pin 10032 can pass by the firing nut 10042. For instance, when the closure pin 10032 is moved proximally to close the anvil, the closure pin 10032 can pass by the firing nut 10042 when the firing nut 10042 is in its idle position. Similarly, the closure pin 10032 can pass by the firing nut 10042 in its idle position when the closure pin 10032 is moved distally to open the anvil. In order to facilitate this relative movement, the firing nut 10042 can include an opening, such as slot 10046, for example, defined therein through which the closure pin 10032 can pass as the closure pin 10032 moves relative to the firing nut 10042. Such an opening defined in the firing nut 10042 could also permit the firing nut 10042 to slide by the closure pin 10032 in various other embodiments.
Further to the above, the first length 10025 and the second length 10027 can at least partially overlap. Moreover, the first thread 10024 and the second thread 10026 can at least partially overlap. The first thread 10024 and the second thread 10026 can be defined on the same portion of the drive screw 10020. The first thread 10024 and the second thread 10026 can be sufficiently dissimilar such that the closure pin 10032 does not follow the second thread 10026 and such that the firing nut 10042 does not follow the first thread 10024. For instance, the first thread 10024 can include a first thread pitch and the second thread 10026 can include a second thread pitch which is different than the first thread pitch. The first thread pitch of the first thread 10024 may or may not be constant. In the event that the first thread pitch is constant, the closure pin 10032 and the anvil operably engaged with the first thread 10024 will move at a constant speed throughout the closure stroke for a given rotational speed of the drive shaft 10020. In the event that the first thread pitch is not constant, the closure pin 10032 and the anvil will move at different speeds during the closure stroke for a given rotational speed of the drive shaft 10020. For instance, the distal portion of the first thread 10024 can include a thread pitch which is greater than the thread pitch of the proximal portion of the first thread 10024. In such circumstances, the anvil will move quickly away from its open position and move slower once it nears its closed position for a given rotational speed of the drive shaft 10020. Such an arrangement would permit the anvil to be moved quickly into position against tissue positioned intermediate the anvil and the staple cartridge and then slower once the anvil was engaged with the tissue in order to mitigate the possibility of over-compressing the tissue. In various other instances, the distal portion of the first thread 10024 can include a thread pitch which is less than the thread pitch of the proximal portion of the first thread 10024. In either event, the thread pitch can change between the ends of the first thread 10024. This change can be linear and/or non-linear.
Further to the above, the second thread pitch of the second thread 10026 may or may not be constant. In the event that the second thread pitch is constant, the firing nut 10042 and the firing member operably engaged with the second thread 10026 will move at a constant speed throughout the closure stroke for a given rotational speed of the drive shaft 10020. In the event that the second thread pitch is not constant, the firing nut 10042 and the firing member will move at different speeds during the firing stroke for a given rotational speed of the drive shaft 10020. For instance, the distal portion of the second thread 10026 can include a thread pitch which is less than the thread pitch of the proximal portion of the second thread 10026. In such circumstances, the firing member will move slower at the end of its firing stroke for a given rotational speed of the drive shaft 10020. Such an arrangement would slow the firing member down as it reached the end of the staple forming process. Moreover, such an arrangement could generate a larger amount of torque at the end of the firing stroke which correlates with the completion of the staple forming process. In various other instances, the distal portion of the second thread 10026 can include a thread pitch which is greater than the thread pitch of the proximal portion of the second thread 10026. In either event, the thread pitch can change between the ends of the second thread 10026. This change can be linear and/or non-linear.
Turning now to
The input shaft 10510 can include a input gear 10512 mounted and/or keyed thereto which rotates with the input shaft 10510. The input shaft 10510 can be rotatably supported by a frame of the surgical instrument 10500 by a proximal end 10511 and a distal end 10519. The input gear 10512 can be meshingly engaged with an intermediate gear 10522 mounted and/or keyed to an intermediate shaft 10520. Thus, when input shaft 10510 and input gear 10512 are rotated in direction A (
Further to the above, the shifter block 10526 can include a gear slot 10528 defined therein. The input shaft 10510 can further include a slider gear 10516 slidably mounted thereto which is positioned in the gear slot 10528. When the shifter block 10526 is moved proximally by the intermediate shaft 10520, as discussed above, the shifter block 10526 can push the slider gear 10516 proximally along a keyed input shaft portion 10514. Referring primarily to
Further to the above,
Further to the above,
Once the anvil 10508 has been moved into an open position and/or detached from the closure member 10538, further to the above, tissue can be positioned intermediate the anvil 10508 and the staple cartridge 10506. Thereafter, referring to
Further to the above,
In order to retract the firing member 10548, the input shaft 10510 can be rotated in direction A to rotate intermediate shaft 10520 in direction B, displace the shifter block 10526 proximally, and re-engage the slider gear 10516 with the firing gear 10542. At such point, the continued rotation of input shaft 10510 in direction A will rotate the firing shaft 10540 in an opposite direction to direction D′, displace the firing nut 10546 proximally, and retract the firing member 10548. As the slider gear 10516 is rotating the firing gear 10542, the shifter block 10526 can continue to pull the slider gear 10516 proximally until the slider gear 10516 is no longer meshingly engaged with the firing gear 10542 and the slider gear 10516 reaches its idle position. At such point, the continued rotation of input shaft 10510 in direction A will continue to displace the shifter block 10526 and the slider gear 10516 proximally and re-engage the slider gear 10516 with the closure gear 10532 in order to re-open the anvil 10508.
Further to the above, the anvil 11090 can be moved toward and away from the staple cartridge 11080 during use. In various instances, the closure button 11065 can include a bi-directional switch. When the closure button 11065 is depressed in a first direction, the closure system of the surgical instrument 11010 can move the anvil 11090 toward the staple cartridge 11080 and, when the closure button 11065 is depressed in a second direction, the closure system can move the anvil 11090 away from the staple cartridge 11080. Referring primarily to
Referring primarily to
Further to the above, the closure channel 11180 fits around the cartridge channel 11070 so that cartridge channel 11070 nests inside the “U” shape of the closure channel 11180. Referring primarily to
Each cam slot 11190 can comprise a curved, or arcuate, path. The first drive surface 11193 can comprise a first arcuate surface and the second drive surface 11194 can comprise a second arcuate surface. In various instances, each cam slot 11190 can include at least one curved portion and at least linear portion. In at least one instance, each first drive surface 11193 can comprise a flat surface in a distal end 11191 of a cam slot 11190. The flat surface can comprise a vertical surface which is perpendicular to, or at least substantially perpendicular to, the longitudinal axis 11030 of the instrument 11010. Such a flat surface can act as a detent which would require an initial amount of force to displace the closure pin 11210 into the arcuate portion of the cam slot 11190. In certain instances, each first drive surface 11193 can comprise a flat surface 11196 in a proximal end 11192 of a cam slot 11190. Each flat surface 11196 can comprise a horizontal surface which is parallel to, or at least substantially parallel to, the longitudinal axis 11030. The flat surfaces 11196 can provide a large mechanical advantage between the closure channel 11180 and the anvil 11090. In various instances, the first drive surfaces 11193 can apply very little mechanical advantage to the closure pin 11210 when the closure pin 11210 is in the distal ends 11191 of the slots 11190; however, as the closure pin 11210 slides through the cam slots 11190 toward the proximal ends 11192, the mechanical advantage applied to the closure pin 11210 by the first drive surfaces 11193 can increase. When the closure pin 11210 enters into the proximal ends 11192, the mechanical advantage applied by the first drive surfaces 11193 can be at its greatest, and certainly larger than the mechanical advantage applied by the first drive surfaces 11193 when the closure pin 11210 is in the distal ends 11191 of the cam slots 11190. That said, where the distal ends 11191 may apply a lower mechanical advantage to the closure pin 11210, the distal ends 11191 may quickly displace the closure pin 11210 relative to the cartridge 11080. As the closure channel 11180 is advanced distally and the mechanical advantage applied to the closure pin 11210 increases, as discussed above, the first drive surfaces 11193 may move the anvil 11090 more slowly for a given speed of the closure channel 11180.
As illustrated in
As discussed above, the handle 11015 can include a closure button 11065 configured to operate the closure system of the surgical instrument 11010. The movement of the closure button 11065 can be detected by a sensor or a switch, for example. When the closure button 11065 is pressed, a closure switch 11285 can be activated, or closed, which causes power to flow to the closure motor 11110. In such instances, the switch 11285 can close a power circuit which can supply electrical power to the closure motor 11110. In certain instances, the surgical instrument 11010 can include a microprocessor, for example. In such instances, the closure switch 11285 can be in signal communication with the microprocessor and, when the closure switch 11285 has been closed, the microprocessor can operably connect a power supply to the closure motor 11110. In any event, a first voltage polarity can be applied to the closure motor 11110 to rotate the closure output shaft 11130 in a first direction and close the anvil 11090 and, in addition, a second, or opposite, voltage polarity can be applied to closure motor 11110 to rotate the closure output shaft 11130 in a second, or opposite, direction and open the anvil 11090.
In various instances, the surgical instrument 11010 may be configured such that the operator of the surgical instrument 11010 is required to hold the closure button 11065 in a depressed state until the closure drive has reached its fully closed configuration. In the event that the closure button 11065 is released, the microprocessor can stop the closure motor 11110. Alternatively, the microprocessor can reverse the direction of the closure motor 11110 if the closure button 11065 is released prior to the closure drive reaching its fully closed configuration. After the closure drive has reached its fully closed configuration, the microprocessor may stop the closure motor 11110. In various instances, as described in greater detail below, the surgical instrument 11010 can comprise a closure sensor 11300 (
Once the anvil 11090 has been sufficiently closed, the firing system of the surgical instrument 11010 can be operated. Referring primarily to
Further to the above, a first firing gear 11240 can be mounted to the firing shaft 11230. The first firing gear 11240 is meshingly engaged with a firing lead screw drive gear 11250 which is mounted to a firing lead screw 11260. When the firing shaft 11230 is rotated by the motor 11120, the firing shaft 11230 can rotate the first firing gear 11240, the first firing gear 11240 can rotate the firing lead screw drive gear 11250, and the firing lead screw drive gear 11250 can rotate the firing lead screw 11260. Referring primarily to
The motor and gear arrangement described above can aid in conserving space within the handle 11015 of surgical instrument 11010. As described above, and referring primarily to
Further to the above, the closure and firing gear trains are designed for space conservation. In the embodiment depicted in
Referring primarily to
Further to the above, the firing lead screw 11260 can include a first end rotatably supported by the motor block 11125, for example, a second end rotatably supported by the handle 11015, and a threaded portion extending between the first end and the second end. The firing lead screw 11260 can reside within the “U” shape of the cartridge channel 11070 and above the closure lead screw 11170. Referring primarily to
Further to the above, the firing block 11265 can be affixed to a pusher block 11270 such that the pusher block 11270 translates with the firing block 11265. The firing system can further include firing wedges 11280 which are attached to and extend distally from the pusher block 11270. The firing wedges 11280 can each include at least one cam surface at a distal end thereof which can be configured to eject staples from the staple cartridge 11080. The firing system can further comprise a knife block 11281 slidably disposed along the firing wedges 11280. In various instances, the initial distal movement of the firing block 11265 may not be transferred to the knife block 11281; however, as the firing block 11265 is advanced distally, the pusher block 11270, for example, can contact the knife block 11281 and push the knife block 11281 and a knife 11282 mounted thereto distally. In other instances, the knife block 11281 can be mounted to the firing wedges 11280 such that the knife block 11281 and the knife 11282 move with the firing wedges 11280 throughout the movement of the firing wedges 11280. The firing block 11265, the pusher block 11270, the firing wedges 11280, the knife block 11281, and the knife 11282 can form a pusher block and knife assembly. In any event, the firing wedges 11280 and the knife 11282 can be moved distally to simultaneously fire the staples stored within the staple cartridge 11080 and incise the tissue captured between the staple cartridge 11080 and the anvil 11090. The cam surfaces of the firing wedges 11280 can be positioned distally with respect to the cutting surface of the knife 11282 such that the tissue captured between the staple cartridge 11080 and the anvil 11090 can be stapled before it's incised.
As discussed above, the closure button 11065, when pushed, contacts the closure switch 11285 to energize closure motor 11110. Similarly, the firing button 11055, when pushed, contacts a firing switch 11290 to energize the firing motor 11120. In various instances, the firing switch 11290 can close a power circuit which can supply electrical power to the firing motor 11120. In certain instances, the firing switch 11290 can be in signal communication with the microprocessor of the surgical instrument 11010 and, when the firing switch 11290 has been closed, the microprocessor can operably connect a power supply to the firing motor 11120. In either event, a first voltage polarity can be applied to the firing motor 11120 to rotate the firing output shaft 11230 in a first direction and advance the firing assembly distally and a second, or opposite, voltage polarity can be applied to firing motor 11120 to rotate the firing output shaft 11230 in a second, or opposite, direction and retract the firing assembly. In various instances, the firing button 11055 can include a bi-directional switch configured to operate the firing motor 11120 in its first direction when the firing button 11055 is pushed in a first direction and in its second direction when the firing button 11055 is pushed in a second direction.
As discussed above, the firing system can be actuated after the closure system has sufficiently closed the anvil 11090. In various instances, the anvil 11090 may be sufficiently closed when it has reached its fully closed position. The surgical instrument 11010 can be configured to detect when the anvil 11090 has reached its fully closed position. Referring primarily to
Certain embodiments are envisioned in which the firing system of the surgical instrument 11010 can be operated even though the closure system is in a partially closed configuration and the anvil 11090 is in a partial closed position. In at least one embodiment, the firing assembly of the surgical instrument 11010 can be configured to contact the anvil 11090 and move the anvil 11090 into its fully closed position as the firing assembly is advanced distally to fire the staples stored in the staple cartridge 11080. For instance, the knife 11282 can include a camming member configured to engage the anvil 11090 as the knife 11282 is advanced distally which can move the anvil 11090 into its fully closed position. The knife 11282 can also include a second camming member configured to engage the cartridge channel 11070. The camming members can be configured to position the anvil 11090 relative to the staple cartridge 11080 and set a tissue gap distance therebetween. In at least one instance, the knife 11282 can comprise an I-beam which is displaced distally to set the tissue gap, eject the staples from the staple cartridge 11080, and incise the tissue.
The surgical instrument 11010 can a sensor configured to detect when the firing system has completed its firing stroke. In at least one instance, the surgical instrument 11010 can include a sensor, such as an encoder, for example, which can be configured to detect and count the rotations of the firing lead screw 11260. Such a sensor can be in signal communication with the microprocessor of the surgical instrument 11010. The microprocessor can be configured to count the rotations of the firing lead screw 11260 and, after the firing lead screw 11260 has been rotated a sufficient number of times to fire all of the staples from the staple cartridge 11080, the microprocessor can interrupt the power supplied to the firing motor 11120 to stop the firing lead screw 11260. In certain instances, the microprocessor can reverse the voltage polarity applied to the firing motor 11120 to automatically retract the firing assembly once the firing assembly has fired all of the staples.
As discussed above, the surgical instrument 11010 can include a power supply. The power supply can include a power supply located external to the handle 11015 and a cable which can extend into the handle 11015, for example. The power supply can include at least one battery contained within handle 11015. A battery can be positioned in the first handle portion 11020 and/or the handle grip 11040. It is envisioned that the batteries, gears, motors, and rotating shafts may all be combined in one unit separable from the rest of handle 11015. Such a unit may be cleanable and sterilizable.
In various instances, the surgical instrument 11010 can include one or more indicators configured to indicate the state of the surgical instrument 11010. In at least one embodiment, the surgical instrument 11010 can include an LED 11100, for example. To communicate the state of the surgical instrument to the user, the LED 11100 can glow in different colors during different operating states of surgical instrument 11010. For example, the LED 11100 can glow a first color when the surgical instrument 11010 is powered and an unspent staple cartridge 11080 is not positioned in the cartridge channel 11070. The surgical instrument 11010 can include one or more sensors which can be configured to detect whether a staple cartridge 11080 is present in the cartridge channel 11070 and whether staples have been ejected from the staple cartridge 11080. The LED 11100 can glow a second color when the surgical instrument 11010 is powered and an unspent staple cartridge 11080 is positioned in the cartridge channel 11070. The LED 11010 can glow a third color when the instrument 11010 is powered, an unspent staple cartridge 11080 is loaded into the cartridge channel 11070, and the anvil 11090 is in a closed position. Such a third color can indicate that the surgical instrument 11010 is ready to fire the staples from the staple cartridge 11080. The LED 11100 can glow a fourth color after the firing process has begun. The LED can glow a fifth color after the firing process has been completed. This is but one exemplary embodiment. Any suitable number of colors could be utilized to indicate any suitable number of states of the surgical instrument 11010. While one or more LEDs may be utilized to communicate the state of the surgical instrument, other indicators could be utilized.
In use, a user of the surgical instrument 11010 may first load the surgical instrument 11010 with a staple cartridge 11080 by placing the staple cartridge 11080 into the cartridge channel 11070. Loading the cartridge 11080 into the cartridge channel 11070 may cause the LED 11100 to change from a first color to a second color. The user may grasp the handle grip 11040 and use the thumb activated closure switch 11065 to open the anvil 11090 of the surgical instrument 11010 in order to place the staple cartridge 11080 within the cartridge channel 11070. The user could then position the staple cartridge 11080 on one side of the tissue to be stapled and transected and the anvil 11090 on the opposite side of the tissue. Holding closure button 11065 with their thumb, the user may close surgical instrument 11010. Release of the closure button 11065 before the closing stroke is completed can reopen the anvil 11090 and allow the user to reposition the surgical instrument 11010, if necessary. The user may enjoy the advantage of being able to use an open linear cutter with pivotable jaws without the necessity of assembling linear cutter portions. The user may further enjoy the advantage of a pistol-grip feel.
As the anvil 11090 is being moved into its fully closed position, the closure channel 11080 can contact the closure sensor 11300, and the closure sensor 11300 can signal the microprocessor to arm firing switch 11290. At such point, the LED 11100 may glow a third color to show a loaded, closed, and ready-to-fire surgical instrument 11010. The user can then press the firing button 11055 which contacts the firing switch 11290 and causes the firing switch 11290 to energize the firing motor 11120. Energizing the firing motor 11120 rotates the firing shaft 11230 which, in turn, rotates the first firing gear 11240 and the firing lead screw drive gear 11250. The firing lead screw drive gear 11250 rotates the firing lead screw 11260. Threads of the firing lead screw 11260 engage and apply a force against internal threads defined in the firing block 11265 to move the firing block 11265 distally. The firing block 11265 moves pusher block 11270 distally, carrying firing wedges 11280 distally. The cam surfaces 11305 at the distal end of the firing wedges 11280 cam staples stored within the staple cartridge 11080 toward the anvil 11090, and the anvil 11090 can form the staples to fasten the tissue. The pusher block 11270 engages the knife block 11281 to push the knife block 11281 and the knife 11282 distally to transect the stapled tissue. After the firing stroke has been completed, the firing motor 11120 can be reversed to return the pusher block 11270, the knife block 11281, the firing wedges 11280, and the knife 11282. The surgical instrument 11010 can include a button and/or switch which automatically instructs the microprocessor to retract the firing assembly even though the firing stroke has not yet been completed. In some instances, the firing assembly may not need to be retracted. In any event, the user can open the surgical instrument 11010 by pressing the closure button 11065. The closure button 11065 can contact the closure switch 11285 and energize the closure motor 11110. The closure motor 11110 can be operated in a reverse direction to retract the closure channel 11180 proximally to reopen the anvil 11090 of the surgical instrument 11010. The LED 11100 may glow a fourth color designating a fired cartridge, and a complete procedure.
A surgical stapling instrument 12010 is depicted in
Referring primarily to
Further to the above, the anvil 12090 can include a proximal end and a distal end. The distal end of the anvil 12090 can include a plurality of staple forming pockets which are alignable, or registerable, with staple cavities defined in the staple cartridge 12080 when the anvil 12090 is in its closed position. The proximal end of the anvil 12090 can be pivotably connected to the frame 12020. The anvil 12090 can include a pivot aperture 12201 which can be aligned with pivot apertures 12202 defined in the cartridge channel 12207 and a pivot aperture 12203 defined in the frame 12020. A pivot pin 12200 can extend through the pivot apertures 12201, 12202, and 12203 and can rotatably connect the anvil 12090 to the cartridge channel 12207. In various instances, the pivot apertures 12201, 12202, and 12203 and the pivot pin 12200 can define a fixed axis about the anvil 12090 can rotate. In certain instances, the pivot apertures 12201, 12202 and/or 12203 can be longitudinally elongate, for example, such that the pivot pin 12200 can slide within the pivot apertures 12201, 12202 and/or 12203. In such instances, the anvil 12090 can rotate about an axis relative to the cartridge channel 12070 and, in addition, translate relative to the cartridge channel 12070. The anvil 12090 can further include an anvil housing 12097 mounted thereto. When the anvil housing 12097 is moved by the user of the surgical instrument 12010, the anvil housing 12097 can move the anvil 12090 such that the anvil 12090 can be rotated between an open position (
Further to the above, the anvil 12090 can further include a latch pin 12210. The anvil 12090 can include latch pin apertures 12211 and the anvil housing 12097 can include latch pin apertures 12212 which are configured to receive and support the latch pin 12210. When the anvil 12090 has been moved into its closed position, or a position adjacent to its closed position, the latch 12050 can engage the latch pin 12210 and pull the anvil 12090 toward the staple cartridge 12080. In various instances, the latch bars 12052 of the latch 12050 can each include a latch arm 12053 configured to engage the latch pin 12210. The latch 12050 can be rotated between an unlatched position (
As discussed above, the anvil 12090 can be moved toward the staple cartridge 12080. In various instances, the movement of the anvil 12090 toward the staple cartridge 12080 can be stopped when a distal end of the anvil 12090 contacts a distal end of the staple cartridge 12080. In certain instances, the movement of the anvil 12090 can be stopped when the latch pin 12210 contacts the cartridge channel 12070. The cartridge channel 12070 can include slots 12215 defined therein which are configured to receive the latch pin 12210. Each slot 12215 can include an upwardly-facing open end through which the latch pin 12210 can enter the slot 12215 and, in addition, a closed end. In various instances, the latch pin 12210 can contact the closed ends of the slots 12215 when the anvil 12090 reaches its closed position. In certain instances, the latch pin 12210 may not contact the closed ends of the slots 12215 if thick tissue is positioned between the anvil 12090 and the staple cartridge 12080. In at least one instance, the anvil 12090 can further include a stop pin 12095. The stop pin 12095 can be mounted to and supported by the anvil 12090 via pin apertures 12096 defined therein. The stop pin 12095 can be configured to contact the cartridge channel 12070 and stop the movement of the anvil 12090 toward the staple cartridge 12080. Similar to the above, the cartridge channel 12070 can further include stop slots 12075 defined therein which can be configured to receive the stop pin 12095. Each stop slot 12075 can include an upwardly-facing open end through which the stop pin 12095 can enter the stop slot 12275 and, in addition, a closed end. In various instances, the stop pin 12095 can contact the closed ends of the stop slots 12075 when the anvil 12090 reaches its closed position. In certain instances, the stop pin 12095 may not contact the closed ends of the stop slots 12075 if thick tissue is positioned between the anvil 12090 and the staple cartridge 12080.
As discussed above, the cartridge channel 12070 can be mounted to the frame 12020. In various instances, the cartridge channel 12070 can be rigidly and fixedly mounted to the frame 12020. In such instances, the cartridge channel 12070 may not be movable relative to the frame 12020 and/or the handle 12015. In certain instances, the cartridge channel 12070 can be pivotably coupled to the frame 12020. In at least one such instance, the cartridge channel 12070 can include pivot apertures 12202 defined therein which can be configured to receive the pivot pin 12200. In such circumstances, both the anvil 12090 and the cartridge channel 12070 may be rotatable relative to the frame 12020 about the pivot pin 12200. The latch 12050 can hold the anvil 12090 and the cartridge channel 12070 in position when the latch 12050 is engaged with the latch pin 12210.
In certain instances, further to the above, the instrument 12010 can include one or more sensors configured to detect whether the anvil 12090 is in its closed position. In at least one instance, the instrument 12010 can include a pressure sensor positioned intermediate the frame 12020 and the cartridge channel 12070. The pressure sensor can be mounted to the frame channel 12022 or the bottom of the cartridge channel 12070, for example. When the pressure sensor is mounted to the bottom of the cartridge channel 12070, the pressure sensor can contact the frame channel 12022 when the cartridge channel 12070 is moved toward the frame channel 12022. The cartridge channel 12070 can be moved toward the frame channel 12022 if the cartridge channel 12070 is rotatable relative to the frame channel 12022, as discussed above. In addition to or in lieu of the above, the cartridge channel 12070 can be moved toward the frame channel 12022 if the cartridge channel 12070 flexes toward the frame channel 12022. The cartridge channel 12070 can flex toward the frame channel 12022 when a compressive load is generated between the anvil 12090 and the cartridge channel 12070. A compressive load between the anvil 12090 and the cartridge channel 12070 can be generated when the anvil 12090 is moved into its closed position and/or when the anvil 12090 is moved toward the cartridge channel 12070 by the latch 12050. When the anvil 12090 is pushed toward the cartridge channel 12070 and/or when the latch 12050 is used to pull the anvil 12090 toward the cartridge channel 12070, the cartridge channel 12070 can bear against the pivot pin 12205. In various instances, the cartridge channel 12070 can include a slot or groove 12209 defined therein which can be configured to receive the pivot pin 12205. In any event, the pressure sensor can be configured to detect the pressure or force being applied to the cartridge channel 12070. The pressure sensor can be in signal communication with a microprocessor of the surgical instrument 12010. When the pressure or force detected by the pressure sensor exceeds a threshold value, the microprocessor can permit the firing system of the instrument 12010 to be operated. Prior to the pressure or force exceeding the threshold value, the microprocessor can warn the user of the surgical instrument 12010 that the anvil 12090 may not be closed, or sufficiently closed, when the user attempts to operate the firing system. In addition to or in lieu of such a warning, the microprocessor can prevent the firing system of the instrument 12010 from being operated if the pressure or force detected by the pressure sensor has not exceeded the threshold value.
In certain instances, further to the above, the instrument 12010 can include one or more sensors configured to detect whether the latch 12050 is in its latched position. In at least one instance, the instrument 12010 can include a sensor 12025 positioned intermediate the frame 12020 and the cartridge channel 12070. The sensor 12025 can be mounted to the frame channel 12022 or the bottom of the cartridge channel 12070, for example. When the sensor 12025 is mounted to the bottom of the cartridge channel 12070, the latch 12050 can contact the sensor 12025 when the latch 12050 is moved from its unlatched position to its latched position. The sensor 12025 can be in signal communication with the microprocessor of the surgical instrument 12010. When the sensor 12025 detects that the latch 12050 is in its latched position, the microprocessor can permit the firing system of the instrument 12010 to be operated. Prior to the sensor 12025 sensing that the latch 12050 is in its latched position, the microprocessor can warn the user of the surgical instrument 12010 that the anvil 12090 may not be closed, or sufficiently closed, when the user attempts to operate the firing system. In addition to or in lieu of such a warning, the microprocessor can prevent the firing system of the instrument 12010 from being operated if the latch 12050 is not detected in its latched position. In various instances, the sensor 12025 can comprise a proximity sensor, for example. In certain instances, the sensor 12025 can comprise a Hall Effect sensor, for example. In at least one such instance, the latch 12050 can include at least one magnetic element, such as a permanent magnet, for example, which can be detected by the Hall Effect sensor. In various instances, the sensor 12025 can be held in position by a bracket 12026, for example.
Referring primarily to
Further to the above, the firing nut 12265 can be mounted to a firing block 12270 which can translate with the firing nut 12265. In various instances, the firing nut 12265 and the firing block 12270 can be integrally formed. Similar to the above, the firing system can further include firing bars 12280 extending therefrom which translate with the firing nut 12265 and the firing block 12270. In various instances, the firing nut 12265, the firing block 12270, and the firing bars 12280 can comprise a firing assembly that is translated proximally and/or distally by the lead screw 12160. When the firing assembly is advanced distally by the lead screw 12260, the firing bars 12280 can enter into the staple cartridge 12080 and eject the staples therefrom. The firing system can further comprise a knife block 12281 and a knife bar 12282 mounted to and extending from the knife block 12281. As the firing block 12270 is advanced distally, the firing bars 12280 can engage the knife block 12281 and advance the knife block 12281 and the knife bar 12282 distally. In various instances, the firing block 12270 can move relative to the knife block 12281 during the initial portion of the firing stroke and then move together during the final portion of the firing stroke. In at least one such instance, the firing bars 12280 can slide through slots defined in the knife block 12281 until one or more raised surfaces extending from the firing bars 12280 contact the knife block 12281 and push the knife block 12281 distally with the firing bars 12280. In various instances, the firing assembly can further include the knife block 12281 and the knife bar 12282 which can move concurrently with the firing block 12270 and the firing bars 12280. In either event, as the knife bar 12282 is advanced distally, a cutting edge 12283 of the knife bar 12282 can incise tissue captured between the anvil 12090 and the staple cartridge 12080. The disclosure of U.S. Pat. No. 4,633,874, entitled SURGICAL STAPLING INSTRUMENT WITH JAW LATCHING MECHANISM AND DISPOSABLE LOADING CARTRIDGE, which issued on Jan. 6, 1987, is incorporated by reference herein in its entirety.
Referring primarily to
In various instances, the instrument 12010 can include a firing lockout system which can block the advancement of the knife 12282 and/or the firing bars 12280 if the anvil 12090 is not in a closed, or a sufficiently closed, position. Referring to
The surgical instrument 12010 can comprise a manually driven closure system and a motor driven staple firing system. A portion 12040 of the handle 12015 can be gripped by one hand of the user of the surgical instrument 12010 and the anvil 12090 and the latch 12050 can be manipulated by their other hand. As part of closing the latch 12050, in at least one embodiment, the user can move one of their hands in the general direction of their other hand which can reduce the incidental and accidental movement of the surgical instrument 12010. The surgical instrument 12010 can be powered by any suitable power source. For instance, an electrical cable can extend from an external power source and into the handle 12015. In certain instances, a battery can be stored in the handle 12015, for example.
A surgical stapling instrument 13010 is illustrated in
In various instances, referring primarily to
The closure drive can include a closure motor 13105 (
In at least one form, the instrument 13010 can include a closure system switch positioned in the handle 13015 which can be closed when the first actuator 13020 is moved from its open position (
In at least one form, the movement of the first actuator 13020 can be proportional to the movement of the anvil 13050. The first actuator 13020 can move through a first, or actuator, range of motion when it is moved between its open position (
Further to the above, the anvil 13050 can be responsive to both closing and opening motions of the first actuator 13020. For example, when the first actuator 13020 is moved 10 degrees toward the pistol grip 13016, the anvil 13050 can be moved 10 degrees toward the staple cartridge 13055 and, when the first actuator 13020 is moved 10 degrees away from the pistol grip 13016, the anvil 13050 can be moved 10 degrees away from the staple cartridge 13055. While the movement of the first actuator 13020 and the movement of the anvil 13050 can be directly proportional according to a 1:1 ratio, other ratios are possible. For instance, the movement of the first actuator 13020 and the movement of the anvil 13050 can be directly proportional according to a 2:1 ratio, for example. In such instances, the anvil 13050 will move 1 degree relative to the staple cartridge 13055 when the first actuator 13020 is moved 2 degrees relative to the pistol grip 13016. Moreover, in such instances, the range of motion of the first actuator 13020 may be twice the range of motion of the anvil 13050. In another instance, the movement of the first actuator 13020 and the movement of the anvil 13050 can be directly proportional according to a 1:2 ratio, for example. In such instances, the anvil 13050 will move 2 degrees relative to the staple cartridge 13055 when the first actuator 13020 is moved 1 degree relative to the pistol grip 13016. Moreover, in such instances, the range of motion of the first actuator 13020 may be half the range of motion of the anvil 13050. In various instances, the motion of the first actuator 13020 may be linearly proportional to the motion of the anvil 13050. In other instances, the motion of the first actuator 13020 may be non-linearly proportional to the motion of the anvil 13050. Regardless of the ratio that is used, such embodiments can be possible through the use of a potentiometer, for example, which can evaluate the rotation of the first actuator 13020, as will be discussed in greater detail further below.
Further to the above, referring to
The closure yoke rack 13080 can include a detectable element 13081 mounted thereon. The detectable element 13081 can comprise a magnetic element, such as a permanent magnet, for example. The detectable element 13081 can be configured to translate within a longitudinal slot 13091 defined in the slide potentiometer 13090 when the closure rack 13080 is translated within the handle 13015. The slide potentiometer 13090 can be configured to detect the position of the detectable element 13081 within the longitudinal slot 13091 and convey that position to the microprocessor of the surgical instrument 13010. For example, when the first actuator 13020 is in its open, or unactuated, position (
When the first actuator 13020 is pulled such that it is substantially adjacent to the pistol grip 13016 of the handle 13015, as discussed above, the closure yoke rack 13080 is moved to its most distal position. When the closure yoke rack 13080 is in its most distal position, a closure release button 13140 can engage the closure yoke rack 13080 to releasably hold the closure yoke rack 13080 in its distal most position and, as a result, releasably hold the anvil 13050 in its closed position. Referring primarily to
As discussed above, the first actuator 13020 and the second actuator 13030 can be releasably held in and/or biased into their unactuated positions illustrated in
Once the first actuator 13020 has been moved and locked into its fully actuated position (
Once the user is satisfied with the position of the anvil 13050 and the staple cartridge 13055, further to the above, the user can pull the second actuator 13030 to a closed, or actuated, position such that it is in close proximity to the first actuator 13020. The actuation of the second actuator 13030 can depress or close a firing switch 13180 in the handle 13015. In various instances, the firing switch 13180 can be supported by a motor mount 13102 which can also be configured to support the closure motor 13105 and/or a firing motor 13100. The closure of the firing switch 13180 can operate the firing motor 13100. In certain instances, the firing switch 13180 can be in signal communication with the microprocessor of the surgical instrument 13010. When the microprocessor receives a signal from the firing switch 13180 that the second actuator 13030 has been sufficiently actuated, the microprocessor can supply power to the firing motor 13100. In various embodiments, the closure of the firing switch 13180 can connect the firing motor 13100 directly to a DC or AC power source to operate the firing motor 13100. In at least one instance, the firing switch 13180 can be arranged such that the firing switch 13180 is not closed until the second actuator 13030 has reached its fully closed position. Referring primarily to
The firing motor 13100 can include a rotatable output shaft which is operably engaged with a firing lead screw 13190 of the firing system. When the firing motor 13100 is operated to rotate its output shaft in a first direction, the output shaft can rotate the firing lead screw 13190 in the first direction. When the firing motor 13100 is operated to rotate its output shaft in a second, or opposite, direction, the output shaft can rotate the firing lead screw 13190 in the second direction. The firing system can further comprise a firing nut which is threadably engaged with a threaded portion of the firing lead screw 13190. The firing nut can be constrained from rotating with the firing lead screw 13190 such that the rotation of the firing lead screw 13190 can translate the firing nut proximally or distally depending on the direction in which the firing lead screw 13190 is rotated. The firing system can further comprise a firing shaft 13220 operatively connected to the firing nut which can be displaced with the firing nut. The firing system can also comprise a knife bar 13200 and staple deploying firing bands which extend distally from the firing shaft 13220. When the firing motor 13020 is rotated in its first direction, the firing lead screw 13190 can displace the firing nut, the firing shaft 13220, the knife bar 13200, and the firing bands distally to eject the staples from the staple cartridge 13055 and incise the tissue positioned intermediate the anvil 13050 and the staple cartridge 13055. Once the knife 13200 and the firing bands reach their end of travel, the microprocessor can rotate the firing motor 13100 in its second, or opposite, direction to bring the knife 13200 and the bands back to their original position. In various instances, the instrument 13010 can include an end of travel sensor in signal communication with the microprocessor which can signal to the microprocessor that the firing drive has reached the end of its firing stroke and that the firing stroke should be retracted. Such an end of travel sensor can be positioned in the anvil 13050 and/or the staple cartridge 13055, for example. In certain instances, an encoder operably coupled to the firing motor 13100 can determine that the firing motor 13100 has been rotated a sufficient number of rotations for the knife 13200 and firing bands to reach their end of travel and signal to the microprocessor that the firing system should be retracted.
Once the second actuator 13030 has been actuated, however, the instrument 13010 is in its firing state and the microprocessor can be configured to ignore any inputs from the first actuator 13020 and/or the slide potentiometer 13090 until the firing system has been returned it to its original position. In various instances, the instrument 13010 can include an abort button which, when depressed, can signal to the microprocessor that the firing assembly should be immediately retracted. In at least one such instance, the firing sequence can be halted when the closure release button 13140 is depressed. As discussed above, pressing the closure release button 13140 moves the closure yoke rack 13080 proximally which, in turn, moves the detectable element 13081 proximally. The proximal movement of the detectable element 13081 can be detected by the slide potentiometer 13090 which can signal to the microprocessor to reverse the rotation of the firing motor 13100 to retract the firing assembly and/or operate the closure motor 13105 to open the anvil 13050.
The instrument 13010 can also include one or more indicators, such as LED 13300, for example, which can be configured to indicate the operating state of the instrument 13010. In various instances, the LED 13300 can operate in a manner similar to that of LED 11100, for example. The instrument 13010 also incorporates the ability to articulate the end effector 13012. This is done through the articulation knob 13240 as discussed in U.S. Pat. No. 5,704,534. Manual rotation of the shaft assembly 13040 is also discussed in U.S. Pat. No. 5,704,534.
In a modular concept of the instrument 13010, the shaft assembly 13040 and the end effector 13012 could be disposable, and attached to a reusable handle 13015. In another embodiment, the anvil 13050 and the staple cartridge 13055 are disposable and the shaft assembly 13040 and the handle 13015 are reusable. In various embodiments, the end effector 13012, including the anvil 13015, the shaft assembly 13040, and the handle 13015 may be reusable and the staple cartridge 13055 may be replaceable.
Further to the above, the actuator 14020 can include a transmission 14000 and a slider button 14060 configured to operate the transmission 14000. The slider button 14060 is movable between a distal position (
The actuator 14020 can comprise an electric motor, such as motor 14090 (
Further to the above, referring primarily to
Further to the above, the slider 14115 can comprise a tubular, or a generally tubular, structure. The slider 14115 can comprise a distal end 14118 and a plurality of outer circumferential splines 14130 extending around an outer surface of the distal end 14118 which can be operably engaged with the firing drive, as illustrated in
The slider assembly 14150 can comprise a lock configured to releasably hold the slider 14115 in position. Referring primarily to
When the slider assembly 14150 is in its proximal position, further to the above, the slider 14115 is engaged with a closing nut 14190 of the closure drive. The closing nut 14190 comprises an elongate tubular structure including closing nut external splines 14200 defined at the proximal end thereof. When the slider 14115 is in its proximal position, the internal splines 14140 of the slider 14115 are meshingly engaged with the external splines 14200 of the closing nut 14190 such that, when the slider 14115 is rotated by the motor 14090, the closing nut 14190 is rotated by the slider 14115. The closing nut 14190 can be rotatably supported within the actuator housing 14080 by one or more bearings, such as bushing 14220, for example, which rotatably supports the distal end of the closing nut 14190. The closing nut bushing 14220 may be comprised of Delrin, Nylon, copper, brass, bronze, and/or carbon, for example. In certain instances, the closing nut bushing 14220 can comprise a ball bearing or roller bearing, for example. In various instances, the closing nut bushing 14220 may be an integral portion of the actuator housing 14080.
The closing nut 14190 can comprise a longitudinal aperture 14191 defined therein. The closure system can further comprise a closing rod 14230 which can be at least partially positioned within the longitudinal aperture 14191. The closing rod 14230 can comprise a thread 14231 defined thereon which is threadably engaged with a closing nut thread 14210 defined in the longitudinal aperture 14191. The closing rod 14230 can be constrained from rotating with the closing nut 14190 such that, when the closing nut 14190 is rotated in a first direction by the motor 14090, the closing rod 14230 can be translated proximally by the closing nut 14190. As illustrated in
As discussed above, the button 14060 of the actuator 14020 is movable between a proximal position (
Further to the above, referring primarily to
In various instances, further to the above, the firing tube 14280 can include a thread 14281 defined on an outer surface thereof which is threadably engaged with the internal threads 14272. The firing tube 14280 can be constrained from rotating with the firing nut 14260 such that, when the firing nut 14260 is rotated by the motor 14090 and the slider 14115, the firing nut 14260 can translate the firing tube 14280. For instance, when the firing nut 14260 is rotated in a first direction, the firing tube 14280 can be displaced distally by the firing nut 14260 and, when the firing nut 14260 is rotated in a second, or opposite, direction, the firing tube 14280 can be displaced proximally by the firing nut 14260. At least a portion of the firing tube 14280 can be positioned within the aperture 14261 defined in the firing nut 14260. When the firing tube 14280 is displaced proximally, the firing tube 14280 can move proximally within the aperture 14261. When the firing tube 14280 is displaced distally, the firing tube 14280 can move distally within the aperture 14261. As will be described in greater detail below, the firing tube 14280 can be operably connected with a firing member which can eject the staples from the cartridge housing 14040 when the firing tube 14280 is advanced distally. The firing tube 14280 can retract the firing member when the firing tube 14280 is moved proximally. The firing tube 14280 can be long enough to accommodate the firing stroke of the firing member when the firing member is moved between an unfired position and a fired position. In various instances, the threaded portion of the firing tube 14280 is shorter than the threaded portion of the closure rod 14230. In such circumstances, the firing stroke can be shorter than the closure stroke. In other instances, the threaded portion of the firing tube 14280 can be the same length as the threaded portion of the closure rod 14230. In such instances, the firing stroke can be the same length as the closure stroke. In certain instances, the threaded portion of the firing tube 14280 is longer than the threaded portion of the closure rod 14230. In such circumstances, the firing stroke can be longer than the closure stroke.
Further to the above, the actuator 14020 and the shaft portion 14030 can comprise an integral system. In various instances, the actuator 14020 and the shaft portion 14030 can comprise a unitary assembly. In certain instances, the actuator 14020 can be disassembled from the shaft portion 14030.
Further to the above, referring primarily to
The closing drive portion of the shaft portion 14030 can further comprise one or more tension bands 14252 and 14253 mounted to and extending from the second fixture piece 14250. The tension bands 14252 and 14253 can be fastened to the second fixture piece 14250 such that the second fixture piece 14250 can push the tension bands 14252, 14253 distally when the second fixture piece 14250 is advanced distally by the closing fixture piece 14240 and, correspondingly, such that the second fixture piece 14250 can pull the tension bands 14252, 14253 proximally when the second fixture piece 14250 is retracted proximally by the closing fixture piece 14240. In various instances, the shaft portion 14030 can be curved and, in at least one instance, can include a curved shaft housing 14031 extending from a proximal housing mount 14032. In certain instances, the tension bands 14252 and 14253 can be flexible to accommodate a curved path of the closing drive portion of the shaft portion 14030. The closing drive portion of the shaft portion 14030 can further comprise an attachment portion, or trocar, 14258 attached to the tension bands 14253 and 14253. The trocar 14258 can be fastened to the tension bands 14252, 14253 such that the trocar 14258 is advanced and retracted with the tension bands 14252, 14253. The trocar 14258 can comprise a distal end which can be releasably engaged with the anvil 14050 such that the anvil 14050 is advanced and retracted with the trocar 14258 when the anvil 14050 is assembled to the trocar 14258. U.S. Pat. No. 5,292,503, referenced above, discusses this in greater detail.
Further to the above, referring primarily to
The firing drive can further comprise a staple driver 14310 coupled to the second fixture piece 14300 such that the staple driver 14310 moves proximally and distally with the second fixture piece 14300. When the staple driver 14310 is moved distally by the second fixture piece 14300, the staple driver 14310 can eject the staples from the cartridge housing 14040. In various instances, the second fixture piece 14300 can advance a knife 14320 distally with the staple driver 14310 to incise tissue captured between the anvil 14050 and the cartridge housing 14040. The second fixture piece 14300 can retract the staple driver 14310 and the knife 14320 proximally when the second fixture piece 14300 is retracted proximally by the firing fixture piece 14290.
Further to the above, it can be noted that portions of the closing system comprising the closing nut 14190 and the closing rod 14230 and portions of the firing system comprising the firing nut 14260 and the firing tube 14280 can be concentric and nested. The firing nut 14260 and the firing tube 14280 may be considered an outer mechanism while the closing nut 14190 and the closing rod 14 230 may be considered an inner mechanism. Together with the slider 14115, the closing nut 14190, the closing rod 14230, the firing nut 14260, and the firing tube 14280 can comprise the transmission 14000. The concentric and nested arrangement of the transmission 14000 can reduce the space required by the closing and firing systems in order to create a smaller and more easily held actuator 14020. This arrangement also allows the outer mechanism to serve as support and provide bearing surfaces for moving parts of the inner mechanism. In the embodiment shown, the translation members of the inner mechanism are shown longer than the translation members of the outer mechanism. The closing rod 14230 may be, for example, of the order of two inches while the firing tube 14280 is of the order of one inch, for example; however, any suitable lengths can be used. Longer translation members are useful when longer translation distances are needed. In the embodiment shown, the inner mechanism, or closure drive, can drive a load a longer distance than the outer mechanism, or firing drive. That said, the firing drive could drive a load a longer distance than the firing drive.
As discussed above, the actuator 14020 and the shaft portion 14030 are designed for easy assembly. The firing fixture piece 14290 comprises a semi-circular lip at the end of a distally extending flange. This semi-circular lip fits into a semi-circular groove at a proximal end of the second firing fixture piece 14300. Because the fit is about a semicircular surface, it is possible to connect firing fixture piece 14290 with the second firing fixture piece 14300 by translating the firing fixture piece 14290 toward the second firing fixture piece 14300 in a direction transverse or orthogonal to a general longitudinal axis of the pieces. Connection of the closure assembly pieces is also facilitated generally in the same manner. For instance, the closing fixture piece 14240 can comprise a distally extending flange. At a distal end of this flange is a semi-circular lip extending from a substantially semi-cylindrical portion of the closing fixture piece 14240. A circumferential groove on a proximal portion of the second fixture piece 14250 receives this semi-circular lip to attach the closing fixture piece 14240 to the second fixture piece 14250. Because of the semi-circular nature of closing fixture piece 14240, the closing fixture piece 14240 and the second fixture piece 14250 may be assembled and disassembled by translation transverse or orthogonal to the general longitudinal axis of the pieces, thus facilitating quick connection and disconnection of the shaft portion 14030 and the actuator 14020.
Referring generally to
Turning now to the firing trigger 14070, the firing trigger 14070 is rotatably pinned to the actuator housing 14080 and is spring-loaded by a torsion spring 14071 that forces the firing trigger 14070 to a position which is rotated away from the actuator housing 14080. A firing switch 14305 located near the firing trigger 14070 is in a position to be contacted by the firing trigger 14070 when the firing trigger 14070 is rotated toward the actuator housing 14080 against the biasing force of the torsion spring 14071. The firing trigger 14070 can close the firing switch 14305 when the firing trigger 14070 is actuated. When the firing switch 14305 is closed, the motor 14090 can be operated in a first direction to advance the firing tube 14280 and the staple driver 14310 distally. When the firing trigger 14070 is released, the torsion spring 14071 can move the firing trigger 14070 back to its unactuated position and out of contact with the firing switch 14305. At such point, the firing switch 14305 may be in an open condition and the motor 14090 may not be responsive to the firing trigger 14070. In various instances, the instrument 14010 can further comprise a safety latch 14320 rotatably pinned to the actuator housing 14080 which is rotatable between a locked position which blocks the firing trigger 14070 from being actuated and a second position in which the firing trigger 14070 can be actuated to close the firing switch 14035. In any event, the motor 14090 can be operated in a second direction to retract the firing tube 14280 and the staple driver 14310. In certain instances, the motor 14090 can be switched between the first direction and the second direction when the firing system has reached the end of its firing stroke. In some instances, the actuator 14020 can further comprise a reversing button and switch which can be operated to operate the motor 14090 in its second direction.
In view of the above, a method of using the instrument 14010 is provided below, although any suitable method could be used. Moreover, it has been described above that the actuator 14020 is capable of providing two outputs and the shaft portion 14030 is capable of receiving two inputs to perform two functions. Such functions have been described as closing functions and firing functions, but the invention is not so limited. The functions could include any suitable functions, such as an articulation function, for example. To use the actuator 14020, in various instances, a user can first assemble the actuator 14020 to the shaft portion 14030 by moving the actuator 14020 toward the shaft portion 14030 perpendicular to the longitudinal axis of the actuator 14020, as seen in
Referring generally to
When the slider assembly 14150 is in its first, or proximal, position, as illustrated in
In order to move the slider assembly 14150 from its first position to its second position, as discussed above, the user can depress the slider button 14060 to release the slider button 14060 from its detent and move the slider assembly 14150 distally to its second position. In such circumstances, the slider 14115 can be disengaged from the closing nut 14160 and engaged with the firing nut 14260. More particularly, the inner splines 14140 on the slider 14115 can become disengaged from the external splines 14200 on the closing nut 14190 and, furthermore, the outer splines 14130 of the slider 14150 can become engaged with the inner splines 14270 of the firing nut 14260. At such point, the user can rotate the safety latch 14320 to its unlocked position to ready the firing trigger 14070 for firing. The user can fire the firing system by rotating the firing trigger 14070 counterclockwise as depicted in
In various instances, power can be supplied to the instrument 14010 by an external power source. In certain instances, one or more batteries positioned within the actuator 14020 could be utilized. The batteries could be, for example, lithium rechargeable batteries. In some instances, the batteries and the motor 14090 could be positioned in a sealed, removable housing that is cleanable, sterilizable, and reusable.
After the actuator 14020 has been used during a surgical procedure, the user may disassemble the actuator 14020 from the shaft portion 14030. The user may depress the latches 14025 to disassemble the actuator 14020 from the shaft portion 14030. Thereafter, the actuator 14020 can be cleaned, sterilized, and reused or disposed of. Similarly, the shaft portion 14030 can be cleaned, sterilized, and reused or disposed of. When the shaft portion 14030 is reused, staples can be reloaded into the cartridge housing 14040. In certain instances, the cartridge housing 14040 can include a replaceable cartridge which can be used to reload the staples. In various instances, various portions of the actuator 14020 may also be combined in a sealed, compartmentalized module which can be easily inserted into and removed from the actuator housing 14080. For example, the motor 14090, the rotatable shaft 14100, the extender portion 14110, the slider assembly 14150, the closing nut 14190, the closing rod 14230, the firing nut 14260, and the firing tube 14280 may be combined into a modular assembly removable from the actuator housing 14080. Furthermore, portions of the actuator 14020 may be part of separate assembleable modules. For example, electronic portions of the actuator 14020, such as the motor 14090 and a battery, may comprise one module, while mechanical assemblies containing rotating and/or translating parts may comprise a second module. In such circumstances, the first module may be sterilized by different methods than the second module. Such circumstances can facilitate the use of, for example, gamma radiation for the second module which may be inappropriate for sterilizing the first module.
Various additions to the actuator 14020 are envisioned. For example, microprocessing may be utilized to detect the end-of-stroke positions of the closing system and/or the firing system and to signal the motor 14090 when to stop the closing stroke and/or the firing stroke. Microprocessing could also be utilized to determine the type of shaft assembly that is attached to the actuator 14020. For instance, the actuator 14020 can include a sensor in signal communication with the microprocessor in the actuator 14020 that a circular stapler shaft assembly is attached the actuator 14020 or that a linear cutter shaft assembly is attached to the actuator 14020. It is envisioned that the actuator 14020 can power many types of surgical tools requiring at least one and perhaps two or more longitudinal motion inputs, for example. In various instances, the actuator 14020 can power a circular stapler, a liner stapler, a right-angle stapler, scissors, graspers, and/or other types of surgical instruments, for example.
Further modifications of the actuator 14020 include utilizing multiple motors so that the number of functions employable by the actuator 14020 can be increased. Certain modifications of the actuator 14020 include performing more than two functions with the same motor. For example, a third position of the slider assembly 14150 is envisioned wherein a third function is driven by a third nested mechanism. In some instances, further to the above, the slider assembly 14150 may have a third position which is an idler or neutral position wherein no function is driven by the motor 14090. Further modifications may include the use of electrical and/or magnetic means to translate the slider 14115 from one position to another. For example, a solenoid may be used to move the slider 14115 from one position to another. A spring may preload the slider 14115 into a default position, and energizing the solenoid may move the slider 14115 from the default position to a second position.
A surgical stapling instrument 15010 is illustrated in
Further to the above, the closure system can further comprise a carriage 15180 configured to engage the anvil 15090 and move the anvil 15090 between its open position (
The carriage 15080 is movable from a first, or proximal, position (
As discussed above, the crossbar 15181 of the carriage 15180 can cam the anvil 15090 toward the staple cartridge 15080 by pushing the cam surface 15092 downwardly. The anvil 15090 can further comprise a latch pin 15210 extending from the sides thereof which can be received in slots 15215 defined in the sides of the cartridge channel 15070 when the anvil 15090 is rotated toward the staple cartridge 15080. In various instances, the latch pin 15210 can contact the closed ends of the slots 15215 when the anvil 15090 reaches its closed position, for example. In some instances, the anvil 15090 may be in a closed position and the latch pin 15210 may not be in contact with the closed ends of the slots 15215. In certain instances, the closure system can comprise one or more latches 15190 configured to engage the latch pin 15210 and/or move the anvil 15090 closer to the staple cartridge 15080. The latches 15190 can be rotatably coupled to the cartridge channel 15070 by a pivot pin 15191 and can be rotated about a pivot axis to engage the latch pin 15210. In some instances, the latches 15190 can engage the latch pin 15210 and position the latch pin 15210 against the closed ends of the slots 15215. Each latch 15190 can comprise a latch arm 15192 which can slide over the latch pin 15210 and push the latch pin 15210 downwardly as the latch 15190 is rotated distally into its closed position. Each latch arm 15192 can at least partially define a latch slot 15193 which can be configured to receive the latch pin 15210 as the latches 15190 are moved into their actuated positions. The latch arms 15192 and the closed ends of the slots 15215 can co-operate to trap and/or hold the latch pin 15210 in position.
Further to the above, the latches 15190 can be moved between an unlatched position (
As discussed above, the crossbar 15181 of the carriage 15180 can contact the cam surface 15092 of the anvil 15090 to rotate the anvil 15090 toward the staple cartridge 15080. The carriage 15180 can also be configured to rotate the anvil 15090 away from the staple cartridge 15080. In at least one such instance, the anvil 15090 can comprise a second cam surface 15093 defined thereon which can be contacted by the crossbar 15181 of the carriage 15080 as the carriage 15080 is moved proximally by the closure drive lead screw 15170. As the reader will appreciate, the closing cam surface 15092 can be defined on a first side of the pivot pin 15200 and the opening cam surface 15093 can be defined on a second, or opposite, side of the pivot pin 15200. The opening cam surface 15093 can extend at an angle with respect to the closing cam surface 15092. In various instances, the crossbar 15181 can contact and slide relative to the opening cam surface 15093 as the carriage 15180 is retracted. The opening cam surface 15093 can be configured such that the degree, or amount, in which the anvil 15090 is opened relative to the staple cartridge 15080 is dependent upon the distance in which the crossbar 15181 is retracted proximally. For instance, if the crossbar 15181 is retracted a first distance proximal to the pivot 15200, the crossbar 15181 can pivot the anvil 15090 upwardly away from the staple cartridge 15080 a first degree and, if the crossbar 15181 is retracted a second distance proximal to the pivot 14200 which is larger than the first distance, the crossbar 15181 can pivot the anvil 15090 upwardly away from the staple cartridge 15080 a second degree which is larger than the first degree.
The closing system discussed above can permit the user of the surgical instrument to pivot the anvil 15090 between an open and a closed position without having to manipulate the anvil 15090 by hand. The closing system discussed above can also latch or lock the anvil 15090 in its closed position automatically without requiring the use of a separate actuator. To the extent that the user is unsatisfied with the positioning of the tissue between the anvil 15090 and the staple cartridge 15080 when the anvil 15090 is in its closed position, the user can reopen the anvil 15090, reposition the anvil 15090 and the staple cartridge 15080 relative to the tissue, and then close the anvil 15090 once again. The user can open and close the anvil 15090 as many times as needed prior to actuating the firing system of the instrument 15010. The firing system can comprise a firing motor 15120 mounted to the motor frame 15125, a firing drive gear train operably coupled to the firing motor 15120 including a firing gear 15240, a firing lead screw gear 15250, and a firing drive lead screw 15260. Similar to the above, the firing drive gear train and/or the firing drive lead screw 15260 can be rotatably supported by the motor frame 15125. The firing drive can further comprise a firing trigger 15055 configured to close a firing switch 15290 when the firing trigger 15055 is depressed to operate the firing motor 15120. When the firing motor 15120 is operated in a first direction to rotate the firing drive lead screw 15260 in a first direction, the firing drive can deploy the staples removably stored in the staple cartridge 15080 and incise the tissue captured between the anvil 15090 and the staple cartridge 15080. When the firing motor 15120 is operated in a second direction to rotate the firing drive lead screw 15260 in a second, or opposite, direction, the firing drive can be retracted. Thereafter, the anvil 15090 can be reopened to remove the tissue from between the anvil 15090 and the staple cartridge 15080. In some instances, the firing drive may not need to be retracted to open the anvil 15090. In such instances, the firing drive may not engage the anvil 15090 as it is advanced distally. In at least one such instance, the firing drive can enter into the staple cartridge 15080 to eject the staples therefrom and a knife edge may travel between the staple cartridge 15080 and the anvil 15090 to incise the tissue. The firing drive may not lock the anvil 15090 in its closed position, although embodiments are envisioned in which the firing drive could lock the anvil 15090 in its closed position. Such embodiments could utilize an I-beam, for example, which can engage the anvil 15090 and the staple cartridge 15080 and hold them in position relative to each other as the I-beam is advanced distally.
The instrument 15010 can be powered by an external power source and/or an internal power source. A cable can enter into the actuator housing 15080 to supply power from an external power source, for example. One or more batteries, such as battery 15400, for example, can be positioned within the handle of the instrument 15010 to supply power from an internal power source, for example. The instrument 15010 can further comprise one or more indicators, such as LED indicator 15100, for example, which can indicate the operating state of the instrument 15010, for example. The LED indicator 15100 can operate the same manner as or a similar manner to the LED indicator 11100 described above, for example. The LED indicator 15100 can be in signal communication with the microcontroller of the instrument 15010 which can be positioned on a printed circuit board 15500, for example.
Previous surgical instruments have utilized a manually-driven closure system configured to move an anvil between an open position and a closed position. Various embodiments disclosed herein utilize a motor-driven closure system configured to move an anvil between an open position and a closed position relative to a fixed staple cartridge. Other embodiments are envisioned in which an anvil can be fixed and a motor-driven closure system could move a staple cartridge between an open position and a closed position. In either event, the motor of the closure system can set the tissue gap between the anvil and the staple cartridge. In various instances, the closure system of the surgical instrument is separate and distinct from the firing system. In other instances, the closure system and the firing system can be integral. When the closure system and the firing system are separate and distinct, the user of the surgical instrument can evaluate the position of the anvil and the staple cartridge relative to the tissue that is to be stapled and incised before operating the firing system.
As discussed above, an end effector of a surgical instrument, such as end effector 1000, for example, can be configured to clamp tissue between an anvil jaw 1040 and a staple cartridge 1060 thereof. When the anvil jaw 1040 is in its closed position, a tissue gap can be defined between the anvil jaw 1040 and the staple cartridge 1060. In certain instances, the end effector 1000 may be suitable for use with thin tissue, thick tissue, and tissue having a thickness intermediate the thin tissue and the thick tissue. The thinnest tissue and the thickest tissue in which the end effector 1000 can be suitably used to staple can define a tissue thickness range for the end effector 1000. In various instances, a surgical instrument system can include a handle and a plurality of end effectors which can be assembled to the handle, wherein one or more of the end effectors can have different tissue thickness ranges. For instance, a first end effector can have a first tissue thickness range and a second end effector can have a second tissue thickness range which is different than the first tissue thickness range. In some instances, the first tissue thickness range and the second tissue thickness range can be discrete while, in other instances, the first tissue thickness range and the second tissue thickness range can partially overlap. Surgical instrument systems can utilize any suitable number of end effectors having different tissue thickness ranges where some of the tissue thickness ranges may at least partially overlap and other tissue thickness ranges may not overlap at all.
In various instances, further to the above, a staple cartridge of an end effector, such as staple cartridge 1060 of end effector 1000, for example, can be replaceable. In various instances, the staple cartridge 1060 can be removably locked into position within the lower jaw 1020 of the end effector 1000. Once locked into position, the deck, or tissue contacting, surface of the staple cartridge 1060 may not move, or at least substantially move, relative to the lower jaw 1020. Thus, when the anvil jaw 1040 is moved into its closed position, a fixed distance, or tissue gap, can be defined between the anvil jaw 1040 and the deck surface of the staple cartridge 1060. To change this fixed distance, the staple cartridge 1060 can be removed from the lower jaw 1020 and a different staple cartridge can be removably locked within the lower jaw 1020. The deck surface of the different staple cartridge can be configured to provide a different tissue gap than the tissue gap provided by the staple cartridge 1060. Embodiments are envisioned in which a surgical instrument system includes a handle, a plurality of end effectors which can be assembled to the handle, and a plurality of staple cartridges which can be replaceably inserted into the end effectors. Such an embodiment can allow a user to select an end effector capable of being used with a range of tissue thicknesses and the staple cartridge selected for use with the end effector can adjust or fine tune the range of tissue thicknesses that can be stapled by the end effector. In certain instances, a first staple cartridge of the surgical instrument system can include a first type of staple and a second staple cartridge can include a second type of staple. For example, the first staple cartridge can include staples having a first unformed, or unfired, height, and the second staple cartridge can include staples having a second unformed, or unfired, height which is different that the first height.
A modular shaft assembly 16000 is illustrated in
The handle 16070 further comprises handle electrical contacts 16076 and the shaft assembly 16000 further comprises shaft electrical contacts which engage the handle electrical contacts 16076 when the shaft assembly 16000 is fully seated onto the handle 16070. The handle electrical contacts 16076 and the shaft electrical contacts can comprise mating pairs of contacts which provide a plurality of communication channels and/or power pathways between the handle 16070 and the shaft assembly 16000. In at least one instance, the handle 16070 can include a power source, such as a battery, for example, which can provide power to the shaft assembly 16000 through the mated contacts. Also, in at least one instance, the shaft assembly 16000 can include sensors which communicate with a control system in the handle 16070 through the mated contacts.
Referring again to
The shaft assembly 16000 further comprises an articulation joint 16030. The end effector of the shaft assembly 16000 is rotatable relative to the elongate shaft 16020 about the articulation joint 16030. In at least one instance, the end effector is rotatable between an unarticulated position (
Referring primarily to
In use, the drive motor of the handle 16070 is operated at a sufficient speed for a sufficient amount of time to rotate the first rotatable output 16082 or the second rotatable output 16092 a desired number of rotations. In various instances, the speed of the drive motor can be monitored by the voltage and/or current supplied to the drive motor. The time in which the drive motor is rotated can also be monitored by the time in which the voltage and/or current are supplied to the drive motor. Such embodiments, however, do not directly measure the number of times in which the output shaft of the motor is rotated. Certain embodiments can directly monitor the output shaft. At least one such embodiment can utilize an encoder, for example. While such embodiments are useful for monitoring the output of the motor, they do not account for losses and/or backlash, for example, in the gear train between the output shaft and the rotatable outputs 16082 and 16092 and, thus, they may not accurately determine the number of times in which the first output 16082 or the second output has been rotated. Moreover, such embodiments do not evaluate whether the first rotatable output 16082 or the second rotatable output 16092 is being rotated, or both.
Referring again to
When the first actuator 16080 is actuated, the shift motor 16073 can position the transmission 16075 in its first position such that the first rotatable output 16082 is rotated by the drive motor. The first actuator 16080 can include a switch, such as a variable resistance switch, for example, which is in signal communication with the microprocessor. Upon detecting the actuation of the first actuator 16080, the microprocessor can place the handle 16070 in its first operating configuration and supply power to the drive motor to rotate the first output 16082. In addition, the microprocessor can evaluate the number of times that the first output 16082 has been rotated. If the clinician releases the first actuator 16080, the microprocessor can interrupt the power to the drive motor; however, if the first output 16082 is rotated a number of times which equals a threshold or maximum number, the microprocessor can interrupt the power to the drive motor, for example.
Similarly, when the second actuator 16090 is actuated, the shift motor 16073 can position the transmission 16075 in its second position such that the second rotatable output 16092 is rotated by the drive motor. The second actuator 16090 can include a switch, such as variable resistance switch, for example, which is in signal communication with the microprocessor. Upon detecting the actuation of the second actuator 16090, the microprocessor can place the handle 16070 in its second operating configuration and supply power to the drive motor to rotate the second output 16092. In addition, the microprocessor can evaluate the number of times that the second output 16092 has been rotated. If the clinician releases the second actuator 16090, the microprocessor can interrupt the power to the drive motor; however, if the second output 16092 is rotated a number of times which equals a threshold or maximum number, the microprocessor can interrupt the power to the drive motor, for example.
Further to the above, the microprocessor of the handle 16070 can assess whether the appropriate rotatable output 16082, 16092 is being rotated. In various instances, the shift motor 16073 and/or transmission 16075 can become stuck, for example. In such instances, the transfer gear 16077 can be mated with the wrong gear train and, as a result, rotate the wrong output 16082, 16092. In some instances, the transfer gear 16077 can become stuck in an intermediate position in which it is simultaneously engaged with both gear trains and can rotate both outputs 16082, 16092 at the same time. In any event, the microprocessor can utilize feedback from the sensors 16084, 16094 to determine whether the handle 16070 is functioning properly. In the event that the microprocessor detects a malfunction, the microprocessor can implement a safe-state routine. Such a safe-state routine can include a step of interrupting power to the drive motor and a step of warning the clinician that an error has occurred, communicating the nature of the error, and/or communicating the proper steps to resolve that error, for example.
Turning now to
The closure system of the shaft assembly 16000 comprises a closure shaft 16043 rotatably supported in the shaft housing 16010. The closure shaft 16043 is rotatable about a first longitudinal axis 16041. The closure shaft 16043 and the shaft housing 16010 comprise co-operating features and/or bearings which prevent or at least limit translation of the closure shaft 16043 along the longitudinal axis 16041 and/or laterally with respect to the longitudinal axis 16041. The proximal end of the closure shaft 16043 is attached to the first input 16042 such that the closure shaft 16043 is rotated by the first input 16042. The closure system further comprises a closure nut 16044 which is translated proximally and distally by the closure shaft 16043. The closure nut 16044 comprises a threaded aperture extending therethrough and the closure shaft 16043 comprises a threaded portion which extends through the threaded aperture. The threaded portion of the closure shaft 16043 is threadably engaged with the threaded aperture of the closure nut 16044 such that, when the closure shaft 16043 is rotated in a first direction, the closure nut 16044 is advanced distally. Similarly, the closure nut 16044 is retracted proximally when the closure shaft 16043 is rotated in a second, or opposite, direction. The closure nut 16044 further comprises one or more anti-rotation features 16045 which are slidably engaged with the shaft housing 16010 which prevent the closure nut 16044 from being rotated by the closure shaft 16043.
Further to the above, the closure system comprises a closure carriage 16046 extending from the closure nut 16044. The closure nut 16044 pushes the closure carriage 16046 distally when the closure nut 16044 is driven distally by the closure shaft 16043 and, correspondingly, the closure nut 16044 pulls the closure carriage 16046 proximally when the closure nut 16044 is pulled proximally by the closure shaft 16043. The closure system further comprises a closure tube 16047 extending distally from the closure carriage 16046. Similar to the above, the closure carriage 16046 pushes the closure tube 16047 distally when the closure carriage 16046 is pushed distally and, correspondingly, the closure carriage 16046 pulls the closure tube 16047 proximally when the closure carriage 16046 is pulled proximally. The distal end of the closure tube 16047 is engaged with the anvil 16040 of the end effector such that, when the closure tube 16047 is moved distally, the closure tube 16047 moves the anvil 16040 toward its closed position and, when the closure tube 16047 is moved proximally, the closure tube 16047 moves the anvil 16040 toward its open position.
The closure nut 16044 comprises a detectable element mounted thereto and the shaft assembly 16000 includes one or more sensors configured to detect the movement of the detectable element and, thus, detect the movement of the closure nut 16044. In at least one embodiment, the detectable element comprises a magnetic element 16048, such as a permanent magnet, for example, and the shaft assembly 16000 comprises a proximal sensor 16018p and a distal sensor 16018d configured to detect the movement of the magnetic element 16048. The proximal sensor 16018p is positioned adjacent to the proximal-most position of the closure nut 16044 and is configured to detect the position of the closure nut 16044 relative to its proximal-most position. The proximal sensor 16018p comprises a Hall Effect sensor, for example; however, the proximal sensor 16018p can comprise any suitable sensor or system of sensors. The proximal sensor 16018d is positioned adjacent to the distal-most position of the closure nut 16044 and is configured to detect the position of the closure nut 16044 relative to its distal-most position. The distal sensor 16018d comprises a Hall Effect sensor, for example; however, the distal sensor 16018d can comprise any suitable sensor or system of sensors. The proximal sensor 16018p and the distal sensor 16018d are in signal communication with the microprocessor and/or control system of the handle 16070 via the electrical contacts 16076. Other embodiments are envisioned in which the proximal sensor 16018p and the distal sensor 16018d are in wireless signal communication with the microprocessor and/or control system of the handle 16070.
The firing system of the shaft assembly 16000 comprises a firing shaft 16053 rotatably supported in the shaft housing 16010. The firing shaft 16053 is rotatable about a second longitudinal axis 16051. The second longitudinal axis 16051 is parallel to the first longitudinal axis 16041; however, the first axis 16041 and the second axis 16051 can extend in any suitable direction. The firing shaft 16053 and the shaft housing 16010 comprise co-operating features and/or bearings which prevent or at least limit translation of the firing shaft 16053 along the longitudinal axis 16051 and/or laterally with respect to the longitudinal axis 16051. The proximal end of the firing shaft 16053 is attached to the second input 16052 such that the firing shaft 16053 is rotated by the second input 16052. The firing system further comprises a firing nut 16054 which is translated proximally and distally by the firing shaft 16053. The firing nut 16054 comprises a threaded aperture extending therethrough and the firing shaft 16053 comprises a threaded portion which extends through the threaded aperture. The threaded portion of the firing shaft 16053 is threadably engaged with the threaded aperture of the firing nut 16054 such that, when the firing shaft 16053 is rotated in a first direction, the firing nut 16054 is advanced distally. Similarly, the firing nut 16054 is retracted proximally when the firing shaft 16053 is rotated in a second, or opposite, direction. The firing nut 16054 further comprises one or more anti-rotation features which are slidably engaged with the shaft housing 16010 which prevent the firing nut 16054 from being rotated by the firing shaft 16053.
Further to the above, the firing system comprises a firing rod 16056 extending from the firing nut 16054. The firing nut 16054 pushes the firing rod 16056 distally when the firing nut 16054 is driven distally by the firing shaft 16053 and, correspondingly, the firing nut 16054 pulls the firing rod 16056 proximally when the firing nut 16054 is pulled proximally by the firing shaft 16053. The firing system further comprises a firing member 16057 extending distally from the firing rod 16056. Similar to the above, the firing rod 16056 pushes the firing member 16057 distally when the firing rod 16056 is pushed distally and, correspondingly, the firing rod 16056 pulls the firing member 16057 proximally when the firing rod 16056 is pulled proximally. The distal end of the firing member 16057 is configured to eject the staples from the staple cartridge 16050 when the firing member 16057 is advanced distally. In at least one instance, the firing member 16057 can push a sled distally which lifts the staples toward the anvil 16040. In certain instances, the firing member 16057 can include a cutting surface which transects tissue positioned intermediate the anvil 16040 and the staple cartridge 16050.
The firing nut 16054 comprises a detectable element mounted thereto and the shaft assembly 16000 includes one or more sensors configured to detect the movement of the detectable element and, thus, detect the movement of the firing nut 16054. In at least one embodiment, the detectable element comprises a magnetic element 16058, such as a permanent magnet, for example, and the shaft assembly 16000 comprises a proximal sensor 16019p and a distal sensor 16019d configured to detect the movement of the magnetic element 16058. The proximal sensor 16019p is positioned adjacent to the proximal-most position of the firing nut 16054 and is configured to detect the position of the firing nut 16054 relative to its proximal-most position. The proximal sensor 16019p comprises a Hall Effect sensor, for example; however, the proximal sensor 16019p can comprise any suitable sensor or system of sensors. The proximal sensor 16019d is positioned adjacent to the distal-most position of the firing nut 16054 and is configured to detect the position of the firing nut 16054 relative to its distal-most position. The distal sensor 16019d comprises a Hall Effect sensor, for example; however, the distal sensor 16019d can comprise any suitable sensor or system of sensors. The closure carriage 16046 includes a longitudinal slot 16049 defined therein which permits the distal sensor 16019d to detect the magnetic element 16058. The proximal sensor 16019p and the distal sensor 16019d are in signal communicated with the microprocessor and/or control system of the handle 16070 via the electrical contacts 16076. Other embodiments are envisioned in which the proximal sensor 16019p and the distal sensor 16019d are in wireless signal communication with the microprocessor and/or control system of the handle 16070.
Further to the above, the articulation system of the shaft assembly 16000 is configured to generate an input motion from within the housing 16010 of the shaft assembly 16000. The articulation system comprises an articulation motor 16032 comprising a rotatable output shaft 16033. The output shaft 16033 is rotatable about a third longitudinal axis 16031. The third longitudinal axis 16031 is parallel to, or at least substantially parallel to, the first axis 16041 and the second longitudinal axis 16051; however the first axis 16041, the second axis 16051, and/or the third axis 16031 can extend in any suitable direction. The output shaft 16033 further comprises a distally-extending threaded portion which is threadably engaged with a rack 16034. When the output shaft 16033 is rotated in a first direction, the output shaft 16033 pushes the rack 16034 distally. Correspondingly, the output shaft 16033 pulls the rack 16034 proximally when the output shaft 16033 is rotated in a second, or opposite direction. As a result, the rack 16034 is translated proximally and distally by the articulation motor 16032.
The articulation system further comprises a connector 16035 extending from the rack 16034 and an articulation rod 16036 extending distally from the connector 16035. The connector 16035 and the articulation rod 16036 translate proximally and distally with the rack 16034. The articulation rod 16036 extends through the elongate shaft 16020 and the articulation joint 16030 of the shaft assembly 16010. The articulation rod 16036 is connected to the end effector such that the motion of the articulation rod 16036 rotates the end effector about the articulation joint 16030. The articulation motor 16032 rotates the shaft 16033 in its first direction to rotate the end effector in a first direction and its second direction to rotate the end effector in a second direction, as discussed in greater detail below.
Further to the above, referring to
In use, the end effector can be articulated in the first and/or second directions in order to position the end effector in a suitable position. During the articulation of the end effector, the anvil 16040 can be in an open position. Alternatively, the anvil 16040 can be in a closed position when the end effector is being articulated. The open position of the anvil 16040 is associated with the proximal-most position of the closure nut 16044, which is illustrated in
The staples of the staple cartridge 16050 are supported by staple drivers in staple cavities defined in a cartridge body of the staple cartridge 16050. The drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities. The drivers are movable between their unfired positions and their fired positions by a sled. The sled is movable between a proximal position adjacent the proximal end of the staple cartridge 16050 and a distal position adjacent the distal end of the staple cartridge 16050. The sled comprises a plurality of ramped surfaces configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.
Further to the above, the sled is moved distally by the firing member 16057. The firing member 16057 is configured to contact the sled and push the sled toward the distal end. A longitudinal slot defined in the cartridge body is configured to receive the firing member 16057. The anvil also includes a slot configured to receive the firing member 16057. The firing member 16057 further comprises a first cam which engages the anvil 16040 and a second cam which engages the staple cartridge 16050. As the firing member 16057 is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge 16050 and the anvil 16040. The firing member 16057 also comprises a knife configured to incise the tissue captured intermediate the staple cartridge 16050 and the anvil 16040. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces of the sled such that the staples are ejected ahead of the knife.
In various instances, further to the above, the staple cartridge 16050 can be completely fired or, in other instances, the staple cartridge 16050 can be partially fired thereby leaving some staples in the staple cartridge. In either event, the firing nut 16054 can be retracted back to its proximal-most position (
As discussed above, a shaft assembly can be configured to receive one or more input motions from an external source and, in addition, generate one or more input motions from an internal source. The articulation system of the shaft assembly 16000 discussed above is but one example of a motion generator which is internal to the shaft assembly 16000. In various alterative embodiments, the closing motion imparted to the anvil 16040 and/or the firing motion applied to the staple cartridge 16050 can be generated from within the shaft assembly 16000. In addition to or in lieu of the above, a shaft assembly can generate an input motion which rotates the elongate shaft 16020 and the end effector about the longitudinal axis 16001, for example. Referring primarily to
Turning now to
The handle 17000 comprises two drive systems; however, the handle 17000 can include any suitable number of drive systems. The first drive system of the handle 17000 comprises a first electric motor 17030 which is operably coupled to a first rotatable output 17037. The housing of the first motor 17030 is fixedly mounted within the gripping portion 17020 such that the first motor housing does not move relative to the gripping portion 17020. The first motor 17030 comprises electrical contacts 17017 extending therefrom which are mounted to a printed circuit board (PCB) 17016, for example, positioned in the gripping portion 17020. The PCB 17016 can include a microprocessor and/or control system configured to control the first drive system. The PCB 17016 is rigid and is fixedly mounted in the gripping portion 17020; however, other embodiments are envisioned in which the PCB 17016 is flexible and can include a flexible circuit substrate, for example.
The handle 17000 further includes a first actuator 17039 for operating the first drive system of the handle 17000. The first actuator 17039 comprises a rocker switch, for example, which is configured to close a first switch 17011 when the first actuator 17039 is pushed in a first direction or a second switch 17012 when the first actuator 17039 is pushed in a second direction. The first switch 17011 and the second switch 17012 are in signal communication with the control system of the handle 17000. When the first switch 17011 is closed, the control system can operate the first motor 17030 in a first direction to rotate the first handle output 17037 in a first direction. Similarly, the control system can operate the first motor 17030 in a second, or opposite, direction to rotate the first handle output 17037 in a second, or opposite, direction when the second switch 17012 is closed.
The first motor 17030 comprises a rotatable output 17032 which is rotatable about a first longitudinal axis 17031. The first drive system of the handle 17000 further comprises a first flexible drive shaft 17036 configured to transmit rotary motion between the first motor output 17032 and the first handle output 17037. In at least one instance, the flexible drive shaft 17036 comprises a cable, for example. The flexible drive shaft 17036 is defined by a first length. In various instances, the first length may be suitable to transmit rotary motion between the first motor 17030 and the first output 17037 when the handle 17000 is in a first configuration; however, the first length may be either too long or too short to suitably transmit rotary motion between the first motor 17030 and the first output 17037 when the handle 17000 is in a second, or different, configuration absent means for adjusting the first drive system.
The handle 17000 further comprises a first transmission which can be configured to accommodate different lengths between the first motor 17030 and the first output 17037. The first transmission comprises a slip joint which is configured to transmit rotary motion between the first motor shaft 17032 and the first flexible drive shaft 17036 yet permit the first flexible drive shaft 17036 to translate, or slide, relative to the first motor shaft 17032 such that the first drive system can adapt to the required drive length between the first motor 17030 and the first output 17037. The first transmission includes a collar 17033 fixedly mounted to the first motor shaft 17032. The collar 17033 is rotated by the first motor shaft 17032 and does not translate relative to the first motor shaft 17032. The collar 17033 comprises a longitudinal aperture 17034 defined therein and the first flexible drive shaft 17036 comprises a proximal end positioned in the longitudinal aperture 17034. The proximal end of the drive shaft 17036 is keyed with the aperture 17034 such that proximal end, one, rotates with the collar 17033 and, two, slides within the aperture 17034 of the collar 17033.
Referring to
Upon comparing
The second drive system of the handle 17000 comprises a second electric motor 17040 which is operably coupled to a second rotatable output 17047. The housing of the second motor 17040 is fixedly mounted within the gripping portion 17020 such that the second motor housing does not move relative to the gripping portion 17020. The second motor 17040 comprises electrical contacts 17017 extending therefrom which are mounted to the printed circuit board (PCB) 17016, for example, positioned in the gripping portion 17020. The handle 17000 further includes a second actuator 17049 for operating the second drive system of the handle 17000. The second actuator 17049 is configured to close a third switch 17013 when the second actuator 17049 is depressed. The third switch 17013 is in signal communication with the control system of the handle 17000. When the third switch 17013 is closed, the control system can operate the second motor 17040.
The second motor 17040 comprises a rotatable output 17042 which is rotatable about a second longitudinal axis 17041. The second drive system of the handle 17000 further comprises a second flexible drive shaft 17046 configured to transmit rotary motion between the second motor output 17042 and the second handle output 17047. In various instances, the drive shaft 17046 can comprise a cable, for example. The flexible drive shaft 17046 is defined by a second length. In various instances, the second length may be suitable to transmit rotary motion between the second motor 17040 and the second output 17047 when the handle 17000 is in a first configuration; however, the second length may be either too long or too short to suitably transmit rotary motion between the second motor 17040 and the second output 17047 when the handle 17000 is in a second, or different, configuration absent means for adjusting the second drive system.
The handle 17000 further comprises a second transmission which can be configured to accommodate different lengths between the second motor 17040 and the second output 17047. The second transmission comprises a slip joint which is configured to transmit rotary motion between the second motor shaft 17042 and the second flexible drive shaft 17046 yet permit the second flexible drive shaft 17046 to translate, or slide, relative to the second motor shaft 17042 such that the second drive system can adapt to the required drive length between the second motor 17040 and the second output 17047. The second transmission includes a collar 17043 fixedly mounted to the second motor shaft 17042. The collar 17043 is rotated by the second motor shaft 17042 and does not translate relative to the second motor shaft 17042. The collar 17043 comprises a longitudinal aperture 17044 defined therein and the second flexible drive shaft 17046 comprises a proximal end positioned in the longitudinal aperture 17044. The proximal end of the drive shaft 17046 is keyed with the aperture 17044 such that proximal end, one, rotates with the collar 17043 and, two, slides within the aperture 17044 of the collar 17043.
Referring to
Upon comparing
As discussed above, the gripping portion 17020 is rotatable relative to the body portion 17010 about the pivot 17015. The pivot 17015 comprises a fixed axis pivot, for example, wherein the gripping portion 17020 is rotatable about a pivot axis 17019. The pivot 17015 permits articulation between the body portion 17010 and the gripping portion 17020 of the handle 17000. In various instances, the pivot 17015 can comprise a hinge. The pivot 17015 is positioned along the first output axis 17038; however, the pivot 17015 can be positioned in any suitable location. As a result of the above, the pivot axis 17019 is orthogonal to the first output axis 17038. Moreover, the pivot axis 17019 is orthogonal to the first motor axis 17031. Referring primarily to
When the gripping portion 17020 is rotated from its pistol-grip position (
The handle assembly 17000 further comprises a lock configured to lock the gripping portion 17020 in position relative to the body portion 17010. The lock can be configured to lock the gripping portion 17020 in its pistol-grip position and its wand-grip position, and/or any other suitable position in between. In at least one instance, the lock is configured to lock the gripping portion 17020 to the body portion 17010 in only the pistol-grip configuration (
The handle assembly 17000 further comprises a battery 17014 positioned in the body portion 17010; however, a battery may be positioned in any suitable position in the handle assembly 17000. The battery 17014 is configured to supply power to the control system, the first electric motor 17030, and/or the second electric motor 17040, for example.
A handle assembly 17100 is illustrated in
The first drive system comprises a first electric motor 17130 including a rotatable output shaft 17132 which extends along a first motor axis 17131. The output shaft 17132 is coupled to a flexible drive shaft 17136 via a coupling 17133 such that the rotational motion of the output shaft 17132 is transmitted to the flexible drive shaft 17136. Unlike the embodiment described above, the drive shaft 17136 and the coupling 17133 do not translate relative to the output shaft 17132. In order to accommodate the change in drive length that occurs when the gripping portion 17120 is moved between its pistol-grip position (
The second drive system comprises a second electric motor 17140 including a rotatable output shaft 17142 which extends along a second motor axis 17141. The output shaft 17142 is coupled to a flexible drive shaft 17146 via a coupling 17143 such that the rotational motion of the output shaft 17142 is transmitted to the flexible drive shaft 17146. Unlike the embodiment described above, the drive shaft 17146 and the coupling 17143 do not translate relative to the output shaft 17142. In order to accommodate the change in drive length that occurs when the gripping portion 17120 is moved between its pistol-grip position (
As discussed above, the handle assembly 17000 of
A shaft assembly for use with a handle of a surgical instrument system, the shaft assembly comprising an attachment portion configured to be releasably attached to the handle, a first drive input configured to receive a first drive motion from the handle, a second drive input configured to receive a second drive motion from the handle, and an end effector comprising a first jaw and a second jaw, wherein the first jaw is movable relative to the second jaw. The shaft assembly further comprises a firing member movable within the end effector, an articulation joint, wherein the end effector is rotatable about the articulation joint, and a closure drive operably coupled to the first drive input and the first jaw, wherein the closure drive is configured to transmit the first drive motion to the first jaw to move the first jaw between an open position and a closed position. The shaft assembly further comprising a firing drive operably coupled to the second drive input and the firing member, wherein the firing drive is configured to transmit the second drive motion to the firing member to move the firing member relative to the end effector, and an articulation drive comprising a motor configured to generate a third drive motion, wherein the articulation drive is configured to transmit the third drive motion to the end effector to rotate the end effector about the articulation joint.
Example 2The shaft assembly of Example 1, further comprising a battery configured to supply power to the motor.
Example 3The shaft assembly of Examples 1 or 2, further comprising electrical contacts configured to be electrically coupled with electrical contacts on the handle when the shaft assembly is assembled to the handle.
Example 4The shaft assembly of Examples 1, 2, or 3, wherein the end effector comprises a staple cartridge including a plurality of staples removably stored therein, and wherein the firing member is configured to eject the staples from the staple cartridge.
Example 5The shaft assembly of Example 4, wherein the staple cartridge is replaceably positioned in the second jaw.
Example 6The shaft assembly of Example 4, wherein the staple cartridge is replaceably positioned in the first jaw.
Example 7The shaft assembly of Examples 1, 2, 3, 4, 5, or 6, wherein the firing member comprises a first cam configured to engage the first jaw and a second cam configured to engage the second jaw, and wherein the first cam and the second cam are configured to position the first jaw relative to the second jaw.
Example 8A modular shaft assembly for use with a handle of a surgical instrument system, the modular shaft assembly comprising an attachment portion configured to be releasably attached to the handle, a first drive input configured to receive a first drive motion from the handle, a second drive input configured to receive a second drive motion from the handle, and a third drive input configured to generate a third drive motion within the modular shaft assembly. The modular shaft assembly further comprises an end effector comprising a first jaw and a second jaw, wherein the first jaw is movable relative to the second jaw in response to one of the first drive motion, the second drive motion, and the third drive motion, a firing member movable within the end effector in response to one of the first drive motion, the second drive motion, and the third drive motion, and an articulation joint, wherein the end effector is rotatable about the articulation joint in response to one of the first drive motion, the second drive motion, and the third drive motion.
Example 9The modular shaft assembly of Example 8, wherein the third drive input comprises an electric motor and a battery configured to supply power to the electric motor.
Example 10The modular shaft assembly of Examples 8 or 9, further comprising electrical contacts configured to be electrically coupled with electrical contacts on the handle when the modular shaft assembly is assembled to the handle.
Example 11The modular shaft assembly of Examples 8, 9, or 10, wherein the end effector comprises a staple cartridge including a plurality of staples removably stored therein, and wherein the firing member is configured to eject the staples from the staple cartridge.
Example 12The modular shaft assembly of Example 11, wherein the staple cartridge is replaceably positioned in the second jaw.
Example 13The modular shaft assembly of Example 11, wherein the staple cartridge is replaceably positioned in the first jaw.
Example 14The modular shaft assembly of Examples 8, 9, 10, 11, 12, or 13, wherein the firing member comprises a first cam configured to engage the first jaw and a second cam configured to engage the second jaw, and wherein the first cam and the second cam are configured to position the first jaw relative to the second jaw.
Example 15A shaft assembly for use with a surgical instrument system, the shaft assembly comprising an attachment portion configured to be releasably attached to the surgical instrument system, a first drive input configured to receive a first drive motion from the surgical instrument system, a second drive input configured to receive a second drive motion from the surgical instrument system, and an end effector comprising a first jaw and a second jaw, wherein the first jaw is movable relative to the second jaw. The shaft assembly further comprises a firing member movable within the end effector, an articulation joint, wherein the end effector is rotatable about the articulation joint, and a closure drive comprising a first longitudinal threaded shaft operably coupled to the first drive input and the first jaw, wherein the first longitudinal threaded shaft is configured to transmit the first drive motion to the first jaw to move the first jaw between an open position and a closed position. The shaft assembly further comprises a firing drive comprising a second longitudinal threaded shaft operably coupled to the second drive input and the firing member, wherein the second longitudinal threaded shaft is configured to transmit the second drive motion to the firing member to move the firing member relative to the end effector, and an articulation drive comprising a motor configured to generate a third drive motion, wherein the articulation drive further comprises a third longitudinal threaded shaft configured to transmit the third drive motion to the end effector to rotate the end effector about the articulation joint.
Example 16The shaft assembly of Example 15, further comprising a battery configured to supply power to the electric motor.
Example 17The shaft assembly of Examples 15 or 16, further comprising electrical contacts configured to be electrically coupled with electrical contacts on the surgical instrument system when the shaft assembly is assembled to the surgical instrument system.
Example 18The shaft assembly of Examples 15, 16, or 17, wherein the end effector comprises a staple cartridge including a plurality of staples removably stored therein, and wherein the firing member is configured to eject the staples from the staple cartridge.
Example 19The shaft assembly of Example 18, wherein the staple cartridge is replaceably positioned in the second jaw.
Example 20The shaft assembly of Example 18, wherein the staple cartridge is replaceably positioned in the first jaw.
Example 21The shaft assembly of Examples 15, 16, 17, 18, 19, or 20, wherein the first longitudinal shaft, the second longitudinal shaft, and the third longitudinal shaft are parallel to one another.
Example 22The shaft assembly of Examples 15, 16, 17, 18, 19, 20, or 21, wherein the firing member comprises a first cam configured to engage the first jaw and a second cam configured to engage the second jaw, and wherein the first cam and the second cam are configured to position the first jaw relative to the second jaw.
Example 23A handle for use with a surgical instrument system, the handle comprising a first handle housing portion including a first output rotatable about a first longitudinal axis and a second output rotatable about a second longitudinal axis, and a second handle housing portion including a first electric motor comprising a first rotatable motor shaft, a second electric motor comprising a second rotatable motor shaft, a first actuator for operating the first electric motor, and a second actuator for operating the second electric motor. The handle further comprises a hinge, wherein the second handle housing portion is rotatably connected to the first handle housing portion about the hinge, wherein the second handle housing portion is rotatable between a pistol grip position and an in-line grip position, a first flexible transmission configured to transmit rotational motion between the first motor shaft and the first rotatable output, and a second flexible transmission configured to transmit rotational motion between the second motor shaft and the second rotatable output.
Example 24The handle of Example 23, wherein the first flexible transmission comprises a first cable, and wherein the second flexible transmission comprises a second cable.
Example 25The handle of Examples 23 or 24, wherein the first transmission comprises a first slip joint configured to adjust to changes in length between the first electric motor and the first output, and wherein the second transmission comprises a second slip joint configured to adjust to changes in length between the second electric motor and the second output.
Example 26The handle of Examples 23, 24, or 25, wherein the first rotatable motor shaft extends in a transverse direction to the first longitudinal axis when the second handle housing portion is in the pistol grip position, and wherein the first rotatable motor shaft extends in a parallel direction with the first longitudinal axis when the second handle housing portion is in the in-line grip position.
Example 27The handle of Examples 23, 24, 25, or 26, wherein the second rotatable motor shaft extends in a perpendicular direction to the second longitudinal axis when the second handle housing portion is in the pistol grip position, and wherein the second rotatable motor shaft extends in a parallel direction with the second longitudinal axis when the second handle housing portion is in the in-line grip position.
Example 28The handle of Examples 23, 24, 25, 26, or 27, further comprising a housing lock configured to releasably lock the second handle housing portion in the pistol grip position and the in-line grip position.
Example 29The handle of Example 28, wherein the housing lock only locks the second handle housing portion to the first handle housing portion when the second handle housing portion is in the pistol grip position and the in-line grip position.
Example 30The handle of Examples 23, 24, 25, 26, 27, 28, or 29, wherein the first handle housing portion comprises a shaft attachment portion, and wherein a modular shaft assembly is releasably attachable to the shaft attachment portion.
Example 31A handle for use with a surgical instrument system, the handle comprising a first handle housing portion including a first output rotatable about a first longitudinal axis and a second output rotatable about a second longitudinal axis, and a second handle housing portion including a first electric motor comprising a first rotatable motor shaft, a second electric motor comprising a second rotatable motor shaft, a first actuator for operating the first electric motor, and a second actuator for operating said second electric motor. The handle further comprises an articulation joint, wherein the second handle housing portion is rotatably connected to the first handle housing portion about the articulation joint, and wherein the second handle housing portion is rotatable between a first grip position and a second grip position, a first transmission configured to transmit rotational motion between the first motor shaft and the first rotatable output, and a second transmission configured to transmit rotational motion between the second motor shaft and the second rotatable output.
Example 32The handle of Example 31, wherein the first transmission comprises a first cable, and wherein the second transmission comprises a second cable.
Example 33The handle of Examples 31 or 32, wherein the first transmission comprises a first slip joint configured to adjust to changes in length between the first electric motor and the first output, and wherein the second transmission comprises a second slip joint configured to adjust to changes in length between the second electric motor and the second output.
Example 34The handle of Examples 31, 32, or 33, wherein the first rotatable motor shaft extends in a transverse direction to the first longitudinal axis when the second handle housing portion is in the first grip position, and wherein the first rotatable motor shaft extends in a parallel direction with the first longitudinal axis when the second handle housing portion is in the second grip position.
Example 35The handle of Examples 31, 32, 33, or 34, wherein the second rotatable motor shaft extends in a perpendicular direction to the second longitudinal axis when the second handle housing portion is in the first grip position, and wherein the second rotatable motor shaft extends in a parallel direction with the second longitudinal axis when the second handle housing portion is in the second grip position.
Example 36The handle of Examples 31, 32, 33, 34, or 35, further comprising a housing lock configured to releasably lock the second handle housing portion in the first grip position and the in-line grip position.
Example 37The handle of Example 36, wherein the housing lock only locks the second handle housing portion to the first handle housing portion when the second handle housing portion is in the first grip position and the second grip position.
Example 38The handle of Examples 31, 32, 33, 34, 35, 36, or 37, wherein the first handle housing portion comprises a shaft attachment portion, and wherein a modular shaft assembly is releasably attachable to the shaft attachment portion.
Example 39A handle for use with a surgical instrument system, the handle comprising a first handle housing portion comprising an output, and a second handle housing portion comprising an electric motor comprising a rotatable motor shaft and an actuator for operating the electric motor. The handle further comprises an articulation joint, wherein the second handle housing portion is rotatably connected to the first handle housing portion about the articulation joint, and wherein the second handle housing portion is rotatable between a first grip position and a second grip position, and a transmission configured to transmit motion between the first motor shaft and the output.
Example 40The handle of Example 39, wherein the transmission comprises a cable.
Example 41The handle of Examples 39 or 40, wherein the transmission comprises a slip joint configured to adjust to changes in length between the electric motor and the output.
The entire disclosures of:
-
- U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995;
- U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006;
- U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008;
- U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS, which issued on Dec. 16, 2008;
- U.S. Pat. No. 7,670,334, entitled SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR, which issued on Mar. 2, 2010;
- U.S. Pat. No. 7,753,245, entitled SURGICAL STAPLING INSTRUMENTS, which issued on Jul. 13, 2010;
- U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013;
- U.S. patent application Ser. No. 11/343,803, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES, filed Jan. 31, 2006, now U.S. Pat. No. 7,845,537;
- U.S. patent application Ser. No. 12/031,573, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING RF ELECTRODES, filed Feb. 14, 2008;
- U.S. patent application Ser. No. 12/031,873, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, filed Feb. 15, 2008, now U.S. Pat. No. 7,980,443;
- U.S. patent application Ser. No. 12/235,782, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, filed Sep. 23, 2008, now U.S. Pat. No. 8,210,411;
- U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, filed Oct. 10, 2008, now U.S. Pat. No. 8,608,045;
- U.S. patent application Ser. No. 12/647,100, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY, filed Dec. 24, 2009, now U.S. Pat. No. 8,220,688;
- U.S. patent application Ser. No. 12/893,461, entitled STAPLE CARTRIDGE, filed Sep. 29, 2012, now U.S. Pat. No. 8,733,613;
- U.S. patent application Ser. No. 13/036,647, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 28, 2011, now U.S. Pat. No. 8,561,870;
- U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Patent Application Publication No. 2012/0298719;
- U.S. patent application Ser. No. 13/524,049, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed on Jun. 15, 2012, now U.S. Patent Application Publication No. 2013/0334278;
- U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013; now U.S. Patent Application Publication No. 2014/0263551;
- U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013; now U.S. Patent Application Publication No. 2014/0263552;
- U.S. Patent Application Publication No. 2007/0175955, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM, filed Jan. 31, 2006; and
- U.S. Patent Application Publication No. 2010/0264194, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, filed Apr. 22, 2010, now U.S. Pat. No. 8,308,040, are hereby incorporated by reference herein.
As described earlier, sensors may be configured to detect and collect data associated with the surgical device. The processor processes the sensor data received from the sensor(s).
The processor may be configured to execute operating logic. The processor may be any one of a number of single or multi-core processors known in the art. The storage may comprise volatile and non-volatile storage media configured to store persistent and temporal (working) copy of the operating logic.
In various embodiments, the operating logic may be configured to process the data associated with motion, as described above. In various embodiments, the operating logic may be configured to perform the initial processing, and transmit the data to the computer hosting the application to determine and generate instructions. For these embodiments, the operating logic may be further configured to receive information from and provide feedback to a hosting computer. In alternate embodiments, the operating logic may be configured to assume a larger role in receiving information and determining the feedback. In either case, whether determined on its own or responsive to instructions from a hosting computer, the operating logic may be further configured to control and provide feedback to the user.
In various embodiments, the operating logic may be implemented in instructions supported by the instruction set architecture (ISA) of the processor, or in higher level languages and compiled into the supported ISA. The operating logic may comprise one or more logic units or modules. The operating logic may be implemented in an object oriented manner. The operating logic may be configured to be executed in a multi-tasking and/or multi-thread manner. In other embodiments, the operating logic may be implemented in hardware such as a gate array.
In various embodiments, the communication interface may be configured to facilitate communication between a peripheral device and the computing system. The communication may include transmission of the collected biometric data associated with position, posture, and/or movement data of the user's body part(s) to a hosting computer, and transmission of data associated with the tactile feedback from the host computer to the peripheral device. In various embodiments, the communication interface may be a wired or a wireless communication interface. An example of a wired communication interface may include, but is not limited to, a Universal Serial Bus (USB) interface. An example of a wireless communication interface may include, but is not limited to, a Bluetooth interface.
For various embodiments, the processor may be packaged together with the operating logic. In various embodiments, the processor may be packaged together with the operating logic to form a System in Package (SiP). In various embodiments, the processor may be integrated on the same die with the operating logic. In various embodiments, the processor may be packaged together with the operating logic to form a System on Chip (SoC).
Various embodiments may be described herein in the general context of computer executable instructions, such as software, program modules, and/or engines being executed by a processor. Generally, software, program modules, and/or engines include any software element arranged to perform particular operations or implement particular abstract data types. Software, program modules, and/or engines can include routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types. An implementation of the software, program modules, and/or engines components and techniques may be stored on and/or transmitted across some form of computer-readable media. In this regard, computer-readable media can be any available medium or media useable to store information and accessible by a computing device. Some embodiments also may be practiced in distributed computing environments where operations are performed by one or more remote processing devices that are linked through a communications network. In a distributed computing environment, software, program modules, and/or engines may be located in both local and remote computer storage media including memory storage devices. A memory such as a random access memory (RAM) or other dynamic storage device may be employed for storing information and instructions to be executed by the processor. The memory also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by the processor.
Although some embodiments may be illustrated and described as comprising functional components, software, engines, and/or modules performing various operations, it can be appreciated that such components or modules may be implemented by one or more hardware components, software components, and/or combination thereof. The functional components, software, engines, and/or modules may be implemented, for example, by logic (e.g., instructions, data, and/or code) to be executed by a logic device (e.g., processor). Such logic may be stored internally or externally to a logic device on one or more types of computer-readable storage media. In other embodiments, the functional components such as software, engines, and/or modules may be implemented by hardware elements that may include processors, microprocessors, circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), logic gates, registers, semiconductor device, chips, microchips, chip sets, and so forth.
Examples of software, engines, and/or modules may include software components, programs, applications, computer programs, application programs, system programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. Determining whether an embodiment is implemented using hardware elements and/or software elements may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other design or performance constraints.
One or more of the modules described herein may comprise one or more embedded applications implemented as firmware, software, hardware, or any combination thereof. One or more of the modules described herein may comprise various executable modules such as software, programs, data, drivers, application program interfaces (APIs), and so forth. The firmware may be stored in a memory of the controller 2016 and/or the controller 2022 which may comprise a nonvolatile memory (NVM), such as in bit-masked read-only memory (ROM) or flash memory. In various implementations, storing the firmware in ROM may preserve flash memory. The nonvolatile memory (NVM) may comprise other types of memory including, for example, programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or battery backed random-access memory (RAM) such as dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), and/or synchronous DRAM (SDRAM).
In some cases, various embodiments may be implemented as an article of manufacture. The article of manufacture may include a computer readable storage medium arranged to store logic, instructions and/or data for performing various operations of one or more embodiments. In various embodiments, for example, the article of manufacture may comprise a magnetic disk, optical disk, flash memory or firmware containing computer program instructions suitable for execution by a general purpose processor or application specific processor. The embodiments, however, are not limited in this context.
The functions of the various functional elements, logical blocks, modules, and circuits elements described in connection with the embodiments disclosed herein may be implemented in the general context of computer executable instructions, such as software, control modules, logic, and/or logic modules executed by the processing unit. Generally, software, control modules, logic, and/or logic modules comprise any software element arranged to perform particular operations. Software, control modules, logic, and/or logic modules can comprise routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types. An implementation of the software, control modules, logic, and/or logic modules and techniques may be stored on and/or transmitted across some form of computer-readable media. In this regard, computer-readable media can be any available medium or media useable to store information and accessible by a computing device. Some embodiments also may be practiced in distributed computing environments where operations are performed by one or more remote processing devices that are linked through a communications network. In a distributed computing environment, software, control modules, logic, and/or logic modules may be located in both local and remote computer storage media including memory storage devices.
Additionally, it is to be appreciated that the embodiments described herein illustrate example implementations, and that the functional elements, logical blocks, modules, and circuits elements may be implemented in various other ways which are consistent with the described embodiments. Furthermore, the operations performed by such functional elements, logical blocks, modules, and circuits elements may be combined and/or separated for a given implementation and may be performed by a greater number or fewer number of components or modules. As will be apparent to those of skill in the art upon reading the present disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several aspects without departing from the scope of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
It is worthy to note that any reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is comprised in at least one embodiment. The appearances of the phrase “in one embodiment” or “in one aspect” in the specification are not necessarily all referring to the same embodiment.
Unless specifically stated otherwise, it may be appreciated that terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, such as a general purpose processor, a DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein that manipulates and/or transforms data represented as physical quantities (e.g., electronic) within registers and/or memories into other data similarly represented as physical quantities within the memories, registers or other such information storage, transmission or display devices.
It is worthy to note that some embodiments may be described using the expression “coupled” and “connected” along with their derivatives. These terms are not intended as synonyms for each other. For example, some embodiments may be described using the terms “connected” and/or “coupled” to indicate that two or more elements are in direct physical or electrical contact with each other. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. With respect to software elements, for example, the term “coupled” may refer to interfaces, message interfaces, application program interface (API), exchanging messages, and so forth.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
The disclosed embodiments have application in conventional endoscopic and open surgical instrumentation as well as application in robotic-assisted surgery.
Embodiments of the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. Embodiments may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, embodiments of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, embodiments of the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, embodiments described herein may be processed before surgery. First, a new or used instrument may be obtained and when necessary cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely examples and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components.
Some aspects may be described using the expression “coupled” and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
In some instances, one or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that when a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
In addition, even when a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more embodiments has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more embodiments were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.
Claims
1. A handle for use with a surgical instrument system, said handle comprising:
- a first handle housing portion, comprising: a first output rotatable about a first longitudinal axis; and a second output rotatable about a second longitudinal axis;
- a second handle housing portion, comprising: a first electric motor comprising a first rotatable motor shaft; a second electric motor comprising a second rotatable motor shaft; a first actuator for operating said first electric motor; and a second actuator for operating said second electric motor;
- a hinge, wherein said second handle housing portion is rotatably connected to said first handle housing portion about said hinge, wherein said second handle housing portion is rotatable between a pistol grip position and an in-line grip position;
- a first flexible transmission configured to transmit rotational motion between said first motor shaft and said first rotatable output; and
- a second flexible transmission configured to transmit rotational motion between said second motor shaft and said second rotatable output.
2. The handle of claim 1, wherein said first flexible transmission comprises a first cable, and wherein said second flexible transmission comprises a second cable.
3. The handle of claim 2, wherein said first transmission comprises a first slip joint configured to adjust to changes in length between said first electric motor and said first output, and wherein said second transmission comprises a second slip joint configured to adjust to changes in length between said second electric motor and said second output.
4. The handle of claim 1, wherein said first rotatable motor shaft extends in a transverse direction to said first longitudinal axis when said second handle housing portion is in said pistol grip position, and wherein said first rotatable motor shaft extends in a parallel direction with said first longitudinal axis when said second handle housing portion is in said in-line grip position.
5. The handle of claim 4, wherein said second rotatable motor shaft extends in a perpendicular direction to said second longitudinal axis when said second handle housing portion is in said pistol grip position, and wherein said second rotatable motor shaft extends in a parallel direction with said second longitudinal axis when said second handle housing portion is in said in-line grip position.
6. The handle of claim 1, further comprising a housing lock configured to releasably lock said second handle housing portion in said pistol grip position and said in-line grip position.
7. The handle of claim 6, wherein said housing lock only locks said second handle housing portion to said first handle housing portion when said second handle housing portion is in said pistol grip position and said in-line grip position.
8. The handle of claim 1, wherein said first handle housing portion comprises a shaft attachment portion, and wherein a modular shaft assembly is releasably attachable to said shaft attachment portion.
9. A handle for use with a surgical instrument system, said handle comprising:
- a first handle housing portion, comprising: a first output rotatable about a first longitudinal axis; and a second output rotatable about a second longitudinal axis;
- a second handle housing portion, comprising: a first electric motor comprising a first rotatable motor shaft; a second electric motor comprising a second rotatable motor shaft; a first actuator for operating said first electric motor; and a second actuator for operating said second electric motor;
- an articulation joint, wherein said second handle housing portion is rotatably connected to said first handle housing portion about said articulation joint, and wherein said second handle housing portion is rotatable between a first grip position and a second grip position;
- a first transmission configured to transmit rotational motion between said first motor shaft and said first rotatable output; and
- a second transmission configured to transmit rotational motion between said second motor shaft and said second rotatable output.
10. The handle of claim 9, wherein said first transmission comprises a first cable, and wherein said second transmission comprises a second cable.
11. The handle of claim 10, wherein said first transmission comprises a first slip joint configured to adjust to changes in length between said first electric motor and said first output, and wherein said second transmission comprises a second slip joint configured to adjust to changes in length between said second electric motor and said second output.
12. The handle of claim 9, wherein said first rotatable motor shaft extends in a transverse direction to said first longitudinal axis when said second handle housing portion is in said first grip position, and wherein said first rotatable motor shaft extends in a parallel direction with said first longitudinal axis when said second handle housing portion is in said second grip position.
13. The handle of claim 12, wherein said second rotatable motor shaft extends in a perpendicular direction to said second longitudinal axis when said second handle housing portion is in said first grip position, and wherein said second rotatable motor shaft extends in a parallel direction with said second longitudinal axis when said second handle housing portion is in said second grip position.
14. The handle of claim 9, further comprising a housing lock configured to releasably lock said second handle housing portion in said first grip position and said in-line grip position.
15. The handle of claim 14, wherein said housing lock only locks said second handle housing portion to said first handle housing portion when said second handle housing portion is in said first grip position and said second grip position.
16. The handle of claim 9, wherein said first handle housing portion comprises a shaft attachment portion, and wherein a modular shaft assembly is releasably attachable to said shaft attachment portion.
17. A handle for use with a surgical instrument system, said handle comprising:
- a first handle housing portion comprising an output;
- a second handle housing portion, comprising: an electric motor comprising a rotatable motor shaft; an actuator for operating said electric motor; and
- an articulation joint, wherein said second handle housing portion is rotatably connected to said first handle housing portion about said articulation joint, and wherein said second handle housing portion is rotatable between a first grip position and a second grip position;
- a transmission configured to transmit motion between said first motor shaft and said output.
18. The handle of claim 17, wherein said transmission comprises a cable.
19. The handle of claim 18, wherein said transmission comprises a slip joint configured to adjust to changes in length between said electric motor and said output.
Type: Application
Filed: Feb 27, 2015
Publication Date: Sep 1, 2016
Patent Grant number: 9993258
Inventors: Frederick E. Shelton, IV (Hillsboro, OH), Andrew T. Beckman (Cincinnati, OH), Christopher J. Hess (Blue Ash, OH), Jerome R. Morgan (Cincinnati, OH)
Application Number: 14/633,526