BOTTOM DRAW PUMP
A submersible bottom draw pump having prefilter screen and impeller intake structure oriented at the bottom surfaces of the pump so as to minimize the required depth within which the pump operates, and having integral horizontal and vertical outlets so as to provide a submersible bottom draw pump that may be selectably configured as either a horizontal outlet bottom draw pump or a vertical outlet bottom draw pump.
Latest IP HOLDINGS, LLC Patents:
None.
TECHNICAL FIELD OF THE INVENTIONThis invention relates generally to a bottom draw pump ideally for use in hydroponic or indoor gardening applications, and, more particularly, to improved methods and apparatuses for a submersible bottom draw pump capable of operation in very shallow depths.
BACKGROUND OF THE INVENTIONSubmersible pumps for hydroponic or indoor gardening applications have heretofore been configured with a motor housing having a water intake that is perpendicular to a water outlet, with the intake most commonly in a horizontal orientation and the outlet in a vertical orientation so that the pump rests on a bottom surface, draws water in from a horizontal (parallel) orientation to the bottom surface, and pumps water upward out through the upward facing, or vertical, outlet. Such pumps are commonly configured with a substantially unitary rectangular housing with an electrical cord extending from the housing, and the housing having one fixed position intake and one fixed position outlet. The pumps are simple devices using an impeller to draw water into a substantially cylindrical intake tube, centrifugally accelerate the water across fins comprising the impeller, and expel the water into a substantially cylindrical outlet tube oriented perpendicular to the intake tube and out of the unitary housing through the outlet.
Submersible pumps are used for a variety of hydroponic and indoor gardening applications. For example, a compost tea brewing system such as the Flow-n-Brew system part no. 702800 from Sunlight Supply, Inc., includes a submersible pump for drawing tea components into a fountain head to circulate and agitate the tea. Another example is a hydroponic gardening bucket system such as the Flo-n-Gro ebb and flow system part no. 702806 from Sunlight Supply, Inc., which comprises two submersible pumps—one pump for filling flood lines and connected planter buckets, and another for draining from the flood lines and connected planter buckets.
Existing submersible pumps are limited to drawing water from depths of several inches and are generally limited in the orientation of the pump intake and outlet. That is, existing pumps generally need several inches of depth in order to work properly, with the pump unit sitting on the bottom surface of the water source within several inches of water, and have an intake cylindrical tube that is perpendicular to an outlet tube. Such pumps are unable to operate with less water because of the height of the pump intake, the geometries associated with the intake tube, dynamics associated with priming (and maintaining priming) and maintaining sufficient pressures for the pump to operate, and other factors. Such pumps require external components to be clamped onto the intake and outlet tubes in order to redirect flow lines to and/or from such pumps, further limiting the versatility of the pumps and the dimensions and conditions within which the pumps may be used.
What is needed are new and innovative designs for a submersible pump that offer improvements in cost, quality, delivery, performance, and/or feature content over existing submersible pumps. What is need are new and innovative methods and apparatuses for a bottom draw pump capable of operation in very shallow depths, and for a bottom draw pump especially suitable for hydroponic and indoor gardening applications.
The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention taken in conjunction with the accompanying drawings.
Elements in the figures have not necessarily been drawn to scale in order to enhance their clarity and improve understanding of these various elements and embodiments of the invention. Furthermore, elements that are known to be common and well understood to those in the industry such as electrical power connection are not necessarily depicted in order to provide a clear view of the various embodiments of the invention, thus the drawings are generalized in form in the interest of clarity and conciseness.
Although preferred embodiments are described in the context of a submersible bottom draw pump having a substantially rectangular shaped housing with convertible outlets, one directed on a side of the housing perpendicular to the axial rotation of an impeller and the other directed on a side of the housing opposite to the side into which fluid flows into the intake, and having a prefilter screen substantially covering the entire same side as the intake, separable inventive aspects in various embodiments are disclosed. The overall shape of the housing may be other than rectangular in some embodiments. Other embodiments may comprise a prefilter covering less than the entire intake side of the housing yet still comprise inlets and an orientation and distribution of inlets as illustrated and described. Various embodiments may employ materials different than the molded plastic structures comprising the housing, prefilter, plug, fitting, and other components.
In preferred embodiments, a method of drawing and pumping fluid from the bottom of a reservoir or container comprises filling or priming a space between a prefilter screen and the fins of an impeller with a fluid to be moved through an impeller of a pump, further filling or priming at least a portion of the axial width of the impeller's blades so that rotation of the impeller blades causes the fins or blades to contact and move the fluid, and drawing fluid such as water or nutrient infused or other liquid solution through a prefilter screen, into the fins of a rotating impeller, accelerating the fluid across the fins of the impeller causing the fluid to flow outward away from the rotational axis of the impeller in a direction perpendicular to the impeller axis, the fluid then caused to flow horizontally through an outlet fitting affixed to a horizontal outlet of the pump housing or, alternatively and convertibly by way of moving a plug from a vertical outlet of the pump housing to the horizontal outlet and moving the outlet fitting from the horizontal outlet to the vertical outlet, caused to flow vertically through the outlet fitting affixed to the vertical outlet.
As shown in
Structures on the bottom surfaces of the pump or motor assembly 102, in preferred embodiments, comprise an impeller retainer or cover 106 with its center structure 110 for retaining a lower end of the impeller axis. The impeller retainer 106 preferably includes some cross members as shown to provide additional filtering of material from flowing into and fouling the impeller fins 108, and the impeller retainer 106 preferably includes threads or a latch or fasteners or (as shown) features for rotating the impeller retainer 106 to remove it to expose the impeller assembly and interior of the outlet tube 112 therewithin for removal of debris or for cleaning or maintenance. The impeller retainer 106 preferably comprises a circular opening centered about the impeller axis and having a radius less than the radial length of the impeller fins (or blades) 108. A smaller radius opening in the impeller retainer 106 (i.e. a smaller radius as compared to the radius of impeller fins 108) allows for fluid to be pumped to move into the fins 108 of the impeller closer to the axis of rotation, with rotation of the fins causing the fluid to accelerate radially outward from the axis of rotation and into outlet tube 112.
In preferred embodiments, with the prefilter 104 engaged with the motor assembly 102, the outlet fitting 128 threadably fastened into the horizontal outlet 134, and the outlet plug 132 threadably fastened into the vertical outlet, the bottom draw pump (in an horizontal outlet configuration) 100 provides a convertible bottom draw submersible pump. The assembled pump 100 may be positioned to rest on pads 116 at the bottom of a reservoir, or using suction pads 116 to keep the pump in as desired location, for drawing fluid through the prefilter 104, into the rotating impeller fins 108, through outlet tube 112 and horizontal outlet 136.
An exemplary convertible bottom draw pump, according to a preferred embodiment, comprises the bottom draw pump substantially as shown in
In preferred embodiments, converting pump or motor assembly 102 from a horizontal outlet bottom draw pump to a vertical outlet bottom draw pump comprises unfastening a plug 132 from a vertical outlet 370, unfastening an outlet fitting 128 from a horizontal outlet 136, fastening the plug 132 to the horizontal outlet 136, and fastening the outlet fitting 128 to the vertical outlet 370. The resulting pump configuration is the vertical outlet pump 300 shown in
Numerous advantages of various embodiments of a convertible bottom draw submersible pump as described herein over prior pump designs include fewer components needed to achieve the functionality of a horizontal or vertical outlet pump, improved efficiencies by integrating horizontal and vertical outlets within a unitary and integral pump housing 102, providing a reconfigurable pump having an intake at the lowest possible position of the bottom surfaces of the pump assembly (as shown in
The leading edges of the fins 108 comprising the impeller assembly 802 define a plane that is perpendicular to the axis of rotation and shaft 804. The trailing edges of the fins 108 comprising the impeller assembly 802 define a plane that is perpendicular to the axis of rotation and shaft 804. The leading edges of the fins 108 are closer to the bottom surfaces (toward the prefilter 104) of the pump assembly 102, and the difference between the leading edges and the trailing edges (or the two planes defined thereby) define a width of the fins 108, with the length of fins 108 being the orthogonal dimension to the width, from the axis of rotation (or the shaft 804) to the radially outward edges of the fins 108. As water or fluid moves across the length of a fin 108 it accelerates and moves radially away from the axis of rotation of the shaft 804, and allowed or directed to flow into outlet tube 112, which receives flowing water or fluid coming from the impeller fins 108 in a direction perpendicular to the axis of rotation (i.e. perpendicular to shaft 804).
In preferred embodiments, the described convertible submersible bottom draw pump 800 operates effectively in water or fluid depth as low as the distance between the lowest contacting surfaces of a prefilter assembly 104 (with its pads or suction cups 116) and enough of at least a portion of the impeller fin 108 width needed to accelerate the water or fluid across the impeller fins 108 to cause the fluid to flow through an outlet tube 112. In preferred embodiments, immersing enough of the width of impeller fins 108 in the water or fluid to be pumped is referred to as priming, and priming the pump may comprise filling the reservoir or container within which water or fluid it to be pumped to a depth sufficient to immerse enough of the impeller fins 108 such that rotation of the impeller fins 108 causes the water or fluid to move radially outward along the impeller fins 108 and perpendicular to the axis of impeller rotation (i.e. shaft 804) and into outlet tube 112.
In one embodiment, each impeller blade 108 is approximately ¼ inch in width. In one embodiment, a convertible submersible bottom draw pump 800 operates effectively in water or fluid at least ½ inch in depth. In one embodiment, the distance between a compressed suction cup 116 (compressed when the pump assembly 800 is resting on the bottom surface of a reservoir or container within which water or fluid is to be pumped by the pump assembly 800) and enough of the width of the impeller fins 108 to accelerate the fluid for effective operation of the pump assembly 800, is approximately ½ inch. In one embodiment, the distance between a compressed suction cup 116 (compressed when the pump assembly 800 is resting on the bottom surface of a reservoir or container within which water or fluid is to be pumped by the pump assembly 800) and the full width of the impeller fins 108 (i.e. the distance includes the full width of the impeller fins 108, thereby ensuring enough fin surface contact to accelerate the fluid for effective operation of the pump assembly 800), is approximately ½ inch. In one embodiment, the pump assembly 800 is capable of operating effectively in water or fluid depth as little as enough to cover the fins 108 of the impeller assembly 802, when the pump is fully assembled and sitting with its prefilter assembly 104 (and pads/suction cups 116 thereon) resting on the bottom surface of the reservoir or container within which the water or fluid is to be pumped.
The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
Claims
1. A method of drawing and pumping fluid in a reservoir or container comprising:
- (a) filling a space between a prefilter screen and fins of an impeller of a pump with a fluid to be moved by the impeller;
- (b) filling a space surrounding at least a portion of the axial width of the impeller's fins with the fluid so that rotation of the impeller fins causes the fins to contact and move the fluid;
- (c) drawing the fluid comprising water or nutrient infused liquid or other liquid solution through the prefilter screen and into the fins of the rotating impeller;
- (d) accelerating the fluid radially across the fins of the impeller causing the fluid to flow radially outward away from the rotational axis of the impeller in a direction perpendicular to the impeller axis; and
- (e) the fluid then caused to selectably flow in either one of two selectable directions, the selectable directions comprising a first direction through an outlet fitting affixed to a first outlet integral to the pump housing, or, alternatively and convertibly by way of moving a plug from a second outlet integral to the pump housing to the first outlet and moving the outlet fitting from the first outlet to the second outlet, a second direction through the outlet fitting affixed to the second outlet.
2. The method of claim 1 further comprising placing the pump on the bottom of the reservoir or container so that the prefilter is between the bottom of the reservoir and the pump impeller fins, and so that the impeller axis of rotation is substantially perpendicular to the bottom of the reservoir.
3. The method of claim 2 wherein pumping fluid from the first outlet comprises pumping fluid in a first direction that is substantially horizontal and perpendicular to the impeller axis, and wherein pumping fluid from the second outlet comprises pumping fluid in a second direction that is substantially vertical and parallel to the impeller axis.
4. The method of claim 2 wherein the pump is operable in fluid having no more depth than enough to fill the space between the bottom of the reservoir upon which the pump rests and the space surrounding enough of the axial width of the impeller's fins so that rotation of the impeller fins causes the fins to contact and move the fluid one of the two selectable directions.
5. A convertible submersible bottom draw pump capable of performing the method of claim 1.
6. The pump in claim 5 further capable of performing the method of claim 2.
7. The pump in claim 5 further capable of performing the method of claim 3.
8. The pump in claim 5 further capable of performing the method of claim 4.
9. A bottom draw pump comprising:
- (a) a unitary motor housing having sealed therewithin an electric motor for rotating an impeller;
- (b) impeller fins of the impeller extending radially outward from an impeller axis and having an axial width, the impeller axis oriented substantially perpendicular to a bottom surface of the bottom draw pump with the impeller fins;
- (c) an impeller cover retaining the impeller within the motor assembly and having an aperture forming an intake into which fluid is drawn in an axial direction into the rotating impeller fins and accelerated radially outward along the impeller fins in a direction perpendicular to the impeller axis;
- (d) a prefilter screen covering the impeller cover and forming at least a portion of the bottom surface of the bottom draw pump;
- (e) a first outlet integral to the motor housing oriented to direct fluid drawn axially into the impeller fins and then accelerated by the impeller fins in a direction substantially perpendicular to the impeller axis;
- (f) a second outlet integral to the motor housing oriented to direct fluid drawn axially into the impeller fins and then accelerated by the impeller fins in a direction substantially parallel to the impeller axis;
- (g) a plug selectably and repeatably fastenable in either the first outlet or the second outlet to prevent fluid flow from the plugged outlet; and
- (h) an outlet fitting selectably and repeatably fastenable in either the second outlet or the first outlet to allow fluid flow from the unplugged outlet.
10. The pump of claim 9 wherein when the outlet fitting is fastened in the first outlet and the plug is fastened in the second outlet the first outlet is substantially parallel to the bottom surface of the bottom draw pump.
11. The pump of claim 9 wherein when the outlet fitting is fastened in the second outlet and the plug is fastened in the first outlet the second outlet is substantially perpendicular to the bottom surface of the bottom draw pump.
Type: Application
Filed: Mar 9, 2015
Publication Date: Sep 15, 2016
Applicant: IP HOLDINGS, LLC (Vancouver, VA)
Inventor: Rod Davis (Vancouver, WA)
Application Number: 14/642,557