The present invention relates to cancer diagnostic methods and means therefor.
Neoplasms and cancer are abnormal growths of cells. Cancer cells rapidly reproduce despite restriction of space, nutrients shared by other cells, or signals sent from the body to stop re-production. Cancer cells are often shaped differently from healthy cells, do not function properly, and can spread into many areas of the body. Abnormal growths of tissue, called tumors, are clusters of cells that are capable of growing and di-viding uncontrollably. Tumors can be benign (noncancerous) or malignant (cancerous). Benign tumors tend to grow slowly and do not spread. Malignant tumors can grow rapidly, invade and destroy nearby normal tissues, and spread throughout the body. Malignant cancers can be both locally invasive and metastatic. Locally invasive cancers can invade the tissues surrounding it by sending out “fingers” of cancerous cells into the normal tissue. Metastatic cancers can send cells into other tissues in the body, which may be distant from the original tumor. Cancers are classified according to the kind of fluid or tissue from which they originate, or according to the location in the body where they first developed. All of these parameters can effectively have an influence on the cancer characteristics, development and progression and subsequently also cancer treatment. Therefore, reliable methods to classify a cancer state or cancer type, taking diverse parameters into consideration is desired. Since cancer is predominantly a genetic disease, trying to classify cancers by genetic parameters is one extensively studied route.
Extensive efforts have been undertaken to discover genes relevant for diagnosis, prognosis and management of (cancerous)disease. Mainly RNA-expression studies have been used for screening to identify genetic biomarkers. Over recent years it has been shown that changes in the DNA-methylation pattern of genes could be used as biomarkers for cancer diagnostics. In concordance with the general strategy identifying RNA-expression based biomarkers, the most convenient and prospering approach would start to identify marker candidates by genome-wide screening of methylation changes.
The most versatile genome-wide approaches up to now are using microarray hybridization based techniques. Although studies have been undertaken at the genomic level (and also the single-gene level) for elucidating methylation changes in diseased versus normal tissue, a comprehensive test obtaining a good success rate for identifying biomarkers is yet not available.
Developing biomarkers for disease (especially cancer)-screening, -diagnosis, and -treatment was improved over the last decade by major advances of different technologies which have made it easier to discover potential biomarkers through high-throughput screens. Comparing the so called “OMICs”-approaches like Genomics, Proteomics, Metabolomics, and derivates from those, Genomics is best developed and most widely used for biomarker identification. Because of the dynamic nature of RNA expression and the ease of nucleic acid extraction and the detailed knowledge of the human genome, many studies have used RNA expression profiling for elucidation of class differences for distinguishing the “good” from the “bad” situation like diseased vs. healthy, or clinical differences between groups of diseased patients. Over the years especially microarray-based expression profiling has become a standard tool for research and some approaches are currently under clinical validation for diagnostics. The plasticity over a broad dynamic range of RNA expression levels is an advantage using RNA and also a prerequisite of successful discrimination of classes, the low stability of RNA itself is often seen as a drawback. Because stability of DNA is tremendously higher than stability of RNA, DNA based markers are more promising markers and expected to give robust assays for diagnostics. Many of clinical markers in oncology are more or less DNA based and are well established, e.g. cytogenetic analyses for diagnosis and classification of different tumor-species. However, most of these markers are not accessible using the cheap and efficient molecular-genetic PCR routine tests. This might be due to 1) the structural complexity of changes, 2) the inter-individual differences of these changes at the DNA-sequence level, and 3) the relatively low “quantitative” fold-changes of those “chromosomal” DNA changes. In comparison, RNA-expression changes range over some orders of magnitudes and these changes can be easily measured using genome-wide expression microarrays. These expression arrays are covering the entire translated transcriptome by 20000-45000 probes. Elucidation of DNA changes via microarray techniques re-quires in general more probes depending on the requested resolution. Even order(s) of magnitude more probes are required than for standard expression profiling to cover the entire 3×109 by human genome. For obtaining best resolution when screening biomarkers at the structural genomic DNA level, today genomic tiling arrays and SNP-arrays are available. Although costs of these techniques analysing DNA have decreased over recent years, for biomarker screening many samples have to be tested, and thus these tests are cost intensive.
Another option for obtaining stable DNA-based biomarkers re-lies on elucidation of the changes in the DNA methylation pattern of (malignant; neoplastic) disease. In the vertebrate genome methylation affects exclusively the cytosine residues of CpG dinucleotides, which are clustered in CpG islands. CpG islands are often found associated with gene-promoter sequences, present in the 5′-untranslated gene regions and are per default unmethylated. In a very simplified view, an unmethylated CpG island in the associated gene-promoter enables active transcription, but if methylated gene transcription is blocked. The DNA methylation pattern is tissue- and clone-specific and almost as stable as the DNA itself. It is also known that DNA-methylation is an early event in tumorigenesis which would be of interest for early and initial diagnosis of disease. In principle screening for biomarkers suitable to answering clinical questions including DNA-methylation based approaches would be most successful when starting with a genome-wide approach.
Shames D et al. (PLOS Medicine 3(12) (2006): 2244-2262) identified multiple genes that are methylated with high penetrance in primary lung, breast, colon and prostate cancers.
Sato N et al. (Cancer Res 63(13) (2003): 3735-3742) identified potential targets with aberrant methylation in pancreatic cancer. These genes were tested using a treatment with a de-methylating agent (5-aza-2′-deoxycytidine and/or the histone deacetylase inhibitor trichostatin A) after which certain genes were increased transcribed.
Bibikova M et al. (Genome Res 16(3) (2006): 383-393) analysed lung cancer biopsy samples to identify methylated cpu sites to distinguish lung adenocarcinomas from normal lung tissues.
Yan P S et al. (Clin Cancer Res 6(4) (2000): 1432-1438) analysed CpG island hypermethylation in primary breast tumor.
Cheng Y et al. (Genome Res 16(2) (2006): 282-289) discussed DNA methylation in CpG islands associated with transcriptional silencing of tumor suppressor genes.
Ongenaert M et al. (Nucleic Acids Res 36 (2008) Database issue D842-D846) provided an overview over the methylation database “PubMeth”.
Microarray for human genome-wide hybridization testings are known, e.g. the Affymetrix Human Genome U133A Array (NCB1 Database, Acc. No. GLP96).
A substantial number of differentially methylated genes has been discovered over years rather by chance than by rationality. Albeit some of these methylation changes have the potential being useful markers for differentiation of specifically defined diagnostic questions, these would lack the power for successful delineation of various diagnostic constellations. Thus, the rational approach would start at the genomic-screen for distinguishing the “subtypes” and diagnostically, prognostically and even therapeutically challenging constellations. These rational expectations are the base of starting genomic (and also other—omics) screenings but do not warrant to obtain the maker panel for all clinical relevant constellations which should be distinguished. This is neither unreliable when thinking about a universal approach (e.g. transcriptomics) suitable to distinguish for instance all subtypes in all different malignancies by focusing on a single class of target-molecules (e.g. RNA). Rather all omics-approaches together would be necessary and could help to improve diagnostics and finally patient management.
Lung cancer is the third most common malignant neoplasm in the EU following breast and colon cancers. Lung cancer presents the second worst 5-year survival figures following pancreas. Thus, although it accounts for 14% of all cancer diagnoses, lung cancer is responsible for 22% of cancer deaths, indicating the poor prognosis of this tumour type and the comparative lack of progress in treatment. Therapy is hampered by the tendency for lung cancer to be diagnosed at a late stage, hence the need to develop markers for early detection. Approximately 80% of lung cancer cases are of the non-small cell type (NSCLC), with squamous cell carcinoma and adenocarcinoma being the most frequent subtypes. A goal of the present invention is to provide an alternative and more cost-efficient route to identify suitable markers for lung cancer diagnostics.
Therefore, in a first aspect, the present invention provides a set of nucleic acid primers or hybridization probes being specific for a potentially methylated region of marker genes being suitable to diagnose or predict lung cancer or a lung cancer type, preferably being selected from adenocarcinoma or squamous cell carcinoma, the marker genes comprising WT1, SALL3, TERT, ACTB, CPEB4. Preferably the set further comprises any one of the markers ABCB1, ACTB, AIM1L, APC, AREG, BMP2K, BOLL, C5AR1, C5orf4, CADM1, CDH13, CDX1, CLIC4, COL21A1, CPEB4, CXADR, DLX2, DNAJA4, DPH1, DRD2, EFS, ERBB2, ERCC1, ESR2, F2R, FAM43A, GABRA2, GAD1, GBP2, GDNF, GNA15, GNAS, HECW2, HIC1, HIST1H2AG, HLA-G, HOXA1, HOXA10, HSD17B4, HSPA2, IRAK2, ITGA4, JUB, KCNJ15, KCNQ1, KIF5B, KL, KRT14, KRT17, LAMC2, MAGEB2, MBD2, MSH4, MT1G, MT3, MTHFR, NEUROD1, NHLH2, NKX2-1, ONECUT2, PENK, PITX2, PLAGL1, PTTG1, PYCARD, RASSF1, S100A8, SALL3, SERPINB5, SERPINE1, SERPINI1, SFRP2, SLC25A31, SMAD3, SPARC, SPHK1, SRGN, TERT, THRB, TJP2, TMEFF2, TNFRSF10C, TNFRSF25, TP53, ZDHHC11, ZNF256, ZNF711, F2R, HOXA10, KL, SALL3, SPARC, TNFRSF25, WT1.
In a further aspect, the present invention provides a method of determining a subset of diagnostic markers for potentially methylated genes from the genes of gene marker IDs 1-359 of table 1, suitable for the diagnosis or prognosis of lung cancer or lung cancer type, comprising
-
- a) obtaining data of the methylation status of at least 50 random genes selected from the 359 genes of gene marker IDs 1-359 in at least 1 sample, preferably 2, 3, 4 or at least 5 samples, of a confirmed lung cancer or lung cancer type state and at least one sample of a lung cancer or lung cancer type negative state,
- b) correlating the results of the obtained methylation status with the lung cancer or lung cancer type,
- c) optionally repeating the obtaining a) and correlating b) steps for a different combination of at least 50 random genes selected from the 359 genes of gene marker IDs 1-359 and
- d) selecting as many marker genes which in a classification analysis have a p-value of less than 0.1 in a random-variance t-test, or selecting as many marker genes which in a classification analysis together have a correct lung cancer or lung cancer type prediction of at least 70% in a cross-validation test,
wherein the selected markers form the subset of diagnostic markers.
The present invention provides a master set of 359 genetic markers which has been surprisingly found to be highly relevant for aberrant methylation in the diagnosis or prognosis of lung cancer. It is possible to determine a multitude of marker subsets from this master set which can be used to diagnose and differentiate between various lung cancer or tumor types, e.g. adenocarcinoma and squamous cell carcinoma.
The inventive 359 marker genes of table 1 (given in example 1 below) are: NHLH2, MTHFR, PRDM2, MLLT11, S100A9 (control), S100A9, S100A8 (control), S100A8, S100A2, LMNA, DUSP23, LAMC2, PTGS2, MARK1, DUSP10, PARP1, PSEN2, CLIC4, RUNX3, AIM1L, SFN, RPA2, TP73, TP73 (p73), POU3F1, MUTYH, UQCRH, FAF1, TACSTD2, TN-FR5F25, DIRAS3, MSH4, GBP2, GBP2, LRRC8C, F3, NANOS1, MGMT, EBF3, DCLRE1C, KIF5B, ZNF22, PGBD3, SRGN, GATA3, PTEN, MMS19, SFRP5, PGR, ATM, DRD2, CADM1, TEAD1, OPCML, CALCA, CTSD, MYOD1, IGF2, BDNF, CDKN1C, WT1, HRAS, DDB1, GSTP1, CCND1, EPS8L2, PI-WIL4, CHST11, UNG, CCDC62, CDK2AP1, CHFR, GRIN2B, CCND2, VDR, B4GALNT3, NTF3, CYP27B1, GPR92, ERCC5, GJB2, BRCA2, KL, CCNA1, SMAD9, C13orf15, DGKH, DNAJC15, RB1, RCBTB2, PARP2, APEX1, JUB, JUB (control NM 198086), EFS, BAZ1A, NKX2-1, ESR2, HSPA2, PSEN1, PGF, MLH3, TSHR, THBS1, MYO5C, SMAD6, SMAD3, NOX5, DNAJA4, CRABP1, BCL2A1 (ID NO: 111), BCL2A1 (ID NO: 112), BNC1, ARRDC4, SOCS1, ERCC4, NTHL1, PYCARD, AXIN1, CYLD, MT3, MT1A, MT1G, CDH1, CDH13, DPH1, HIC1, NEUROD2 (control), NEUROD2, ERBB2, KRT19, KRT14, KRT17, JUP, BRCA1, COL1A1, CACNA1G, PRKAR1A, SPHK1, SOX15, TP53 (TP53_CGI23_1 kb), TP53 (TP53_both_CGIs_1 kb), TP53 (TP53_CGI36_1 kb), TP53, NPTX1, SMAD2, DCC, MBD2, ONECUT2, BCL2, SERPINB5, SERPINB2 (control), SERPINB2, TYMS, LAMA1, SALL3, LDLR, STK11, PRDX2, RAD23A, GNA15, ZNF573, SPINT2, XRCC1, ERCC2, ERCC1, C5AR1 (NM_001736), C5AR1, POLD1, ZNF350, ZNF256, C3, XAB2, ZNF559, FHL2, IL1B, IL1B (control), PAX8, DDX18, GAD1, DLX2, ITGA4, NEUROD1, STAT1, TMEFF2, HECW2, BOLL, CASP8, SERPINE2, NCL, CYP1B1, TACSTD1, MSH2, MSH6, MXD1, JAG1, FOXA2, THBD, CTCFL, CTSZ, GATA5, CXADR, APP, TTC3, KCNJ15, RIPK4, TFF1, SEZ6L, TIMP3, BIK, VHL, IRAK2, PPARG, MBD4, RBP1, XPC, ATR, LXN, RARRES1, SERPINI1, CLDN1, FAM43A, IQCG, THRB, RARB, TGFBR2, MLH1, DLEC1, CTNNB1, ZNF502, SLC6A20, GPX1, RASSF1, FHIT, OGG1, PITX2, SLC25A31, FBXW7, SFRP2, CHRNA9, GABRA2, MSX1, IGFBP7, EREG, AREG, ANXA3, BMP2K, APC, HSD17B4 (ID No 249), HSD17B4 (ID No 250), LOX, TERT, NEUROG1, NR3C1, ADRB2, CDX1, SPARC, C5orf4, PTTG1, DUSP1, CPEB4, SCGB3A1, GDNF, ERCC8, F2R, F2RL1, VCAN, ZDHHC11, RHOBTB3, PLAGL1, SASH1, ULBP2, ESR1, RNASET2, DLL1, HIST1H2AG, HLA-G, MSH5, CDKN1A, TDRD6, COL21A1, DSP, SERPINE1 (ID No 283), SERPINE1 (ID No 284), FBXL13, NRCAM, TWIST1, HOXA1, HOXA10, SFRP4, IGFBP3, RPA3, ABCB1, TFPI2, COL1A2, ARPC1B, PILRB, GATA4, MAL2, DLC1, EPPK1, LZTS1, TNFRSF10B, TNFRSF10C, TNFRSF10D, TNFRSF10A, WRN, SFRP1, SNAI2, RDHE2, PENK, RDH10, TGFBR1, ZNF462, KLF4, CDKN2A, CDKN2B, AQP3, TPM2, TJP2 (ID NO 320), TJP2 (ID No 321), PSAT1, DAPK1, SYK, XPA, ARMCX2, RHOXF1, FHL1, MAGEB2, TIMP1, AR, ZNF711, CD24, ABL1, ACTB, APC, CDH1 (Ecad 1), CDH1 (Ecad2), FMR1, GNAS, H19, HIC1, IGF2, KCNQ1, GNAS, CDKN2A (P14), CDKN2B (P15), CDKN2A (P16_VL), PITXA, PITXB, PITXC, PITXD, RB1, SFRP2, SNRPN, XIST, IRF4, UNC13B, GSTP1. Table 1 lists some marker genes in the double such as for different loci and control sequences. It should be understood that any methylation specific region which is readily known to the skilled man in the art from prior publications or available databases (e.g. PubMeth at www.pubmeth.org) can be used according to the present invention. Of course, double listed genes only need to be represented once in an inventive marker set (or set of probes or primers therefor) but preferably a second marker, such as a control region is included (IDs given in the list above relate to the gene ID (or gene loci ID) given in table 1 of the example section).
One advantage making DNA methylation an attractive target for biomarker development, is the fact that cell free methylated DNA can be detected in body-fluids like serum, sputum, and urine from patients with cancerous neoplastic conditions and disease. For the purpose of biomarker screening, clinical samples have to be available. For obtaining a sufficient number of samples with clinical and “outcome” or survival data, the first step would be using archived (tissue) samples. Preferably these materials should fulfill the requirements to obtain intact RNA and DNA, but most archives of clinical samples are storing formalin fixed paraffin embedded (FFPE) tissue blocks. This has been the clinic-pathological routine done over decades, but that fixed samples are if at all only suitable for extraction of low quality of RNA. It has now been found that according to the present invention any such samples (as any comprising tumor DNA) can be used for the method of generating an inventive subset, including fixed samples. The samples can be of lung tissue or any body fluid, e.g. sputum, bronchial lavage, or serum derived from peripheral blood or blood cells. Blood or blood derived samples preferably have reduced, e.g. <95%, or no leukocyte content but comprise DNA of the cancerous cells or tumor. Preferably the inventive markers are of human genes. Preferably the samples are human samples.
The present invention provides a multiplexed methylation testing method which 1) outperforms the “classification” success when compared to genomewide screenings via RNA-expression profiling, 2) enables identification of biomarkers for a wide variety of diseases, without the need to prescreen candidate markers on a genomewide scale, and 3) is suitable for minimal invasive testing and 4) is easily scalable.
In contrast to the rational strategy for elucidation of biomarkers for differentiation of disease, the invention presents a targeted multiplexed DNA-methylation test which outperforms genome-scaled approaches (including RNA expression profiling) for disease diagnosis, classification, and prognosis.
The inventive set of 359 markers enables selection of a subset of markers from this 359 set which is highly characteristic of lung cancer and a given lung cancer type. Further indicators differentiating between cancer types or generally neoplastic conditions are e.g. benign (non (or limited) proliferative) or malignant, metastatic or non-metastatic tumors or nodules. It is sometimes possible to differentiate the sample type from which the methylated DNA is isolated, e.g. urine, blood, tissue samples.
The present invention is suitable to differentiate diseases, in particular neoplastic conditions, or tumor types. Diseases and neoplastic conditions should be understood in general including benign and malignant conditions. According to the present invention benign nodules (being at least the potential onset of malignancy) are included in the definition of a disease. After the development of a malignancy the condition is a preferred disease to be diagnosed by the markers screened for or used according to the present invention. The present invention is suitable to distinguish benign and malignant tumors (both being considered a disease according to the present invention). In particular the invention can provide markers (and their diagnostic or prognostic use) distinguishing between a normal healthy state together with a benign state on one hand and malignant states on the other hand. A diagnosis of lung cancer may include identifying the difference to a normal healthy state, e.g. the absence of any neoplastic nodules or cancerous cells. The present invention can also be used for prognosis of lung cancer, in particular a prediction of the progression of lung cancer or lung cancer type. A particularly preferred use of the invention is to perform a diagnosis or prognosis of metastasizing lung cancer (distinguished from non-metastasizing conditions).
In the context of the present invention “prognosis”, “prediction” or “predicting” should not be understood in an absolute sense, as in a certainty that an individual will develop lung cancer or lung cancer type (including cancer progression), but as an increased risk to develop cancer or the lung cancer type or of cancer progression. “Prognosis” is also used in the context of predicting disease progression, in particular to predict therapeutic results of a certain therapy of the disease, in particular neoplastic conditions, or lung cancer types. The prognosis of a therapy can e.g. be used to predict a chance of success (i.e. curing a disease) or chance of reducing the severity of the disease to a certain level. As a general inventive concept, markers screened for this purpose are preferably derived from sample data of patients treated according to the therapy to be predicted. The inventive marker sets may also be used to monitor a patient for the emergence of therapeutic results or positive disease progressions.
Some of the inventive, rationally selected markers have been found methylated in some instances. DNA methylation analyses in principle rely either on bisulfite deamination-based methylation detection or on using methylation sensitive restriction enzymes. Preferably the restriction enzyme-based strategy is used for elucidation of DNA-methylation changes. Further methods to determine methylated DNA are e.g. given in EP 1 369 493 A1 or U.S. Pat. No. 6,605,432. Combining restriction digestion and multiplex PCR amplification with a targeted microarray-hybridization is a particular advantageous strategy to perform the inventive methylation test using the inventive marker sets (or subsets). A microarray-hybridization step can be used for reading out the PCR results. For the analysis of the hybridization data statistical approaches for class comparisons and class prediction can be used. Such statistical methods are known from analysis of RNA-expression derived microarray data.
If only limiting amounts of DNA were available for analyses an amplification protocol can be used enabling selective amplification of the methylated DNA fraction prior methylation testing. Subjecting these amplicons to the methylation test, it was possible to successfully distinguish DNA from sensitive cases from normal healthy controls. In addition it was possible to distinguish lung-cancer patients from healthy normal controls using DNA from serum by the inventive methylation test upon preamplification. Both examples clearly illustrate that the inventive multiplexed methylation testing can be successfully applied when only limiting amounts of DNA are available. Thus, this principle might be the preferred method for minimal invasive diagnostic testing.
In most situations several genes are necessary for classification. Although the 359 marker set test is not a genome-wide test and might be used as it is for diagnostic testing, running a subset of markers—comprising the classifier which enables best classification—would be easier for routine applications. The test is easily scalable. Thus, to test only the subset of markers, comprising the classifier, the selected subset of primers/probes could be applied directly to set up of the lower multiplexed test (or single PCR-test). Serum DNA can be used to classify or distinguish healthy patients from individuals with lung-tumors. Only the specific primers comprising the gene-classifier obtained from the methylation test may be set up together in multiplexed PCR reactions.
In summary the inventive methylation test is a suitable tool for differentiation and classification of neoplastic disease. This assay can be used for diagnostic purposes and for defining biomarkers for clinical relevant issues to improve diagnosis of disease, and to classify patients at risk for disease progression, thereby improving disease treatment and patient management.
The first step of the inventive method of generating a subset, step a) of obtaining data of the methylation status, preferably comprises determining data of the methylation status, preferably by methylation specific PCR analysis, methylation specific digestion analysis. Methylation specific digestion analysis can include either or both of hybridization of suitable probes for detection to non-digested fragments or PCR amplification and detection of non-digested fragments.
The inventive selection can be made by any (known) classification method to obtain a set of markers with the given diagnostic (or also prognostic) value to categorize a lung cancer or lung cancer type. Such methods include class comparisons wherein a specific p-value is selected, e.g. a p-value below 0.1, preferably below 0.08, more preferred below 0.06, in particular preferred below 0.05, below 0.04, below 0.02, most preferred below 0.01.
Preferably the correlated results for each gene b) are rated by their correct correlation to lung cancer or lung cancer type positive state, preferably by p-value test or t-value test or F-test. Rated (best first, i.e. low p- or t-value) markers are the subsequently selected and added to the subset until a certain diagnostic value is reached, e.g. the herein mentioned at least 70% (or more) correct classification of lung cancer or lung cancer type.
Class comparison procedures include identification of genes that were differentially methylated among the two classes using a random-variance t-test. The random-variance t-test is an improvement over the standard separate t-test as it permits sharing information among genes about within-class variation without assuming that all genes have the same variance (Wright G. W. and Simon R, Bioinformatics 19:2448-2455, 2003). Genes were considered statistically significant if their p value was less than a certain value, e.g. 0.1 or 0.01. A stringent significance threshold can be used to limit the number of false positive findings. A global test can also be performed to determine whether the expression profiles differed between the classes by permuting the labels of which arrays corresponded to which classes. For each permutation, the p-values can be re-computed and the number of genes significant at the e.g. 0.01 level can be noted. The proportion of the permutations that give at least as many significant genes as with the actual data is then the significance level of the global test. If there are more than 2 classes, then the “F-test” instead of the “t-test” should be used.
Class Prediction includes the step of specifying a significance level to be used for determining the genes that will be included in the subset. Genes that are differentially methylated between the classes at a univariate parametric significance level less than the specified threshold are included in the set. It doesn't matter whether the specified significance level is small enough to exclude enough false discoveries. In some problems better prediction can be achieved by being more liberal about the gene sets used as features. The sets may be more bio-logically interpretable and clinically applicable, however, if fewer genes are included. Similar to cross-validation, gene selection is repeated for each training set created in the cross-validation process. That is for the purpose of providing an unbiased estimate of prediction error. The final model and gene set for use with future data is the one resulting from application of the gene selection and classifier fitting to the full dataset.
Models for utilizing gene methylation profile to predict the class of future samples can also be used. These models may be based on the Compound Covariate Predictor (Radmacher et al. Journal of Computational Biology 9:505-511, 2002), Diagonal Linear Discriminant Analysis (Dudoit et al. Journal of the American Statistical Association 97:77-87, 2002), Nearest Neighbor Classification (also Dudoit et al.), and Support Vector Machines with linear kernel (Ramaswamy et al. PNAS USA 98:15149-54, 2001). The models incorporated genes that were differentially methylated among genes at a given significance level (e.g. 0.01, 0.05 or 0.1) as assessed by the random variance t-test (Wright G. W. and Simon R. Bioinformatics 19:2448-2455, 2003). The prediction error of each model using cross validation, preferably leave-one-out cross-validation (Simon et al. Journal of the National Cancer Institute 95:14-18, 2003), is preferably estimated. For each leave-one-out cross-validation training set, the entire model building process was repeated, including the gene selection process. It may also be evaluated whether the cross-validated error rate estimate for a model was significantly less than one would expect from random prediction. The class labels can be randomly permuted and the entire leave-one-out cross-validation process is then repeated. The significance level is the proportion of the random permutations that gave a cross-validated error rate no greater than the cross-validated error rate obtained with the real methylation data. About 1000 random permutations may be usually used.
Another classification method is the greedy-pairs method described by Bo and Jonassen (Genome Biology 3(4):research0017.1-0017.11, 2002). The greedy-pairs approach starts with ranking all genes based on their individual t-scores on the training set. The procedure selects the best ranked gene gi and finds the one other gene gi that together with provides the best discrimination using as a measure the distance between centroids of the two classes with regard to the two genes when projected to the diagonal linear discriminant axis. These two selected genes are then removed from the gene set and the procedure is repeated on the remaining set until the specified number of genes have been selected. This method attempts to select pairs of genes that work well together to discriminate the classes.
Furthermore, a binary tree classifier for utilizing gene methylation profile can be used to predict the class of future samples. The first node of the tree incorporated a binary classifier that distinguished two subsets of the total set of classes. The individual binary classifiers were based on the “Support Vector Machines” incorporating genes that were differentially expressed among genes at the significance level (e.g. 0.01, 0.05 or 0.1) as assessed by the random variance t-test (Wright G. W. and Simon R. Bioinformatics 19:2448-2455, 2003). Classifiers for all possible binary partitions are evaluated and the partition selected was that for which the cross-validated prediction error was minimum. The process is then repeated successively for the two subsets of classes determined by the previous binary split. The prediction error of the binary tree classifier can be estimated by cross-validating the entire tree building process. This overall cross-validation included re-selection of the optimal partitions at each node and re-selection of the genes used for each cross-validated training set as described by Simon et al. (Simon et al. Journal of the National Cancer Institute 95:14-18, 2003). 10-fold cross validation in which one-tenth of the samples is withheld can be utilized, a binary tree developed on the remaining 9/10 of the samples, and then class membership is predicted for the 10% of the samples withheld. This is repeated 10 times, each time withholding a different 10% of the samples. The samples are randomly partitioned into 10 test sets (Simon R and Lam A. BRB-ArrayTools User Guide, version 3.2. Biometric Research Branch, National Cancer Institute).
Preferably the correlated results for each gene b) are rated by their correct correlation to lung cancer or lung cancer type positive state, preferably by p-value test. It is also possible to include a step in that the genes are selected d) in order of their rating.
Independent from the method that is finally used to produce a subset with certain diagnostic or predictive value, the subset selection preferably results in a subset with at least 60%, preferably at least 65%, at least 70%, at least 75%, at least 80% or even at least 85%, at least 90%, at least 92%, at least 95%, in particular preferred 100% correct classification of test samples of lung cancer or lung cancer type. Such levels can be reached by repeating c) steps a) and b) of the inventive method, if necessary.
To prevent increase of the number of the members of the subset, only marker genes with at least a significance value of at most 0.1, preferably at most 0.8, even more preferred at most 0.6, at most 0.5, at most 0.4, at most 0.2, or more preferred at most 0.01 are selected.
In particular preferred embodiments the at least 50 genes of step a) are at least 70, preferably at least 90, at least 100, at least 120, at least 140, at least 160, at least 180, at least 190, at least 200, at least 220, at least 240, at least 260, at least 280, at least 300, at least 320, at least 340, at least 350 or all, genes.
Since the subset should be small it is preferred that not more than 60, or not more than 40, preferably not more than 30, in particular preferred not more than 20, marker genes are selected in step d) for the subset.
In a further aspect the present invention provides a method of identifying lung cancer or lung cancer type in a sample comprising DNA from a patient, comprising providing a diagnostic subset of markers identified according to the method depicted above, determining the methylation status of the genes of the subset in the sample and comparing the methylation status with the status of a confirmed lung cancer or lung cancer type positive and/or negative state, thereby identifying lung cancer or lung cancer type in the sample.
The methylation status can be determined by any method known in the art including methylation dependent bisulfite deamination (and consequently the identification of mC—methylated C—changes by any known methods, including PCR and hybridization techniques). Preferably, the methylation status is determined by methylation specific PCR analysis, methylation specific digestion analysis and either or both of hybridisation analysis to non-digested or digested fragments or PCR amplification analysis of non-digested fragments. The methylation status can also be determined by any probes suitable for determining the methylation status including DNA, RNA, PNA, LNA probes which optionally may further include methylation specific moieties.
As further explained below the methylation status can be particularly determined by using hybridisation probes or amplification primer (preferably PCR primers) specific for methylated regions of the inventive marker genes. Discrimination between methylated and non-methylated genes, including the determination of the methylation amount or ratio, can be performed by using e.g. either one of these tools.
The determination using only specific primers aims at specifically amplifying methylated (or in the alternative non-methylated) DNA. This can be facilitated by using (methylation dependent) bisulfite deamination, methylation specific enzymes or by using methylation specific nucleases to digest methylated (or alternatively non-methylated) regions—and consequently only the non-methylated (or alternatively methylated) DNA is obtained. By using a genome chip (or simply a gene chip including hybridization probes for all genes of interest such as all 359 marker genes), all amplification or non-digested products are detected. I.e. discrimination between methylated and non-methylated states as well as gene selection (the inventive set or subset) is before the step of detection on a chip.
Alternatively it is possible to use universal primers and amplify a multitude of potentially methylated genetic regions (including the genetic markers of the invention) which are, as described either methylation specific amplified or digested, and then use a set of hybridisation probes for the characteristic markers on e.g. a chip for detection. I.e. gene selection is performed on the chip.
Either set, a set of probes or a set of primers, can be used to obtain the relevant methylation data of the genes of the present invention. Of course, both sets can be used.
The method according to the present invention may be performed by any method suitable for the detection of methylation of the marker genes. In order to provide a robust and optionally re-useable test format, the determination of the gene methylation is preferably performed with a DNA-chip, real-time PCR, or a combination thereof. The DNA chip can be a commercially available general gene chip (also comprising a number of spots for the detection of genes not related to the present method) or a chip specifically designed for the method according to the present invention (which predominantly comprises marker gene detection spots).
Preferably the methylated DNA of the sample is detected by a multiplexed hybridization reaction. In further embodiments a methylated DNA is preamplified prior to hybridization, preferably also prior to methylation specific amplification, or digestion. Preferably, also the amplification reaction is multiplexed (e.g. multiplex PCR).
The inventive methods (for the screening of subsets or for diagnosis or prognosis of lung cancer or lung cancer type) are particularly suitable to detect low amounts of methylated DNA of the inventive marker genes. Preferably the DNA amount in the sample is below 500 ng, below 400 ng, below 300 ng, below 200 ng, below 100 ng, below 50 ng or even below 25 ng. The inventive method is particularly suitable to detect low concentrations of methylated DNA of the inventive marker genes. Preferably the DNA amount in the sample is below 500 ng, below 400 ng, below 300 ng, below 200 ng, below 100 ng, below 50 ng or even below 25 ng, per ml sample.
In another aspect the present invention provides a subset comprising or consisting of nucleic acid primers or hybridization probes being specific for a potentially methylated region of at least marker genes selected from a set of nucleic acid primers or hybridization probes being specific for a potentially methylated region of marker genes being suitable to diagnose or predict lung cancer or a lung cancer type, preferably being selected from adenocarcinoma or squamous cell carcinoma, the marker genes comprising WT1, SALL3, TERT, ACTB, CPEB4 or any other subset selected from one of the following groups
-
- a) WT1, DLX2, SALL3, TERI, PITX2, HOXA10, F2R, CPEB4, NHLH2, SMAD3, ACTB, HOXA1, BOLL, APC, MT1G, PENK, SPARC, DNAJA4, RASSF1, HLA-G, ERCC1, ONECUT2, APC, ABCB1, ZNF573, KCNJ15, ZDHHC11, SFRP2, GDNF, PTTG1, SERPINI1, TNFRSF10C
- b) WT1, PITX2, SALL3, F2R, DLX2, TERI, HOXA10, MSH4, NHLH2, GNA15, PENK, RASSF1, BOLL, HOXA1, ONECUT2, ABCB1, SPARC, MT1G, HSPA2, SFRP2, PYCARD, GAD1, C5orf4, C5AR1, GDNF, ZDHHC11, SERPINE1, NKX2-1, PITX2, C5AR1, ZNF256, FAM43A, SFRP2, MT3, SERPINE1, CLIC4, TNFRSF10C, GABRA2, MTHFR, ESR2, NEUROG1, PITX2, PLAGL1, TMEFF2, PTTG1, CADM1, S100A8, EFS, JUB, ITGA4, MAGEB2, ERBB2, SRGN, GNAS, TJP2, KCNJ15, SLC25A31, ZNF573, TNFRSF25, APC, KCNQ1, LAMC2, SPHK1, DNAJA4, APC, MBD2, ERCC1, HLA-G, CXADR, TP53, ACTB, KL, SMAD3, HIST1H2AG, CPEB4
- c) WT1, DLX2, SALL3, TERT, TNFRSF25, ACTB, SMAD3, CPEB4
- d) WT1, DLX2, SALL3, TERT, PITX2, TNFRSF25, KL, ACTB, SMAD3, CPEB4
- e) WT1, PITX2, SALL3, DLX2, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DNAJA4, HLA-G, CXADR, TP53, ACTB, CPEB4
- f) WT1, PITX2, SALL3, F2R, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DRD2, DNAJA4, CXADR, TP53, ACTB, CPEB4
- g) WT1, ACTB, DLX2, PITX2, SALL3, HOXA10, TERT, CPEB4, HLA-G, SPARC, RASSF1, DNAJA4, CXADR, TP53, IRAK2, ZNF711
- h) F2R, ZNF256, CDH13, SERPINB5, KRT14, DLX2, AREG, THRB, HSD17B4, SPARC, HECW2, COL21A1
- i) KL, HIST1H2AG, TJP2, SRGN, CDX1, TNFRSF25, APC, HIC1, APC, GNA15, ACTB, WT1, KRT17, AIM1L, DPH1, PITX2, PITX2, KIF5B, BMP2K, GBP2, NHLH2, GDNF, BOLL
- j) WT1, DLX2, SALL3, TERT, PITX2, HOXA10, F2R, CPEB4, NHLH2, SMAD3, ACTB, HOXA1, BOLL, APC, MT1G, PENK, SPARC, DNAJA4, RASSF1, HLA-G, ERCC1, ONECUT2, APC, ABCB1, ZNF573, KCNJ15, ZDHHC11, SFRP2, GDNF, PTTG1, SERPINI1, TNFRSF10C
- k) HOXA10, NEUROD1
- l) WT1, PITX2, SALL3, F2R, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DRD2, DNAJA4, CXADR, TP53, ACTB, CPEB4, DLX2, TN-FR5F25, KL, SMAD3
- m) TNFRSF25, SALL3, RASSF1, TERT, SPARC, F2R, HOXA10, ZNF711, PITX2
- n) SALL3, PITX2, SPARC, F2R, TERT, RASSF1, HOXA10, CXADR, KL
- o) SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, KL
- p) SALL3, PITX2, SPARC, F2R, HOXA10, DRD2, ACTB, DNAJA4, CXADR, KL
- q) SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, TNFRSF25, DNAJA4, TP53, CXADR, KL
- r) SPARC, SALL3, F2R, PITX2, RASSF1, HOXA10, TERT, KL, TNFRSF25
- s) SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, KL, TN-FR5F25, CXADR
- t) HOXA10, RASSF1, F2R
- or
a set of at least 50%, preferably at least 60%, at least 70%, at least 80%, at least 90%, 100% of the markers of anyone of the above a) to t). The present inventive set also includes sets with at least 50% of the above markers for each set since it is also possible to substitute parts of these subsets being specific for—in the case of binary conditions/differentiations—e.g. good or bad prognosis or distinguish between lung cancer or lung cancer types, wherein one part of the subset points into one direction for a certain lung cancer type or cancer/differentiation. It is possible to further complement the 50% part of the set by additional markers specific for diagnosing lung cancer or determining the other part of the good or bad differentiation or differentiation between two lung cancer types. Methods to determine such complementing markers follow the general methods as outlined herein.
Each of these marker subsets is particularly suitable to diagnose lung cancer or lung cancer type or distinguish between certain cancers, samples or cancer types in a methylation specific assay of these genes.
The inventive primers or probes may be of any nucleic acid, including RNA, DNA, PNA (peptide nucleic acids), LNA (locked nucleic acids). The probes might further comprise methylation specific moieties.
The present invention provides a (master) set of 360 marker genes, further also specific gene locations by the PCR products of these genes wherein significant methylation can be detected, as well as subsets therefrom with a certain diagnostic value to detect or diagnose lung cancer or distinguish lung cancer type(s). Preferably the set is optimized for a lung cancer or a lung cancer type. Lung cancer types include, without being limited thereto, adenocarcinoma and squamous cell carcinoma. Further indicators differentiating between disease(s), including the diagnosis of any type of lung cancer or lung tumor, or between tumor type(s) are e.g. benign (non (or limited) proliferative) or malignant, metastatic or non-metastatic. The set can also be optimized for a specific sample type in which the methylated DNA is tested. Such samples include blood, urine, saliva, hair, skin, tissues, in particular tissues of the cancer origin mentioned above, in particular lung tissue such as potentially affected or potentially cancerous lung tissue, or serum, sputum, bronchial lavage. The sample my be obtained from a patient to be diagnosed. In preferred embodiments the test sample to be used in the method of identifying a subset is from the same type as a sample to be used in the diagnosis.
In practice, probes specific for potentially aberrant methylated regions are provided, which can then be used for the diagnostic method.
It is also possible to provide primers suitable for a specific amplification, like PCR, of these regions in order to perform a diagnostic test on the methylation state.
Such probes or primers are provided in the context of a set corresponding to the inventive marker genes or marker gene loci as given in table 1.
Such a set of primers or probes may have all 359 inventive markers present and can then be used for a multitude of different cancer detection methods. Of course, not all markers would have to be used to diagnose a lung cancer or lung cancer type. It is also possible to use certain subsets (or combinations thereof) with a limited number of marker probes or primers for diagnosis of certain categories of lung cancer.
Therefore, the present invention provides sets of primers or probes comprising primers or probes for any single marker subset or any combination of marker subsets disclosed herein. In the following sets of marker genes should be understood to include sets of primer pairs and probes therefor, which can e.g. be provided in a kit.
Set a, WT1, DLX2, SALL3, TERT, PITX2, HOXA10, F2R, CPEB4, NHLH2, SMAD3, ACTB, HOXA1, BOLL, APC, MT1G, PENK, SPARC, DNAJA4, RASSF1, HLA-G, ERCC1, ONECUT2, APC, ABCB1, ZNF573, KCNJ15, ZDHHC11, SFRP2, GDNF, PTTG1, SERPINI1, TNFRSF10C and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers are in particular suitable to detect lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue.
Set b, WIT1, PITX2, SALL3, F2R, DLX2, TERT, HOXA10, MSH4, NHLH2, GNA15, PENK, RASSF1, BOLL, HOXA1, ONECUT2, ABCB1, SPARC, MT1G, HSPA2, SFRP2, PYCARD, GAD1, C5orf4, C5AR1, GDNF, ZDHHC11, SERPINE1, NKX2-1, PITX2, C5AR1, ZNF256, FAM43A, SFRP2, MT3, SERPINE1, CLIC4, TNFRSF10C, GABRA2, MTHFR, ESR2, NEUROG1, PITX2, PLAGL1, TMEFF2, PTTG1, CADM1, S100A8, EFS, JUB, ITGA4, MAGEB2, ERBB2, SRGN, GNAS, TJP2, KCNJ15, SLC25A31, ZNF573, TNFRSF25, APC, KCNQ1, LAMC2, SPHK1, DNAJA4, APC, MBD2, ERCC1, HLA-G, CXADR, TP53, ACTB, KL, SMAD3, HIST1H2AG, CPEB4 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers are also suitable to detect lung cancer and to distinguish between normal lung tissue and lung tumor tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set c, WT1, DLX2, SALL3, TERT, TNFRSF25, ACTB, SMAD3, CPEB4 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers are suitable to detect lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set d, WT1, DLX2, SALL3, TERT, PITX2, TNFRSF25, KL, ACTB, SMAD3, CPEB4 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers are in particular suitable to detect lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set e, WT1, PITX2, SALL3, DLX2, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DNAJA4, HLA-G, CXADR, TP53, ACTB, CPEB4 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers are also suitable to detect lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set f, WT1, PITX2, SALL3, F2R, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DRD2, DNAJA4, CXADR, TP53, ACTB, CPEB4 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to detect lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set g, WT1, ACTB, DLX2, PITX2, SALL3, HOXA10, TERT, CPEB4, HLA-G, SPARC, RASSF1, DNAJA4, CXADR, TP53, IRAK2, ZNF711 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung carcinoma, in particular using blood samples, e.g. to distinguish blood from healthy persons from tumor samples, including tumor tissue sample or blood from tumor patients. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set h, F2R, ZNF256, CDH13, SERPINB5, KRT14, DLX2, AREG, THRB, HSD17B4, SPARC, HECW2, COL21A1 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and distinguish the grade of differentiation of poor, moderate and well predictions. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set i, KL, HIST1H2AG, TJP2, SRGN, CDX1, TNFRSF25, APC, HIC1, APC, GNA15, ACTB, WT1, KRT17, AIM1L, DPH1, PITX2, PITX2, KIF5B, BMP2K, GBP2, NHLH2, GDNF, BOLL and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and distinguish between malign states (in particular adenocarcinoma and squamous cell carcinoma) together with lung tissue against healthy blood or serum samples. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set j, WT1, DLX2, SALL3, TERT, PITX2, HOXA10, F2R, CPEB4, NHLH2, SMAD3, ACTB, HOXA1, BOLL, APC, MT1G, PENK, SPARC, DNAJA4, RASSF1, HLA-G, ERCC1, ONECUT2, APC, ABCB1, ZNF573, KCNJ15, ZDHHC11, SFRP2, GDNF, PTTG1, SERPINI1, TNFRSF10C and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose, lung cancer and distinguish between malign states selected from adenocarcinoma and squamous cell carcinoma from healthy lung tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set k, HOXA10, NEUROD1 and/or either HOXA10 or NEUR001 can be used to diagnose lung cancer and further to distinguish between adenocarcinoma from squamous cell carcinoma.
Set l, WT1, PITX2, SALL3, F2R, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DRD2, DNAJA4, CXADR, TP53, ACTB, CPEB4, DLX2, TNFRSF25, KL, SMAD3 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and distinguish between cancerous lung tissue from healthy lung tissue.
Set m, TNFRSF25, SALL3, RASSF1, TERT, SPARC, F2R, HOXA10, ZNF711, PITX2 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and distinguish between cancerous lung tissue from healthy lung tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set n, SALL3, PITX2, SPARC, F2R, TERT, RASSF1, HOXA10, CXADR, KL and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and distinguish between cancerous lung tissue from healthy lung tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set o, SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, KL and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and distinguish between cancerous lung tissue from healthy lung tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set p, SALL3, PITX2, SPARC, F2R, HOXA10, DRD2, ACTB, DNAJA4, CXADR, KL and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue.
Set q, SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, TNFRSF25, DNAJA4, TP53, CXADR, KL and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set r, SPARC, SALL3, F2R, PITX2, RASSF1, HOXA10, TERT, KL, TNFRSF25 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer, distinguish between adenocarcinoma, healthy lung tissue and squamous cell carcinoma. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set s, SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, KL, TNFRSF25, CXADR and 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer, distinguish adenocarcinoma and squamous cell carcinoma from healthy (benign) lung tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Set t, HOXA10, RASSF1, F2R and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer, distinguish between adenocarcinoma and squamous cell carcinoma. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
Also provided are combinations of the above mentioned subsets a) to t), in particular sets comprising markers of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more of these subsets, preferably for the lung cancer type or preferably complete sets a) to t). One preferred set comprises gene markers WT1, SALL3, TERT, ACTB and CPEB4. These markers are common in a set for the diagnosis of lung cancer and suitable to distinguish normal from lung cancer samples. This set preferably is supplemented by the marker genes DLX2, TNFRSF25 or SMAD3. Furthermore, the inventive set may comprise any one of the markers ABCB1, ACTB, AIM1L, APC, AREG, BMP2K, BOLL, C5AR1, C5orf4, CADM1, CDH13, CDX1, CLIC4, COL21A1, CPEB4, CXADR, DLX2, DNAJA4, DPH1, DRD2, EFS, ERBB2, ERCC1, ESR2, F2R, FAM43A, GABRA2, GAD1, GBP2, GDNF, GNA15, GNAS, HECW2, HIC1, HIST1H2AG, HLA-G, HOXA1, HOXA10, HSD17B4, HSPA2, IRAK2, ITGA4, JUB, KCNJ15, KCNQ1, KIF5B, KL, KRT14, KRT17, LAMC2, MAGEB2, MBD2, MSH4, MT1G, MT3, MTHFR, NEUROD1, NHLH2, NKX2-1, ONECUT2, PENK, PITX2, PLAGL1, PTTG1, PYCARD, RASSF1, S100A8, SALL3, SERPINB5, SERPINE1, SERPINI1, SFRP2, SLC25A31, SMAD3, SPARC, SPHK1, SRGN, TERT, THRB, TJP2, TMEFF2, TNFRSF10C, TNFRSF25, TP53, ZDHHC11, ZNF256, ZNF711, F2R, HOXA10, KL, SALL3, SPARC, TNFRSF25, WT1 or any combination thereof, in particular preferred are markers ACTB, APC, CPEB4, CXADR, DLX2, DNAJA4, F2R, HOXA10, KL, PITX2, RASSF1, SALL3, SPARC, TERT, (either TNFRSF10C or TNFRSF25 or both), WT1 or any combination thereof, even more preferred are markers HOXA10, PITX2, RASSF1, SALL3, SPARC, TERT or any combination thereof, in a marker set according to the present invention, in particular as additional markers for any one of sets a) to t), especially the marker set of markers WT1, SALL3, TERT, ACTB and CPEB4.
According to a preferred embodiment of the present invention, the methylation of at least two genes, preferably of at least three genes, especially of at least four genes, is determined. Specifically if the present invention is provided as an array test system, at least ten, especially at least fifteen genes, are preferred. In preferred test set-ups (for example in microarrays (“gene-chips”)) preferably at least 20, even more preferred at least 30, especially at least 40 genes, are provided as test markers. As mentioned above, these markers or the means to test the markers can be provided in a set of probes or a set of primers, preferably both.
In a further embodiment the set comprises up to 100000, up to 90000, up to 80000, up to 70000, up to 60000 or 50000 probes or primer pairs (set of two primers for one amplification product), preferably up to 40000, up to 35000, up to 30000, up to 25000, up to 20000, up to 15000, up to 10000, up to 7500, up to 5000, up to 3000, up to 2000, up to 1000, up to 750, up to 500, up to 400, up to 300, or even more preferred up to 200 probes or primers of any kind, particular in the case of immobilized probes on a solid surface such as a chip.
In certain embodiments the primer pairs and probes are specific for a methylated upstream region of the open reading frame of the marker genes.
Preferably the probes or primers are specific for a methylation in the genetic regions defined by SEQ ID NOs 1081 to 1440, including the adjacent up to 500 base pairs, preferably up to 300, up to 200, up to 100, up to 50 or up to 10 adjacent, corresponding to gene marker IDs 1 to 359 of table 1, respectively. I.e. probes or primers of the inventive set (including the full 359 set, as well as subsets and combinations thereof) are specific for the regions and gene loci identified in table 1, last column with reference to the sequence listing, SEQ ID NOs: 1081 to 1440. As can be seen these SEQ IDs correspond to a certain gene, the latter being a member of the inventive sets, in particular of the subsets a) to t), e.g.
Examples of specific probes or primers are given in table 1 with reference to the sequence listing, SEQ ID NOs 1 to 1080, which form especially preferred embodiments of the invention.
Preferably the set of the present invention comprises probes or primers for at least one gene or gene product of the list according to table 1, wherein at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, especially preferred at least 100%, of the total probes or primers are probes or primers for genes of the list according to table 1. Preferably the set, in particular in the case of a set of hybridization probes, is provided immobilized on a solid surface, preferably a chip or in form of a microarray. Since—according to current technology—detection means for genes on a chip allow easier and more robust array design, gene chips using DNA molecules (for detection of methylated DNA in the sample) is a preferred embodiment of the present invention. Such gene chips also allow detection of a large number of nucleic acids.
Preferably the set is provided on a solid surface, in particular a chip, whereon the primers or probes can be immobilized. Solid surfaces or chips may be of any material suitable for the immobilization of biomolecules such as the moieties, including glass, modified glass (aldehyde modified) or metal chips.
The primers or probes can also be provided as such, including lyophilized forms or being in solution, preferably with suitable buffers. The probes and primers can of course be provided in a suitable container, e.g. a tube or micro tube.
The present invention also relates to a method of identifying lung cancer or lung cancer type in a sample comprising DNA from a subject or patient, comprising obtaining a set of nucleic acid primers (or primer pairs) or hybridization probes as defined above (comprising each specific subset or combinations thereof), determining the methylation status of the genes in the sample for which the members of the set are specific for and comparing the methylation status of the genes with the status of a confirmed lung cancer or lung cancer type positive and/or negative state, thereby identifying the lung cancer or lung cancer type in the sample. In general the inventive method has been described above and all preferred embodiments of such methods also apply to the method using the set provided herein.
The inventive marker set, including certain disclosed subsets and subsets, which can be identified with the methods disclosed herein, are suitable to diagnose lung cancer and distinguish between different lung cancer forms, in particular for diagnostic or prognostic uses. Preferably the markers used (e.g. by utilizing primers or probes of the inventive set) for the inventive diagnostic or prognostic method may be used in smaller amounts than e.g. in the set (or kit) or chip as such, which may be designed for more than one fine tuned diagnosis or prognosis. The markers used for the diagnostic or prognostic method may be up to 100000, up to 90000, up to 80000, up to 70000, up to 60000 or 50000, preferably up to 40000, up to 35000, up to 30000, up to 25000, up to 20,000, up to 15000, up to 10000, up to 7500, up to 5000, up to 3000, up to 2000, up to 1000, up to 750, up to 500, up to 400, up to 300, up to 200, up to 100, up to 80, or even more preferred up to 60. The inventive set of marker primers or probes can be employed in chip (immobilised) based assays, products or methods, or in PCR based kits or methods. Both, PCR and hybridisation (e.g. on a chip) can be used to detect methylated genes.
The inventive marker set, including certain disclosed subsets, which can be identified with the methods disclosed herein, are suitable to distinguish between lung cancer from normal tissue, in particular for diagnostic or prognostic uses.
The inventive marker set, including certain disclosed subsets, which can be identified with the methods disclosed herein, are suitable to distinguish between adenocarcinoma from squamous cell carcinoma, in particular for diagnostic or prognostic uses.
The present invention is further illustrated by the following examples, without being restricted thereto.
FIGURES FIG. 1: Cross-Validation ROC curve from the Bayesian Compound Covariate Predictor.
EXAMPLES Example 1 Gene List TABLE 1
360 master set (with the 359 marker genes and one control)
and sequence annotation
hybrid- primer primer
isation 1 2 PCR
probe (lp) (rp) product
alt. (SEQ (SEQ (SEQ (SEQ
gene Gene Gene ID ID ID ID
ID Symbol Symbol NO:) NO:) NO:) NO:)
1 NHLH2 NHLH2 1 361 721 1081
2 MTHFR MTHFR 2 362 722 1082
3 PRDM2 RIZ1 3 363 723 1083
(PRDM2)
4 MLLT11 MLLT11 4 364 724 1084
5 S100A9 control_ 5 365 725 1085
S100A9
6 S100A9 S100A9 6 366 726 1086
7 S100A8 S100A8 7 367 727 1087
8 S100A8 control_ 8 368 728 1088
S100A8
9 S100A2 S100A2 9 369 729 1089
10 LMNA LMNA 10 370 730 1090
11 DUSP23 DUSP23 11 371 731 1091
12 LAMC2 LAMC2 12 372 732 1092
13 PTGS2 PTGS2 13 373 733 1093
14 MARK1 MARK1 14 374 734 1094
15 DUSP10 DUSP10 15 375 735 1095
16 PARP1 PARP1 16 376 736 1096
17 PSEN2 PSEN2 17 377 737 1097
18 CLIC4 CLIC4 18 378 738 1098
19 RUNX3 RUNX3 19 379 739 1099
20 AIM1L NM_ 20 380 740 1100
017977
21 SFN SFN 21 381 741 1101
22 RPA2 RPA2 22 382 742 1102
23 TP73 TP73 23 383 743 1103
24 TP73 p73 24 384 744 1104
25 POU3F1 01.10.06 25 385 745 1105
26 MUTYH MUTYH 26 386 746 1106
27 UQCRH UQCRH 27 387 747 1107
28 FAF1 FAF1 28 388 748 1108
29 TACSTD2 TACSTD2 29 389 749 1109
30 TNFRSF25 TNFRSF25 30 390 750 1110
31 DIRAS3 DIRAS3 31 391 751 1111
32 MSH4 MSH4 32 392 752 1112
33 GBP2 Control 33 393 753 1113
34 GBP2 GBP2 34 394 754 1114
35 LRRC8C LRRC8C 35 395 755 1115
36 F3 F3 36 396 756 1116
37 NANOS1 NM_ 37 397 757 1117
001009553
38 MGMT MGMT 38 398 758 1118
39 EBF3 EBF3 39 399 759 1119
40 DCLRE1C DCLRE1C 40 400 760 1120
41 KIF5B KIF5B 41 401 761 1121
42 ZNF22 ZNF22 42 402 762 1122
43 PGBD3 ERCC6 43 403 763 1123
44 SRGN Control 44 404 764 1124
45 GATA3 GATA3 45 405 765 1125
46 PTEN PTEN 46 406 766 1126
47 MMS19 MMS19L 47 407 767 1127
48 SFRP5 SFRP5 48 408 768 1128
49 PGR PGR 49 409 769 1129
50 ATM ATM 50 410 770 1130
51 DRD2 DRD2 51 411 771 1131
52 CADM1 IGSF4 52 412 772 1132
53 TEAD1 Control 53 413 773 1133
54 OPCML OPCML 54 414 774 1134
55 CALCA CALCA 55 415 775 1135
56 CTSD CTSD 56 416 776 1136
57 MYOD1 MYOD1 57 417 777 1137
58 IGF2 IGF2 58 418 778 1138
59 BDNF BDNF 59 419 779 1139
60 CDKN1C CDKN1C 60 420 780 1140
61 WT1 WT1 61 421 781 1141
62 HRAS HRAS1 62 422 782 1142
63 DDB1 DDB1 63 423 783 1143
64 GSTP1 GSTP1 64 424 784 1144
65 CCND1 CCND1 65 425 785 1145
66 EPS8L2 EPS8L2 66 426 786 1146
67 PIWIL4 PIWIL4 67 427 787 1147
68 CHST11 CHST11 68 428 788 1148
69 UNG UNG 69 429 789 1149
70 CCDC62 CCDC62 70 430 790 1150
71 CDK2AP1 CDK2AP1 71 431 791 1151
72 CHFR CHFR 72 432 792 1152
73 GRIN2B GRIN2B 73 433 793 1153
74 CCND2 CCND2 74 434 794 1154
75 VDR VDR 75 435 795 1155
76 B4GALNT3 control 76 436 796 1156
(wrong chr
of HRAS1)
77 NTF3 NTF3 77 437 797 1157
78 CYP27B1 CYP27B1 78 438 798 1158
79 GPR92 GPR92 79 439 799 1159
80 ERCC5 ERCC5 80 440 800 1160
81 GJB2 GJB2 81 441 801 1161
82 BRCA2 BRCA2 82 442 802 1162
83 KL KL 83 443 803 1163
84 CCNA1 CCNA1 84 444 804 1164
85 SMAD9 SMAD9 85 445 805 1165
86 C13orf15 RGC32 86 446 806 1166
87 DGKH DGKH 87 447 807 1167
88 DNAJC15 DNAJC15 88 448 808 1168
89 RB1 RB1 89 449 809 1169
90 RCBTB2 RCBTB2 90 450 810 1170
91 PARP2 PARP2 91 451 811 1171
92 APEX1 APEX1 92 452 812 1172
93 JUB JUB 93 453 813 1173
94 JUB control_ 94 454 814 1174
NM_19808
95 EFS EFS 95 455 815 1175
96 BAZ1A BAZ1A 96 456 816 1176
97 NKX2-1 TITF1 97 457 817 1177
98 ESR2 ESR2 98 458 818 1178
99 HSPA2 HSPA2 99 459 819 1179
100 PSEN1 PSEN1 100 460 820 1180
101 PGF PGF 101 461 821 1181
102 MLH3 MLH3 102 462 822 1182
103 TSHR TSHR 103 463 823 1183
104 THBS1 THBS1 104 464 824 1184
105 MYO5C MYO5C 105 465 825 1185
106 SMAD6 SMAD6 106 466 826 1186
107 SMAD3 SMAD3 107 467 827 1187
108 NOX5 SPESP1 108 468 828 1188
109 DNAJA4 DNAJA4 109 469 829 1189
110 CRABP1 CRABP1 110 470 830 1190
111 BCL2A1 BCL2A1 111 471 831 1191
112 BCL2A1 BCL2A1 112 472 832 1192
113 BNC1 BNC1 113 473 833 1193
114 ARRDC4 ARRDC4 114 474 834 1194
115 SOCS1 SOCS1 115 475 835 1195
116 ERCC4 ERCC4 116 476 836 1196
117 NTHL1 NTHL1 117 477 837 1197
118 PYCARD PYCARD 118 478 838 1198
119 AXIN1 AXIN1 119 479 839 1199
120 CYLD NM_015247 120 480 840 1200
121 MT3 MT3 121 481 841 1201
122 MT1A MT1A 122 482 842 1202
123 MT1G MT1G 123 483 843 1203
124 CDH1 CDH1 124 484 844 1204
125 CDH13 CDH13 125 485 845 1205
126 DPH1 DPH1 126 486 846 1206
127 HIC1 HIC1 127 487 847 1207
128 NEUROD2 control_ 128 488 848 1208
NEUROD2
129 NEUROD2 NEUROD2 129 489 849 1209
130 ERBB2 ERBB2 130 490 850 1210
131 KRT19 KRT19 131 491 851 1211
132 KRT14 KRT14 132 492 852 1212
133 KRT17 KRT17 133 493 853 1213
134 JUP JUP 134 494 854 1214
135 BRCA1 BRCA1 135 495 855 1215
136 COL1A1 COL1A1 136 496 856 1216
137 CACNA1G CACNA1G 137 497 857 1217
138 PRKAR1A PRKAR1A 138 498 858 1218
139 SPHK1 SPHK1 139 499 859 1219
140 SOX15 SOX15 140 500 860 1220
141 TP53 TP53_ 141 501 861 1221
CGI23_1kb
142 TP53 TP53_ 142 502 862 1222
bothCGIs_
1kb
143 TP53 TP53_ 143 503 863 1223
CGI36_1kb
144 TP53 TP53 144 504 864 1224
145 NPTX1 NPTX1 145 505 865 1225
146 SMAD2 SMAD2 146 506 866 1226
147 DCC DCC 147 507 867 1227
148 MBD2 MBD2 148 508 868 1228
149 ONECUT2 ONECUT2 149 509 869 1229
150 BCL2 BCL2 150 510 870 1230
151 SERPINB5 SERPINB5 151 511 871 1231
152 SERPINB2 Control 152 512 872 1232
153 SERPINB2 SERPINB2 153 513 873 1233
154 TYMS TYMS 154 514 874 1234
155 LAMA1 LAMA1 155 515 875 1235
156 SALL3 SALL3 156 516 876 1236
157 LDLR LDLR 157 517 877 1237
158 STK11 STK11 158 518 878 1238
159 PRDX2 PRDX2 159 519 879 1239
160 RAD23A RAD23A 160 520 880 1240
161 GNA15 GNA15 161 521 881 1241
162 ZNF573 ZNF573 162 522 882 1242
163 SPINT2 SPINT2 163 523 883 1243
164 XRCC1 XRCC1 164 524 884 1244
165 ERCC2 ERCC2 165 525 885 1245
166 ERCC1 ERCC1 166 526 886 1246
167 C5AR1 NM_001736 167 527 887 1247
168 C5AR1 C5AR1 168 528 888 1248
169 POLD1 POLD1 169 529 889 1249
170 ZNF350 ZNF350 170 530 890 1250
171 ZNF256 ZNF256 171 531 891 1251
172 C3 C3 172 532 892 1252
173 XAB2 XAB2 173 533 893 1253
174 ZNF559 ZNF559 174 534 894 1254
175 FHL2 FHL2 175 535 895 1255
176 IL1B IL1B 176 536 896 1256
177 IL1B control_IL1B 177 537 897 1257
178 PAX8 PAX8 178 538 898 1258
179 DDX18 DDX18 179 539 899 1259
180 GAD1 GAD1 180 540 900 1260
181 DLX2 DLX2 181 541 901 1261
182 ITGA4 ITGA4 182 542 902 1262
183 NEUROD1 NEUROD1 183 543 903 1263
184 STAT1 STAT1 184 544 904 1264
185 TMEFF2 TMEFF2 185 545 905 1265
186 HECW2 HECW2 186 546 906 1266
187 BOLL BOLL 187 547 907 1267
188 CASP8 CASP8 188 548 908 1268
189 SERPINE2 SERPINE2 189 549 909 1269
190 NCL NCL 190 550 910 1270
191 CYP1B1 CYP1B1 191 551 911 1271
192 TACSTD1 TACSTD1 192 552 912 1272
193 MSH2 MSH2 193 553 913 1273
194 MSH6 MSH6 194 554 914 1274
195 MXD1 MXD1 195 555 915 1275
196 JAG1 JAG1 196 556 916 1276
197 FOXA2 FOXA2 197 557 917 1277
198 THBD THBD 198 558 918 1278
199 CTCFL BORIS 199 559 919 1279
200 CTSZ CTSZ 200 560 920 1280
201 GATA5 GATA5 201 561 921 1281
202 CXADR CXADR 202 562 922 1282
203 APP APP 203 563 923 1283
204 TTC3 TTC3 204 564 924 1284
205 KCNJ15 Control 205 565 925 1285
206 RIPK4 RIPK4 206 566 926 1286
207 TFF1 TFF1 207 567 927 1287
208 SEZ6L SEZ6L 208 568 928 1288
209 TIMP3 TIMP3 209 569 929 1289
210 BIK BIK 210 570 930 1290
211 VHL VHL 211 571 931 1291
212 IRAK2 IRAK2 212 572 932 1292
213 PPARG PPARG 213 573 933 1293
214 MBD4 MBD4 214 574 934 1294
215 RBP1 RBP1 215 575 935 1295
216 XPC XPC 216 576 936 1296
217 ATR ATR 217 577 937 1297
218 LXN LXN 218 578 938 1298
219 RARRES1 RARRES1 219 579 939 1299
220 SERPINI1 SERPINI1 220 580 940 1300
221 CLDN1 CLDN1 221 581 941 1301
222 FAM43A FAM43A 222 582 942 1302
223 IQCG IQCG 223 583 943 1303
224 THRB THRB 224 584 944 1304
225 RARB RARB 225 585 945 1305
226 TGFBR2 TGFBR2 226 586 946 1306
227 MLH1 MLH1 227 587 947 1307
228 DLEC1 DLEC1 228 588 948 1308
229 CTNNB1 CTNNB1 229 589 949 1309
230 ZNF502 ZNF502 230 590 950 1310
231 SLC6A20 SLC6A20 231 591 951 1311
232 GPX1 GPX1 232 592 952 1312
233 RASSF1 RASSF1A 233 593 953 1313
234 FHIT FHIT 234 594 954 1314
235 OGG1 OGG1 235 595 955 1315
236 PITX2 PITX2 236 596 956 1316
237 SLC25A31 SLC25A31 237 597 957 1317
238 FBXW7 FBXW7 238 598 958 1318
239 SFRP2 SFRP2 239 599 959 1319
240 CHRNA9 CHRNA9 240 600 960 1320
241 GABRA2 GABRA2 241 601 961 1321
242 MSX1 MSX1 242 602 962 1322
243 IGFBP7 IGFBP7 243 603 963 1323
244 EREG EREG 244 604 964 1324
245 AREG AREG 245 605 965 1325
246 ANXA3 ANXA3 246 606 966 1326
247 BMP2K BMP2K 247 607 967 1327
248 APC APC 248 608 968 1328
249 HSD17B4 HSD17B4 249 609 969 1329
250 HSD17B4 HSD17B4 250 610 970 1330
251 LOX LOX 251 611 971 1331
252 TERT TERT 252 612 972 1332
253 NEUROG1 NEUROG1 253 613 973 1333
254 NR3C1 NR3C1 254 614 974 1334
255 ADRB2 ADRB2 255 615 975 1335
256 CDX1 CDX1 256 616 976 1336
257 SPARC SPARC 257 617 977 1337
258 C5orf4 Control 258 618 978 1338
259 PTTG1 PTTG1 259 619 979 1339
260 DUSP1 DUSP1 260 620 980 1340
261 CPEB4 CPEB4 261 621 981 1341
262 SCGB3A1 SCGB3A1 262 622 982 1342
263 GDNF GDNF 263 623 983 1343
264 ERCC8 ERCC8 264 624 984 1344
265 F2R F2R 265 625 985 1345
266 F2RL1 F2RL1 266 626 986 1346
267 VCAN CSPG2 267 627 987 1347
268 ZDHHC11 ZDHHC11 268 628 988 1348
269 RHOBTB3 RHOBTB3 269 629 989 1349
270 PLAGL1 PLAGL1 270 630 990 1350
271 SASH1 SASH1 271 631 991 1351
272 ULBP2 ULBP2 272 632 992 1352
273 ESR1 ESR1 273 633 993 1353
274 RNASET2 RNASET2 274 634 994 1354
275 DLL1 DLL1 275 635 995 1355
276 HIST1H2AG HIST1H2AG 276 636 996 1356
277 HLA-G HLA-G 277 637 997 1357
278 MSH5 MSH5 278 638 998 1358
279 CDKN1A CDKN1A 279 639 999 1359
280 TDRD6 TDRD6 280 640 1000 1360
281 COL21A1 COL21A1 281 641 1001 1361
282 DSP DSP 282 642 1002 1362
283 SERPINE1 SERPINE1 283 643 1003 1363
284 SERPINE1 SERPINE1 284 644 1004 1364
285 FBXL13 FBXL13 285 645 1005 1365
286 NRCAM NRCAM 286 646 1006 1366
287 TWIST1 TWIST1 287 647 1007 1367
288 HOXA1 HOXA1 288 648 1008 1368
289 HOXA10 HOXA10 289 649 1009 1369
290 SFRP4 SFRP4 290 650 1010 1370
291 IGFBP3 IGFBP3 291 651 1011 1371
292 RPA3 RPA3 292 652 1012 1372
293 ABCB1 ABCB1 293 653 1013 1373
294 TFPI2 TFPI2 294 654 1014 1374
295 COL1A2 COL1A2 295 655 1015 1375
296 ARPC1B ARPC1B 296 656 1016 1376
297 PILRB PILRB 297 657 1017 1377
298 GATA4 GATA4 298 658 1018 1378
299 MAL2 NM_052886 299 659 1019 1379
300 DLC1 DLC1 300 660 1020 1380
301 EPPK1 NM_031308 301 661 1021 1381
302 LZTS1 LZTS1 302 662 1022 1382
303 TNFRSF10B TNFRSF10B 303 663 1023 1383
304 TNFRSF10C TNFRSF10C 304 664 1024 1384
305 TNFRSF10D TNFRSF10D 305 665 1025 1385
306 TNFRSF10A TNFRSF10A 306 666 1026 1386
307 WRN WRN 307 667 1027 1387
308 SFRP1 SFRP1 308 668 1028 1388
309 SNAI2 SNAI2 309 669 1029 1389
310 RDHE2 RDHE2 310 670 1030 1390
311 PENK PENK 311 671 1031 1391
312 RDH10 RDH10 312 672 1032 1392
313 TGFBR1 TGFBR1 313 673 1033 1393
314 ZNF462 ZNF462 314 674 1034 1394
315 KLF4 KLF4 315 675 1035 1395
316 CDKN2A p14_ 316 676 1036 1396
CDKN2A
317 CDKN2B CDKN2B 317 677 1037 1397
318 AQP3 AQP3 318 678 1038 1398
319 TPM2 TPM2 319 679 1039 1399
320 TJP2 TJP2 320 680 1040 1400
321 TJP2 TJP2 321 681 1041 1401
322 PSAT1 PSAT1 322 682 1042 1402
323 DAPK1 DAPK1 323 683 1043 1403
324 SYK SYK 324 684 1044 1404
325 XPA XPA 325 685 1045 1405
326 ARMCX2 ARMCX2 326 686 1046 1406
327 RHOXF1 OTEX 327 687 1047 1407
328 FHL1 FHL1 328 688 1048 1408
329 MAGEB2 MAGEB2 329 689 1049 1409
330 TIMP1 TIMP1 330 690 1050 1410
331 AR AR_humara 331 691 1051 1411
332 ZNF711 ZNF6 332 692 1052 1412
333 CD24 CD24 333 693 1053 1413
334 ABL1 ABL 334 694 1054 1414
335 ACTB Aktin_VL 335 695 1055 1415
336 APC APC 336 696 1056 1416
337 CDH1 Ecad1 337 697 1057 1417
338 CDH1 Ecad2 338 698 1058 1418
339 FMR1 FX 339 699 1059 1419
340 GNAS GNASexAB 340 700 1060 1420
341 H19 H19 341 701 1061 1421
342 HIL1 Igf2 342 702 1062 1422
343 IGF2 Igf2 343 703 1063 1423
344 KCNQ1 LIT1 344 704 1064 1424
345 GNAS NESP55 345 705 1065 1425
346 CDKN2A P14 346 706 1066 1426
347 CDKN2B P15 347 707 1067 1427
348 CDKN2A P16_VL 348 708 1068 1428
349 PITX2 PitxA 349 709 1069 1429
350 PITX2 PitxB 350 710 1070 1430
351 PITX2 PitxC 351 711 1071 1431
352 PITX2 PitxD 352 712 1072 1432
353 RB1 Rb 353 713 1073 1433
354 SFRP2 SFRP2_VL 354 714 1074 1434
355 SNRPN SNRPN 355 715 1075 1435
356 XIST XIST 356 716 1076 1436
357 IRF4 chr6_ 357 717 1077 1437
control
358 UNC13B chr9_ 358 718 1078 1438
control
359 GSTP1 GSTP1 360 720 1080 1440
360 Lamda lambda_ 359 719 1079 1439
(control) PCR
Example 2 Samples Samples from solid tumors were derived from initial surgical resection of primary tumors. Tumor tissue sections were derived from histopathology and histopathological data as well clinical data were monitored over the time of clinical management of the patients and/or collected from patient reports in the study center. Anonymised data and DNA were provided.
Example 3 Principle of the Assay and Design The invention assay is a multiplexed assay for DNA methylation testing of up to (or even more than) 360 methylation candidate markers, enabling convenient methylation analyses for tumor-marker definition. In its best mode the test is a combined multiplex-PCR and microarray hybridization technique for multiplexed methylation testing. The inventive marker genes, PCR primer sequences, hybridization probe sequences and expected PCR products are given in table 1, above.
Targeting hypermethylated DNA regions in the inventive marker genes in several neoplasias, methylation analysis is performed via methylation dependent restriction enzyme (MSRE) digestion of 500 ng of starting DNA. A combination of several MSREs warrants complete digestion of unmethylated DNA. All targeted DNA regions have been selected in that way that sequences containing multiple MSRE sites are flanked by methylation independent restriction enzyme sites. This strategy enables pre-amplification of the methylated DNA fraction before methylation analyses. Thus, the design and pre-amplification would enable methylation testing on serum, urine, stool etc. when DNA is limiting.
When testing DNA without pre-amplification upon digestion of 500 ng the methylated DNA fraction is amplified within 16 multiplex PCRs and detected via microarray hybridization. Within these 16 multiplex-PCR reactions 360 different human DNA products can be amplified. From these about 20 amplicons serve as digestion & amplification controls and are either derived from known differentially methylated human DNA regions, or from several regions without any sites of MSREs used in this system. The primer set (every reverse primer is biotinylated) used is targeting 347 different sites located in the 5′UTR of 323 gene regions.
After PCR amplicons are pooled and positives are detected using strepavidin-Cy3 via microarray hybridization. Although the melting temperature of CpG rich DNA is very high, primer and probe-design as well as hybridization conditions have been optimized, thus this assay enables unequivocal multiplexed methylation testing of human DNA samples. The assay has been designed such that 24 samples can be run in parallel using 384well PCR plates.
Handling of many DNA samples in several plates in parallel can be easily performed enabling completion of analyses within 1-2 days.
The entire procedure provides the user to setup a specific PCR test and subsequent gel-based or hybridization-based testing of selected markers using single primer-pairs or primer-subsets as provided herein or identified by the inventive method from the 360 marker set.
Example 4 MSRE Digestion of DNA MSRE digestion of DNA (about 500 ng) was performed at 37° C. over night in a volume of 30 μl in 1× Tango-restriction enzyme digestion buffer (MBI Fermentas) using 8 units of each MSREs AciI (New England Biolabs), Hin 6 I and Hpa II (both from MBI Fermentas). Digestions were stopped by heat inactivation (10 min, 75° C.) and subjected to PCR amplification.
Example 5 PCR Amplification An aliquot of 20 μl MSRE digested DNA (or in case of preamplification of methylated DNA—see below—about 500 ng were added in a volume of 20 μl) was added to 280 μl of PCR-Premix (without primers). Premix consisted of all reagents obtaining a final concentration of 1× HotStarTaq Buffer (Qiagen); 160 μM dNT-Ps, 5% DMSO and 0.6 U Hot Firepol Taq (Solis Biodyne) per 20 μl reaction. Alternatively an equal amount of HotStarTaq (Qiagen) could be used. Eighteen (18) μl of the Pre-Mix including digested DNA were aliquoted in 16 0.2 ml PCR tubes and to each PCR tube 2 μl of each primer-premix 1-16 (containing 0.83pmol/μl of each primer) were added. PCR reactions were amplified using a thermal cycling profile of 15 min/95° C. and 40 cycles of each 40 sec/95° C., 40 sec/65° C., 1 min20 sec/72° C. and a final elongation of 7 min/72° C., then reactions were cooled. After amplification the 16 different multiplex-PCR amplicons from each DNA sample were pooled. Successful amplification was controlled using 10 μl of the pooled 16 different PCR reactions per sample. Positive amplification obtained a smear in the range of 100-300 bp on EtBr stained agarose gels; negative amplification controls must not show a smear in this range.
Example 6 Microarray Hybridization and Detection Microarrays with the probes of the 360 marker set are blocked for 30 min in 3M Urea containing 0.1% SDS, at room temperature submerged in a stirred choplin char. After blocking slides are washed in 0.1×SSC/0.2% SDS for 5 min, dipped into water and dried by centrifugation.
The PCR-amplicon-pool of each sample is mixed with an equal amount of 2× hybridization buffer (7×SSC, 0.6% SDS, 50% formamide), desaturated for 5 min at 95° C. and held at 70° C. until loading an aliquot of 100 μl onto an array covered by a gasket slide (Agilent). Arrays are hybridized under maximum speed of rotation in an Agilent-hybridization oven for 16 h at 52° C. After removal of gasket-slides microarray-slides are washed at room temperature in wash-solution I (1×SSC, 0.2% SDS) for 5 min and wash solution II (0.1×SSC, 0.2% SDS) for 5 min, and a final wash by dipping the slides 3 times into wash solution III (0.1×SSC), the slides are dried by centrifugation.
For detection of hybridized biotinylated PCR amplicons, streptavidin-Cy3-conjugate (Caltag Laboratories) is diluted 1:400 in PBST-MP (1×PBS, 0.1% Tween 20; 1% skimmed dry milk powder [Sucofin; Germany]), pipetted onto microarrays covered with a coverslip and incubated 30 min at room temperature in the dark. Then coverslips are washed off from the slides using PBST (1×PBS, 0.1% Tween 20) and then slides are washed in fresh PEST for 5 min, rinsed with water and dried by centrifugation.
Example 7 DNA Preamplification for Methylation Profiling (Optional) In many situations DNA amount is limited. Although the inventive methylation test is performing well with low amounts of DNA (see above), especially minimal invasive testing using cell free DNA from serum, stool, urine, and other body fluids is of diagnostic relevance.
Samples can be preamplified prior methylation testing as follows: DNA was digested with restriction enzyme FspI (and/or Csp6I, and/or MseI, and/or Tsp5091; or their isoschizomeres) and after (heat) inactivation of the restriction enzyme the fragments were circularized using T4 DNA ligase. Ligation-products were digested using a mixture of methylation sensitive restriction enzymes. Upon enzyme-inactivation the entire mixture was amplified using rolling circle amplification (RCA) by phi29-phage polymerase. The RCA-amplicons were then directly subjected to the multiplex-PCRs of the inventive methylation test without further need of digestion of the DNA prior amplification.
Alternatively the preamplified DNA which is enriched for methylated DNA regions can be directly subjected to fluorescent-labelling and the labeled products can be hybridized onto the microarrays using the same conditions as described above for hybridization of PCR products. Then the streptavidin-Cy3 detection step has to be omitted and slides should be scanned directly upon stringency washes and drying the slides. Based on the experimental design for microarray analyses, either single labeled or dual-labeled hybridizations might be generated. From our experiences we successfully used the single label-design for class comparisons. Although the preamplification protocol enables analyses of spurious amounts of DNA, it is also suited for performing genomic methylation screens.
To elucidate methylation biomarkers for prediction of meta-stasis risk on a genomewide level we subjected 500 ng of DNA derived from primary tumor samples to amplification of the methylated DNA using the procedure outlined above. RCA-amplicons derived from metastasized and non-metastasized samples were labelled using the CGH Labeling Kit (Enzo, Farmingdale, N.Y.) and labelled products hybridized onto human 244 k CpG island arrays (Agilent, Waldbronn, Germany). All manipulations were according the instructions of the manufacturers.
Example 8 Data Analysis Hybridizations performed on a chip with probes for the inventive 360 marker genes were scanned using a GenePix 4000A scanner (Molecular Devices, Ismaning, Germany) with a PMT set-ting to 700V/cm (equal for both wavelengths). Raw image data were extracted using GenePix 6.0 software (Molecular Devices, Ismaning, Germany).
Microarray data analyses were performed using BRB-ArrayTools developed by Dr. Richard Simon and BRB-ArrayTools Development Team. The software package BRB Array Tools (version 3.6; in the www at linus.nci.nih.gov/BRB-ArrayTools.html) was used according recommendations of authors and settings used for analyses are delineated in the results if appropriate. For every hybridization, background intensities were subtracted from foreground intensities for each spot. Global normalization was used to median center the log-ratios on each array in order to adjust for differences in spot/label intensities.
P-values (p) used for feature selection for classification and prediction were based on the univariate significance levels (alpha). P-values (p) and mis-classification rate during cross validation (MCR) were given along the result data.
Example 9 Lung Cancer Test DNA methylation analysis of 96 DNA samples derived from both normal and lung-tumour tissue of 48 patient samples and 8 DNA samples isolated from peripheral blood (PB) of healthy individuals were analysed for methylation deviations in the inventive set of 359 genes.
From this analysis DNA-methylation-biomarkers suitable for distinction of tumour and normal lung DNA as well as DNA-methylation-profiles from blood DNA of healthy controls were deduced. Diagnostic and prognostic markers subsets are suitable for diagnostic testing and presymptomatic screening for early detection of lung cancer were determined, in DNA derived from lung tissue, but also in DNA extracts from patients other than lung, like sputum, serum or plasma.
DNA Methylation testing results and data analyses of chip results as well as qPCR validation of a subset of markers derived from chip-based testing are provided.
DNA Samples analysed were from blood of 8 healthy individuals (PB), 19 tumours (AdenoCa, adenocarcinoma) and 19 normal lung tissue (N) of adenocarcinoma patients and 29 tumours (SqCCL, squamous cell carcinoma) and 29 normal lung tissue (N) of squamous cell carcinoma patients.
For DNA methylation testing 600 ng of DNA were digested and data derived from DNA-microarray hybridizations analysed using the BRB array tools statistical software package. Class comparison, and class prediction analysis were performed with respect to sample groups as listed above or for delineation of biomarkers for tumour samples both AdenoCa and SqCCL were treated as one tumour sample group (TU).
The design of the test enables methylation testing on DNA directly derived from the biological source. The test is also suitable for using a DNA preamplification upon MSRE digestion (as outlined above). Thus using the methylation specific preamplification of minute amounts of DNA samples, biomarker testing is feasible on small samples and limited amounts of DNA. Thus multiplexed PCR and methylation testing is easily performed on preamplified DNA obtained from these DNA samples. This strategy would improve also testing of serum, urine, stool, synovial fluid, sputum and other body fluids using the conceptual design of the methylation test.
The possibility of preamplification enables also differential methylation hybridization of the preamplified DNA itself. This option is warranted by the design of the test and the probes. Thus using the probes of the methylation test (or the array) for hybridization of labelled DNA after enrichment of either the methylated as well as the unmethylated DNA fractions of any DNA sample, can be used for methylation testing omitting the multiplex PCR.
In addition the biomarkers described herein could be applied for methylation testing using alternative approaches, e.g. methylation sensitive PCR and strategies which are sodium-bisulfite DNA deamination based and not based on MSRE digestion of DNA. These sets of methylation markers are suitable markers for disease-monitoring, -progression, -prediction, therapy-decision and -response.
Example 10 Biomarkers from Microarray-Testing of Patient Samples Example 10a CLASS COMPARISON: TU Vs. Normal: p<0.005, Unpaired Samples; 2 Fold Change These list of methylation markers were found significant (p<0.005) between TU and N using “unpaired” statistical testing of DNA methylation of 48 tumour samples versus 48 healthy lung tissue samples. Significant markers with 2 fold difference of signal intensities of both classes with p<0.005 are listed.
TABLE 2
Sorted by p-value of the univariate test.
Class 1: N; Class 2: T.
The 32 genes are significant at the nominal 0.005 level of the
univariate test with the fold change 2
Per- Geom Geom
muta- mean of mean of
Parametric tion p- intensities intensities Fold- Gene
p-value FDR value in class 1 in class 2 change symbol
1 <1e−07 <1e−07 <1e−07 1411.8016 13554.578246 0.1041568 WT1
2 <1e−07 <1e−07 <1e−07 85.5069224 1125.7940428 0.0759525 DLX2
3 <1e−07 <1e−07 1e−07 852.3850013 7392.282404 0.1153074 SALL3
4 1e−07 <1e−07 1e−07 235.4745892 592.5077157 0.3974203 TERT
5 <1e−07 <1e−07 <1e−07 274.9097126 833.6648468 0.3297605 PITX2
6 <1e−07 <1e−07 <1e−07 80.5286413 265.3042755 0.3035331 HOXA10
7 <1e−07 <1e−07 <1e−07 112.6645619 855.6410585 0.1316727 F2R
8 1e−07 4.5e−06 <1e−07 2002.2452679 266.6906343 7.507745 CPED4
9 4e−07 1.46e−05 1e−07 718.311462 4609.4380991 0.1558349 NHLH2
10 4e−07 1.46e−05 <1e−07 10347.8184959 3603.9811381 2.8712188 SMAD3
11 5e−07 1.65e−05 <1e−07 2993.3054637 1117.4218527 2.6787604 ACTB
12 2.8e−06 8.49e−05 1e−07 296.6448711 3941.769913 0.0752568 HOXA1
13 3.6e−06 0.0001008 <1e−07 2792.0699393 17199.6551909 0.1623329 BOLL
14 5.9e−06 0.0001342 <1e−07 8664.2840567 2178.4607085 3.9772506 APC
15 1.21e−05 0.0002591 <1e−07 96.7848387 472.6945117 0.2047513 MT1G
16 1.36e−05 0.000275 1e−07 653.0579403 2188.6201533 0.298388 PENK
17 1.97e−05 0.0003774 <1e−07 1710.9865406 4044.9737351 0.4229908 SPARC
18 3.16e−05 0.0005751 <1e−07 1639.128227 811.4430136 2.0200164 DNAJA4
19 3.85e−05 0.0006673 <1e−07 114.7065029 292.8694482 0.3916643 RASSF1
20 4.28e−05 0.0007081 <1e−07 564.6571983 189.2105463 2.9842797 HLA-G
21 4.98e−05 0.0007881 1e−04 1339.8175413 446.1370253 3.0031525 ERCC1
22 6e−05 0.00091 1e−04 395.6248705 1158.1502714 0.3416006 ONECUT2
23 6.58e−05 0.000958 <1e−07 2517.3232246 1024.0897145 2.4581081 APC
24 8.45e−05 0.0011392 <1e−07 232.2537844 701.7843246 0.3309475 ABCB1
25 0.0002382 0.0029898 1e−04 3027.5067641 1165.5391698 2.5975161 ZNF573
26 0.0003469 0.003946 <1e−07 360.9888133 148.6109072 2.4290869 KCNJ15
27 0.0003582 0.0039511 3e−04 1818.1186026 4147.2970277 0.4383864 ZDHHC11
28 0.0012332 0.01192 0.0013 238.5488592 512.9101159 0.465089 SFRP2
29 0.0019349 0.0176076 0.0015 310.5591882 1215.8855725 0.2554181 GDNF
30 0.002818 0.0227945 0.0022 4930.1368809 2261.9370298 2.1796084 PTTG1
31 0.0038228 0.0267596 0.0045 2402.9850212 974.5347994 2.4657765 SERPIN-I1
32 0.0039256 0.0269326 0.0031 208.6539745 417.3186041 0.4999872 TN-FRSF10C
Example 10b CLASS Prediction: TU Vs Normal: p<0.005, Unpaired Samples; 2Fold Change Class prediction using different statistical methods for elucidating marker panels enabling best correct classification of TU and N (p<0.005).
Performance of Classifiers During Cross-Validation.
Diagonal
Mean Compound Linear 3- Support
Number of Covariate Discriminant 1- Nearest Nearest Vector
genes in Predictor Analysis Nearest Neighbors Centroid Machines
classifier Correct? Correct? Neighbor Correct? Correct? Correct?
Mean percent 100 100 98 98 98 98
of correct
classification:
TABLE 3
Composition of classifier: Sorted by t -value
Geometric mean
Parametric % CV of intensities Gene
p-value t-value support (class N/class T) symbol
1 <1e−07 −10.859 100 0.1041568 WT1
2 <1e−07 −7.903 100 0.3297605 PITX2
3 <1e−07 −7.314 100 0.1153074 SALL3
4 <1e−07 −7.063 100 0.1316727 F2R
5 <1e−07 −7.028 100 0.0759525 DLX2
6 <1e−07 −6.592 100 0.3974203 TERT
7 <1e−07 −6.539 100 0.3035331 HOXA10
8 <1e−07 −6.495 100 0.7772068 MSH4
9 <1e−07 −6.357 100 0.1558349 NHLH2
10 4e−07 −5.915 100 0.5405671 GNA15
11 4e−07 −5.908 100 0.298388 PENK
12 4.2e−06 −5.206 100 0.3916643 RASSF1
13 5e−06 −5.155 100 0.1623329 BOLL
14 1.05e−05 −4.935 100 0.0752568 HOXA1
15 3.1e−05 −4.61 100 0.3416006 ONECUT2
16 4.26e−05 −4.514 100 0.3309475 ABCB1
17 4.59e−05 −4.491 100 0.4229908 SPARC
18 4.96e−05 −4.467 100 0.2047513 MT1G
19 8.53e−05 −4.301 100 0.6381881 HSPA2
20 0.0002478 −3.966 100 0.465089 SFRP2
21 0.0002786 −3.929 100 0.7532617 PYCARD
22 0.0003286 −3.876 100 0.6491186 GAD1
23 0.0004296 −3.789 100 0.8137828 C5orf4
24 0.0004695 −3.76 100 0.7676414 C5AR1
25 0.0004699 −3.76 100 0.2554181 GDNF
26 0.0006369 −3.66 100 0.4383864 ZDHHC11
27 0.0008023 −3.584 100 0.8171479 SERPINE1
28 0.0009028 −3.544 100 0.6392075 NKX2-1
29 0.0009179 −3.539 100 0.5993327 PITX2
30 0.0010255 −3.501 100 0.7691876 C5AR1
31 0.0011267 −3.47 100 0.5118859 ZNF256
32 0.0014869 −3.375 100 0.5593175 FAM43A
33 0.0015714 −3.356 100 0.6862518 SFRP2
34 0.0019233 −3.287 100 0.3698669 MT3
35 0.0019731 −3.278 100 0.7715219 SERPINE1
36 0.0019838 −3.276 100 0.8088555 CLIC4
37 0.0023911 −3.21 100 0.4999872 TNFRSF10C
38 0.0027742 −3.158 92 0.8776257 GABRA2
39 0.0028024 −3.154 92 0.7069999 MTHFR
40 0.0030868 −3.12 81 0.6837301 ESR2
41 0.0033263 −3.093 79 0.6327604 NEUROG1
42 0.0036825 −3.057 67 0.6444277 PITX2
43 0.0044243 −2.99 44 0.732542 PLAGL1
44 0.004896 −2.953 40 0.4992372 TMEFF2
45 0.0037996 3.046 65 2.1796084 PTTG1
46 0.0034628 3.079 73 1.1394289 CADM1
47 0.0024932 3.196 100 1.0870547 S100A8
48 0.0024284 3.205 100 1.3497772 EFS
49 0.0020087 3.271 100 1.2801593 JUB
50 0.0017007 3.329 100 1.1823596 ITGA4
51 0.0015061 3.371 100 1.5959594 MAGEB2
52 0.0013429 3.41 100 1.294098 ERBB2
53 0.0011103 3.475 100 1.3485708 SRGN
54 0.0007894 3.589 100 1.3193821 GNAS
55 0.0007437 3.609 100 1.9621539 TJP2
56 0.000457 3.769 100 2.4290869 KCNJ15
57 0.0004291 3.789 100 1.3004513 SLC25A31
58 0.0001587 4.107 100 2.5975161 ZNF573
59 0.0001331 4.163 100 1.4996674 TNFRSF25
60 9.26e−05 4.276 100 2.4581081 APC
61 4.88e−05 4.472 100 1.9612086 KCNQ1
62 3.62e−05 4.564 100 1.4971047 LAMC2
63 1.82e−05 4.77 100 1.5467277 SPHK1
64 1.68e−05 4.794 100 2.0200164 DNAJA4
65 1.45e−05 4.838 100 3.9772506 APC
66 9e−06 4.979 100 1.388284 MBD2
67 8.6e−06 4.994 100 3.0031525 ERCC1
68 4.5e−06 5.182 100 2.9842797 HLA-G
69 4.2e−06 5.202 100 1.7516486 CXADR
70 1.4e−06 5.521 100 1.9112579 TP53
71 1.1e−06 5.605 100 2.6787604 ACTB
72 9e−07 5.647 100 1.9365988 KL
73 6e−07 5.755 100 2.8712188 SMAD3
74 2e−07 6.05 100 1.4368727 HIST1H2AG
75 2e−07 6.115 100 7.507745 CPEB4
Example 10c 4 Greedy Pairs>>92% Correct Using SVM (Support Vector Machine) Using “4 pairs of methylation markers” derived from greedy pairs class prediction with supportive vector machines enables 92% correct classification of TU and N.
Performance of Classifiers During Cross-Validation.
Diagonal
Compound Linear Support
Covariate Discriminant 3-Nearest Nearest Vector
Predictor Analysis 1-Nearest Neighbors Centroid Machines
Correct? Correct? Neighbor Correct? Correct? Correct?
Mean percent 90 90 90 89 91 92
of correct
classification:
Performance of the Support Vector Machine Classifier:
Class Sensitivity Specificity PPV NPV
N 0.917 0.917 0.917 0.917
T 0.917 0.917 0.917 0.917
TABLE 4
Composition of classifier: Sorted by t-value
(Sorted by gene pairs)
Class 1: N; Class 2: T.
Parametric Geom mean Geom mean
p- t- % CV of intensities of intensities Fold- Gene
value value support in class 1 in class 2 change symbol
1 <1e−07 −9.452 100 1411.8016 13554.578246 0.1041568 WT1
2 <1e−07 −7.222 100 85.5069224 1125.7940428 0.0759525 DLX2
3 <1e−07 −6.648 99 852.3850013 7392.282404 0.1153074 SALL3
4 <1e−07 −6.48 70 235.4745892 592.5077157 0.3974203 TERT
5 0.0017994 3.213 27 437.7037557 291.867223 1.4996674 TNFRSF25
6 5e−07 5.391 100 2993.3054637 1117.4218527 2.6787604 ACTB
7 4e−07 5.474 76 10347.818495 3603.9811381 2.8712188 SMAD3
8 <1e−07 5.832 98 2002.2452679 266.6906343 7.507745 CPEB4
Example 10d (BRB v3.8) 5 Greedy Pairs Using “5 pairs of methylation markers” derived from greedy pairs class prediction with supportive vector machines enables 95% correct classification of TU and N.
Performance of Classifiers During Cross-Validation:
Mean Diagonal Bayesian
Number Compound Linear 3- Support Compound
of genes Covariate Discriminant 1- Nearest Nearest Vector Covariate
in Predictor Analysis Nearest Neighbors Centroid Machines Predictor
classifier Correct? Correct? Neighbor Correct? Correct? Correct? Correct?
Mean percent 92 94 90 94 92 95 95
of correct
classification:
Note:
NA denotes the sample is unclassified. These samples are excluded in the compuation of the mean percent of correct classification
Performance of the Support Vector Machine Classifier:
Class Sensitivity Specificity PPV NPV
N 0.958 0.938 0.939 0.957
T 0.938 0.958 0.957 0.939
TABLE 5
Composition by classifier: Sorted by t-value (Sorted by gene pairs)
Class 1: N; Class 2: T.
Geom mean Geom mean
Parametric % CV of intensities of intensities Fold- Gene
p-value t-value support in class 1 in class 2 change symbol
1 <1e−07 −9.531 100 1378.5556347 13613.2679786 0.1012656 WT1
2 <1e−07 −7.419 100 78.691453 1122.0211285 0.0701337 DLX2
3 <1e−07 −6.702 100 832.1044249 7415.7421008 0.1122078 SALL3
4 <1e−07 −6.625 100 223.339058 595.0731922 0.03753136 TERT
5 <1e−07 −6.586 100 267.2568518 837.2745062 0.3191986 PITX2
6 0.0029082 3.057 35 427.3964613 286.9546694 1.4894215 TNFRSF25
7 1.26e−05 4.612 70 7297.8279144 3875.9637585 1.8828421 KL
8 9e−07 5.255 99 2922.8174216 1122.2601272 2.6044028 ACTB
9 9e−07 5.266 98 10104.1419624 3617.8969167 2.792822 SMAD3
10 2e−07 5.603 100 1911.6531674 265.654275 7.1960188 CPEB4
Example 10e Recursive Feature Elimination Method Using “16 methylation markers” derived from the Recursive Feature Elimination method for class prediction with Diagonal Linear Discriminant Analysis enables 100% correct classification of TU and N.
Performance of Classifiers During Cross-Validation.
Mean Diagonal
Number Compound Linear 3- Support
of genes Covariate Discriminant 1- Nearest Nearest Vector
in Predictor Analysis Nearest Neighbors Centroid Machines
classifier Correct? Correct? Neighbor Correct? Correct? Correct?
Mean percent 98 100 96 96 94 96
of correct
classification:
TABLE 6
Composition of classifier: Sorted by t-value
Geometric mean
Parametric % CV of intensities Gene
p-value t-value support (class N/class T) symbol
1 <1e−07 −10.859 100 0.1041568 WT1
2 <1e−07 −7.903 100 0.3297605 PITX2
3 <1e−07 −7.314 98 0.1153074 SALL3
4 <1e−07 −7.028 81 0.0759525 DLX2
5 <1e−07 −6.592 98 0.3974203 TERT
6 <1e−07 −6.539 98 0.3035331 HOXA10
7 4.2e−06 −5.206 98 0.3916643 RASSF1
8 4.59e−05 −4.491 94 0.4229908 SPARC
9 0.0329896 −2.197 88 0.5237754 IRAK2
10 0.0496307 −2.015 98 0.6640548 ZNF711
11 1.68e−05 4.794 79 2.0200164 DNAJA4
12 4.5e−06 5.182 79 2.9842797 HLA-G
13 4.2e−06 5.202 79 1.7516486 CXADR
14 1.4e−06 5.521 75 1.9112579 TP53
15 1.1e−06 5.605 100 2.6787604 ACTB
16 2e−07 6.115 100 7.507745 CPEB4
Example 10f (BRB v3.8) Recursive Feature Elimination Method Due to some differences in data importing/normalisation repeated collation of data for statistics (using BRB v. 3.8) a genelist with minor differences (compared to example 12e) has been calculated form data, and is as given below:
Performance of Classifiers During Cross-Validation.
Mean Diagonal
Number Compound Linear 3- Support
of genes Covariate Discriminant 1- Nearest Nearest Vector
in Predictor Analysis Nearest Neighbors Centroid Machines
classifier Correct? Correct? Neighbor Correct? Correct? Correct?
Mean percent 96 100 96 96 96 96
of correct
classification:
TABLE 7
Composition of classifier: Sorted by t-value
Geometric mean
Parametric % CV of intensities Gene
p-value t-value support (class N/class TU) symbol
1 <1e−07 −10.777 100 0.1012656 WT1
2 <1e−07 −8.046 88 0.3191986 PITX2
3 <1e−07 −7.336 98 0.1122078 SALL3
4 <1e−07 −7.232 85 0.1264427 F2R
5 <1e−07 −6.712 100 0.3753136 TERT
6 <1e−07 −6.524 98 0.2930706 HOXA10
7 1.6e−06 −5.49 98 0.3695951 RASSF1
8 3.87e−05 −4.543 83 0.4112493 SPARC
9 0.0313421 −2.219 88 0.5143877 IRAK2
10 0.0366617 −2.151 98 0.6452171 ZNF711
11 0.3333009 0.978 58 1.1102014 DRD2
12 4.91e−05 4.471 77 1.9749991 DNAJA4
13 2.25e−05 4.707 75 1.7030259 CXADR
14 7.4e−06 5.036 88 1.8582045 TP53
15 2.1e−06 5.402 100 2.6044028 ACTB
16 5e−07 5.815 100 7.1960188 CPEB4
Example 10g Recursive Geneset for “PB-N-TU” Distinction Using CLASS Prediction To distinguish PB, N, and TU is of interest when minimal invasive testing for lung cancer has to be performed using serum- or plasma from peripheral blood. The markers distinguishing PB, N and TU will be best suited therefore. Using “16 methylation markers” derived from the Recursive Feature Elimination method for class prediction with Diagonal Linear Discriminant Analysis enables 91% correct classification.
Performance of Classifiers During Cross-Validation:
Diagonal Linear 3-Nearest Nearest
Discriminant 1-Nearest Neighbors Centroid
Analysis Correct? Neighbor Correct? Correct?
Mean percent 91 89 87 88
of correct
classification:
Performance of the Diagonal Linear Discriminant Analysis Classifier:
Class Sensitivity Specificity PPV NPV
N 0.875 0.946 0.933 0.898
PB 1 0.948 0.615 1
T 0.938 0.982 0.978 0.948
Performance of the 1-Nearest Neighbor Classifier:
Class Sensitivity Specificity PPV NPV
N 0.979 0.821 0.825 0.979
PB 0.75 0.99 0.857 0.979
T 0.833 1 1 0.875
Performance of the 3-Nearest Neighbors Classifier:
Class Sensitivity Specificity PPV NPV
N 1 0.75 0.774 1
PB 0.125 1 1 0.932
T 0.854 1 1 0.889
Performance of the Nearest Centroid Classifier:
Class Sensitivity Specificity PPV NPV
N 0.812 0.929 0.907 0.852
PB 1 0.917 0.5 1
T 0.917 0.982 0.978 0.932
TABLE 8
Composition by classifier: Sorted by p-value
Class 1: N; Class 2: PB; Class 3: T.
Geom mean Geom mean Geom mean
Parametric % CV of intensities of intensities of intensities Gene
p-value t-value support in class 1 in class 2 in class 3 symbol
1 <1e−07 65.961 100 1411.8016 335.9542052 13554.578246 WT1
2 <1e−07 34.742 100 2993.3054637 240.5599546 1117.4218527 ACTB
3 <1e−07 30.862 100 85.5069224 70.3843498 1125.7940428 DLX2
4 <1e−07 30.03 100 274.9097126 128.8159291 833.6648468 PITX2
5 <1e−07 28.153 100 852.3850013 349.2428569 7392.282404 SALL3
6 <1e−07 23.333 100 80.5286413 62.0661721 265.3042755 HOXA10
7 <1e−07 21.159 100 235.4745892 296.8149796 592.5077157 TERT
8 2e−07 17.8 100 2002.2452679 1697.5965438 266.6906343 CPEB4
9 4.3e−06 13.991 100 564.6571983 1254.1750649 189.2105463 HLA-G
10 1.54e−05 12.388 100 1710.9865406 1310.5286603 4044.9737351 SPARC
11 1.9e−05 12.132 100 114.7065029 81.1382549 292.8694482 RASSF1
12 6.55e−05 10.614 100 1639.128227 1576.0887022 811.4430136 DNAJA4
13 0.0008203 7.63 100 1484.6917542 1429.9219493 847.5968076 CXADR
14 0.0008501 7.589 100 11761.052468 9062.1655722 6153.5665863 TP53
15 0.041843 3.276 100 105.5844903 94.1143599 201.5835284 IRAK2
16 0.3946752 0.938 100 483.3048928 567.8776158 727.8087385 ZNF711
Example 10h Class Prediction “Differentiation”→Poor-Moderate-Well Distinguishing the grade of differentiation of the tumours could be also achieved by DNA methylation marker testing. Although the correct classification is only about 60% in this example, the lung tumour groups “AdenoCa” and “SqCCL” can be split and used separately for determining the grade of tumour-differentiation for better performance.
Performance of Classifiers During Cross-Validation.
Diagonal Linearn 3-Nearest Nearest
Discriminant 1-Nearest Neighbors Centroid
Analysis Correct? Neighbor Correct? Correct?
Mean percent 50 52 57 62
of correct
classification:
TABLE 9
Composition by classifier: Sorted by p-value
Class 1: moderate; Class 2: poor; Class 3: well.
Geom mean Geom mean Geom mean
Parametric % CV of intensities of intensities of intensities Gene
p-value t-value support in class 1 in class 2 in class 3 symbol
1 0.0002337 10.127 100 2426.5840626 190.6171197 840.042225 F2R
2 0.002636 6.796 100 409.0809522 178.099004 3103.6338503 ZNF256
3 0.0034931 6.432 100 67.1145733 81.4305823 63.5786575 CDH13
4 0.0044626 6.118 100 30915.9294466 15055.465308 6829.1471271 SERPINB5
5 0.0082321 5.35 100 289.011498 400.2767665 163.1721958 KRT14
6 0.0092929 5.2 100 2890.2702155 418.2345934 211.3575002 DLX2
7 0.0111512 4.977 100 68.3488191 83.3593382 60.6607364 AREG
8 0.0286999 3.846 98 62.1904027 62.94364 74.3029102 THRB
9 0.0326517 3.696 92 64.7904336 80.1596633 60.6607364 HSD17B4
10 0.0414877 3.418 62 5631.0373836 2622.6315852 3310.1373187 SPARC
11 0.0449927 3.325 79 894.5655128 1191.0908574 510.2671098 HECW2
12 0.0480858 3.249 40 441.1103703 1018.9640546 852.4793505 COL21A1
Example 10i BinTreePred “Differentiation” AdenoCa, SqCCL, N PB Using Binary Tree prediction (applicable for elucidation of markers for more than 2 classes) provides several sets of predictors which enable classification of PB, AdenoCa, SqCCL, N. These marker sets could be used alternatively for classification.
Optimal Binary Tree: Cross-Validation Error Rates for a Fixed Tree Structure Shown Below
Mis-classifi-
Node Group 1 Classes Group 2 Classes cation rate (%)
1 AdenoCa, N, SqCCL PB 0.0
2 AdenoCa, SqCCL N 9.4
3 AdenoCa SqCCL 31.2
Results of Classification, Node 1: TABLE 10
Composition of classifier (23 genes): Sorted by p-value
Geom mean of Geom mean of
Parametric % CV intensities in group intensities in group
p-value t-value support 1 2 Gene symbol
1 <1e−07 11.494 100 5370.6044342 241.377309 KL
2 <1e−07 13.624 100 15595.1182874 226.4099812 HIST1H2AG
3 <1e−07 14.042 100 15562.4306923 62.0661607 TJP2
4 <1e−07 20.793 100 36238.4478078 169.7749739 SRGN
5 <1e−07 8.845 92 2847.6405879 176.5970582 CDX1
6 <1e−07 7.452 100 357.4232278 64.4047416 TNFRSF25
7 <1e−07 6.909 97 4344.5133099 90.5259025 APC
8 <1e−07 6.607 100 38027.3831138 10046.5061814 HIC1
9 <1e−07 6.428 100 1605.6039019 115.3436683 APC
10 2e−07 5.611 100 439.58106 107.9138518 GNA15
11 2e−07 5.53 100 1828.8750958 240.5597144 ACTB
12 2.47e−05 4.42 100 4374.5147937 335.954606 WT1
13 3.53e−05 −4.327 100 693.9070151 2419.282873 KRT17
14 4.73e−05 −4.251 100 3086.6035554 8432.6551975 AIM1L
15 5.58e−05 −4.207 100 11780.3636838 25260.4242674 DPH1
16 0.0001755 3.895 96 2120.616338 688.5899191 PITX2
17 0.0005056 3.593 100 478.7300449 128.8159563 PITX2
18 0.0012022 −3.332 100 167.4354555 461.2140013 KIF5B
19 0.0015431 −3.254 100 865.090709 2041.1567322 BMP2K
20 0.0020491 −3.164 100 10857.4258468 26743.6730071 GBP2
21 0.0023603 3.119 100 1819.6185255 218.3422479 NHLH2
22 0.0040506 2.941 96 614.495327 62.0661607 GDNF
23 0.0043281 2.918 98 6929.8366248 784.5416613 BOLL
Results of Classification, Node 2: TABLE 11
Composition of classifier (32 genes): Sorted by p-value
Geom mean of Geom mean of
Parametric % CV intensities in group intensities in group
p-value t-value support 1 2 Gene symbol
1 <1e−07 9.452 92 13554.5792299 1411.801824 WT1
2 <1e−07 7.222 92 1125.7939487 85.5069135 DLX2
3 <1e−07 6.648 69 7392.2771156 852.3852836 SALL3
4 <1e−07 6.48 92 592.5077475 235.4746794 TERT
5 <1e−07 6.445 92 833.6646395 274.909652 PITX2
6 <1e−07 6.123 92 265.3043233 80.5286481 HOXA10
7 <1e−07 6.019 92 855.6411657 112.6645794 F2R
8 <1e−07 −5.832 92 266.6907851 2002.2457379 CPEB4
9 4e−07 5.482 92 4609.4395265 718.3111003 NHLH2
10 4e−07 −5.474 92 3603.9808376 10347.8149677 SMAD3
11 5e−07 −5.391 92 1117.4212918 2993.3062317 ACTB
12 2.8e−06 4.984 92 3941.7717994 296.6448908 HOXA1
13 3.6e−06 4.922 92 17199.6559171 2792.0695552 BOLL
14 5.9e−06 −4.802 92 2178.4609569 8664.280092 APC
15 1.21e−05 4.622 92 472.6943985 96.784825 MT1G
16 1.36e−05 4.593 69 2188.6204084 653.0580827 PENK
17 1.97e−05 4.497 92 4044.9730493 1710.9865557 SPARC
18 3.16e−05 −4.373 92 811.4434055 1639.128128 DNAJA4
19 3.85e−05 4.321 92 292.869462 114.7064501 RASSF1
20 4.28e−05 −4.293 92 189.210499 564.6573579 HLA-G
21 4.98e−05 −4.253 92 446.1371701 1339.8173509 ERCC1
22 6e−05 4.203 92 1158.1503785 395.6249449 ONECUT2
23 6.58e−05 −4.178 92 1024.089614 2517.3225611 APC
24 8.45e−05 4.11 92 701.7840426 232.2538242 ABCB1
25 0.0002382 −3.821 92 1165.5392514 3027.5052576 ZNF573
26 0.0003469 −3.713 92 148.6108699 360.9887854 KCNJ15
27 0.0003582 3.704 92 4147.2987214 1818.1188972 ZDHHC11
28 0.0012332 3.332 46 512.9098469 238.5488699 SFRP2
29 0.0019349 3.19 92 1215.8855046 310.5592635 GDNF
30 0.002818 −3.068 92 2261.9371454 4930.1357863 PTTG1
31 0.0038228 −2.966 92 974.5345902 2402.9849125 SERPINI1
32 0.0039256 2.957 90 417.3184202 208.6541481 TNFRSF10C
Results of Classification, Node 3: TABLE 12
Composition of classifier (2 genes): Sorted by p-value
Geom mean Geom mean
of of
Parametric t- % CV intensities intensities Gene
p-value value support in group 1 in group 2 symbol
1 0.000302 3.91 40 584.5327307 158.116767 HOXA10
2 0.0038089 3.048 46 180.3474561 67.115885 NEUROD1
Example 11 qPCR Validation of Biomarkers Quantitative PCR with primers for markers elucidated by microarray analysis were run on MSRE-digested DNAs from the same sample groups as analyzed on microarrays. Marker sets for SYBRGreen qPCR were from Example 10f and Example 10d.
TABLE 13
Markers used for SYBRGreen-qPCR:
Gene
Unique id symbol
Ahy_61_chr11:32411664-32412266 +_401-464 WT1
349_hy_35-PitxA_chr4:111777754-111778067 PITX2
Ahy_156_chr18:74841510-74841935 +_336-389 SALL3
Ahy_265_chr5:76046889-76047178 +_134-197 F2R
Ahy_252_chr5:1348529-1348893 +_138-187 TERT
Ahy_289_chr7:27180142-27180796 +_181-238 HOXA10
Ahy_233_chr3:50352877-50353278 +_108-157 RASSF1
Ahy_257_chr5:151046476-151047183 +_57-106 SPARC
Ahy_212_chr3:10181572-10181986 +_249-298 IRAK2
Ahy_332_chrX:84385510-84385717 +_42-106 ZNF711
Ahy_51_chr11:112851438-112851650 +_57-107 DRD2
Ahy_109_chr15:76343347-76343876 +_373-428 DNAJA4
Ahy_202_chr21:17806218-17806561 +_104-167 CXADR
Ahy_143_chr17:7532353-7532949 +_415-476 TP53
335_hy_4-Aktin_VL_chr7:5538506-5538805 ACTB
Ahy_261_chr5:173247753-173248208 +_350-404 CPEB4
Ahy_181_chr2:172672873-172673656 +_177-227 DLX2
Ahy_30_chr1:6448693-6448938 +_57-107 TNFRSF25
Ahy_83_chr13:32489371-32489688 +_181-245 KL
Ahy_107_chr15:65146236-65146654 +_305-366 SMAD3
Negative amplification (no Cp-value generated upon 45 cycles of PCR amplification with SYBR green) were set to Cp=45; all qPCR-Cp-values were subtracted from 45.01 to obtain transformed data directly comparable to microarray data,—thus the higher the value the more product was generated (resembles a lower Cp-value. Statistical testing of the transformed data was performed in the same manner as the microarray data using BRB-AT software.
Class comparison and different strategies/methods for class prediction using the qPCR enables correct classification of different sample groups. Although qPCR conditions were not optimized but run under our standard conditions, successful classification of groups with markers deduced from microarray-analysis confirms reliability of methylation markers.
TABLE 14
9 markers from Table 13 showed significant class difference fold changes
mean of log mean of log
Gene intensities intensities
Unique id symbol for N for T FoldDiff
Ahy_30_chr1:6448693-6448938 +_57-107 TNFRSF25 7.40354 8.5125 0.46
Ahy_156_chr18:74841510-74841935 +_336-389 SALL3 1.59063 7.04229 0.02
Ahy_233_chr3:50352877-50353278 +_108-157 RASSF1 5.80167 7.95708 0.22
Ahy_252_chr5:1348529-1348893 +_138-187 TERT 0.01 1.1725 0.45
Ahy_257_chr5:151046476-151047183 +_57-106 SPARC 11.76 14.10521 0.20
Ahy_265_chr5:76046889-76047178 +_134-197 F2R 0.70917 4.87917 0.06
Ahy_289_chr7:27180142-27180796 +_181-238 HOXA10 1.67708 3.88125 0.22
Ahy_332_chrX:84385510-84385717 +_42-106 ZNF711 4.635 6.48875 0.28
349_hy_35-PitxA_chr4:111777754-111778067 PITX2 5.48854 8.61813 0.11
Example 11a CLASS Prediction: TU Vs Normal: p<0.01>>SVM 100%, Paired Samples Performance of Classifiers During Cross-Validation Mean Percentage of Correction Classification:
Diagonal
Compound Linear 3- Support
Covariate Discriminant 1- Nearest Nearest Vector
Predictor Analysis Nearest Neighbors Centroid Machines
Correct? Correct? Neighbor Correct? Correct? Correct?
Mean percent of 96 98 94 94 94 100
correct classification:
n = 48
TABLE 15
Composition of classifier: Sorted by t -value
Geometric mean
Parametric % CV of intensities Gene
p-value t-value support (class N/class T) symbol
1 1e−07 −6.184 100 0.0228499 SALL3
2 2e−07 −6.162 100 0.1142619 PITX2
3 4e−07 −5.879 100 0.1967986 SPARC
4 3.5e−06 −5.254 100 0.0555527 F2R
5 8.08e−05 −4.318 100 0.4467377 TERT
6 0.0009183 −3.538 100 0.2244683 RASSF1
7 0.0011335 −3.468 100 0.21701 HOXA10
8 0.0045818 2.978 100 1.7787126 CXADR
9 0.0012761 3.427 100 3.3134481 KL
Example 11b CLASS Prediction: TU vs Normal: p<0.01 Performance of the Support Vector Machine Classifier:
Class Sensitivity Specificity PPV NPV
N 0.917 0.875 0.88 0.913
T 0.875 0.917 0.913 0.88
Performance of the Bayesian Compound Covariate Classifier:
Class Sensitivity Specificity PPV NPV
N 0.792 0.604 0.667 0.744
T 0.604 0.792 0.744 0.667
TABLE 16
Composition of classifier: Sorted by t-value
Class 1: N; Class 2: T.
Geom mean Geom mean
Parametric % CV of intensities of intensities Fold- Gene
p-value t-value support in class 1 in class 2 change Unique id symbol
1 <1e−07 −6.713 100 3.011798 131.8077746 0.0228499 Ahy_156_chr18:74841510- SALL3
74841935 +_336-389
2 <1e−07 −6.491 100 3468.2688243 17623.4446406 0.1967986 Ahy_257_chr5:151046476- SPARC
151047183 +_57-106
3 <1e−07 −6.208 100 44.8968301 392.9290497 0.1142619 349_hy_35-PitxA_chr4: PITX2
111777754-111778067
4 1e−06 −5.248 100 1.6348595 29.429 0.0555527 Ahy_265_chr5:76046889- F2R
76047178 +_134-197
5 3.91e−05 −4.318 100 1.0069555 2.2540195 0.4467377 Ahy_252_chr5:1348529- TERT
1348893 +_138-187
6 0.0003748 −3.691 100 55.7796365 248.4967761 0.2244683 Ahy_233_chr3:50352877- RASSF1
50353278 +_108-157
7 0.0009309 −3.419 100 3.1978081 14.7357642 0.21701 Ahy_289_chr7:27180142- HOXA10
27180796 +_181-238
8 0.0009772 3.404 100 3114.5146028 939.9618007 3.3134481 Ahy_83_chr13:32489371- KL
32489688 +_181-245
TABLE 16b
Prediction rule from the linear predictors
Table. Compound Diagonal Linear Support
Gene Covariate Discriminant Vector
Weights Genes Predictor Analysis Machines
1 Ahy_83_chr13:32489371-32489688 +_181-245 3.4041 0.2794 1.2796
2 Ahy_156_chr18:74841510-74841935 +_336-389 −6.7126 −0.3444 −0.2136
3 Ahy_233_chr3:50352877-50353278 +_108-157 −3.6907 −0.2633 0.0512
4 Ahy_252_chr5:1348529-1348893 +_138-187 −4.3175 −0.6681 −1.1674
5 Ahy_257_chr5:151046476-151047183 +_57-106 −6.4911 −0.7486 −0.7093
6 Ahy_265_chr5:76046889-76047178 +_134-197 −5.2477 −0.2752 −0.0135
7 Ahy_289_chr7:27180142-27180796 +_181-238 −3.419 −0.221 −0.3187
8 349_hy_35-PitxA_chr4:111777754-111778067 −6.2083 −0.5132 −0.353
The prediction rule is defined by the inner sum of the weights (wi) and expression (xi) of significant genes. The expression is the log ratios for dual-channel data and log intensities for single-channel data.
A sample is classified to the class N if the sum is greater than the threshold; that is, Σiwi xi>threshold.
The threshold for the Compound Covariate predictor is −172.255
The threshold for the Diagonal Linear Discriminant predictor is −15.376
The threshold for the Support Vector Machine predictor is 0.838
Example 11c Recursive Feature Extraction (n=10) Prediction: TU Vs Normal 98% Correct, Paired Samples TABLE 17
Composition of classifiers: Sorted by t-value
Geometric mean
Parametric % CV of intensities Gene
p-value t-value support (class N/class T) symbol
1 1e−07 −6.184 100 0.0228499 SALL3
2 2e−07 −6.162 100 0.1142619 PITX2
3 4e−07 −5.879 100 0.1967986 SPARC
4 3.5e−06 −5.254 100 0.0555527 F2R
5 0.0011335 −3.468 100 0.21701 HOXA10
6 0.0188086 −2.434 92 0.5671786 DRD2
7 0.3539709 0.936 94 1.2886257 ACTB
8 0.1083921 1.637 100 1.8305684 DNAJA4
9 0.0045818 2.978 98 1.7787126 CXADR
10 0.0012761 3.427 100 3.3134481 KL
Example 11d Greedy Pairs (6) Prediction: TU Vs Normal: 88% SVM, UNpaired Samples Performance of the Support Vector Machine Classifier:
Class Sensitivity Specificity PPV NPV
N 0.896 0.854 0.86 0.891
T 0.854 0.896 0.891 0.86
Performance of the Bayesian Compound Covariate Classifier:
Class Sensitivity Specificity PPV NPV
N 0.812 0.604 0.672 0.763
T 0.604 0.812 0.763 0.672
TABLE 18
Composition of classifier: Sorted by t-value (Sorted by gene pairs)
Class 1: N; Class 2: T.
Geom mean Geom mean
Parametric % CV of intensities of intensities Fold- Gene
p-value t-value support in class 1 in class 2 change symbol
1 <1e−07 −6.713 100 3.011798 131.8077746 0.0228499 SALL3
2 <1e−07 −6.491 100 3468.2688243 17623.4446406 0.1967986 SPARC
3 <1e−07 −6.208 100 44.8968301 392.9290497 0.1142619 PITX2
4 1e−06 −5.248 100 1.6348595 29.429 0.0555527 F2R
5 3.91e−05 −4.318 100 1.0069555 2.2540195 0.4467377 TERT
6 −0.0003748 −3.691 100 55.7796365 248.4967761 0.2244683 RASSF1
7 0.0009309 −3.419 100 3.1978081 14.7357642 0.21701 HOXA10
8 0.0137274 −2.512 100 169.3121483 365.1891236 0.4636287 TNFRSF25
9 0.1465343 1.464 98 4255.1669082 2324.5057894 1.8305684 DNAJA4
10 0.1463194 1.465 50 326.8534389 203.1873409 1.6086309 TP53
11 0.0176345 2.416 100 2588.5288498 1455.2822633 1.7787126 CXADR
12 0.0009772 3.404 100 3114.5146028 939.9618007 3.3134481 KL
Cross-Validation ROC curve from the Bayesian Compound Covariate Predictor. The area under the curve is 0.944 (FIG. 1).
Example 11e CLASS Prediction: Histology: p<0.05 Using all qPCRs for Class Prediction Analysis of Tumor-Subtype Versus Normal Lung Tissue TABLE 19
Composition of classifier: Sorted by p-value
Class 1: AdenoCa; Class 2: N; Class 3: SqCCL.
Geom mean Geom mean Geom mean
Parametric % CV of intensities of intensities of intensities Gene
p-value t-value support in class 1 in class 2 in class 3 symbol
1 <1e−07 23.305 100 11832.9848147 3468.2688243 22878.8045137 SPARC
2 <1e−07 22.546 100 98.6115161 3.011798 159.4048479 SALL3
3 1e−07 19.146 100 7.6044403 1.6348595 71.4209691 F2R
4 1e−07 19.124 100 359.9316118 44.8968301 416.1715345 PITX2
5 2.81e−05 11.753 100 90.8736104 55.7796365 480.3462809 RASSF1
6 3.15e−05 11.611 100 48.8581148 3.1978081 6.7191365 HOXA10
7 0.0001543 9.66 100 1.9602703 1.0069555 2.4699516 TERT
8 0.0042218 5.802 100 1047.8074626 3114.5146028 875.3966524 KL
9 0.0233243 3.914 100 263.7738716 169.3121483 451.9439364 TNFRSF25
Performance of Classifiers During Cross-Validation Mean Percent of Correct Classification, n=96:
Diagonal Linear 3-Nearest Nearest
Discriminant 1-Nearest Neighbors Centroid
Analysis Correct? Neighbor Correct? Correct?
Mean percent 72 74 74 72
of correct
classification:
Example 11f Bintree Prediction: Histology—p<0.05 UNpaired Samples “Compound Covariate Classifier” Optimal Binary Tree: Cross-Validation Error Rates for a Fixed Tree Structure Shown Below
Group 1 Group 2 Mis-classification rate
Node Classes Classes (%)
1 AdenoCa, N 14.6
SqCCL
2 AdenoCa SqCCL 31.2
Results of Classification, Node 1: TABLE 20
Composition of classifiers (10 genes): Sorted by p-value
Geom mean of Geom mean of
Parametric % CV intensities in group intensities in group
p-value t-value support 1 2 Gene symbol
1 <1e−07 6.713 100 131.8077753 3.011798 SALL3
2 <1e−07 6.491 100 17623.4448347 3468.2687994 SPARC
3 <1e−07 6.208 100 392.9290438 44.8968296 PITX2
4 1e−06 5.248 100 29.4290011 1.6348595 F2R
5 3.91e−05 4.317 100 2.2540195 1.0069556 TERT
6 0.0003748 3.691 100 248.4967776 55.779638 RASSF1
7 0.0009309 3.419 100 14.7357644 3.197808 HOXA10
8 0.0009772 −3.404 100 939.9618108 3114.5147006 KL
9 0.0137274 2.511 100 365.1891266 169.3121466 TNFRSF25
10 0.0176345 −2.416 100 1455.2823102 2588.528822 CXADR
Results of Classification, Node 2: TABLE 21
Composition of classifier (3 genes): Sorted by p-value
Geom mean Geom mean
Parametric % CV of intensities of intensities Gene
p-value t-value support in group 1 in group 2 symbol
1 0.0058346 2.892 50 48.8581156 6.7191366 HOXA10
2 0.0253305 −2.312 50 90.8736092 480.3462899 RASSF1
3 0.0330755 −2.197 49 7.6044405 71.4209719 F2R
SEQUENCE LISTING
SEQ ID NO: DNA-SEQUENCE
1 CGGCCGGTCAGGAATCCCCATCCTGGAGCGCAGGCGGAGAGCCAGTGGCT
2 CCAAAAAAGGTGACACTGCCCCCTCCCAGTGGCTCCATGCTCCTCAGCTATGGCTGTCCGGGCC
3 CGCCCCGCCCCCGCCAACAACCGCCGCTCTGATTGGCCCGGCGCTTGTCTCTT
4 AGCGGCCTCAGCCTGCGCACCCCAGGAGCGTGGATGACTACGGCCACCCC
5 GCAGCCGAGAGGGTCAGGCCCCCATAGGTCCTCAGCCTGCTTCAACCTCAAAGGGGATGGGGG
6 TCCTGGCAGCATTACCACACTGCTCACCTGTGAAGCAATCTTCCGGAGACAGGGCCAAAGGGCCA
7 CTGACAAGAGACATGCAGGGCTGAGAGGCAGCTCCTTTTTATAGCGGTTAGGCTTGGCCAGCTGC
8 TGGCATCCACTTGCTTGATCCAGCCAGATTCCCACTCCCATGCCCTCTCCACTATTGCGATTGC
9 CTGCTTCGTGCCCTCTGGTGGCTAAGGCGTGTCATTGCAGTGCCGGCCTCCTGTCATCCTCC
10 CCGGCGCACTCCGACTCCGAGCAGTCTCTGTCCTTCGACCCGAGCCCCGC
11 TAGGTGGTGAGTTACTTGGCTCGGAGCGGGCGAGGGGACGCGTGGGCGGAGCG
12 AACCACCTGATCAAGGAAAAGGAAGGCACAGCGGAGCGCAGAGTGAGAACCACCAACCGAGGCGC
13 CGGGGGTAGGCTTTGCTGTCTGAGGGCGTCTGGCTGTGGAGCTGAAGGAGGCGCTGCTGAG
14 GCCCCGCATCCCTAATGAGGGAATGAATGGAGAGGCCCCCTCGGCTGGCGCCC
15 CGGGGCCACGCGCTAAGGGCCCGAACTTGGCAGCTGACCGTCCCGGACAG
16 CCACCGAACACGCCGCACCGGCCACCGCCGTTCCCTGATAGATTGCTGATGC
17 GAACTGGGTCGTGGAAGGATCGCGGGGAGCGGCCCTCAGGCCTTCGGCCTCACT
18 CCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTCAGGAGATCGAGACCATCCT
19 GGCGGCTGGTGCTTGGGTCTACGGGAATACGCATAACAGCGGCCGTCAGGGCGCC
20 TCAGATTCCTCAGGGCCGCAGAGGTGTGGAGCTGGTTGGGCCGGTTCTTCACCCTCCTCCC
21 CTGGCCGAGGTGGCCACCGGTGACGACAAGAAGCGCATCATTGACTCAGCCCGG
22 CTAACCTTCCTCGCCGCCTTCCTGCGGGTGACCCCCAAACGCCCCAGCTCCGC
23 CCGACTTGGACGCGGCCAGCTGGAGAGGCGGAGCGCCGGGAGGAGACCTT
24 ACAGAGTCGGCACCGGCGTCCCCAGCTCTGCCGAAGATCGCGGTCGGGTC
25 GGGGATGGAGAACTCTCCTCGCTTCGTCCTCTCTCCCGGGGAATCCCTAACCCCGCACTGCG
26 GTGGCTCGGGTCCACCCGGGCTGCGAGCCGGCAGCACAGGCCAATAGGCAATTAG
27 CTCACCCCGCGACTTACCCCACACCCCGCTCTCCAGAACCCCCATATGGGCGCTCACC
28 ACACACCACTGCAGCGTTCAAACGCTGGGAAGAAGACTCCCTTGTGGCACCGGAAACCCACGAGG
29 CCGCCACGAACTTGGGGTGCAGCCGATAGCGCTCGCGGAAGAGCCGCCTC
30 CTCCATAGCCCTCCGACGGGCGCCCAGGGGCTTCCCGGCTCCGTGCTCTCT
31 TGGACACCCCAAGAGCTCACTCCTCCGCGGTTTTATATTCCGACTTGCGCACAGGAGCGGGGTGC
32 CCGCCCGTTTCAGCGGCGCAGCTTCTGTAGTTGGGCTACTGGAGGGGTCGCTCAGAAACCTCA
33 AACCCAGGCTTGTCAGCCTAAGAACACGGGATCTCTTCACTGTGGTTCATGTGTAGAGTG-
GAGTTTCCA
34 CAGTCCCCTGCCGTGCGCTCGCATTCCTCAGCCCTTGGGTGGTCCATGGGA
35 CAGGTGGGCGTCTCAGGGGTGGGAGTGGCCGCGTCGTGAAGCGGAGAGAGGA
36 CTGCAAGGGATGACTCACCCCAGTGATTCAACCGCGCCACCGAGCGCGGAGCTG
37 TTGTATGGATTTCGCCCAGGGGAAAGCGCTCCAACGCGCGGTGCAAACGGAAGCCACTG
38 GAGGACCAGGGCCGGCGTGCCGGCGTCCAGCGAGGATGCGCAGACTGCCT
39 ACGCACCGCGGCTCCTCGCGTCCAGCCGCGGCCAAGGAAGTTACTACTCGCCCAAAT
40 CGCTGCCTCGCCATTGGGCGGCCGAACGCAGCCACGTCCAATCAGAGGAGT
41 GAGGTTCTGGGGACCGGGAGAGTGGCCACCTTCTTCCTCCTCGCGAAGAGCAGGCCGGG
42 AGTGGGATTGGGGCACTTGGGGCGCTCGGGGCCTGCGTCGGATACTCGGGTC
43 TCAAGCCGCCTCAGGTGAGCGCTCCTTGGCGCTACTTCCGGTCTCAGGTGAGGCCGC
44 TTGTGACGTGTGTTCTGGGCAGGGTTTGAGGTTTTGGAACATTTTCTAAAAGGGACAGAGAGCAC-
CCTGC
45 CGGGGGGAGAAGTCCTGGAGCGGGTTTGGGTTGCAGTTTCCTTGTGCCGGGGATCCTGTCC
46 GAGGATTATTCGTCTTCTCCCCATTCCGCTGCCGCCGCTGCCAGGCCTCTGGCTGCTGAGG
47 CCCTCTCTCCCCTGGCCCGCAAAGTTTTGGCGGAGCCATCGCTGGGGCTGAGC
48 CCAGGGGGAACTTGTGGCAGTGCAGCATCTCAGGCCAGGGGAAGCCGTAGGCCTCCATGA
49 CGCCACCCAGAGCCCGAGGTTTGCCCTTCAGAAGCGGACCCGCAGACTCCTCGGACT
50 CGCCGAAATGAAACCCGCCTCCGTTCGCCTTCGGAACTGTCGTCACTTCCGTCCTCAGACTTGGA
51 TCCCTTGTTTTGAGGCGGGAACGCAACCCTCGACCGCCCACTGCGCTCCCA
52 GGCAGCCGGGAAATCCCGTGTCCCCACTCGTGGCAGAGGACGCTGTGGGG
53 CCCCCACAGTTTTCATGTGATCAGGAATTCAGCATAGGCTATAAGACGGAGTGCTCCATGTCAA
54 GGGGTTGTCATGGCAGCAGCTCCATCCCTGACCGCCACTTTCTCCCGGTGCCG
55 AAGTTCCGCCAGTGCACAGCAACCAATGGGCGGAGGGGTCCTTTGCCCCTGGGTTGC
56 AGTTGGGCCGGATCAGCTGACCCGCGTGTTTGCACCCGGACCGGTCACGTG
57 GGGCCGCTGCCTACTGTGGGCCTGCAAGGCGTGCAAGCGCAAGACCACCA
58 ACCTCCCTGCTGCGTGTCGCAAACCGAACAGCGGGCGTTGGCCCTCCTGC
59 GGGACCCGGAGCTCCAGGCTGCGCCTTGCGCCCGGGTCAGACATTATTTAGCTCTTCGGTTGAGC
60 GGCCGTGCGGGGCTCACCGGAGATCAGAGGCCCGGACAGCTTCTTGATCGCC
61 CCACTGCCTGCGGTAGAACCTGGTCCCGCATAGCTTGGACTCGGATAAGTCAAGTTCTCTTCCA
62 GGGCCGCAGGCCCCTGAGGAGCGATGACGGAATATAAGCTGGTGGTGGTGGGC
63 GCAGGACCCGGATGAGAGCGCACGCTTCGGGGTCTCCGGGAAGTCGCGGC
64 AAGAGGGAAAGGCTTCCCCGGCCAGCTGCGCGGCGACTCCGGGGACTCCAG
65 AGGGATGGCTTTTGGGCTCTGCCCCTCGCTGCTCCCGGCGTTTGGCGCCC
66 GCCCGCTCTCGGGTGACTCCGCAACCTGTCGCTCAGGTTCCTCCTCTCCCGGCC
67 TGCTGGACATCCACCGCCTCCAGGCAGTTTCGCCGTCACACCGTCGCCATCTGTAGC
68 GGCCGCGAAGCGACTCCGATCCTCCCTCTGAGCCTTGCTCAGCTCTGCCCCGC
69 CGCGCGTTCGCTGCCTCCTCAGCTCCAGGATGATCGGCCAGAAGACGCTCTACTCCTTTTTCTCC
70 CGGGGGCGGAGGAAACACCTATGAACCCTCCGGCAGCCTTCCTTGCCGGGCG
71 AGGGCCAGCCCTTGGGGGCTCCCAGATGGGGCGTCCACGTGACCCACTGC
72 GTGAAAGGTCGGCGAAAGAGGAGTAAAGACGGCGAGACGCGTCCACGCAGGGGGAGTCTGTGCG
73 GCGCTGAGGTGCAGCGCACGGGGCTTCACCTGCAACGTGTCGATTGGACG
74 GAGGCCTCATGCCTCCGGGGAAAGGAAGGGGTGGTGGTGTTTGCGCAGGGGGAGC
75 CGAAGTGGAAACCGGAGTTGCGTCATTGCTCCCACCCGATATCACCTTGGCAGCGACCGCG
76 ATGGGGTGCTCATCTTCCTGGAGCTGAGGAGCTGGGACGGGCATGGGGTGCTCATCCTCCTG
77 TTCCAGCCGGTGATTGCAATGGACACCGAACTGCTGCGACAACAGAGACGCTACAACTCACCGCG
78 CAGAGAAGACTCACGCAGTGAGCAGTCCGCAAGCCCGCTGGCGGCAGCGGC
79 GACACACCCACCTCAGCAGATCTCAGCCCATCCCTCCCAGCTCAGTGCACTCACCCAACCCCAC
80 CGGAGTGCTGCAAGCGCAGAAAATATACGTCATGTGCGGAGGCGGAGCTTCCGCCCTGCG
81 GGCCCAAGGACGTGTGTTGGTCCAGCCCCCCGGTTCCCCGAGACCCACGC
82 ACCTCTGGAGCGGGTTAGTGGTGGTGGTAGTGGGTTGGGACGAGCGCGTCTTCCGCAGTCCCA
83 CCCTTGGAAGGCGTGGAATTAGGAGAGAAATCCCTTAGTGGGCACACGAGTGAGTGCCCCTTGGA
84 CCGGCCGCCTCCCAGGCTGGAATCCCTCGACACTTGGTCCTTCCCGCCCC
85 TGCGTGGGTCGCCTCGCGTCTCTCTCTCCCACCCCACCTCTGAGATTTCTTGCCAGCACC
86 GACTTCGCGTCGCCCTTCCACGAGCGCCACTTCCACTACGAGGAGCACCTGGAGCGCAT
87 GAGGCTGCGAGCCTGGGCTCCCAGGGAGTTCGACTGGCAGAGGCGGGTGCAG
88 CCATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGGCGCCTGCCACCACTCCCGGC
89 CAGGGGACGTTGAAATTATTTTTGTAACGGGAGTCGGGAGAGGACGGGGCGTGCCCCGACGTGCG
90 ACCCTGGAACGACGCCAAACGCGACCCCTACCAGAGGACTCGCGCATGCGCAGC
91 GTTCCCAAAGGGTTTCTGCAGTTTCACGGAGCTTTTCACATTCCACTCGG
92 GAAAGACACCGCGGAACTCCCGCGAGCGGAGACCCGCCAAGGCCCCTCCAG
93 CCCTCTCCGCCCCAAACAGCTCCCCACTCCCCCAGCCTGCCCCCACCCTC
94 ATTGGGGCTACACTCACCACAAGAGCAGCAAACAAAGCACTGGGTGTGGTAGAGGCTGTCCAGGG
95 CCCAGCGGGGCCCTTAGCAGAGCCTCTCCAATCCTCGGCGCCTCCCCTACACAGGGTTCG
96 GCGCCCAAGGCCCTGCTTCTTCCCCCTTCCTCTTCCCCTTGCCCAGCCGCGACTTC
97 CCCAGCCGAGCAGGGGGAAGCATCCCCAGCTCCCGCACCCAAGTCCCTGG
98 GCCGCCACCTGTTGAGGAAAGCGAGCGCACCTCCTGCAGCTCAGGCTCCGGG
99 CGGGAGCGGATTGGGTCTGGGAGTTCCCAGAGGCGGCTATAAGAACCGGGAACTGGGCGCG
100 GGCGGGGAAGCGTATGTGCGTGATGGGGAGTCCGGGCAAGCCAGGAAGGCACC
101 GGAGCCCGCAGTGCGTGCGAGGGGCTCTCGGCAGGTCCAGACGCCTCGCC
102 CGCATCCGGCTCCGAAAGCTGCGCGCAGCCATCATCAGGGCCCTTCTGGTGTT
103 GCCGCTGCCAGTCGACTCAACCACCGGAGTGGCCCCTGCAGTTGGATAGCAACGAGAATCCTCC
104 GGCAGGAAAGGGCCCGAAGGCAGCGAAGGCGAACGCGGCGCACCAACCTG
105 ACAGGGTCTTCCCACCCACAGGGCACCCAGGCGCAGCGGAGCCAGGAGGG
106 ACCAGCCGCACAACTTTTGAAGGCTCGCCGGCCCATGTGGGGTCTTTCTGGCGGC
107 CAGCCGGGCAGATAACAAAACACACCCCAAAGTGGGCCTCGCATCGGCCCTCGCATTCCTGT
108 GGCCTCGACGCCGAGGGGTGTCCCTCTCCTCTCCTGGTCAGGGAACGCAGCAACTGA
109 GGGCGGCAGTCAGAGCTGGAGCTCCGGGGAATCAGACGGGCAGCCAAAGGAGCAGA
110 CGGAAGTGCCCCGGTCCTGGAGGGGGTGGAAGTTGGGGAGCCCAGGCAGGA
111 CCGAGAGGGAAGAAAAAAATACCCTCTTTGGGCCAGGCACGGTGGCTCACCCCTGTAATCCCAGC
112 TCCCAGCACTTTGGGAGGCTGAGGCGAGCGGATCACGAGATCAGAAGATCGAGACCATCCTGGC
113 CCCCGGGACCGGATAACGCCCTAAATCAGCGCAGCTGAGGCGAGGCCGTGGCC
114 CTCGCGACCCCGGCTCCGGGCCTCTGCCGACCTCAGGGGCAGGAAAGAGTC
115 CCCGAGGCTCGCCCGACTCCTGGCTGCCCTGGACTCCCCTCCCTCCTCCCT
116 CTCCAGCTGCACTGCCACCCAGCCTGCCTGGTGCTGGTGCTCAACACGCAGC
117 CCGGCCTTTCCGCCAGAGGGCGGCACAGAACTACAACTCCCAGCAAGCTCCCAAGGCG
118 GGGAAGGAGCCTCAGCTCCGCTCCAGGTCCTCCACCAGGTAGGACTGGGACTCCCTTAGGGCCTG
119 GGGAGTGTCCTCCTCCGGGACAGCCGGACTCCCGCCGACTTCTGGGCGGC
120 GGGGAGCGTGCGGGGTCGCCACCATCGGGACCCCCAGAGGAGAGAGGACTTG
121 GACAGATGCAGTGCGTGCGCCGGAGCCCAAGCGCACAAACGGAAAGAGCGGG
122 TCCTTTGCGTCCGGCCCTCTTTCCCCTGACCATAAAAGCAGCCGCTGGCTGCTGGGCC
123 TGCGGCTTCTCTCACCCTGCCAGGCCTTCCCAGCTTCCCTGAGGTTGCCTGCTACACCCG
124 GCCCCAGCCCTGCGCCCCTTCCTCTCCCGTCGTCACCGCTTCCCTTCTTCCA
125 CCCGCACCCCTATTGTCCAGCCAGCTGGAGCTCCGGCCAGATCCCGGGCTG
126 GCAGAGTTCGTGCAGGGAGTTCGCACATAGGAGAGCACCGGTCCGGGAGTGCCAGGCTCG
127 CGGCCGGTGTGTGTCCCCGCAGGAGAGTGTGCTGGGCAGACGATGCTGGAC
128 TTTTTGGGACAACCATGGAGGGGTCCTCCGTCTCGGCCTCTTCGCATATCCCCCTCCGTGATCC
129 CGGCGGGTCAGATCTCGCTCCCTTTCGGACAACTTACCTCGGAGAGGAGTCAAGGGGAGAGGGGA
130 CCCGGACGAGCTCTCCTATCCCGAAGTTGTGGACAGTCGAGACGCTCAGGGCAGCCGGGC
131 CGGCCGGTGGAGGGGGGAAGGGAGGAATGGTGTCAGGGGCGGATATCTGAGCCCTGAG
132 CACCAAAGCCACCACCCAAGCCAGCACCAAGGCCACCACCATATCCTCCCCCAAAGCCACTACCA
133 CCGCCAGGCCCGCTGGGTGGAATGTGGTCATGTTTCAGACTGCCGATGGCTTCCA
134 CCTGTCCGGATCCCTCCCCGCCTTGCTCAGATCTCTGGTTCGCGGAGCTCCGAGGC
135 GCGCAGGGGCCCAGTTATCTGAGAAACCCCACAGCCTGTCCCCCGTCCAGGAAGTCTCAGCGAG
136 TCCTGCCCCAGTAAGCGTTGGACCGGGAGACGCAGTGCTCAGCATCGGTCAGCAGGG
137 GCGCCGAGGAGTCGGGACAGCCCCGGAGCTTCATGCGGCTCAACGACCTG
138 GGCCCCAGCGGAGACTCGGCAGGGCTCAGGTTTCCTGGACCGGATGACTGACCTGAGC
139 CGCCGGCTGCGAAGTTGAGCGAAAAGTTTGAGGCCGGAGGGAGCGAGGCCGG
140 GGAGCCGCTTGGCCTCCTCCACGAAGGGCCGCTTCTCGTCCTCGTCCAGCAGC
141 AAATGTGGAGCCAAACAATAACAGGGCTGCCGGGCCTCTCAGATTGCGACGGTCCTCCTCGGCC
142 CCTCTCAGATTGCGACGGTCCTCCTCGGCCTGGCGGGCAAACCCCTGGTTTAGCACTTCTCA
143 TCTCCCCACGCTTCCCCGATGAATAAAAATGCGGACTCTGAACTGATGCCACCGCCTCCCGA
144 GCCCAATCGGAAGGTGGACCGAAATCCCGCGACAGCAAGAGGCCCGTAGCGACCCG
145 CGTGGGGGGCTGTTTCCCGTCTGTCCAGCCGCGCCCACTTCTCAGGCCCAAAG
146 GGGGCCCTCGTGTTGCTGAACGAGGGCGGGTTCGCGATGTAAATAAGCCCAGAGGTGGGGTC
147 CCTGGGTCCCCTCGGCTCTCGGAAGAAAAACCAACAGCATCTCCAGCTCTCGCGCGGAATTGTC
148 CATAAGATGCCCTCCTGCGGGCCCTCACCTTTTGACACTGCCTCCCACCGCACTGGGGTCAA
149 ATCCCGCTGCACCACGCCATGAGCATGTCCTGCGACTCGTCTCCGCCTGGC
150 GCGCGGTGAAGGGCGTCAGGTGCAGCTGGCTGGACATCTCGGCGAAGTCG
151 CATTTCTTTCAATTGTGGACAAGCTGCCAAGAGGCTTGAGTAGGAGAGGAGTGCCGCCGAGGCGG
152 AAGTTCACTGAGGGTTGTAAGAGTCAGAATGGACTCCATGGAAGTTATGGGGTGTGAATCAAACCT-
CACA
153 CAGCACTTTGGGAGGCCGAGGTGGGCGGATTGCCTGAGGTCAGGAGTTTGAGACCAGCCTGG
154 GGGCAACACACACAGCAGCGACAGCCGGGAGGTAAGCCGCGTCCCAGCGG
155 CTGAGGGGAGGAGAAACTGGGCTGCGGGGGTCCGGGAGGGTGGATTCCGAGAAACTATGTGCCC
156 GTGTCCCAGCGCGTTGACGCAGCCTGTGATCCCTCGCGAGGCGAGGAGAAGGTC
157 AACCCCGACCTCAGGTGATCTGCCCAAAAGTGCTGGGATTACAGGCGTCAGCCACCGCGCC
158 AGGACGAAGTTGACCCTGACCGGGCCGTCTCCCAGTTCTGAGGCCCGGGTCCCACTGGAACT
159 GGAGACGCGTTGCCTTCGGCCGGGACCACTGCACCTGCCCGCGTGGGTAAT
160 CACAAAGGCCAAGGAGGGAGTGCGCAGGTCACGTGCGCCGGTGGTCAGCG
161 CTGACCTGGCGCTGCTGCCCCTGGTGCCTGACGGAGGATGAGAAGGCCGCC
162 AAAAGTGGCTCGGAACCCCAAATCCCGGTTAGATTGCAGGCACCGCCGGACGCTGGCTCCC
163 GTTCTGTTGGGGGCGAGGCCCGCGCAAGCCCCGCCTCTTCCCCGGCACCAG
164 GCGTCGACACTGCGCAAGCCCAGTCGCGCCTCTCCAGAGCGGGAAGAGCG
165 TGTCTGAGTATTGATCGAACCCAGGAGTTCGAGATCAGCTTGAGCAAGATAGCGAGAACCCCCGC
166 GAAAGACTGCAGAGGGATCGAGGCGGCCCACTGCCAGCACGGCCAGCGTGG
167 TTAGAGTCCCCTGGGTGTGTGCCCCGCAGAGGGAGCTCTGGCCTCAGTGCCCAGTGTGC
168 TTAGAGTCCCCTGGGTGTGTGCCCCGCAGAGGGAGCTCTGGCCTCAGTGCCCAGTGTGC
169 GGGGACGAGCAGGAAAAGGCCGGGGTGGGGGTGGAATTCCTCGGCGGGCAG
170 GGGAGCCTGAGGCAGGAGAATCGCTTGAATCCGGGAGGCGGAGGTTGCAGTAAGCCGAGATCGC
171 CTTTCGGAGGCCTCATTGGCTGAAGGTCGCCGTCGCCCAACGCAGGCCATTCTGGGT
172 CCTCCTGGGGTCAAGTGATCATCCTGGCTCAACCACCCAAGTAGCCGGGACTACGGGTGGCCGC
173 CCAATGCCCCAACGCAGGCCACCCCCGGCTCCTCTGTGGACTCACGAAGACAAGGTC
174 CTCTGAGAGCCACAGTCAGGTCTGTCCTCAGGGGTCGAGGCGGCTGCGCTGGGGCCT
175 GGACAGCCCGCTCGGGAGTCGGGCCTGGAAGCAGGCGGACAGCGTCACCT
176 GCCAGGATGGTCTCGATCTCCTGACCTTGTGATCTGCCCGCCTCGGCCTCCCAAAGTGTTGGG
177 TGCCCAGGGGAGCCCTCCATTTGTAGAATGAATGAGAGTCCAGGTTATGAACAGTGCCTGGAGTG
178 GACCGGTTTTATCCCGCTGAGGCCCTGGGAGATGGGTCTGGCGAGGCTCGTAGGCCGC
179 GCGGAACCTCAAATTGCGGCAGCGGAACCTAAAGTTTCAGGGTGAGATGCGTTGACTCGCGGTGG
180 GCTCAGTCCCTCCGGTGTGCAGGACCCCGGAAGTCCTCCCCGCACAGCTCTCGCT
181 CGGGCAGGCGGGACCGGGAGGTCAATAACTGCAGCGTCCGAGCTGAGCCCA
182 CGCGGTGGGCCGACTTCCCCTCCTCTTCCCTCTCTCCTTCCTTTAGCCCGCTGGCGCC
183 TCCCCGGCATGCGCCATATGGTCTTCCCGGTCCAGCCAAGAGCCTGGAACCACG
184 CTCCGCGCTCAGCCAATTAGACGCGGCTGTTCCGTGGGCGCCACCGCCTC
185 GCGAGAGGGTCGTCCGCTGAGAAGCTGCGCCGGAGACGCGGGAAGCTGCTG
186 GACCCGCCTGCGTCGCCACCCTCTCGCCGCTCCCTGCCGCCACCTTCCTC
187 GAGGGGTCCGGGACGAAGCCACCCGCGCGGTAGGGGGCGACTTAGCGGTTTCA
188 CCCCGAACAAAAAATTCAAATGGGAAAGAGAGGCAGATGGCAGAGAACAGGGGAGGGGCTGGGCA
189 GCGGCGAGGAGGGTCACAGCCGGAAAGAGGCAGCGGTGGCGCCTGCAGAC
190 GGCGGTCTCCGGTTCGCCAATGTGGCTGGGTCCGTAGGCTTGGGCAGCCT
191 CCTCCCCTTTGCGTGCGGAGCTGGGCTTTGCGTGCGCCGCTTCTGGAAAGTCG
192 AGCCTACTCACTCCCCCAACTCCCGGGCGGTGACTCATCAACGAGCACCAGCGGCCAGA
193 CAGGAGGTGAGGAGGTTTCGACATGGCGGTGCAGCCGAAGGAGACGCTGCAGTTGGAGAGCG
194 AGATTTCCCGCCAGCAGGAGCCGCGCGGTAGATGCGGTGCTTTTAGGAGCTCCGTCCGACA
195 CGGGCGTGGTGGTGGGCACCTGTAATCCCAGCTACTCAGAAGGTTGAGGCAGGAGAATCGCTTGA
196 TCCCAAATCCGAGTCTGCGGAGCCTGGGAGGGCTCCCAGCTTCCTATCCAAACCGCGCC
197 CCCTGGTCGAGCCCCCTTTCCTCCCGGGTCCACAGCGAGTCCCCTGAGGAAGGAGGG
198 CAGGGACCCGCGAGTCCCTGGACACGCACTGGCCAACGCCAGACCCCATC
199 CAAGCAGCCCTCGGCCAGACCAAGCACACTCCCTCGGAGGCCTGGCAGGG
200 GAGAAGGAGCGACCCCCAAAACGAAGCGGCTGGATCTGACCTTCCAAGGCCTGTTGGCGACGC
201 TTCTTCCCCGCAGGGTCAGCGCTGGGGCTCCGGCCGTAGAGCCACGTGACC
202 ATTCATTTCTGTTATGGAACTGTCGCGGCACTACAAAGTCTCTATGTAGTTATAAATAAACGTT
203 ACCGAGTGCGCTGCTGTGCGAGTGGGATCCGCCGCGTCCTTGCTCTGCCC
204 GTGTGGTGAGTGTGGGTGTGTGCGCGTCTCCTCGCGTCCCTCGCTGAGGTGCCT
205 GCCTGGGCTGCCAGACGTCGCCATCATTGTTCCATGCAGATCATGCCCATCCTGTGCAGAAG
206 GCGGGTCCGAGGCGCAAGGCGAGCTGGAGACCCCGAAAACCAGGGCCACTC
207 TCTCCATGGTGGCCATTGCCTCCTCTCTGCTCCAAAGGCGACCCCGAGTCAGGGATGAGAGGC
208 CGCGGGACTCCGCGGGATCTCGCTGTTCCTCGCTCTGCTCCTGGGGAGCC
209 CGCCCCCTTTTTGGAGGGCCGATGAGGTAATGCGGCTCTGCCATTGGTCTGAGGGGGC
210 GTTCTGTTGCCAATGCCATTCAGACCCCAGTCCGGGATTCCGCGCTCGGGGTGCG
211 TTTCCGCGAGCGCGTTCCATCCTCTACCGAGCGCGCGCGAAGACTACGGAGGTCGA
212 ACCCGGGTTCAGCGGGTCCCGATCCGAGGGCGTGCGAGCTGAGCCTCCTG
213 GAGAGTGGACGCGGGAAAGCCGGTGGCTCCCGCCGTGGGCCCTACTGTGC
214 GGCTACAGCCGCCATTTCCACGCTCCACCAATCAAATCCATTCTCGAGGAAGACGCACCGCCCC
215 AGCGCGCACAAAGCCTGCGGGAGGATCCATTGTAGCGGTCGCTCCTCCCCGCTTAGCG
216 ATCGGGCGAAGCTCGCGGGAAACCGCTCTGGGTGCGCAGGACAAAGACGCG
217 CGACGGAGCCGTGTGGAGGCCAAAACTCCTCCCGGAAGCCGCTACTGGCCCCG
218 CGCCCCACTACTGCCTGCAGCGGGCTTCCTTACTCCGCCTGCTGGTTCCTACTGGAGGAGAGGCC
219 GCACTCGTAGCGCGCTGGGCGAGCCGGACCGGAAGTTGAAGAAGTGAAGCGCCG
220 TGAAGGGAGGGCTTGGTGTGGGGACTTGCACTGGGCAGAGGGGCAGCTTCCCTGAGAGCAGCTA
221 CGGGAGCGCCCGGTTGGGGAACGCGCGGCTGGCGGCGTGGGGACCACCCG
222 CAGCACCGGAGAGGGCGCACTGCAAAGGCGGGCAGCAGACCGTGGAGAGC
223 GGCGCAGAGGCGTCACGCACTCCATGGTAACGACGCTCGGCCCGAAGATGGC
224 GCCGCGTCTGCGAACCGGTGACCTGGTTTCCCCTCCAGCCCTCACGGCTG
225 CGAGCTGTTTGAGGACTGGGATGCCGAGAACGCGAGCGATCCGAGCAGGGTTTGTCTGGGC
226 GCAGCGCTGAGTTGAAGTTGAGTGAGTCACTCGCGCGCACGGAGCGACGACACCCC
227 CGCGCGCTCGCCGTCCGCCACATACCGCTCGTAGTATTCGTGCTCAGCCTCGTAGTGGC
228 CGGAAGGGGTGAGGCCGGAAGCCGAAGTGCCGCAGGGAGTTAGCGGCGTCTCG
229 GGGGGCGTCGGGCTTGGGACAGGGGAGGATACCAGGGCCACCTTCCCCAACCC
230 CGGGCTGGAGGGTTATCTGGGAAGTCAGCCCCGGCCTCGGTCCTCTCCACGTTGCTGC
231 GGAACGAGGTGTCCTGGGAACACTCCCGGGTCTGTAACTTCGGACAAATCACGCTCGCTTTCCCG
232 AAACGAGAGAGTAGCCAGACTCTCCGCGCATGGAGCCGACGGCACCCACCAGCACACCG
233 TACTCACGCGCGCACTGCAGGCCTTTGCGCACGACGCCCCAGATGAAGTC
234 TGACCGGACAGAGCAGAGCGGGGACTGCAATTCCCAGAAGACCCCACGGTAGGGGCGG
235 AGACAATCCCGGAGGGGGAAAGGCGAGCAGCTGGCAGAGAGCCCAGTGCCGGCC
236 GGCCGAAGAGTCGGGAGCCGGAGCCGGGAGAGCGAAAGGAGAGGGGACCTGGC
237 CCAGGCTCCGCTCGTAGAAGTGCGCAGGCGTCACCGCGCATCCAGGAGCCAC
238 CTCTGATGACGCTCCAAGGGAAGAGGAAGTGGGGATCGGCGAGCGGGTGGGTGCGC
239 TGAAGGGTAATCCGAGGAGGGCTGGTCACTACTTTCTGGGTCTGGTTTTGCGTTGAGAATGCCCC
240 CGGTCCTGCATGCAATGCAAGCCTGAGCTCTCCCGCCATAAGGCTGCAGCGGTGTGG
241 CCTGGAGGAGGAGGAGTCAGGCCGGGTAGGAGGGCTAAGGAGGTTCCCGGGAAGGCAGGGCCC
242 GCTGCTGACATGACTTCTTTGCCACTCGGTGTCAAAGTGGAGGACTCCGCCTTCGGCAAGCCGGC
243 GAGCGGCGCAGGGTTGGAGAGGGAAGCGCTCGTGCCCACCTTGCTCGCAG
244 CCGATGACCGCGGGGAGGAGGATGGAGATGCTCTGTGCCGGCAGGGTCCC
245 GCCGCCCTACAGACGTTCGCACACCTGGGTGCCAGCGCCCCAGAGGTCCC
246 GGGCCGCAATCAGGTGGAGTCGAGAGGCCGGAGGAGGGGCAGGAGGAAGGGGTG
247 CGGCGGGACCATGAAGAAGTTCTCTCGGATGCCCAAGTCGGAGGGCGGCAGCGG
248 GTGGGCGCACGTGACCGACATGTGGCTGTATTGGTGCAGCCCGCCAGGGTGT
249 GAAAGAGCCGGAAACACCTGGTCTCTCAAGCAGGTACAGCCCGCTTCTCCCCAGCACCCCGGTG
250 GCAGCCGCAGCTGAGGTCACCCCGCTGAGGTGGTGGGGAGGGGAATGGTT
251 GGGCGGCCAGCGGTGACTCCAGATGAGCCGGCCGTCCGCGTTCGCGCCGC
252 GGGCACCACGAATGCCGGACGTGAAGGGGAGGACGGAGGCGCGTAGACGC
253 GAGGCCGCCATCGCCCCTCCCCCAACCCGGAGTGTGCCCGTAATTACCGCC
254 CGCGGGGAACGATGCAACCTGTTGGTGACGCTTGGCAACTGCAGGGGCGC
255 CTTGAGACCTCAAGCCGCGCAGGCGCCCAGGGCAGGCAGGTAGCGGCCAC
256 CACACCGTCCTCGCCCGGAGCGCAGAGGCCGACGCCCTACGAGTGGATGC
257 CCCTTGCACACGAGCTGACGGCGTGAACGGGGGTGTCGGGGTTGGTGCAA
258 GCAAAGTGATACCTGGCCGTCCCACCCTCTGGTCCCAGAAGGAGCTCTCGCTGGAGCCAGGCA
259 GGTTGGGGGACTGCCCGGGGCTTAGATGGCTCCGAGCCCGTTTGAGCGTGGTCTCG
260 CGTTGAAAGCGAAGAAGGAGCGGCAGTCCAGCAGCAGGCATTGCGCCGCTCGCTC
261 GAGTCCTCAACAACGACAGCGGGGACTGCGGGACCAGGGTAAAGCGGCGACGGCG
262 GCTCCTGAGAAAGCCCTGCCCGCTCCGCTCACGGCCGTGCCCTGGCCAACTT
263 GATGCTGCTGCCGGAGCTGAGGTCTTGCCTGGAGATCCGAACGAGACACCACGTCAACCGG
264 TGGTGGCAGGAGAGCGATGAGACGGGAAAGTGTGGGGCAAAGCTTACAGTCATTGGTCCAGA
265 CCACTCGCAGTCTGCGTGTGGGGGAAACGAGTGCCCGGCGTATGAAACGCCTAACTTCGCGAAA
266 CAGGCGGCTCCCGCAGTCTAAGGGACCTGGCGCGAGTCCGGGAAGCGGAGG
267 CTGCACGCGGTGCGAAGGGGCCAGCAGGGAAGGAGCAGAGGATGGGGGGT
268 CGGGGCCACAGGACCCTGGGGCTTGAGTCACACAAGAATGTCTCTGGGAGACCCGAGAGACTCA
269 CTTAGAGGAGGAGGAGCAGCGGCAGCGGCAGCAGGAGGCGACAGCTGCCAGCCG
270 CTCATACCAGATAGGCGCGAACGCCTCTGGCAGCGGCGTCCAGGGGGTCCGGC
271 GGGTGCTGGCACATCCGAGGCGTTCTCCCGACTCTGGACCGACGTGATGGGTATCCTGG
272 CATGATAAGCCAGGGACCTCGCGGCGCAGGCGGAGGGAGGGAGAGCGTCGC
273 CCCCCCACTCAACAGCGTGTCTCCGAGCCCGCTGATGCTACTGCACCCGCCG
274 TCCCACCTGCTGCCCGAGGAAGACTTCCGGGAGAAACGCTGTCTCCGAGCCCCCG
275 CCAGGTGAAGCCGAAGGGGAAGCGGATGGGGTTGCTGAACGCGGAGTCGGCG
276 CAGTGGCCCTGCGCGACGTTCGGCGCTACCAGAACTCCGAGCTGCTGATCAGCAAGC
277 AAGGATTACCTCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCAGCGGACACTGCGG
278 GCAGGCTCGTGGCGGTCGGTCAGCGGGGCGTTCTCCCACCTGTAGCGACTCAGGTTACTGAAAA
279 GAGGGAAGTGCCCTCCTGCAGCACGCGAGGTTCCGGGACCGGCTGGCCTG
280 GAAGCGCGACCTCGGGCGGTTGGAGGGGCTACCGGGTCTTACCAGTCCGTGGCG
281 CCCAACCCGAGCAAGACCTGCGCTGAAACGGATTGGCTGCCCTCCGCCCG
282 AGCCGCTCTCCCGATTGCCCGCCGACATGAGCTGCAACGGAGGCTCCCACC
283 ACCACACGGCCAAGGGCACCTGACCCTGTCAAAACCCCAAATCCAGCTGGGCGCG
284 CCGAGGCAGCCGGATCACGAAGTCAGGAGTTCGAGACCAGCCTGACCAACATGGTGAAACCCCGT
285 CCGGCGTCTCCGCGTGGGGCGCACCGTCCGACCCCCCCCTCCCGGTGTGC
286 GGCGCAGATGGCGCTCGCTGCGAGATGGATGCTCCAGGGCGGGTAATCACTCCTG
287 CCAGGCCTCCTGGAAACGGTGCCGGTGCTGCAGAGCCCGCGAGGTGTCTG
288 GGCGAGAGGTGAGAAGGGAAGAGGGCTCCCGGCTCTCTCGGGGCGGGAATCAGTGGGC
289 GCCTGCCTCGCCTCTGCCCGAGCTGATGAGCGAGTCGACCAAAAAAGAGTTCGCGGCG
290 CATTGCGGGACCCTATTTATCCCGACACCTCCCCTGACGTGGGCTCGGAACGCTCCCTTGGCAG
291 CGAAGGCCGGAGCCACAGCGCTCGGTGTAGATGCCGCACGGCTGGCCCTC
292 GGGCTGGATGAGTCCGGAAGTGGAGATTGGCTGCTTAGTGACGCGCGGCGTCCCGG
293 CGCCAGTGCGATTCTCCCTCCCGGTTCCAGTCGCCGCGGACGATGCTTCCTC
294 CGTCCGAGAAAGCGCCTGGCGGGAGGAGGTGCGCGGCTTTCTGCTCCAGG
295 TCCGGCTGCGCCACGCTATCGAGTCTTCCCTCCCTCCTTCTCTGCCCCCTCCGCTCC
296 CAGCCTCAGTTTCCCCATTGGTAAAGCATTGACGGTGGTTGCGGACGGCTTCTGCGGACAGAGCC
297 CCTGAGACAGGCCGAACCCAACTCTTCACAGGGCCGAATTCTTTGCCCGCAGCCCAGCACC
298 CAGAGGGGGGTGCCGGGGTCGCGGACTGCCACCAGGTTGAGGAAAGGAGGGG
299 CGACATCCTGCGGACCTACTCGGGCGCCTTCGTCTGCCTGGAGATTGTAAGTGGGGCCGC
300 ACCGCCTCCTCCCCGCTGTCTGGGTCGCAGGCCTTAGCGACGGGCTGTTCTCCG
301 CTCGGGACTCCAGGGCTGTCCCTCCCGCAGGCTGTCCTTCCACCTCCACCCCA
302 CGGCCGCTCCTCGTAGGCCAGGCTGGAGGCAAGCTCCTTCTCCTCAAAGCTGCGCTGC
303 CATCTCTTCCCCCGACTCCGACGACTGGTGCGTCTTGCCCGGACATGCCCGG
304 CCCAAGACCCTAAAGTTCGTCGTCGTCATCGTCGCGGTCCTGCTGCCAGTGAGTCCCGGCC
305 CCCACTCTTCCCCTGACTCCGACGGCGGGTTCGTCCTGCCCAGACATGCCCG
306 GTCCCCCTCTCTCTCTGCCCCCTCCCGGTGCCAGGCGCGCTTTTCCCCAGG
307 CAGCCTGCTGAGGGGAAGAGGGGGTCTCCGCTCTTCCTCAGTGCACTCTCTGACTGAAGCCCGGC
308 ACTGACTCCGGAGGCTGCAGGGCTGGAGTGCGCGGGGCTCCTACGGCCGAG
309 GGCCAGGCTCGGGCAGGGGCCGTGCTCAGGTGCGGCAGACGGACGGGCCG
310 CCGGGCTTCTGGGACGCTCAGCCGTGCGCTACCCGGTGCAGCTGCTTTCTCACC
311 TTTAGGTAGACGTGGAGGCGACTCAGATCGCCTCGCGGTTCCCGGGATGGCGCGGTCG
312 TGACCAGGACCGCAGGCAAGCACCGCGGCGACGGTTCCAGCCAGGAAAATGAG
313 GGGCCGGACCCGGCCTCTGGCTCGCTCCTGCTCTTTCTCAAACATGGCGCG
314 GCCGCGCTCCTCGCACCGCCTTCTCCGCAGGTCTTTATTCATCATCTCATCTCCCTCTTCCCC
315 GAGCTGCGAACTGGTCGGCGGCGCAAGGCGCGGACTCCGGTGAGTTGTGT
316 GCCCGCGTTCCTCTCCCTCCCGCCTACCGCCACTTTCCCGCCCTGTGTGC
317 ACGCGTCGCGGAGTCCTCACTGCCCCGCCTCGCTCTGGCAGAGTGGGGAG
318 GCGAGCAGCGGCCTCCAGCGCTGGTGGCTCCCTTTATAGGAGCGCTGGAGACACGGG
319 GGGGAAGGCGGAGGGCGAGGGGAAGAGTCACTGAGCTGCGGGGCATAGGGGGTCC
320 CTCTGCTCGCGTGCTGCTCTGAAGTTGTTCCCCGATGCGCCGTAGGAAGCTGGGATTCTCCCA
321 AGGGAGGTCGTTTTCTTCAGCTCCCCAGGTGGTCTGTGCTGGGTGTGCTGACGGTCCTTTTGGGA
322 GCCCCTGGCCCTGACTGCTGGTGCGAGGCAGTGCACGACTCAGCTGGCCG
323 GGCCGGGTAACGGAGAGGGAGTCGCCAGGAATGTGGCTCTGGGGACTGCCTCGCTCG
324 GGCCGGGACTTTCTGGTAAGGAGAGGAGGTTACGGGGAACGACGCGCTGCTTTCATGCCC
325 CAGTCTGGGGACCGGGGAGGCGGGGAGAGGGAAGGGGAAAGCGCGGACGC
326 GTCTATCAAAAGTCTTTTCGTTTCCCCCTCCCCCTTTCCCCACCGCCCACCAAAATGAGCCGCG
327 ATGCCGCCATCGCGGTTCATGCCGTTCTCGTGGTTCACACCGCCCTCAGGG
328 TCCCGGTCTTCGGATCCGAGCCGGTCCTCGGGAAAGAGCCTGCCACCGCGT
329 TGAGAGGCTCCGGTAAAGCCGTCCGGCAATGTTCCACCTGGAAAGTTCCAGGGCAGGGGAAGGG
330 CCCAGGGAGAGGGAGAGGAGGCGGGTGGGAGAGGAGGAGGGTGTATCTCCTTTCGTCGGCCCG
331 CCCGTCTTCTCTCCCGCAGCTGCCTCAGTCGGCTACTCTCAGCCAACCCC
332 GACCCCCCTTTGGCCCCCTACCCTGCAGCAAGGGTAGCGTGACGTAATGCAACCTCAGCATGTCA
333 CCCCGAAGCCCTTGCTTTGTTCTGTGAGCGCCTCGTGTCAGCCAGGCGCAGTGAGCTCAC
334 CGCGCGGCCTTCCCCCTGCGAGGATCGCCATTGGCCCGGGTTGGCTTTGGAAAGCGG
335 CCACCCAGTTCAACGTTCCACGAACCCCCAGAACCAGCCCTCATCAACAGGCAGCAAGAAGGGCC
336 AAGCAGCTGTGTAATCCGCTGGATGCGGACCAGGGCGCTCCCCATTCCCGTCGGGAG
337 CCACGCACCCCCTCTCAGTGGCGTCGGAACTGCAAAGCACCTGTGAGCTTGCGGAAGTCAGT
338 CCACGCACCCCCTCTCAGTGGCGTCGGAACTGCAAAGCACCTGTGAGCTTGCGGAAGTCAGT
339 CCCTCCACCGGAAGTGAAACCGAAACGGAGCTGAGCGCCTGACTGAGGCCGAACCCCC
340 TTGTCCCTTTTTCGTTTGCTCATCCTTTTTGGCGCTAACTCTTAGGCAGCCAGCCCAGCAGCCCG
341 TTCTCAGGCCTATGCCGGAGCCTCGAGGGCTGGAGAGCGGGAAGACAGGCAGTGCTCGG
342 CAGCGTTTCCTGTGGCCTCTGGGACCTCTTGGCCAGGGACAAGGACCCGTGACTTCCTTGCTTGC
343 AGGCAGGCCCGCAAGCCGTGTGAGCCGTCGCAGCCGTGGCATCGTTGAGGAGTGCTGTTT
344 GACTCTGGGTATGTTCTCGAAAGTTGTTACAACCCCAACCCAGGGTTGACCTCAAACACAGGAGG
345 CTCTGGCTCTCCTGCTCCATCGCGCTCCTCCGCGCCCTTGCCACCTCCAACGCCCGT
346 CGGGAGCGCGGCTGTTCCTGGTAGGGCCGTGTCAGGTGACGGATGTAGCTAGGGGGCG
347 CCCCAAGCCGCAGAAGGACGACGGGAGGGTAATGAAGCTGAGCCCAGGTCTCCTAGGAAGGAGA
348 GGGCTCTTCCGCCAGCACCGGAGGAAGAAAGAGGAGGGGCTGGCTGGTCACCAGAGGGTG
349 TTCTCTTCCATCCCATCCTCCCTTCTGGTCCTCCTTTCCACAGTGGGAGTCCGTGCTCCTGCTCC
350 CCGCCTCTGTGCCTCCGCCAACCCGACAACGCTTGCTCCCACCCCGATCCCCGCACC
351 CCGCGCCACGTGAGGGCGGCAAGAGGGCACTGGCCCTGCGGCGAGGCCCCAGCGAGG
352 CACTGCTGATAGGTGCAGGCAGGACAGTCCCTCCACCGCGGCTCGGGGCGTCCTGATT
353 CGGGAGCCTCGCGGACGTGACGCCGCGGGCGGAAGTGACGTTTTCCCGCGGTTGGAC
354 TGTCCTCCCGGTGTCCCGCTTCTCCGCGCCCCAGCCGCCGGCTGCCAGCTTTTCGGG
355 GGTGTCGCGACAGGTCCTATTGCGGGTGTCTGCGGTGGGAAGGGCGGTGGTGACTGG
356 ACATATGACAACGCCTGCCATATTGTCCCTGCGGCAAAACCCAACACGAAAAGCACACAGCA
357 GGAAACCCTCACCCAGGAGATACACAGGAGCACTGGCTTTGGCAGCAGCTCACAATGAGAAAGA
358 TTACCATTGGCTTAGGGAAAGGAGCTTACTGGGAACTGGGAGCTAGGTGGCCTGAGGAGACTGGG
359 AAGAACAGGCACGCGTGCTGGCAGAAACCCCCGGTATGACCGTGAAAACGGCCCGCC
360 ccggggactccagggcgcccctctgcggccgacgcccggggtgcagcggccgccggggctggggccg-
gcgggagtccgcgggaccctccagaagagcggccggcgccgtgactca
361 TCACGGGGGCGGGGAGACGC
362 GCACAGGGTGGGGCAGGGAGCA
363 accgggccttccgcgcccct
364 TCCCACCTCCCCCAACATTCCAGTTCCT
365 TCACAGAGCCAGGCAAGCATGGGTGA
366 ggagcagcaggctcgctcgggga
367 gcccaaagtgcggggccaaccc
368 CGGAAAGAGGAAGGCATTTGCTGGGCAAT
369 CCAGCGGCCCCGCGGGATTT
370 ccgacagcgcccggcccaga
371 TGGGCCAATCCCCGCGGCTG
372 GGGCGGCTGCGGGGAGCGAT
373 CGCCAGGACCGCGCACAGCA
374 GCGGGCAAGAGAGCGCGggag
375 AGCGCGCAGCCAGGGGCGAC
376 CGTGCGCTCACCCAGCCGCAG
377 TGAGGGCCCGGGGTGGGGCT
378 ATATGCgcccggcgcggtgg
379 CCGCAGGGGAAGGCCGGGGA
380 TCCTGAGGCGGGGCCGTCCG
381 GGAGGCCGGGGACGCCGAGA
382 GCCGCCGGCTCCCCCGTATG
383 GCAGGAGCGACGCGCGCCAA
384 cgggggaaacgcaggcgtcgg
385 ccccccaccctggacccgcag
386 CGCCCGGCTTTCCGGCGCAC
387 ccgctgggccgccccTTGCT
388 CGCTTCTCCATAGCTCGCCACACACACAC
389 TCCGCGCACGCGCAAGTCCA
390 CGTCTCAACTCACCGCCGCCACCG
391 GACAAATGCGCTGCTCGGAGAGACTGCC
392 TGCGCCTGCGCAGTGCAGCTTAGTG
393 gaagtcaagggctttcaacctcccctgcc
394 tggatcccgcacaggggctgca
395 GCCGCCTGTGGTTTTCCGCGCAT
396 Gcgcgctctcccgcgcctct
397 TTCCGGCCCAGCCCCAACCC
398 TCCGGGTCAGGCGCACAGGGC
399 GGGGGCGGTGCCTGCGCCATA
400 GGCGCGGGCCCTCAGGTTCTCC
401 gcgtccgcggcTCCTCAGCG
402 GGGAGGCGCCCAGCGAGCCA
403 GCGCGCAGGGGGCCTTATACAAAGTCG
404 CCCCCACCCCCTTTCTTTCTGGGTTTTG
405 CGCGCGTTCCCTCCCGTCCG
406 gccggcggAGGCAGCCGTTC
407 TGCCTGGTGCCCCGAGCGAGC
408 CGGCGGCGGCGCTACCTGGA
409 GTGGTGGCCAGCGGGGAGCG
410 GGCGGCACTGAACTCGCGGCAA
411 CCTCGGCGATCCCCGGCCTGA
412 ACGCAGGGAGCGCGCGGAGG
413 TGAAATACTCCCCCACAGTTTTCATGTG
414 TCCGGGCGCACGGGGAGCTG
415 ggcggcggcgTCCAGCCAGA
416 AGGGTCGCCGAGGCCGTGCG
417 CCGCGCCTGATGCACGTGGG
418 gccgggagcgggcggaggaa
419 AGGGGCGCACCGGGCTGGCT
420 TGCCACGGGAGGAGGCGGGAA
421 cgggcatcggcgcgggatga
422 acaccgccggcgcccaccac
423 CCCCCAACAGCGCGCAGCGA
424 GCCCCGCTGGGGACCTGGGA
425 TCCCGGGGGACCCACTCGAGGC
426 GCCCGCGGAGGGGCACACCA
427 GGCCCACGTGCTCGCGCCAA
428 CGGCGGAGCGGCGAGGAGGA
429 GCCTCGCCGGTTCCCGGGTG
430 gcaggcgcgccgATGGCGTT
431 CCTCCCGGCTTCTGCATCGAGGGC
432 GCGGTCCGCGAGTGGGAGCG
433 AGCAGCGCCGCCTCCCACCC
434 CCGACCGTGCTGGCGGCGAC
435 TCCCGGGCTCCGCTCGCCAA
436 GCATGGGGTGCTCATCTTCCCGGAGC
437 CCCGAGAGCCGGAGCGGGGA
438 GCCGCTGCAGGGCGTCTGGG
439 gcgctgccccaagctggcttcc
440 TCAGGATGCCAGCGTGACGGAAGCAA
441 GGGCGGTGCCATCGCGTCCA
442 GGTGGGTCGCCGCCGGGAGA
443 AGGCGGAGGGCCACGCAGGG
444 GGTCCGGGGGCGCCGCTGAT
445 GCGGCCTGCGGCTCGGTTCC
446 CGGGAACCGTGGCGGCCCCT
447 gcggggaaggcggggaaggc
448 gcctcccggtttcaggcc
449 CAGCCCGCGCACCGACCAGC
450 CCCCCAGCCACACCAGACGTGGG
451 tgggcttcctgccccatggttccct
452 TCCGCGCTGGGCCGCAGCTTT
453 gcatggcccggtggcctgca
454 TGGGCAGGGGAGGGGAGTGCTTGA
455 TCCCCGGCGCCTTCCTCCTCC
456 TCCACCGCGCTTCCCGGCTATGC
457 CCCGCATCTGACCGCAGGACCCC
458 TGCGGACACGTGCTTTTCCCGCAT
459 GGAGCTGGAAGAGTTTGTGAGGGCGGTCC
460 CGGCCGCCAACGACGCCAGA
461 AGCGCCCGGTCAGCCCGCAG
462 TCCCGCCAGGCCCAGCCCCT
463 CCGATTCTTCCCAGCAGATGGCCCCAA
464 ACGCACACCGCCCCCAAGCG
465 TAGGCCCCGAGGCCGGAGCG
466 GGGGTTCGCGCGAGCGCTTTG
467 GCCAGTCTCCCGCCCCCTGAGCA
468 TGAGGAGGCAGCGGACCGGGGA
469 GCCGGCTCCACGGACCCACG
470 GCCGCCACCGCCACCATGCC
471 TTGAGTAAGGATGATACCGAGAGGGAAGA
472 tgggccaggcacggtggctca
473 CCCGGCGAAGTGGGCGGCTC
474 GGCGGCCTTACCCTGCCGCGAG
475 ggtggggccggcgAGGGTCA
476 TCGGCGCGGACCGGCTCCTCTA
477 GGCCCATGCGGCCCCGTCAC
478 TGGGATTGCCAGGGGCTGACCG
479 CGCCGGAGCACGCGGCTACTCA
480 CCCTCGGCGCCGGCCCGTTA
481 GCACAGCGGCGGCGAGTGGG
482 TCACCTCGGGCGGGGCGGAC
483 GAGACGGGGCCGGGCGCAGA
484 CGCATTCGGGCCGCAAGCTCC
485 GGCCCGAAAGGGCCGGAGCG
486 ACGGCGGCCGGGTGACCGAC
487 TCCACCGGCGGCCGCTCACC
488 GCGGTCAGGGACCCCCTTCCCC
489 CGGCCGAAGCTGCCGCCCCT
490 GGCGGCCTTGTGCCGCTGGG
491 TCGCGGGAGGAGCGGCGAGG
492 TGCCCACCAGAAGCccatcaccacc
493 TGGGCCATGTGCCCCACCCC
494 CCCGCCAGCCCAGGGCGAGA
495 gccccctgtccctttcccgggact
496 GGTGGGGGTCCGCACCCAGCAAT
497 ggggcccccgggTTGCGTGA
498 TGCCTGCACAGACGACAGCACCCC
499 AGGCCGCGCCGGGCTCAGGT
500 CGGGGTAGTCGCGCAGGTGTCGG
501 tgcaggcggagaatagcagcctccctc
502 ccggaaatgctgctgcaagaggca
503 gcgtcggatccctgagaacttcgaagcca
504 CCCGGCTCCGCGGGTTCCGT
505 GCGTCGCCGGGGCTGGACGTT
506 GGGGCCTGCCGCCTCGTCCA
507 CGCACACCGCTGGCGGACACC
508 CGCAAACCATCTTCCCCGACGCCTT
509 GGGCCCTCCGCCGCCTCCAA
510 CCACCACCGTGGCAAAGCGTCCC
511 TCACAGCCCCTTCCTGCCCGAACA
512 TGCTTGATGCTCACCACTGTTCTTGCTGC
513 ggccaggcccggtggctcaca
514 TGCGGGACGGGTGGCGGGAA
515 gGCTTGGCCCCGCCACCCAG
516 GGCGGGGAAGGCGACCGCAG
517 ggcgcccaaccaccacgcc
518 GAAAAGCCCCGGCCGGCCTCC
519 CCGCAGGTGCGGGGGAGCGT
520 CCCCGCCCACAGCGCGGAGTT
521 AGCAGGGGCCCGGGGGCGAT
522 CCATGACCGCGGTGGCTTGTGGG
523 GGCAGGTGCTCAGCGGGCAGACG
524 GGGTGCGCCCTGCGCTGGCT
525 GAATTTGGTCCTCCTGCGCCTGCCA
526 TGGCTTCCGCGGCGCCAATC
527 GGCCAGGAGAGGGGCCGAGCCT
528 cgagcgccggccccccttct
529 CGGTTGCGAGGGCACCCTTTGGC
530 tacccggacgcggtggcg
531 GCGCCGCCGAGCCTCAGCCA
532 tgcagcctcaacctcctgggg
533 CCTTGCCGACCCAGCCTCGATCCC
534 GGCGGCGTTCGGTGGTGTCCC
535 CCCGGACTCCCCCGCGCAGA
536 cggccccctgcaagttccgc
537 TGCCCAGGGGAGCCCTCCA
538 GCCGGCTGCAGGCCCTCACTGGT
539 TGTCACACCTGCCGATGAAACTCCTGCG
540 CCCCTGCGCACCCCTACCAGGCA
541 TCCTGGGGGAGCGCGGTGGG
542 AGTGGGGCCGGGCGAGTGCG
543 GCGTCCAGGCTGTGCGctcccc
544 GGCGCGGCGGTGCAGCCTCT
545 gaggcggcggcggtggcagt
546 CGCGCGACCCGCCGATTGTG
547 CCGCGGACGCCGCTCTGCAC
548 tgaacccgggaggcggaggttgc
549 TCTCGGCGGCGCGGGGAGTC
550 aggcggccacgggaggggga
551 GGACCCGAGCGGGGCGGAGA
552 AAGCACCTggggcggggcggag
553 GCCGCTCGGGGGACGTGGGA
554 CACCGCCAGCGTGCCAGCCC
555 TATTCTTggccgggtgcggt
556 CCGCTTCCCGCGAGCGAGCC
557 CAGCCGGCGCTCCGCACCTG
558 GCGGAGCGCGCTTGGCCTCA
559 ggcctcgagcccacccagacttggc
560 TGCCGCGCCGTAAGGGCCACC
561 ACGGCGGTGGCGGTGGGTCG
562 AACCTGCCCAGTTACTGCCCCACTCCG
563 TCCAGCGCCCGAGCCGTCCA
564 GCTGCTGCTGCCCGCGTCCG
565 CACTGCTTAGGCCACACGATCCCCCAA
566 GGCCGGACGCGCCTCCCAAG
567 TCGGCCAGGGTGCCGAGGGC
568 tccgcccgcccCACAGCCAG
569 CGCGCCCCAGCCCACCCACT
570 ccgtgctgggcgcaggggaa
571 TGCGCACGCGCACAGCCTCC
572 CGGTGAGTGCGGCCCGGGGA
573 TGGCCGAGAGGGAGCCCCACACC
574 CCCAGCGCCGCAACGCCCAG
575 GCCACAAGCGGGCGGGACGG
576 TCCTCTGGACAACGGGGAGCGGGAA
577 CGCGGGTTCCCGGCGTCTCC
578 GCGCCGCCCGTCCTGCTTGC
579 ACGCGCGGCCCTCCTGCACC
580 GGGCGGGGCAAGCCCTCACCTG
581 GGGAGCGCCCCCTGGCGGTT
582 GCGAATGGTTCGCGCCGGCCT
583 TTTCCGCCGGCTGGGCCCTC
584 TCTCCGGGTcccccgcgtgc
585 GCAGCCCGGGTAGGGTTCACCGAAA
586 GGGCGGAGAGAGGTCCTGCCCAGC
587 CCCTCACCCCAGCCGCGACCCTT
588 GCGATGACGGGATCCGAGAGAAAGGCA
589 TCCGCAGGCCGCGGGAAAGG
590 GGCCCCAGTCCACCTCTGGGAGCG
591 GCTTGGCCGCCCCCGGGATG
592 CCCTCCATGCGCAATCCCAAGGGC
593 gcggcgactgcgctgcccct
594 TGGGCTTGCCTCCCCGCCCCT
595 GGCGGCCCAAGGAGGGCGAA
596 gctgcgcggcTGGCGATCCA
597 TCACCGCCTCCGGACCCCTCCC
598 CCCTTCCAGCCACCCCGCCCTG
599 GCGGGACACCGGGAGGACAGCG
600 CCCTGGGTTCCCGGCTTCTCAGCCA
601 TGGCGGTGATGGGCggaggagg
602 CCAGCCCGCCCGGAGCCCAT
603 TGCCCGCGGGGGAATCGCAG
604 TGCCGCGAGCCCGTCTGCTCC
605 TGCGGCCCCCTCCCGGCTGA
606 GCAGCAGGGCGCGGCTTCCC
607 GCCGCAGCACGCTCGGACGG
608 TGCGGAGTGCGGGTCGGGAAGC
609 GGCGCGGGGGCAGGTGAGCA
610 ggcgcgggggcaggtgagcat
611 CAGTGACGGGCGGTGGGCCTG
612 CGGCGACCCTTTGGCCGCTGG
613 CCGCGGCAGCCCGGGTGAA
614 GGGCGAGCGAGCGGGACCGA
615 TGGGGCAGTGCCGGTGTGCTG
616 TCGCTGGCATTCGGGCCCCCT
617 GGAGCCGTGATGGAGCCGGGAGG
618 TGCCAGGGTGTCTTGGCTCTGGCCT
619 CCGGCTCCGGCGGGGAAGGA
620 GGCCAGGGTGCCGTCGCGCTT
621 TCGGCTCGGTCCTGAGGAGAAGGACTCA
622 GCGCGGGGAACCTGCGGCTG
623 GCCGCCGCTGCTTTGGGTGGG
624 CACCTGAGCCCGCGGGGGAAcc
625 GAACGCCGGCCTCACCGGCA
626 CCCGTGGTCCCAGCGCTCCTGCT
627 GTGCGACCCGGCGCCCAAGC
628 TGGCTCTGCGCTGCCTTTGGTGGC
629 cgcgcgggcggcTCCTTTGT
630 TGGCCCGTTGGCGAGGTTAGAGCG
631 gacccggcatccgggcaggc
632 GCCCGGACTGTAATCACGTCCACTGGGA
633 CCGCCGCCAACGCGCAGGTC
634 CGCTGCCAGCTGCCGCTCCG
635 AGCGCCCACCTGCGCCTCGC
636 GCGGGCCAGGGCGGCATGAA
637 GGCTGCGACCTGGGGTCCGACG
638 GGTTAGGAGGGCGGGGCGCGTG
639 CAGCGCACCAACGCAGGCGAGG
640 TCGGCTGGCCCCGCCCACTC
641 CGGGGTTGCCGTCGCAGCCA
642 TCCGCACTCCCGCCCGGTTCC
643 ggaccccctgggcagcaccctg
644 cgaggcagccggatcacg
645 GGCGCGTGCGGGCGTTGTCC
646 CCAGGATGCGGCAGCGCCCAC
647 cgATGCGGCCCGCGGAGGAG
648 CGTTCTGCGCGCGCCCGACTC
649 CCCCGCCGTGGGCGTAGTAAccg
650 AACCCGCCCGGGCAGCTCCA
651 GCAGCGGTCGCGCCTCGTCG
652 CGCAATCGCGCTGTCTCTGAAAGGGG
653 GGAGCGCCCGCCGTTGATGCC
654 CCATGGCCCGCTGCGCCCTC
655 TGGGGGCGGGGTGCAGGGGT
656 CCGACCCTGCGCCCGGCAGT
657 CGGCTTCAAGTCCACGGCCCTGTGATG
658 ACCCCACCTGCCCGCGCTGC
659 ggcgcgcggagacgcagcag
660 CGTGAGCCGGCGCTCCTGATGC
661 CTGCCGCGGGGGTGCCAAGG
662 CCTGCTGCGCGCGCTGGCTC
663 CCTGGCGGCCCAGGTCGCTCCT
664 GAGCGCCCCGGCCGCCTGAT
665 CGCCGCACGGGACAGCCAGG
666 GCCCGGACATGCCCCGCCAC
667 cgggggccgccgcctgactt
668 CCAGTGGCGGCCCTCGGCCT
669 CGCCCGGCGCGGATAACGGTC
670 TGCTCCGGGTGGGGAGGGAGGC
671 TGCCTGGGCGCAGAACGGGGTC
672 GGGTCCTAATCCCCAGGCTGCGCTGA
673 TCCGCGTCCCCGGCTGCTCC
674 GGGCAGGGCTGACGTTGGGAGCG
675 GCCGTGGGCGCAGGGGCTGT
676 cctgcgcacgcgggaagggc
677 CGCGGACGCAGCCGAGCTCAA
678 CGACCCATGGCGGGGCAGGC
679 tccgctccccgcccctggct
680 tgtgccgcgcggttgggagg
681 TCACTCACGCTCTCAGCCCGGGGA
682 CGGCAAGCGGGCTTCGGGAAGAA
683 CCCCGCGGGCCGGGTGAGAA
684 CGGCGGCGGCTGGAGAGCGA
685 CGGGCCCCGGGACTCGGCTT
686 GACGGAATGTGGGGTGCGGGCCT
687 TGCGGCTGCTGCCGAGGCTCC
688 ACCGCTGCGCGAGGGAgggg
689 GGGGGTGCGGCGTCTGGTCAGC
690 GGCCGGGGGAAATGCGGCCT
691 tgcctggtaggactgacggctgcctttg
692 AGCGCGGGCGCCTCGATCTCC
693 TCCCGGCTGGTCGGCGCTCCT
694 CCGGGGCTGGGACGGCGCTT
695 GGGCGGGGTGGGGCTGGAGC
696 GTGCGGTTGGGCGGGGCCCT
697 GGCGGTGCCTCCGGGGCTCA
698 GGCGGTGCCTCCGGGGCTCA
699 CGGGAGCCCGCCCCCGAGAG
700 TCCTGCCATCCGCGCCTTTGCA
701 AGGCACAGGGGCAGCTCCGGCAC
702 CGACCCCTCCGACCGTGCTTCCG
703 CCCGCAGGGTGGCTGCGTCC
704 GCGTCTGCCGGCCCCTCCCC
705 TAGGCCGCCGGGCAGCCACC
706 GGGGAGCGGGGACGCGAGCA
707 GCCGGCTGGCTCCCCACTCTGC
708 TCGCTCACGGCGTCCCCTTGCC
709 TCCCCGCTGCCCTGGCGCTC
710 GGCCAGAGGCAGGCCCGCAGC
711 TGCCCGGGTCATCGGACGGGAG
712 CCCAGTGCGCACGGCGAGGC
713 AGCGTCCCAGCCCGCGCACC
714 TGCTCCCCCGGGTCGGAGCC
715 CGCTCGCATTGGGGCGCGTC
716 TGCGGCAAGCCCGCCATGATG
717 TCTTGAGCCTCAGGAGTGAAAAGGCCCCTTG
718 GGACCATGAGTGTTTCCATGCTTGGCATCAGA
719 tcagccactgcttcgcaggctgacg
720 cggccagctgcgcggcgact
721 TCGGAGAAGCGCGAGGGGTCCA
722 GCCGGGTGGGGGCTGCCTTG
723 tcctcgcccggcgcgattgg
724 GGCCGTGCAGTTGGTCCCCTGGC
725 GCGAGCCTGCTGCTCCTCTGGCACC
726 gccagagctgtgcaggctcggcattt
727 tgcccagcaaatgccttcctctttccg
728 TGGCCTGACCACCAATGCAGGGGA
729 TCCACCTGGGCTTCTGGGCAGGGA
730 agctggcctgcgccccgctg
731 AGCCGCGGCAGCGCCAGTCC
732 GGGGCCGGGCCGCTCAGTCTCT
733 GCAGTGAGCGTCAGGAGCACGTCCAGG
734 cccgATCCCCCGGCGCGAAT
735 GGCGTGACCGTGGCGCGGAA
736 AGCGGCCCGCAGAGCTCCACCC
737 GGCAGGCGGGCGCAGGGAAG
738 tctgccccgggttcacgccat
739 CGGGCGGGCCCTGGCGAGTA
740 GCAAGCCCGCCACCCCAGGGAC
741 GGCCCAGGCGGATGGGGTTGG
742 TCCGAGAGGCGTGTGGTAGCGGGAGA
743 AGGCGGCCGCGGGCGTTAGC
744 aaggcagcgcgggccaccga
745 ggcatcctgcccgccgcctg
746 TGGGGCGGGGTCTCGCCGTC
747 TCGGGCTCGCGCACCTCCCC
748 CCAGGTGCGCGCTTCGCTCCC
749 ACCTGCGCCACCGCCCCACC
750 GCCGAGCAGAGGGGGCACCTGG
751 TCGCGCCGCTCTGCGTTGGG
752 CCGCCGGGGCAGAAGGCGAG
753 TCcactggacaggggtgggagcctctg
754 gcccaccggcgctgcgctct
755 GCGGTGCCAGCCCCGCTGTG
756 GACCCGCCTGCGTCCTCCAGGG
757 CCCATCACAGCCGCCCAACCAGC
758 GAGCggggcggagccgagga
759 TGCAATTGTGCAGTGGCTGCGTTTGTTTC
760 CCCGACCGGATGCTCCTTGACTTTGCC
761 GCGAGCGCGCGCACCGATTG
762 CACTCCGCCGGCCGCTCCTCA
763 TCGGGGGTCCCGGCCGAATG
764 GCTCTCCCAGCTGCACGCCAACTTCTTG
765 GGAGGAGCCTGGCGCTGGCGAGT
766 TGGCTCTGGACCGCAGCCGGGTA
767 ACGGCGGCGTCCCGGGTCAA
768 TGGCCAAGCGCTGCCACTCGGA
769 CGCAGGCCGCTGCGGTGGAG
770 GCGCCTGCGCCATGTCCACCA
771 TGGTGCCTCCCGCAACCCTTGGC
772 GCCCGGCTCCAGGCGGGGAA
773 GCAATGCTGGCTGACCTGGACC
774 CGCCCGCCCGTCGGGATGAG
775 TGCCCCCACCATCCCCCACCA
776 GGCGCGAGCGGCGGGAACTG
777 GGCGCCGCTCGCGCATGGT
778 CCCGCTCTGCCCCGTCGCAC
779 GTAGCGCGGGCGAGCgggga
780 AGCGCCGAGCAGGGCGCGAA
781 ggcggcggccacgcaggttc
782 ccctcccgcacgctgggttgc
783 TCACGGCCGCATCCGCCACA
784 CGGCGCCGGCCGCTCTTCTG
785 CCGGCAGAGAATgggagcgggagg
786 TCGGCCGGGGCGCCAGGTCT
787 TGGGGCTGCGGGCGATGCCT
788 GGCTGCGGGGACCGGGGTGT
789 CGGCCCAAGCCGCGCCTCAC
790 ccgcgcccggAACCGCTGCT
791 TCGGCCGGGAGCGTGGGAGC
792 TGCAGACATTGGCGCGTTCCTCCA
793 GGACCCACGCGCCGAGCCCAT
794 GGAGGGGGCGAGTGAGGGATTAGGTCCG
795 TCCCCTCACGCCGATGCCACG
796 CCATGCCCGCCCCAGCTCCTCA
797 CCGCCGTGATGTTCTGTTCGCCACC
798 CGTGGCTGCCCCTGCACTCGTCG
799 tctggccagtccgtgaaggcctctga
800 CCGGGGTGCAAGGGCCACGC
801 cgccgcgcTTCCTCCCGACG
802 AGCGACCCGGGGCGTGAGGC
803 TGCGGAAACCTATCACCGCTTCCTTTCCA
804 ggcagggcggggcagggttg
805 GGGTCTCCAGACTGATGGGCCGGTGA
806 CGCTGAAGCCGCTGCTGTCGCTGA
807 TCCCACGCTCCCGCCGAGCC
808 AAATATgccggacgcggtgg
809 CGCCTTTCCGCGGCGGGAGC
810 CCCAGCCCAGGCCGCAGGCA
811 ccccgcaggggacctcataacccaa
812 GAGTTGGCTCGGCGTCCCTGGCA
813 tccctccgcctggtgggtcccc
814 TGACCCCTGGCACATCAGGAAAGGGC
815 TGCCCCGCAAGAACGGCCCAG
816 GGCCTCGGAGTGCGACGCGAGC
817 GCGCCAACCCAGACCCGCGCTT
818 TGCAAGCGCGGAGGCTGCGA
819 AGCCGGGCCACGGGCAGACA
820 CCCGGGCGGCCACAAAGGGC
821 CCCCATCCCAGGTGACCGCCCTG
822 TGACTCTGGGGGAAGCACGCGACG
823 GGTGCGGCCGAAGCCGTCGC
824 TGCCCCTCGGGCCCTCGCTG
825 GGCCACGGGGACCGGGGACA
826 GGGCGCCGCAGGGCGACAAC
827 GCAGCGCGCTTTGGGAAGGAAGGC
828 GGGTTCCACCCGCGCCCACG
829 TCGCGGCCCAGACCCCCGAC
830 CGAGACCCGGTGCGCCTGGGAG
831 aggtgcccgccaccatgc
832 cgcccaggctggagtgcagtggc
833 GCCGGCGAGGTCTCCGCGGTCT
834 CGCAGGGCCACCGGCTCGGA
835 GCCCCGGAGCATGCGCGAGA
836 CCCCTGGGGACCCCTGCCATCCTT
837 TTAccccgcgccgcgccacc
838 GCGGGCCGAGCCCACCAACC
839 GCGCGGTGGCCGCTTGGAGG
840 CCCGCCAGCGGCctgtgcct
841 CGCGCATGCCAAGCCCGCTG
842 GGCGCAGGAGCAGTTGGGGTCCA
843 TGGGGTAGGCGGAACGCCAAGGG
844 CCCGCTTCACGCCCCCACCG
845 GCAGCCCGGGTGGGCAAGGC
846 TGCAGTTGCCCTTGCCCTGCGAC
847 TGGCCGGGCGCCTCCATCGT
848 GCCTGCGATGGGCTCGGTGGG
849 CCGCGGTTCGCATGGCGCTC
850 TGGGCCATCTCGAGCCGCTGCC
851 TGGGGGAGTGCGGGTCGGAGC
852 CTGCCGCGCCCCCAGCACCT
853 GGCTGCTGGCGGGGCCGTCT
854 GGGCGCGGCGACTTGGGGGT
855 aaactgcgactgcgcggcgtgag
856 TGCTGGGGCCGTGGGGGTGC
857 TCCGCGCTGCCCGGGTCCTT
858 GTGGCGGCCCCCGCGGATCT
859 GGGGAGGCGCCACCGCCGTT
860 GGAGCGGGAGGGCGCTGGGA
861 tgaaggctgtcagtcgtggaagtgagaagtgc
862 ggagaaaatccaattgaaggctgtcagtcgtgg
863 ggggacaaccggggcggatccc
864 CCCGGGAGGAGAGGCGAACAGCG
865 AGTGCGCGGGTGCCGGGTGG
866 TGGCATCCCCTACCCGGGCCCTA
867 GAGGCTGGTTCCTTGTCGTCGGTTGGG
868 GCGGGGTCAGGCCGGGGTCA
869 GGCAGCGGCTGGAGCGGTGTCA
870 GCCCGGGCACACGCCCCATC
871 gcaccgccacgcccactgcc
872 TGTCATGCTTCTTTCTCCCCACTGACTCA
873 gcccaggctggggtgcaatggc
874 CGCCTCGGGGGCCACGGCAT
875 CGTGGGTCCTGGCCCGGGGA
876 TCCCCGGGCGGCCATTAGGCA
877 GGCGGGGGTGGGAGTGATCCC
878 CGTCAGTCCCGGCTGCGAGTCCA
879 CCGGGGTCCGCGCCATGCTG
880 CATGGCGGGGCCCGAGCGAC
881 CCGCCTCCTTGCCCCGACACCC
882 TCGGACACGCCTTCGCCTCAGCC
883 CGAGCTGGGCGCAGGCGCAA
884 GCGGGGTTGTGTGTGGCGGAGG
885 accgcgcccggccTGCAAAG
886 GCGGGGCCAGAGAGGCCGGAA
887 GCCCCAAGGGAAGATGCAGGGAGGAA
888 gccccaagggaagatgcagggaggaa
889 GCCCGCACGTGCACCACCCA
890 GGGTGACGAAGTGGTGTCTTTACCGAgga
891 CCGCCGTGCGCCTGTGGGAA
892 ggctgctgcgggaggatcac
893 TGGGCATCCAGAAAAATGGTGGTGATGGC
894 gccgcgccgggccCTATGAG
895 CCGCCATGCGGGCAGGGACC
896 TGTTACAggctggacacggtggctc
897 cggaacttgcagggggccga
898 TGCAAAATCCTCCCCTTCCCGCACCC
899 GCGCTGGAGCCACGCGACGA
900 GGGGTCCGCTCCCGCGTTCG
901 CGCCCCGGGCTGAGAGCTGGGT
902 GGCCCTTCGGGGGCCGGGTT
903 TGGCCACAAAGGGGCCGGAATGG
904 ACCCCAGCGCGTGGGCGGAG
905 GGGCTGCGGGGCGCCTTGAC
906 GCACCGCGGCTGGAGCGGAC
907 AGGCGATCCCAAGGCTGTTGGAGGC
908 tccacccgccttggcctccca
909 cggcgggaaggcggggcaag
910 ggagccgcggcgtgagtgcg
911 GGCCGGCACCCCACGCCAAG
912 GCGGGGCGGAGCGCACACCT
913 GCGGCCAGCAGCGCGTCCTC
914 CCGACAGCCGGCAAGGCCCAA
915 ttgtttttgtttgtttgttttgaaagggag
916 CCCCGGTTTCCCCGCGCCTC
917 GGCTGGACGCGCCCTCCGACA
918 TCCCACGCGCCCGCCCCTAC
919 cggccacgccttccgcggtg
920 GGCTCCGCTGGGGCGCAGGT
921 GCCGCCCCGTGTCGTGCGTC
922 GGCGTCAGTTGGAGTGTGGGGTCGG
923 CCGAGCGGGGTGGGCCGGAT
924 CATCGCGCGGGACCCAACCCA
925 CAGTGGGTGGATCTCACCTGCCTTCGG
926 GAGGCCGCGGGGCTCCGACA
927 GAGCCTGCCCTATAAAATCCGGGGCTCG
928 TCCCGGCGGGTGGTGCCTGA
929 TCTGAGCGCCCGCCGCCTGC
930 GGCTGCCGGCGCGGGACCTA
931 TCCGGGGCATTCCCTCCGCGAT
932 TGGCGGCGGCCCCTGCTCGT
933 cggcgCGCGACTGGGAGGGA
934 GGCGCCAGCGCAACCAGAGCG
935 CGAAGGTGGCGCGGCCTGGA
936 CCCAGCGGGCTTCGCGGGAG
937 CCCGCTTGCCCCGCCCCCTA
938 CCCACACCTCCACCTGCTGGTGCCT
939 ATGCAGCCCCGCCGGCAACG
940 CCGGATGCCCGGTGTGCCTGG
941 GCGAGCAGGGACGCAGCTCTGGTG
942 CGCGCTCGGCCCGCTCAGTG
943 TGGTGCCGGCAGGGAGGGGA
944 GGGCGGTGGCGATGGCTGGC
945 GGCTGTTGGTCTTTTTCCCAGCCCCGAA
946 CCGGGCCGGCAGCGCAGATGT
947 CGGAGGGCGATGGGGCCCTG
948 GGGGCCGGGCTGCGAAGCTG
949 TGCCTGGGCACCCCACGGACG
950 GCCCTACGTCCGGGCAGCACGC
951 CTGTGCGCGTCCCCGCCGTG
952 TGCAGCGGCGCCTCGGACCC
953 ccgctgggcgcgctgggaag
954 GGCGCATGCTCTGCGCGTATTGGC
955 GGGTGGGCGGGCCGTTCTGAGG
956 GGGCTGCCGGGTTGGCGCAG
957 GGCGCGTGCGGAAAAGCTGCG
958 TCCAGGCCGCCCTCGGGTCA
959 GGGGAGGGGGCGCAGCCAGA
960 GGCAGCGTGGTCTTCCACTTCCCCCT
961 GGGATCGAGGGATCGAGGCAGGGGA
962 CGGCCATGAGCGCCTCCACGC
963 CCCGGTGTGCGGCAGCGACG
964 TTGGGGCGGCCGGAAGCCAG
965 CGCAGCGGCGGCGTCTCGGT
966 CCGCGACCTCCCCAAGCCACCC
967 GGCGGCCGACCGCGAACACC
968 CCCCATTTCCGAGTCCGGCAGCA
969 CCCAGCCTGGCCTCTCCTCTCAGGCA
970 cggctctttcctcctcaagagatgcggtg
971 CGCCGCCGTCCCTGGTGCAG
972 TGGGGACCCCTCGCCGCCTG
973 GCGCCCAGCCCGCCCCAAGA
974 caggggacgcgggcgtgcag
975 CCGGGCGGGGCCCAACTGCT
976 CCCGAGCAGGGCCGGAGCAGA
977 CCCCTCCACATTCCCGCGGTCCT
978 TCCTTTGTGGCCTGGGCAGGATGCAG
979 GCAGCGCGCGGTTTGGGGCT
980 GAGGCCTGCGGGCGCTGCTG
981 TCACGGTTGCTGGGCCGTCGC
982 CGGGGTGGGCCTCGCGGAGA
983 GCCTGCGCTCCTGGCGCCCT
984 CGCCTTCGGAGAGCAGAGTCAACACGGA
985 TGCCCCTAAATGAGAAAGGGCCCTTGAG
986 GCCACGCCCCGGGACCGGAA
987 TCCCGCCCAGGGGCCTCCCA
988 ccccgcgcccggccAAAGAA
989 GGACCGCCGCACAGCCCCAA
990 GGGCAGCGGTGGCCGTGCAT
991 TTCCTGCGCCGCCCCCTCCC
992 GGCGTCTCCCTGTCCCCGCCTG
993 GCCGGCCTCGCGCACCGTGT
994 CCCGGGACGTGCGCGCTTGG
995 TGTCCCCCGAGCCGCCCTGC
996 TCGCTCTCGTGCAGCGGCGTCA
997 CCCGCGCGCTGCAGCATCTCC
998 CCCCAGCTGCCGCCATCGCA
999 GCCCGGGCCCGCCTCAAGGA
1000 TGCCGGCGAGGCCTTTTCTCGG
1001 GGCGGGTGGGGAGCGCGAAC
1002 CCCGCCGCCGCTGGTCACCT
1003 ccggctgcctcggcctccca
1004 ggtgtgcaccaccacgcc
1005 GGCGCGTCCCGGCGGCTTCT
1006 AGTCCCTGCGCCCCGCCCTG
1007 TGCCCCCAAACTTTCCGCCTGCAC
1008 CTTGCGGCCACCCGGCGAGC
1009 TCGCGCGGAAACTCTGGCTCGG
1010 GCTGCGGCCCAGAGGGGGTGA
1011 CGGCGGGCTTGGGTCCCGTG
1012 TCCCCCGCCGCACCAGCACC
1013 GCGCGGTGCGGGGACCTGCT
1014 GCCGGACGCTCGCCCCGCAT
1015 GAGTGCTCTGCAGCCCCGACATGGG
1016 CCGCGCAGACGTCGGAGCCCAA
1017 TGGCCGAGGCGCGTGGCGAG
1018 GGCCGCGCTGCCCCAGGGAT
1019 CCGGGGGCGGACGCAGAGGA
1020 GGGGGCGGAGCCTGGGAATGGG
1021 GGGCGGGCCCTGTGGGTGGA
1022 CCGCTCCCCCATCTCCACGGACG
1023 GACCCAGGGAGGCGCGGGGA
1024 TGCCCGGCCGCAGGTGACCA
1025 GCGCCGGGAGTGGGCAGGGA
1026 ACCCAGGCCGGCGCGGGAAG
1027 ttcccgccgcccggtcctca
1028 CGCGCCGGTGACGGACGTGG
1029 AACCCTCCCAGCCAAAACGGGCTCA
1030 CGGGCGAGGCCGCCCTTTGG
1031 GGCCGCGGACGCCCAGGAAA
1032 CCGTTTGGAACGTGGCCCAAGAGGC
1033 CCCGCCTCCGCTCCCCGCTT
1034 ggtggcggcggcagaggagga
1035 CGCGGGGAGCAGAGGCGGTG
1036 gggcgcccgcgctgagggt
1037 GGGCCTGGCCTCCCGGCGAT
1038 CACCCGGCGTCCGCACCAGC
1039 CGGCGCTGGTTTGGCGGCCT
1040 ccaggagccccggaggccacg
1041 GCGATCTCCTGCCCAGGTGTGTGCTC
1042 ACTGCCCGGGCTCGCCGCAC
1043 TGCGGCAACGGTGGCACCCC
1044 GGAGCGAAGCTGGCGGAACCCACC
1045 GGCGGCCGACGGGGCTTTGC
1046 GGCCGCGGGTGCCTCGGTCT
1047 GCGCTCCAGCCATGGCGCGTT
1048 GCCGGACGGGCGTGGGGAGA
1049 TCCCCCGCGACTGCCCCTCC
1050 GGGTGGCAGCGGGTGCGGAA
1051 gctcgcccgctcgcagccaa
1052 CGAGGTTCCGCAGCCCGAGCCA
1053 GCGCGGGGGACCGAAACCGTG
1054 GCCGAGCCCGGCCCAAAGCC
1055 TGCCAACGTTCACCCGGCTGGC
1056 GACAGTGCGAGGGAAAACCACCTTCCCC
1057 GGGTCGGGCCGGGCTGGAGC
1058 GGGTCGGGCCGGGCTGGAGC
1059 GCGGGGCCGAGGGGCTGAGC
1060 GCCCGGCCACCTCGGGGAGC
1061 ACTGTCTGCCAAGCCAGCCCCAGGG
1062 GGATGGTGGCGCCGGGCTGC
1063 TCCAGGAGGGCCAGGTCACAGCTGC
1064 CGGCTGGCTCGCTTGGCTGGC
1065 TCCGGCGCTGTTGGGCAGCC
1066 CCTGCGCACGCGGGAAGGGC
1067 TCTTCCCTTCTTTCCCACGCTGCTCCG
1068 CAGCGCCCCCGCCTCCAGCA
1069 GCTGCGCGGCTGGCGATCCA
1070 GCCGACGACCGGAGGGCCCACT
1071 TGCCCAGGCTGGCCCCTCGG
1072 CGCGGCCCTCCCCAGCCCTC
1073 CCCCGCCCGGCAACTGAGCG
1074 AAGAGCCCGCGCGCCGAGCC
1075 TGCCCACTGCGGTTACCCCGCAT
1076 GCATGGTGGTGGACATGTGCGGTCA
1077 CATAGAAGAGGAAGGCAAAGGCTGTGACAGGCA
1078 TCATCCTAGACTTGCAGTCAAGATGCCTGCCC
1079 agccagcggtgccggtgccc
1080 gccccgctccgccccagtgc
1081 CACGGGGGCGGGGAGACGCGGGGTGCACTTCTCGCCCCGAGGGCCTCCGGCGAAGCAACCCGGCAGC-
CGCGGCGCCCGAGGGCCTGGCGCTGGTCTGGGGCTGCGCCGGGGGCGCCTGGCTCTGGGGTGCGGCCGGTCAG-
GAATCCCCATCCTGGAGCGCAGGCGGAGAGCCAGTGGCTGGGGGCGGGAAGGCTTCTTGGACCCCTCGCGCTTC
TCCGA
1082 CACAGGGTGGGGCAGGGAGCATCAGGGGGCAGGCAGCCACACCCCCGACACATCAAGACACCTGAGT-
GGCAGGTTCAAGCCGGAGGCGCTGTATTTCCACACAGGAAGAAGGCCAAAAAAGGTGACACTGC-
CCCCTCCCAGTGGCTCCATGCTCCTCAGCTATGGCTGTCCGGGCCGCCTCACTCAAAGCCTTGCCCTCCGCTGC
TGCCAGGCTCCTTGCATGCAAGGCAGCCCCCACCCGGC
1083 accgggccttccgcgcccctcgccccacgccgcgggtgcggtcctccctccagcagagggttccgg-
gcgccggcgcggcccgcacggggccgggagcccttcctgccggccgggtgcgcgcggcgccgccgacagct-
gtttgccatcggcgccgctcccgcccgcgtcccggtgcgcgccccgcccccgccaacaaccgccgctctgattg
gcccggcgcttgtctcttctctccccgcagccaatcgcgccggg
1084 CCCACCTCCCCCAACATTCCAGTTCCTTCTTTTCCTTCTACTCTTCAGCGGCCTCAGCCTGCGCAC-
CCCAGGAGCGTGGATGACTACGGCCACCCCGGGCGCGCACCCCTTTCCCACCACCCCAGCATCTCTGCAGC-
CCAGGACACCCGCCTCCCCCACACCCCGCATCCGGTGTGTCTCCGCCTGGCCCGGCCGGCGCGGCAGGCGGGCC
AGGGGACCAACTGCACGGCC
1085 CACAGAGCCAGGCAAGCATGGGTGAGAGCTCAGACCATCCTTGTTGGACTAAAAGGAAGGG-
GCAGACTGCCCATGGGGGGCAGCCGAGAGGGTCAGGCCCCCATAGGTCCTCAGCCTGCTTCAACCTCAAAGGG-
GATGGGGGGCTGAGTGGTGCCAGAGGAGCAGCAGGCTCGC
1086 ggagcagcaggctcgctcggggagagtagggccttaggatagaagggaaatgaactaaacaac-
cagcttcctcccaaaccagtttcaggccagggctgggaatttcacaaaaaagcagaaggcgctctgtgaa-
catttcctgccccgccccagcccccttcctggcagcattaccacactgctcacctgtgaagcaatcttccggag
acagggccaaagggccaagtgccccagtcaggagctgcctataaatgc
1087 gcccaaagtgcggggccaacccagacagtcccacttaccaggtcttctgaaagacagctgacaa-
gagacatgcagggctgagaggcagctcctttttatagcggttaggcttggccagctgcccacagcttcaggc-
catcagagacagcttctccctgccagagttgctacagtctctggtttctcaaccaggtgaatgtggcaatcact
gtgcagaatgaaaattttgggtggggaggtaggagaagcggaaag
1088 GGAAAGAGGAAGGCATTTGCTGGGCAATAGTGCCCAGAAGGAAAAAGCAGGTAGGGGG-
GCTCTTTTTCTGGGCTGCTGGCATCCACTTGCTTGATCCAGCCAGATTCCCACTCCCATGCCCTCTCCACTAT-
TGCGATTGCTAATCCCCTGCATTGGTGGTCAGGCCA
1089 CAGCGGCCCCGCGGGATTTTGCCCAGCTGCTTCGTGCCCTCTGGTGGCTAAGGCGTGTCATTGCAGT-
GCCGGCCTCCTGTCATCCTCCCTTTCTTGTCCGCCAGACCCTCTGGCGCCCTGCTTACGACTCAAACAG-
GAGACAGTGCTGATTCATTTCCAAGCGGCCTTCCTACACCCACACCTGCTTCACATAGATGAGGTTTCCCGGAC
AGTCCCTGCCCAGAAGCCCAGGTGGA
1090 ccgacagcgcccggcccagatccccacgcctgccaggagcaagccgagagccagccggccg-
gcgcactccgactccgagcagtctctgtccttcgacccgagccccgcgccctttccgggacccctgc-
cccgcgggcagcgctgccaacctgccggccatggagaccccgtcccagcggcgcgccacccgcagcggggcgca
ggccagct
1091 GGGCCAATCCCCGCGGCTGGGCAGAGCGACCCGAGGGCGGCGCCCTGCAGACCACGTGGCCCGGGAG-
GCGCCGAGGCCAGGTAGGTGGTGAGTTACTTGGCTCGGAGCGGGCGAGGGGACGCGTGGGCGGAGCGGGGCTG-
GCCAGCCTCGGCCCCCATGACCCGCTGTCCTGTGCCCTTTCCCAGCGATGGGCGTGCAGCCCCCCAACTTCTCC
TGGGTGCTTCCGGGCCGGCTGGCGGGACTGGCGCTGCCGCG
1092 GGCGGCTGCGGGGAGCGATTTTCCAGCCCGGTTTGTGCTCTGTGTGTTTGTCTGCCTCTGGAGGGCT-
GGGTCCTCCTTATTCACAGGTGAGTCACACCCTGAAACACAGGCTCTCTTCCTGTCAGGACTGAGTCAG-
GTAGAAGAGTCGATAAAACCACCTGATCAAGGAAAAGGAAGGCACAGCGGAGCGCAGAGTGAGAACCACCAACC
GAGGCGCCGGGCAGCGACCCCTGCAGCGGAGACAGAGACTGAGCG
1093 GCCAGGACCGCGCACAGCAGCAGGGCGCGGGCGAGCATCGCAGCGGCGGGCAGGGCGCGGCGCGGGG-
GTAGGCTTTGCTGTCTGAGGGCGTCTGGCTGTGGAGCTGAAGGAGGCGCTGCTGAGGAGTTCCTGGACGT-
GCTCCTGACGCTCACTGC
1094 CGGGCAAGAGAGCGCGggaggaggaggaggagaaaaaggaggaggaggaggaggaggaggCGGC-
CCCGCATCCCTAATGAGGGAATGAATGGAGAGGCCCCCTCGGCTggcgcccgcccacccggcggcggccgc-
cAAGTGCCTCTGGGCGCTGCGTGCCGCGCCCGCTGCTCCGCGCGCAGCCGGCTCGGGCCGCTCCTCCTGACTGA
GGCGCGGCGGCGGCGGTGGCTGTGACCGCGCGGACCGAGCCGAGAC
1095 GCGCGCAGCCAGGGGCGACGCTTCCGCTCCGAGCCGCGGCCCGGGGCCACGCGCTAAGGGC-
CCGAACTTGGCAGCTGACCGTCCCGGACAGGGAGGCCCTTCAGCCTCGACGCGGCCTGCGTCCTCCGGAGGGC-
CCTGCTCCGCCCGGGAAGCGTCCGCCTCCCGCCCGCCCGCCCGCAGATGTCGCTGCCCCTCTGGCTGTCCCGGC
CTGACCGCCGCGCGCCGCCCTGCTGCTCACCTACTTCCGCGCCACGG
1096 GTGCGCTCACCCAGCCGCAGGCGCCTGAGCGGCCAGAGCCGCCACCGAACACGCCGCACCGGCCAC-
CGCCGTTCCCTGATAGATTGCTGATGCCTGGCCGCGGGAACGCCCACGGAACCCGCGTCCAcggggcggggc-
cggcggcgcgcgcgccccctgccggccggggggcggAGTTTCCCGGGCGCCTGCCGGGTGGAGCTCTGCGGGCC
GCT
1097 GAGGGCCCGGGGTGGGGCTGCGCCCTGAGGGCCCTGCCCTGCCCTCCGCACGCCTCTGGCCACG-
GTCCCTTCCCCGGCTGTGGGTCTGCGGCCCCTGCGTGCGCAGCGCTCCTGGCCTCTGCGGCCAGCGCGGGG-
GCGGAGAGAGGAGAGTGCCCGGCAGGCGGCGGCTGGGCCGGCCCGGAACTGGGTCGTGGAAGGATCGCGGGGAG
CGGCCCTCAGGCCTTCGGCCTCACTGCGTCCCCACTTCCCTGCGCC
1098 TATGCgcccggcgcggtggctcacgcctgtaatcccagcactttgggaggccgaggcgggcggat-
cacgaggtcaggagatcgagaccatcctgactaacacggtgaaaccccgtctc-
tactaaaaatacaaaaattagccgggcgcggtggcgggtgcctgtagtcccagctacttgggaggctgaggcag
gagaatggcgtgaacccggggcaga
1099 CGCAGGGGAAGGCCGGGGAGGGAGGTGTGAAGCGGCGGCTGGTGCTTGGGTCTACGG-
GAATACGCATAACAGCGGCCGTCAGGGCGCCGGGCAGGCGGAGACGGCGCGGCTTcccccgggggcggccg-
gcgcgggcgccTCCTCGGCCGCCGCTGCCGCGAGAAGCGGGAAAGCAGAAgcggcggggcccgggcctcagggc
gcagggggcggcgcccggccACTACTCGCCAGGGCCCGCCCG
1100 CCTGAGGCGGGGCCGTCCGGCACCCTGTGATGGGGCGTGGCCCCTGGGGAGGCTCCCACCAGCCCT-
CAGATTCCTCAGGGCCGCAGAGGTGTGGAGCTGGTTGGGCCGGTTCTTCACCCTCCTCCCCTGGTGCTTGCCT-
GTGCCCCAGCAGGGTGACAGTGATGTAGTAGCGGGTCCTCCTGGAAGAGGGACGCGTGTGTAGGGTCTGGGCAG
GCTCTGGCAAGGCAGTCCCTGGGGTGGCGGGCTTGC
1101 GAGGCCGGGGACGCCGAGAGCCGGGTCTTCTACCTGAAGATGAAGGGTGACTACTACCGCTACCTG-
GCCGAGGTGGCCACCGGTGACGACAAGAAGCGCATCATTGACTCAGCCCGGTCAGCCTACCAGGAGGCCATG-
GACATCAGCAAGAAGGAGATGCCGCCCACCAACCCCATCCGCCTGGGCC
1102 CCGCCGGCTCCCCCGTATGAGGAGCTGCCATAGCTTTCGAATCCACCTGTTTTGAACAACAG-
GATTAGTGCCTGTGCCACGTCCCACGCCTCCGAGAAACCCGCAGGCTCCCGGAGGCTTCGC-
CCCTTCAAACACTGCCCGAGTCTCCCTAACCTTCCTCGCCGCCTTCCTGCGGGTGACCCCCAAACGCCCCAGCT
CCGCTCCCGCCCTTCCTCTCCCGCTACCACACGCCTCTCGGA
1103 CAGGAGCGACGCGCGCCAAAAGGCGGCGGGAAGGAGGCGGGGCAGAGCGCGCCCGGGACCCCGACT-
TGGACGCGGCCAGCTGGAGAGGCGGAGCGCCGGGAGGAGACCTTGGCCCCGCCGCGACTCGGTGGCCCGCGCT-
GCCTTCCCGCGCGCCGGGCTAAAAAGGCGCTAACGCCCGCGGCCGCCT
1104 cgggggaaacgcaggcgtcgggcacagagtcggcaccggcgtccccagctctgccgaagatcgcg-
gtcgggtctggcccgcgggaggggccctggcgccggacctgcttcggccctgcgtgggcggcctcgccgg-
gctctgcaggagcgacgcgcgccaaaaggcggcgggaaggaggcggggcagagcgcgcccgggaccccgacttg
gacgcggccagctggagaggcggagcgccgggaggagaccttggcc
1105 ccccccaccctggacccgcaggctcaggagtccacgcggggagaggggatg-
gagaactctcctcgcttcgtcctctctcccggggaatccctaaccccgcactgcgttacctgtcgctttggg-
gaggccgctgccgggatccggccccgaacagcccgggggggcaggggcgggggtcgtcgaggggatgggggcag
agagcaggcggcgggcaggatgcc
1106 GCCCGGCTTTCCGGCGCACTCCAGGGGGCGTGGCTCGGGTCCACCCGGGCTGCGAGCCG-
GCAGCACAGGCCAATAGGCAATTAGCGCGCGCCAGGCTGCCTTCCCCGCGCCGGACCCGGGACGTCTGAACG-
GAAGTTCGACCCATCGGCGACCCGACGGCGAGACCCCGCCCCA
1107 cgctgggccgccccTTGCTCTTAGCCAGAGGTAGCCCCTCACCCCGCGACTTACCCCACAC-
CCCGCTCTCCAGAACCCCCATATGGGCGCTCACCGCCCGCCCGCACAGCTCGAACAGGGCGGGGGGAGCGT-
TGGGGCCCGAGGCCGAGCTCTTCGCTGGCGCCGCCTCCCGGGACGTGGCCTCCATGGTCGTTGCCGCCGCTACC
TCACAGAACCAGCAACTCCGGGCGCGCCAGGCCTCGGGCGCCGCCATCT
1108 GCTTCTCCATAGCTCGCCACACACACACACACACGCCACGCACCGTATAAAAGCCTAAATGACACAC-
CACTGCAGCGTTCAAACGCTGGGAAGAAGACTCCCTTGTGGCACCGGAAACCCACGAGGTTGGAAGTGG-
GAGGGGAAGAGGGCCAGATACTTCACCTGAAAATCCGCCAGGATCATCTCCCGGTCCATGTTGGACGCCATGGC
GGCCGCCGAGTTCCGCGGCTCCGGGAGCGAAGCGCGCACCTGG
1109 CCGCGCACGCGCAAGTCCAGGCCGCCGCGGCCCTGGAATAGAGACTCGCCCTTGAT-
GTCCCTCTCGAAGTAGTAGGCGGCATCGCCGATATCCACGTCACCGGCGGCCTTCTGAGACGTGTTCTGC-
CGCAGCTCGATCTGGATGGTGGGCTGCTCGTAGTGCACGGCCGCCACGAACTTGGGGTGCAGCCGATAGCGCTC
GCGGAAGAGCCGCCTCAGCTCGGCGTCCAGGTCTGAGTGGTTGAAGGCGCCGGCG
1110 GTCTCAACTCACCGCCGCCACCGCCGCGCAGCCCCGCGGCCGCTGCTCCATAGCCCTCCGACGG-
GCGCCCAGGGGCTTCCCGGCTCCGTGCTCTCTGCCCGTCGTGGTTCCGCCTTCAgccccgcgcccgcagggc-
ccgccccgcgccgtcgagaagggcccgcctggcgggcggggggaggcggggccgcccgAGCCCAACCGAGTCCG
ACCAGGTGCCCCCTCTGCTCGGC
1111 ACAAATGCGCTGCTCGGAGAGACTGCCGCGGCAACCAACTGGACACCCCAAGAGCT-
CACTCCTCCGCGGTTTTATATTCCGACTTGCGCACAGGAGCGGGGTGCGGGGGCGCAGGGAGTGTGG-
GTAACAGGCATAGATTCCGCTTGCGCAATACGTGGTAAGAAACCAGCTGTGAGGGGCTGGCCCAACGCAGAGCG
GCGCGA
1112 GCGCCTGCGCAGTGCAGCTTAGTGCGTCGGCGCGCAGTTCTCCCGCCCGTTTCAGCG-
GCGCAGCTTCTGTAGTTGGGCTACTGGAGGGGTCGCTCAGAAACCTCATACTTCTCGGGTCAGGGAAG-
GTTTGGGAGGATGCTGAGGCCTGAGATCTCATCAACCTCGCCTTCTGCCCCGGCGG
1113 aagtcaagggctttcaacctcccctgccccattcatacagtggaaggtctaacccaggcttgt-
cagcctaagaacacgggatctcttcactgtggttcatgtgtagagtggagtttccatgctgaga-
gagacaagcaaagaagaccagaggctcccacccctgtccagtgGA
1114 tggatcccgcacaggggctgcaggtggagctacctgccagtcccctgccgtgcgctcgcattcct-
cagcccttgggtggtccatgggactgggcgccatggagcagggggtggtgcttgtcggggaggctggggc-
cgcacaggagcccatggagtgggtgggaggctcaggcatggcgggctgcaggtccggagccctgccctgcggga
acgcagctaaggctcggtgagaaatagagcgcagcgccggtgggc
1115 CCGCCTGTGGTTTTCCGCGCATTGTGAGGGATGAGGGGTGGAGGTGGTATTAGACGCAGC-
CGAATCCTCCCTCAGAGTCCGCCAGGTGGGCGTCTCAGGGGTGGGAGTGGCCGCGTCGTGAAGCGGAGAGAG-
GATTTCTCTCCTGGTCCTGGAGAAGGCCCCCGGCGGCCGGCGGCATCCCTCGCTGGCGAGTCCCGGGAGCGAGG
TGGTCTCTGCAGGGGAGGAAGTTCCCGGGCGGCGCGGCCTGCGTCACAG
1116 cgcgctctcccgcgcctctgcccgcccccggcgcccgcccccgccgctcctcccgactccccgc-
ccccggcccGGGTCACTTGCCGTCGCGGTGGGCGGCCCCCGGCGAGTCCACACCCCTGCCCCGCCTCCTCCCG-
GTAGGAAACTCCGGGACCCTGCAAGGGATGACTCACCCCAGTGATTCAACCGCGCCACCGAGCGCGGAGCTGCC
CTGGAGGACGCAGGCGGGTC
1117 TCCGGCCCAGCCCCAACCCCGACCTAAGTAACCGGCTATCGGCCACCCATTGGCTGAAGTCCCT-
GAGCACCTGTTGGGAGGAAGGCTGCTGCGTGCAGCCGGAAAGTCCTGCGTCCCTCCGCTCTTACCGCGGCAG-
GAACCACAGCCTCCCCGAACCTCAGGGTTTGTATGGATTTCGCCCAGGGGAAAGCGCTCCAACGCGCGGTGCAA
ACGGAAGCCACTGGCTGGTTGGGCGGCTGTGATGGG
1118 CCGGGTCAGGCGCACAGGGCAGCGGCGCTGCCGGAGGACCAGGGCCGGCGTGCCGGCGTCCAGCGAG-
GATGCGCAGACTGCCTCAGGCCCGGCGCCGCCGCACAGGGCATGCGCCGACCCGGTCGGGCGGGAACAc-
cccgcccctcccgggctccgccccagctccgcccccgcgcgccccggccccgcccccgcgcgctctcttgcttt
tctcaggtcctcggctccgccccGCTC
1119 GGGGCGGTGCCTGCGCCATATATGGGAgcggccgcccctcgccgcgcccctcgccgccgccgccgc-
cgcgctcgccgactgactgcctgacggcgccgcgagccggcccgagccccgcgagccccgcgagccccgccgc-
cgccgagcgccaccgagcgccgccgccgccccccgccacgcaccgcggcTCCTCGCGTCCAGCCGCGGCCAAGG
AAGTTACTACTCGCCCAAATAAATCTTGAAAAGAAACAAACG
1120 GCGCGGGCCCTCAGGTTCTCCCTATCGAAGCGGTCTATGGAGATAGTTGGATACTCGGCCATCTGC-
CCCTCGAAAGAACTCATAGCGCCGCCGATCCCAGAGTCCGGGACCCCAAAACCGCAGCTGAAGCCAAGGC-
CAGCCCTGACCGCGCCGCCACTTCCGGGAAGCCGCGCGCTGCCTCGCCATTGGGCGGCCGAACGCAGCCACGTC
CAATCAGAGGAGTCCGGAGACCGGGGGCAAAGTCAAGGAGCATCC
1121 cgtccgcggcTCCTCAGCGTCCCCCTTTACGGTCTGGGCGGACTGCGGGGGCTGGGGAGGTTCTGGG-
GACCGGGAGAGTGGCCACCTTCTTCCTCCTCGCGAAGAGCAGGCCGGGCCTACCCGTCCGCCCGCTCTGC-
CGTCCGCTGGCCGGCCGACTGCTGCCCGATCACTCCTGAGGCCGCCGTTGGGCGACAGGGCGGTGCGGGAG-
GAGGACTGCGCAGGCGCAGTGGGCCAGGCGGCCCGGCGACCAATCGG
1122 GGAGGCGCCCAGCGAGCCAGAGTGGTGGCTGGTCCCGCGCGGTGAGTGGGATTGGGGCACTTGGG-
GCGCTCGGGGCCTGCGTCGGATACTCGGGTCCGCTCGGGAGCGCGCTGGCCGCAACGAGGGCGGCGCGGGC-
CCGGGCGATGGCGTGGCTTGCGTCTCCCGCCTccgggcagggcctggccgccgggcgggggcgggagggccacg
cgggcccagggtggggccgcggcctgcgcggcgggcgggccgggt
1123 CGCGCAGGGGGCCTTATACAAAGTCGGAGAAGTAGCTGGGTCGCTGGCCGGCCAGGGACTCAAGC-
CGCCTCAGGTGAGCGCTCCTTGGCGCTACTTCCGGTCTCAGGTGAGGCCGCCGGAAGCGGGCACTTGGC-
CCTAAGACCCGCTACAGTGCGTCCTCGCTGACAGGCTCAATCACCACGGCGAGGCCAAggcgcggggccgcggc
ccgcccgAGAAGCCTGAGCTGGGCCCCGACACCCCCTGCCCGACATT
1124 CCCCACCCCCTTTCTTTCTGGGTTTTGATGTGGATGTCTTTCTATTTGTTCAGGAAATTGTGACGT-
GTGTTCTGGGCAGGGTTTGAGGTTTTGGAACATTTTCTAAAAGGGACAGAGAGCACCCTGCTA-
CATTTCCTAATCAAGAAGTTGGCGTGCAGCTGGGAGAGC
1125 GCGCGTTCCCTCCCGTCCGCCCCCAAgccccgcgggcctcgcccaccctgcccgccgcccctccgc-
cggcggccgcccTCTGCGGCGCCCCTTTCCGGTCAGTGGAGGGGCGGGAGGAGGGGCGGGGGTGCGCGGG-
GCGGGGGGAGAAGTCCTGGAGCGGGTTTGGGTTGCAGTTTCCTTGTGCCGGGGATCCTGTCCCCTACTCGCCAG
CGCCAGGCTCCTCC
1126 ccggcggAGGCAGCCGTTCGGAGGATTATTCGTCTTCTCCCCATTCCGCTGCCGCCGCTGCCAG-
GCCTCTGGCTGCTGAGGAGAAGCAGGCCCAGTCGCTGCAACCATCCAGCAGCCGCCGCAGCAGCCATTACCCG-
GCTGCGGTCCAGAGCCA
1127 GCCTGGTGCCCCGAGCGAGCCGGGAGTAGCTGCGGCGGTGCCCGCCCCCTCTCTCCGC-
CCCTCCAGCGGAGCTGGTCTCCGGCCGGGCACCGTCGCGGGCCCCCCTGGCCCGGCCACCTGGGACCGTGCT-
GGGGAGTCTGCCACTTCCCTCTCTCCCCTGGCCCGCAAAGTTTTGGCGGAGCCATCGCTGGGGCTGAGCGCGCC
CCCGGGGGGAGATCGGGGAGCGCCCGATGCCGGGCGGCCGGAGCCATTGAC
1128 GGCGGCGGCGCTACCTGGAGGCGCGGTGGCGGGCAGGTGCCCGAACTGCACGGCGATGCAGAG-
GTCGTTGTCCAGGGGGAACTTGTGGCAGTGCAGCATCTCAGGCCAGGGGAAGCCGTAGGCCTCCATGAGCG-
GCGCGCAGCCGGCGCGCACGGCCTCGCACAGCGAGCGGCACGGGTAGATGGGCCGGTCGAGACAGACGGGCGCA
AAGAGCGAGCACAGGAAGACCTGCGTATCCGAGTGGCAGCGCTTGGC
1129 TGGTGGCCAGCGGGGAGCGCCCGGGCGCCATCGGCGCGTCCTGCTCCACCAGGGCGACCCTGG-
GCGCTGAGAAGCGGGAATCTTCCTTGGGGACCAGGGCGACGCCTCCTGCTGCCGCCCCCGGCGGGACAGC-
CGCGGCTCCTCCTCCAGCCGCCGCGCCACCCAGAGCCCGAGGTTTGCCCTTCAGAAGCGGACCCGCAGACTCCT
CGGACTCAGAGCCATCCTCCTCCTCAACCTCCACCGCAGCGGCCTGCG
1130 GCGGCACTGAACTCGCGGCAATTTGTCCCGCCTCTTTCGCTTCACGGCAGCCAATCGCTTCCGCCA-
GAGAAAGAAAGGCGCCGAAATGAAACCCGCCTCCGTTCGCCTTCGGAACTGTCGTCACTTCCGTCCTCAGACT-
TGGAGGGGCGGGGATGAGGAGGGCGGGGAGGACGACGAGGGCGAAGAGGGTGGGTGAGAGCCCCGGAGCCCGAG
CCGAAGGGCGAGCCGCAAACGCTAAGTCGCTGGCCATTGGTG
1131 CTCGGCGATCCCCGGCCTGAACGGGTAGGAGGGGTTGGGGGATTCCGCCATCCCTTGTTTTGAG-
GCGGGAACGCAACCCTCGACCGCCCACTGCGCTCCCACCCACACCCAGAGTAATAAGCTGTGATTGCAGGCT-
GGGTCCTCACCGTCTGCTCGCCAGTCTTCTCCTTTGAGGACTCAGAAGCCAAGGGTTGCGGGAGGCACCA
1132 CGCAGGGAGCGCGCGGAGGCCCGCAGGGTGCCCGCCTGGCCGCAGAGGCCGCGACGCCCCCTCCGC-
CACCCTCGGGCCGCCGAAAGAACGGGCAGCCGGGAAATCCCGTGTCCCCACTCGTGGCAGAGGACGCTGTGGG-
GCGGGCGGGCTGCGGGCTCCCGGCGCCTTCCCGCAGAGGCGGCGACAgcggccgccccccccgcggggccgggc
cggggAACTTTCCCCGCCTGGAGCCGGGC
1133 GAAATACTCCCCCACAGTTTTCATGTGATCAGGAATTCAGCATAGGCTATAAGACGGAGTGCTCCAT-
GTCAATAGAGAATATTTCCACAGGTGTGCTAGGCACTTGTGGTAGATGTTGCAGGGAAGTCAGGACTGGG-
GACAGCTTGGTCCCTACTTCAAGGTTACAGTCTAGGAGCTGAGAGTGGCAAAGTGACCTGATTCTACAGGGTAA
AAGCCCCAGAGATAAATGACATAGGTCCAGGTCAGCCAGCATTG
1134 CCGGGCGCACGGGGAGCTGGGCGGACGGCGGCCCCCGCCTCCTCCGGGGACGCGGCAC-
GAGACGCGGGGACGCGCGGACGCCACGCTCAGCGGCCGCCCCCGGCCTCCGCGCCGCCTTCCTCCCGG-
GAGCAGCCCCGACGCGCGCGGGCCCGGACCGCCGGGGTTGTCATGGCAGCAGCTCCATCCCTGACCGCCACTTT
CTCCCGGTGCCGCCTCGGAGCGAGCGGGCTGGCGGGCGGCGCGGACTGCGCGCTC
1135 gcggcggcgTCCAGCCAGAGCCCTGTGGAAGCGGCGGCGACACTTGGGCTGGGCAGTGTCTCTGAT-
GCCTCCCAGCGCCAGCGACTGCTCTTATTCCCGCCGCTGTGGGTCGGGAAAGTTCCGCCAGTGCACAGCAAC-
CAATGGGCGGAGGGGTCCTTTGCCCCTGGGTTGCGTCACCCTCATGCTTCCAGAACCTGGAGGATCCAGCAGGA
CCGTCCCACTTGTATTTGCATTGAGGTCATTGATGGAAATGGT
1136 GGGTCGCCGAGGCCGTGCGCTTATAGCCGGGATGACGCCGCAGTTGGGCCGGATCAGCTGAC-
CCGCGTGTTTGCACCCGGACCGGTCACGTgggcgcggccggcgtgcgcggggcggggcggagcggggcctg-
gcctgggcggggcAACCTCGGCGCACGCGCACAgcgcccgggcggggggcggggTGGTGGTGCGCCTGCCGCGC
CTACAGTTCCCGCCGCTCGCGCC
1137 CGCGCCTGATGCACGTGGGCGCGCTCCTGAAACCCGAAGAGCACTCGCACTTCCCCGCGGCGGT-
GCACCCGGCCCCGGGCGCACGTGAGGACGAGCATGTGCGCGCGCCCAGCGGGCACCACCAGGCGGGCCGCT-
GCCTACTGTGGGCCTGCAAGGCGTGCAAGCGCAAGACCACCAACGCCGACCGCCGCAAGGCCGCCACCATGCGC
GAGCGGCGCC
1138 ccgggagcgggcggaggaagggccgggcgtccggcgcaagcccgcgccgccccagcccoggccccg-
gcccggcccgcACACGCCGCTTACCTGGAAGCCGGCGACGCTGCCGCCCACCTCCCTGCTGCGTGTCGCAAAC-
CGAACAGCGGGCGTTGGCCCTCCTGCCGGACACTCCTCTGCCAGCGCCGCTCTGGCCGAGTCGCGGGGGCCGAA
TGTGCGACGGGGCAGAGCGGG
1139 GGGGCGCACCGGGCTGGCTCCTCTGTCCGGCCCGGGAGCCCGAGGCGCTACGGGGTGCGCGG-
GACAGCGAgcgggcgggtgcgcccgggcgcggcggcggcAGCGTCGGGGACCCGGAGCTCCAGGCTGCGCCT-
TGCGCCCGGGTCAGACATTATTTAGCTCTTCGGTTGAGCTTCGATTGGTCAAACGGCGCCGccccccccccccc
gccccccgccccccgctccccGCTCGCCCGCGCTAC
1140 GCCACGGGAGGAGGCGGGAACCCAGCGAGGCCCCCGAgggctggggggaccggccggccg-
gacaaagcggggccgggccgggccggggcggggccgtgcggggcTCACCGGAGATCAGAGGCCCG-
GACAGCTTCTTGATCGCCGCGCCGTTGGCGCTGGCGGCCGCGGTGCCGGCCGCGGGACGTCCCGAAATCCCCGA
GTGCAGCTGGTCAGCGAGAGGCTCCTGGCCGCGCTGCCCCTGGTTCGCGCCCTGCT
1141 cgggcatcggcgcgggatgagaaaccaacctgatacttatcgtgtgccgagttccctcct-
tgtatcctgactaagcacagcgaataaccctgtccttgttctaaccccaggtcttgaagaaatact-
gtcccagctgagccccgcgtttacaagatgaagaggcgccccagatgcgctgaaagaaaggccaaagctcgtgc
ctccttccactgcctgcggtagaacctggtcccgcatagcttggactcggataag
1142 acaccgccggcgcccaccaccaccagcttatattccgtcatcgctcctcaggggcctgcggcccggg-
gtcctcctacagggtctcctgccccacctgccaaggagggccctgctcagccaggcccaggcccagccccag-
gccccacagggcagctgctggcagggccatctgaagggcaaacccacagcggtccctgggccccaacgccaggc
agcaaggactgcagcgtgcctacctgtgcagctgcaacccag
1143 CCCCAACAGCGCGCAGCGAACTCCACTGCCGCTGCCTCCGCCCCAGAGACACGTTGCAGGCCA-
GAGCGGCCGGGGCGCGGGGCATCACGGGACGGCCTCACCTGGCCTCTTGGAGGACTCCCGAAGCCCGAGGC-
CGCCAACCGAAGGAGGCCCCGCCCCCGGAGGCACCGCCTCGCCTCTTTCCGCCAGCGCCCGCAGGACCCGGATG
AGAGCGCACGCTTCGGGGTCTCCGGGAAGTCGCGGCGCCTTCGGATG
1144 CCCCGCTGGGGACCTGGGAAAGAGGGAAAGGCTTCCCCGGCCAGCTGCGCGGCGACTCCGGG-
GACTCCAGGGCGCCCCTCTGCGGCCGACGCCCGGGGTGCAGCGGCCGCCGGGGCTGGGGCCGGCGG-
GAGTCCGCGGGACCCTCCAGAAGAGCGGCCGGCGCCG
1145 CCCGGGGGACCCACTCGAGGCGGACGGGGCCCCCTGCACCCCTCTTCCCTGGCGGGGAGAAAGGCT-
GCAGCGGGGCGATTTGCATTTCTATGAAAACCGGACTACAGGGGCAACTCCGCCGCAGGGCAGGCGCG-
GCGCCTCAGGGATGGCTTTTGGGCTCTGCCCCTCGCTGCTCCCGGCGTTTGGcgcccgcgccccctccccctgc
gcccgcccccgcccccctcccgctcccATTCTCTGCCGG
1146 CCCGCGGAGGGGCACACCAggcgggtgttggggaggacgcagagggctggggctggagcccag-
gcggggcagggggcggggcggagctgggtccgaggccggCGGGGGCGCCTCCATCCCACGC-
CCTCCTCCCCCGCGCGCCCGCCCGCTCTCGGGTGACTCCGCAACCTGTCGCTCAGGTTCCTCCTCTcccggccc
cgccccggcccggccccgccgAGCGTCCCACCCGCCCGCGGGAGACCTGGCGCCCCG
1147 GCCCACGTGCTCGCGCCAACCCCTACGCCCCAGCGCGCCTTCTCCACCCACGCACGGGCCTCG-
GACGCATTTCCAGCCCCGGCGTTGGTTGTGGATGCTGGACATCCACCGCCTCCAGGCAGTTTCGCCGTCACAC-
CGTCGCCATCTGTAGCCAAAGCAAAACATATCCTAACTGAGACTTTGCAGCTCTTGTGGCCACTCTGGGCTCAC
CGGGAACATGAGTGGAAGAGCCCGAGTGAAGGCCAGAGGCATCGC
1148 GGCGGAGCGGCGAGGAGGAGGAGCAGGAGCGCGCAGCCAGCGGGTCCACGCATCT-
CAGCACTTCCAGACCAACTCCGGCACCTTCCACACCCCTGCCCGGGCTGGGGGCTCCGAGAGCGGC-
CGCGAAGCGACTCCGATCCTCCCTCTGAGCCTTGCTCAGCTCTGCCCCGCGCCTCCCGGGCTCCGGTCCGCGCG
GCGGGGTCCCTGCTCCTGCGCCCCGGGCGCGCTTCCCGGACACCCCGGTCCCCGCAGCC
1149 CCTCGCCGGTTCCCGGGTGGCGCGCGTTCGCTGCCTCCTCAGCTCCAGGATGATCGGC-
CAGAAGACGCTCTACTCCTTTTTCTCCCCCAGCCCCGCCAGGAAGCGACACGCCCCCAGCCCCGAGCCGGC-
CGTCCAGGGGACCGGCGTGGCTGGGGTGCCTGAGGAAAGCGGAGATGCGGCGGTGAGGCGCGGCTTGGGCCG
1150 caggcgcgccgATGGCGTTTCTGAGGTGACGCCGCCCACACCGGGCTTCTCCGGGGGCGGAG-
GAAACACCTATGAACCCTCCGGCAGCCTTCCTTGCCGGGCGCCAGGTAAGCAGCGGTTccgggcgcgg
1151 CTCCCGGCTTCTGCATCGAGGGCCTTCCAGGGCCAGCCCTTGGGGGCTCCCAGATGGG-
GCGTCCACGTGACCCACTGCCCCCACGCCCGCGCGCGGGCCCCAGCAGCCCCAGAGCTGCGC-
CAACTTCGTTCACTCCGCGCTCACCTTACGGGGGTCCCCGCGTGACCGCATGGGGTAGCCCCTGCTCCCACGCT
CCCGGCCGA
1152 CGGTCCGCGAGTGGGAGCGGCTGCTTGTGGGCAGGGTGGACGCGGGGCCACGTCTTGGCCG-
GCGTTTTGCGGGGTCTTCCTGTTCTGAACGCGCGTAACTTTTGCCTCAGTATCTCACTTCTTGGAATCCGGCG-
GCGTTCACGTGTGTGCTCCAGAGAAGGGCGCCAGAGGGTATTCCCTGAAAGTGAAAGGTCGGCGAAAGAGGAGT
AAAGACGGCGAGACGCGTCCACGCAGGGGGAGTCTGTGCGGTTTGGA
1153 GCAGCGCCGCCTCCCACCCCGGGCTTGTGCTGAATGGGTTCTGATTGTGCACGGGGTGCACACTGG-
GCATTTCTTGGAAGGGGCACACTGacgcgcgcacacacgcccccgacgcgcacgcgccccgcgcgcact-
cacactcacccccgcgcacactcacccccgcgcacactcacgcTGCCGCCGCGCTGAGGTGCAGCGCACGGGGC
TTCACCTGCAACGTGTCGATTGGACGGATGGGCTCGGCGCGTGGGT
1154 CGACCGTGCTGGCGGCGACTTCACCGCAGTCGGCTCCCAGGGAGAAAGCCTGGCGAGTGAG-
GCGCGAAACCGGAGGGGTCGGCGAGGATGCGGGCGAAGGACCGAGCGTGGAGGCCTCATGCCTCCGGGGAAAG-
GAAGGGGTGGTGGTGTTTGCGCAGGGGGAGCGAGGGGGAGCCGGACCTAATCCCTCACTCGCCCCCTCC
1155 CCCGGGCTCCGCTCGCCAACCTGTTACTGCTGCAGAACGCCAGGAAGCTCAGCCTG-
ATCCCACAGATTAGGGTAAAATATCCCGGGGGGCCGAAGTGGAAACCGGAGTTGCGTCATTGCTCCCAC-
CCGATATCACCTTGGCAGCGACCGCGGCTGACCACGTTCCCGGCCTGTCGCGAATCTCACCCAAGGGAGCTGAG
TCTCAGCTTCCCTGGTCCCTGGTCCCGAGTTCCGCCTTCCCCCCCCGCCCCGTGGC
1156 CATGGGGTGCTCATCTTCCCGGAGCTGAGGAGCTGGGGCGGGCATGGGGTGCTCATCTTCCTG-
GAGCTGAGGAGCTGGGACGGGCATGGGGTGCTCATCCTCCTGGAGCTGAGGATCTGGGGCGGGTGTGGGAT-
GCTCATCCTCCTGGAGCTGAGGAGCTGGGGCGGGCATGGGGTGCTCATCTTCCCGGAGCTGAGGAGCTGGGGCG
GGCATGGGGTGCTCATCTTCCCAGAGCTGAGGAGCTGGGGCGGGCAT
1157 CCGAGAGCCGGAGCGGGGAGGGCCCGCCAAGTCAGCATTCCAGCCGGTGATTGCAATGGACAC-
CGAACTGCTGCGACAACAGAGACGCTACAACTCACCGCGGGTCCTGCTGAGCGACAGCACCCCCTTGGAGC-
CCCCGCCCTTGTATCTCATGGAGGATTACGTGGGCAGCCCCGTGGTGGCGAACAGAACATCACGGCGG
1158 CCGCTGCAGGGCGTCTGGGCTTCTGGGGGCAGAGAAGACTCACGCAGTGAGCAGTCCGCAAGC-
CCGCTGGCGGCAGCGGCGGTGCTCCGTCCAGGGCGAGAAGCTGCAGCGCTCGGGCCGGGGTCCCTCCT-
GTCGCAGCAGCTCCTCGACGAGTGCAGGGGCAGCCACG
1159 gcgctgccccaagctggcttccgctgcctgctctgggctgggctgggctgggctgggctggtag-
gacctgctcccagggcgggaggggacacacccacctcagcagatctcagcccatccctcccagctcagt-
gcactcacccaaccccacacgggccaaggagagagtgaagaggaagcattgccctcagaggccttcacggactg
gccaga
1160 CAGGATGCCAGCGTGACGGAAGCAAGTAACCACCAAGGCATCACCACTGGCGCTAAACTTCT-
CACTTCCGGAGTGCTGCAAGCGCAGAAAATATACGTCATGTGCGGAGGCGGAGCTTCCGCCCT-
GCGCGTCGTATTAGACGGAAACCGAGCGGGCCCATTTTTCATGGGTTTGCGGACCCACCAGCGAAGGCGGGAGG
TGTCGCAGGGACATCTTCTGGCTGTTTCCGTCGCCTGCGTGGCCCTTGCACCCCGG
1161 GGCGGTGCCATCGCGTCCACTTCCCCGGCCGCCCCATTCCAGCTCCGGAGCTCGGCCGCAGAAACGC-
CCGCTCCAGAAggcggcccccgccccccggcccAAGGACGTGTGTTGGTCCAGCCCCCCGGTTCCCCGAGAC-
CCACGCGGCCGGGCAACCGCTCTGGGTCTCGCGGTCCCTCCCCGCGCCAGGTTCCTGGCCGGGCAGTCCGGGGC
CGGCGGGCTCACCTGCGTCGGGAGGAAgcgcggcg
1162 GTGGGTCGCCGCCGGGAGAAGCGTGAGGGGACAGATTTGTGACCGGCGCGGTTTTTGTCAGCT-
TACTCCGGCCAAAAAAGAACTGCACCTCTGGAGCGGGTTAGTGGTGGTGGTAGTGGGTTGGGAC-
GAGCGCGTCTTCCGCAGTCCCAGTCCAGCGTGGCGGGGGAGCGCCTCACGCCCCGGGTCGCT
1163 GGCGGAGGGCCACGCAGGGGAGACAGAGGGCCTCCACAGGGGCCAGGGGGAAGTGTGGGAACT-
GAGTCTCCCCCAGACGAGGCTTCACTTGGACACGTGTATGTGGTCACCGGGGGAAACTGAGCAGTTCT-
GACTTCCCTTGGAAGGCGTGGAATTAGGAGAGAAATCCCTTAGTGGGCACACGAGTGAGTGCCCCTTGGAGTCC
ATCTGTGGAAAGGAAGCGGTGATAGGTTTCCGCA
1164 GTCCGGGGGCGCCGCTGATTGGCCGATTCAACAGACGCGGGTGGGCAGCTCAGCCGCATCGCTAAGC-
CCGGCCGCCTCCCAGGCTGGAATCCCTCGACACTTGGTCCTTcccgccccgcccttccgtgccctgc-
ccttccctgcccttccccgccctgccccgcccggcccggcccggccctgcccaaccctgccccgccctgcc
1165 CGGCCTGCGGCTCGGTTCCCGCCTCTTCCCCACCCCCAGCCCCGCGCTGCCCTCTCGGTCCCCCT-
GCGCGACCCCAGGCTCGGCCCCTGCCCGGCCTGCCGGGGTGGCCCGGGGGTGGGGTGGGAGCCCTTTGTCT-
GCGTGGGTCGCCTCGCGTCTCTCTCTCCCACCCCACCTCTGAGATTTCTTGCCAGCACCTGGAGCCCGAAACCA
GAAGAGTTGTCAGCCCAACAAGAATATAGGATCACCGGCCCATCA
1166 GGGAACCGTGGCGGCCCCTCCTGGCCCTGGGAGGTGGTCCCGCTGCCCCCCTGACTTCCGTGCACT-
GAGCCCCTGGCCCTGCCCGCAGCCCCGGCCCTGGACTCGGCGGCCGCGGAGGACCTGTCGGACGCGCTGTGC-
GAGTTTGACGCGGTGCTGGCCGACTTCGCGTCGCCCTTCCACGAGCGCCACTTCCACTACGAGGAGCACCTGGA
GCGCATGAAGCGGCGCAGCAGCGCCAGTGTCAGCGACAGCAGC
1167 cggggaaggcggggaaggcggggaaggcggggaaggcggggaaggcggggaaggcggggatggT-
GAGACggtgaggcggggcggggcctggggcgcgggcggggcggggaggggtggggcggggcCCGGGGGCGCTG-
GACCGCGGTGCTGCGGGACGGATTCCCGGCGGCTGCGCGGGAGGCTGCGAGCCTGGGCTCCCAGGGAGTTCGAC
TGGCAGAGGCGGGTGCAGGGAACCCGCGGCTCGGCGGGAGCGTG
1168 cctcccggtttcaggccattctcctgcctcagcctcccaagtagctgggactacaggcgcctgccac-
cactcccggctaattttttgtatttttagtagagacgggggtttcaccgtgttagccaggatggtctcgatct-
gcttacctcgtgatccgcccgcctcggcctcccaaagtgctgggattacaggcgtgagccaccgcgtccggcAT
ATTT
1169 AGCCCGCGCACCGACCAGCGCCCCAGTTCCCCACAGACGCCGGCGGGCCCGGGAGCCTCGCGGACGT-
GACGCCGCGGGCGGAAGTGACGTTTTCCCGCGGTTGGACGCGGCGCTCAGTTGCCGGGCGGGGGAGG-
GCGCGTCCGGTTTTTCTCAGGGGACGTTGAAATTATTTTTGTAACGGGAGTCGGGAGAGGACGGGGCGTGCCCC
GACGTGCGCGCGCGTCGTCCTCCCCGGCGCTCCTCCACAGCTCGCTG
1170 CCCCAGCCACACCAGACGTGGGAGCTTAGGATGAGAGCGGCCTCCGAGCAGATGATCACCCTG-
GAACGACGCCAAACGCGACCCCTACCAGAGGACTCGCGCATGCGCAGCGCAGCCTGGGCCGGCGGCCTGG-
GCAGGATGTAGTCGCGAGCAGCGCACCGGGCCCACGCCAGCGGAATTGCGCATGCGCAGGGCCGCCTCTGCCTG
CGGCCTGGGCTGGG
1171 tgggcttcctgccccatggttccctctgttcccaaagggtttctgcagtttcacggagcttttca-
cattccactcggtttttttttttttgagactcgctctgtcgcccaggctggaatgcagtggcgcgatctcg-
gctcactgcaagctccgcctcccgggttcacgccattctgcttcagcctcccaagtagctgggattataggcgc
ccgccaccacgcccggctaatggctaattttttgtattttttttt
1172 CCGCGCTGGGCCGCAGCTTTCCGGAGCGCAGAGGAAGCTGGCCAGCCTGCAGATAGCACTGG-
GAAAGACACCGCGGAACTCCCGCGAGCGGAGACCCGCCAAGGCCCCTCCAGGGACCTGTCTTCCTAACTGC-
CAGGGACGCCGAGCCAACTC
1173 gcatggcccggtggcctgcactccagtgaggtggctgaactctgaccagccaagagaaaac-
ccccctctccgccccaaacagctccccactcccccagcctgcccccaccctccccacattccagtctttcact-
gtcgccccaggcaacttggctgcccaagaccaagccccaccaagaagctggagggccaggcaagtccaggatgg
gcaagcagggaagcacgagagggagaaacagaggtgaggaaggaagg
1174 GGGCAGGGGAGGGGAGTGCTTGAGTATTGGGGCTACACTCACCACAAGAGCAGCAAACAAAGCACT-
GGGTGTGGTAGAGGCTGTCCAGGGCCTGGCAGGCATTGCTCTGCCCATAGATGCCTTTGTTGCACT-
TGATACAGGTGCCTGAGAAGAGAAAAGTGTCACACTCTACTCCCCCAGGTCAAAACCAGG-
GATTCCCAAGCTTTCCTGACTGCCCTTTCCTGATGTGCCAGGGGTCA
1175 CCCCGGCGCCTTCCTCCTCCGGACTCCGCTGCATGCCTCGCTTGCGGTGGTCCGATCG-
GCTTTCTCCGGGAGCTTTCCTCTCCCCGCCACGCCCCCGTCTCCCCGGCCGTCCCCGCGCCTCTCG-
GCCTCCCTTTCATTAGCCCCACATCTGTCTTTCCCATGGGAGGGAGCGCGCGCCTTCCGCCCAGCGGGGCCCTT
AGCAGAGCCTCTCCAATCCTCGGCGCCTCCCCTACACAGGGTTCGCTGGGCCGTTCT
1176 CCACCGCGCTTCCCGGCTATGCGAAAGTGAAAACGAGGGGCGCCCAAGGCCCT-
GCTTCTTCCCCCTTCCTCTTCCCCTTGCCCAGCCGCGACTTCTTCCTCACTGATCTCCCGGGGGCG-
GAGACGCTGAGTTCCCCGGAGACGAGTTAGTCACCAAGAAGAGGCGGTGACAGAGAGCGCGGCTCGCGTCGCAC
TCCGAGGCC
1177 CCGCATCTGACCGCAGGACCCCAGCGCTACCAAGTGCCTGTTCTTGGACCCCCAGCCGAGCAGGGG-
GAAGCATCCCCAGCTCCCGCACCCAAGTCCCTGGCGCCGCTGCCGGGCCGCCCTCCCTGATGC-
CCAGCGCGCAGCCTGCCGGCGCCGCGCCTTCTGGACGGCTCTCGCCGCACCTCCTGAGCTCAGCCCGCGGCCCC
GCAGTGGGGCGGCCTCACTTACTGGCGGGGAAGCGCGGGTCTGGGTTGGCGC
1178 GCGGACACGTGCTTTTCCCGCATTAGGGGGGGTCTcccggcgcgcgccccgccgccACCTGTTGAG-
GAAAGCGAGCGCACCTCCTGCAGCTCAGGCTCCGGGCGCCAGCCCTGCCCCGCAGCCCCAGAGC-
CCGTCGCAGCTCGGGTGGTCCCTCCCCGGCCCAGCGCTCGCCGCCTGCTCTTCGCCCTGCAAGTTTCAAGAGGC
AGTTATTTCTCGCAGCCTCCGCGCTTGCA
1179 GAGCTGGAAGAGTTTGTGAGGGCGGTCCCGGGAGCGGATTGGGTCTGGGAGTTCCCAGAGGCG-
GCTATAAGAACCGGGAACTGGGCGCGGGGAGCTGAGTTGCTGGTAGTGCCCGTGGTGCTTGGTTCGAGGTGGC-
CGTTAGTTGACTCCGCGGAGTTCATCTCCCTGGTTTTCCCGTCCTAACGTCGCTCGCCTTTCAGTCAGGATGTC
TGCCCGTGGCCCGGCT
1180 GGCCGCCAACGACGCCAGAGCCGGAAATGACGACAACGGTGAGGGTTCTCGGGCGGGGCCTGG-
GACAGGCAGCTCCGGGGTCCGCGGTTTCACATCGGAAACAAAACAGCGGCTGGTCTGGAAGGAACCTGAGC-
TACGAGCCGCGGCGGCAGCGGGGCGGCGGGGAAGCGTATGTGCGTGATGGGGAGTCCGGGCAAGCCAGGAAGGC
ACCGCGGACATGGGCGGCCGCGGGCAGGGCCCGGCCCTTTGTGGCCG
1181 GCGCCCGGTCAGCCCGCAGCGCCCGGCCAGCCCGCAGCGCCGGAGCCCGCAGTGCGTGCGAGGG-
GCTCTCGGCAGGTCCAGACGCCTCGCCGAGCCCAGCCCGCAGCTccccgggccgcgccgcgcccgcccACAGG-
GCCCACAGCCCTGCTTCGGCTCTCAGGGCGGTCACCTGGGATGGGG
1182 CCCGCCAGGCCCAGCCCCTCCCTGGCCAGCCCCGTCCTTGTCCCCAAACTgggcccgcccggccgc-
caggccgccgggcctccggggcccTCGCGCATCCGGCTCCGAAAGCTGCGCGCAGCCATCATCAGGGC-
CCTTCTGGTGTTAGAAGAGACCCCGGCATCATCTTTTCGTCGCGTGCTTCCCCCAGAGTCA
1183 CGATTCTTCCCAGCAGATGGCCCCAAAGTTCAGTTCCTGAATTGCCTCGCGGAGCCGCGGGCT-
GCAACGTGAGGCGGCCGCTGCCAGTCGACTCAACCACCGGAGTGGCCCCTGCAGTTGGATAGCAAC-
GAGAATCCTCCAGGGGTGCAGGGCGACGGCTTCGGCCGCACC
1184 CGCACACCGCCCCCAAGCGGCCGGCCGAGGGAGCGCCGCGGCAGCGGGAGAGGCGTCTCTGTGGGC-
CCCCTGGCAGCCGCGGCAGGAAAGGGCCCGAAGGCAGCGAAGGCGAACGCGGCGCACCAACCTGCCGGC-
CCCGCCGACGCCGCGCTCACCTCCCTCCGGGGCGGGCGTGGGGCCAGCTCAGGACAGGCGCTCGGGGGACGCGT
GTCCTCACCCCACGGGGACGGTGGAGGAGAGTCAGCGAGGGCCCGA
1185 AGGCCCCGAGGCCGGAGCGGCGGAGGGGGCGGCCCCTCCCACAGGGTCTTCCCACCCACAGGGCAC-
CCAGGCGCAGCGGAGCCAGGAGGGGGCTTACCCGCGGGCAGGGACGGAGCACGCCGGGGCCCTGGAGGG-
GCGACGCTCGCTCGTGTCCCCGGTCCCCGTGGCC
1186 GGGTTCGCGCGAGCGCTTTGTGCTCATGGACCAGCCGCACAACTTTTGAAGGCTCGCCGGCCCATGT-
GGGGTCTTTCTGGCGGCGCGCCGCCTGCAGCCCCCCTAAAGCGCGGGGGCTGGAGTTGTTGAGCAGCCCCGC-
CGCTGTGGTCCATGTAGCCGCTGGCCGCGCGCGGACTGCGGCTCGGCGTGCGCGTGTTCCCGGCCGTCCCGCCT
CGGCGAGCTCCCTCATGTTGTCGCCCTGCGGCGCCC
1187 CCAGTCTCCCGCCCCCTGAGCATGCACGCACTTTGGTTGCAGTGCAATGCTCTGACTTCCAAATGG-
GAGAGACAAGTGGCGGAAAATAGGGTCTTCTCCCACCTCCCACCCCCCCATCCCGACTCTTTTGC-
CCTTCTTTTGGTCCAAGAGATTTTGAAACCGTGCAGAACGAGGGAGAGGGGCAGGCTGCAGCCGGGCAGATAAC
AAAACACACCCCAAAGTGGGCCTCGCATCGGCCCTCGCATTCCTGTAGAG
1188 GAGGAGGCAGCGGACCGGGGACACCCTGGGGGAACTTCCCGAGCTCCGCGACCTCGAAGCCTGGC-
CCTTCCTTCTCCCTGGTCCTACATGCCTCCCTCCCCCACTGTCCGGGGTCCTGGCCTCGACGCCGAGGGGT-
GTCCCTCTCCTCTCCTGGTCAGGGAACGCAGCAACTGAGGCGGCGCGGCCCAGATGAGACGGGAAGCGCCTGCG
GGCCGTGGGCGCGGGTGGAACCC
1189 CCGGCTCCACGGACCCACGGAAGGGCAAGGGGGCGGCCTCGGGGCGGCGGGACAGTTGTCGGAGG-
GCGCCCTCCAGGCCCAAGCCGCCTTCTCCGGCCCCCGCCATGGCCCGGGGCGGCAGTCAGAGCTG-
GAGCTCCGGGGAATCAGACGGGCAGCCAAAGGAGCAGACGCCCGAGAAGCCCAGGTGAGCGGCTGGGCCGCGCC
GGACGGGCGTCGGGGGTCTGGGCCGCGA
1190 CCGCCACCGCCACCATGCCCAACTTCGCCGGCACCTGGAAGATGCGCAGCAGCGAGAATTTCGAC-
GAGCTGCTCAAGGCACTGGGTAAGCTGGTGCAGAGGGCGCGCCCCGACGGGGAGATGCGGCCCGGAGGTGC-
CCTGGTCCCGGAAGTGCCCCGGTCCTGGAGGGGGTGGAAGTTGGGGAGCCCAGGCAGGAGGGAGTCCCCGGGGC
AATAGATCGCCTTGTCTCCCAGGCGCACCGGGTCTCG
1191 TGAGTAAGGATGATACCGAGAGGGAAGAAAAAAATACCCTCTTTGggccaggcacggtggctcac-
ccctgtaatcccagcactttgggaggctgaggcgagcggatcacgagatcagaagatcgagaccatcctg-
gctaacacagtgaaaccccatctctaccaaaaatacaaaaaattagccaggcatggtggcgggcacct
1192 tgggccaggcacggtggctcacccctgtaatcccagcactttgggaggctgaggcgagcggatcac-
gagatcagaagatcgagaccatcctggctaacacagtgaaaccccatctctaccaaaaatacaaaaaattagc-
caggcatggtggcgggcacctgtagtcccagctacttgggaggctgaggcaggagaatcctttgaacccaggag
gcggagcttgcagtgagctgagattgtgccactgcactccag
1193 CCGGCGAAGTGGGCGGCTCCCCAAGCGCCCAGGCTGCGCAGCACGATggccgcccccgccgcgcac-
cgcgtgtgcccgcacgcccgccccctgcgccccggggacgcctctccgcccctccccctgcccctccgcccac-
cgcgcggtcgccccacgccgcgggcgctgcttcgccgcccgggaggccgcctcccgccccgggACCGGATAACG
CCCTAAATCAGCGCAGCTGAGGCGAGGCCGTGGCCCCCGCAG
1194 GCGGCCTTACCCTGCCGCGAGCGCCTGTGACAGCGGCGCCGCTGTGCTCGCGACCCCGGCTCCGG-
GCCTCTGCCGACCTCAGGGGCAGGAAAGAGTCGCCCGGCGGGATGGGCGGGGAGGCTGGGTGCGCGGCGGC-
CGTGGGTGCCGAGGGCCGCGTGAAGAGCCTGGGTCTGGTGTTCGAGGACGAGCGCAAGGGCTGCTATTCCAGCG
GCGAGACAGTGGCCGGGCACGTGCTGCTGGAGGCGTCCGAGCCGG
1195 gtggggccggcgAGGGTCAGGGGCATCGCGGCCGCGACCCCATTCTGCAGCCCCCGAGGCTCGC-
CCGACTCCTGGCTGCCCTGGACTCCCCTCCCTCCTCCCTCCCGCCTCCTCGCCCAGGGCCCGGCTCACCTg-
gcggcggggcgcgggacgccgcgggcgggacggcggggggctccggggcgctccggggcggcTCTCGCGCATGC
TCCGGGGC
1196 CGGCGCGGACCGGCTCCTCTACCACTTTCTCCAGCTGCACTGCCACCCAGCCTGCCTGGTGCTGGT-
GCTCAACACGCAGCCGGCCGAGGAGGTGCGGCCGCGCTGGCGCGGGAGTGAGGGGACTCCGAGAGTGTTGAGG-
GCCTCCTGAGCGGATGCGAGGCCTCTGACAGGGATGGAGGGGCTCTGAGGGGGATTCAGGCCCCTGACACTACG
CGATGACACAGAGAAGGATGGCAGGGGTCCCCAGGGG
1197 GCCCATGCGGCCCCGTCACGTGATGCAAGGATCGCCGGCCTTTCCGCCAGAGGGCGGCACAGAAC-
TACAACTCCCAGCAAGCTCCCAAGGCGGCCCTCCGCGCAATGCCGCTACCGGAAGTGCGGGTCGCGCTTCCG-
GCGGCGTCCCGGGGCCAGGGGGGTGCGCCTTTCTCCGCGTcggggcggcccggagcgcggtggcgcggcgcggg
gTAA
1198 GGGATTGCCAGGGGCTGACCGGAGTGTTGCTGGGAAGGAGCCTCAGCTCCGCTCCAGGTCCTCCAC-
CAGGTAGGACTGGGACTCCCTTAGGGCCTGGAGGAGCAAGTCCTTGCAGGTCCAGTTCCAGGCTGGTGT-
GAAACTGAAGAGCTTCCGCATCTTGCTTGGGTTGGTGGGCTCGGCCCGC
1199 GCCGGAGCACGCGGCTACTCAGGCCGAACCCCGACCCGGACCCGGCACGCGGCCTCGGCGAGGGCGG-
GCGGGAGTGTCCTCCTCCGGGACAGCCGGACTCCCGCCGACTTCTGGGCGGCGGGGAGGGCTCCAGGCCCG-
GCTCTCCCGGGCCCCCGCACGCGATGCGCGGCCCCTGCAGCTGCTCCGTGCCCCGAGACGCGCCCGAGGCCTCG
GACCTCCAAGCGGCCACCGCGC
1200 CCTCGGCGCCGGCCCGTTAGTTgcccgggcccgagccggccgggcccgcgggTTGCCGAGCCCGCT-
GACGTCAGCCCGGGTTTCCCCCCCCCACCGGGGCTTCCCCATCCCCCGAGGCTTCCCGGGAGGGCTGC-
GAGTCCGGGGAGCGTGCGGGGTCGCCACCATCGGGACCCCCAGAGGAGAGAGGACTTGGGGCGGGAGCCGCGCG
GGACGCTGTCCCCCTCCCGCCCCCCAccccatttacagattgggaga
1201 CACAGCGGCGGCGAGTGGGTCGTGCACGCGGATGCGGGGTGGGAGTGGGGGCGCACGCGCGGGCGT-
GGGCGAGCGGGCCCCGGCAGTGCACACACACGGCAGGGGCGGGCGACAGATGCAGTGCGTGCGCCGGAGC-
CCAAGCGCACAAACGGAAAGAGCGGGCGCGGTGCGCAGGGGCGGGCGCCCAGCGGGCTTGGCATGCGCG
1202 CACCTCGGGCGGGGCGGACTCGGCTGGGCGGACTCAGCGGGGCGGGCGCAGGCGCAGGGCGG-
GTCCTTTGCGTCCGGCCCTCTTTCCCCTGACCATAAAAGCAGCCGCTGGCTGCTGGGCCCTAC-
CAAGCCTTCCACGTGCGCCTTATAGCCTCTCAACTTCTTGCTTGGGATCTCCAACCTCACCGCGGCTCGAAATG
GACCCCAACTGCTCCTGCGCC
1203 AGACGGGGCCGGGCGCAGACGCCCCGCCCCGCCCTTGCACCCAGCCCGCTGAGTCCGCACCGC-
CCGCGGTCCCGGCCTGGGCTGTGCGCAGGAGATGGGCCAAGTGCAAGGTCCCTTGAGCGCAGCTGG-
GCGCACACCGCAGGACGGCCCCTTTCGCACCGGCTCGCGAGGGAGGCGCTGTGCCCCCCGTGTGCGGCTTCTCT
CACCCTGCCAGGCCTTCCCAGCTTCCCTGAGGTTGCCTGCTACACCCGCCCC
1204 GCATTCGGGCCGCAAGCTCCGCGCCCCAGCCCTGCGCCCCTTCCTCTCCCGTCGTCAC-
CGCTTCCCTTCTTCCAAGAAAGTTCGGGTCCTGAGGAGCGGAGCGGCCTGGAAGCCTCGCGCGCTCCGGAC-
CCCCCAGTGATGGGAGTGGGGGGTGGGTGGTGAGGGGCGAGCGCGGCTTTCCTGCCCCCTCCAGCGCAGACCGA
GGCGGGGGCGTCTGGCCGCGGAGTCCGCGGGGTGGGCTCGCGCGGGCGGTGG
1205 GCCCGAAAGGGCCGGAGCGTGTCCCCCGCCAGGGCGCAGGCCCCAGCCCCCCGCACCCCTAT-
TGTCCAGCCAGCTGGAGCTCCGGCCAGATCCCGGGCTGCCGCCTCTGCTGCCTTCCCTGAGCGGGAGCG-
GAGCGCAGAGAAAAGTTCAAGCCTTGCCCACCCGGGCTGC
1206 CGGCGGCCGGGTGACCGACCACTGCTTACCAGGAGGGGAGACTGGCAGGGGGGGCTCAAGGAA-
CATCTGGTGGGTGTCCCCTTCACAAGACTCGGCCTGCAGAGTTCGTGCAGGGAGTTCGCACATAGGAGAGCAC-
CGGTCCGGGAGTGCCAGGCTCGTGCCCGGCCGGGGAGAGGAGTGGGAGACTAAGTCGCAGGGCAAGGGCAACT-
GCA
1207 CCACCGGCGGCCGCTCACCTCCTGCTCCTTCTCCTGGTCCGGGCGGGCCGGCCTGG-
GCTCCCACTCCAGAGGGCAGCCGGTCCTTCGCCGGTGCCCAGGCCGCAGGGCTGATGCCCCCGCTCAGCT-
GAGGGAAGGGGAAGTGGAGGGGAGAAGTGCCGGGCTGGGGCCAGGCGGCCAGGGCGCCGCACGGCTCTCACCCG
GCCGGTGTGTGTCCCCGCAGGAGAGTGTGCTGGGCAGACGATGCTGGACACGATG
1208 CGGTCAGGGACCCCCTTCCCCCTTCAAGCTGACTCCCTCCCACAAGGCTCTTCAGATCTCGT-
TGTATTTTGGGATTGATGGGGGAAAAATCCAAATTTGTTTGTTTGCTTCCCTTTTTTCGGTGGTGGGGAAAG-
GTGGCAGGCTTTTTGGGACAACCATGGAGGGGTCCTCCGTCTCGGCCTCTTCGCATATCCCCCTCCGTGATCCT
GCCTTCCCCCCCCACCGAGCCCATCGCAGGC
1209 GGCCGAAGCTGCCGCCCCTCCTCCCAACCGGCGGGTCAGATCTCGCTCCCTTTCGGACAACT-
TACCTCggagaggagtcaaggggagaggggaggggagggggggagggggcaagagagagaggggggagaa-
gaggGATCTTCTCGCTTATTTCATTGTTCCCCCATCTTCAGGGAGCGGGGGCAGCGGCTCCTCAAGGCGGCGGG
CGCCGGCGTCTTCAGAGCGCCATGCGAACCGCGG
1210 GCGGCCTTGTGCCGCTGGGGGCTCCTCCTCGCCCTCTTGCCCCCCGGAGCCGCGAGCACCCAAGGT-
GGGTCTGGTGTGGGGAGGGGACGGAGCAGCGGCGGGACCCTGCCCTGTGGATGCCCCGCCGAGGTCCCGCGGC-
CGGCGGGGCCAGAGGGGCCCGGACGAGCTCTCCTATCCCGAAGTTGTGGACAGTCGAGACGCTCAGGGCAGCCG
GGCCCTGGGGCCCTCGGGCGGGAGGGGGCAGTTACACGGCAG
1211 CGCGGGAGGAGCGGCGAGGCCCTCACCTGGCGCCTTTTATGCCCGCGGCCGGTGGAGGGGGGAAGG-
GAGGAATGGTGTCAGGGGCGGATATCTGAGCCCTGAGGAATTTGCAGGCTCCTGAGAGCAAATATGG-
GCTCTCTCCCCATTGGTCAATTCCCTCCCCTCCCAGAGACCAGAGGCCCCTGCCCTCCAGAGGTGCCCCGCCCC
GGTCCGCGCAGAAGCTCCGACCCGCACTCCCCCA
1212 GCCCACCAGAAGCccatcaccaccagcaaagccaccaccaaagccaccacccaagccagcaccaag-
gccaccaccatatcctcccccaaagccactaccaAAGCTGCTGCTGCTGCTGCTGAAGCCACCGCCATAGC-
CGCCCCCCAGCCCGCAGGCTCCCCCAGAGGAGAAGCGGGAGGATGAGACAGACAGGCCGCCCCCGTAGGTGCTG
GGGGCGCGGCAG
1213 GGGCCATGTGCCCCACCCCACAGCCCCACCCTGCCCTGCCCACCACCCCAAGCCCGGCCCTGG-
GTCCCAGGGTCCCGCCAGGCCCGCTGGGTGGAATGTGGTCATGTTTCAGACTGCCGATG-
GCTTCCACTTCCCAGACAGGCCCAGACGGCCCCGCCAGCAGCC
1214 CCGCCAGCCCAGGGCGAGAGTCAGGGACGCGGCGTCGGGCGAGCTGCGCGGGCCCCGGGGGAG-
GCGCGACCCCGGAGGCACCTGTCCGGATCCCTCCCCGCCTTGCTCAGATCTCTGGTTCGCGGAGCTCCGAG-
GCGCGCTCGGCCCGAACCGCGCGACCCCCAAGTCGCCGCGCCC
1215 gccccctgtccctttcccgggactctactacctttacccagagcagagggtgaaggcctcct-
gagcgcaggggcccagttatctgagaaaccccacagcctgtcccccgtccaggaagtctcagcgagctcacgc-
cgcgcagtcgcagttt
1216 GTGGGGGTCCGCACCCAGCAATAACCCGGGTCTTCCCGCTCCGGCTCCTGCCCCAGTAAGCGTTG-
GACCGGGAGACGCAGTGCTCAGCATCGGTCAGCAGGGGGCGCAAGGACCCCGCCCCGCCGAGTCCGCGC-
CAAAGTTTCTCATCCTCCACCCGCCCACGCTCCGCACCCCCTCCGCGGCTGCCCAGCACCCCCACGGCCCCAGC
A
1217 gggcccccgggTTGCGTGAGGACACCTCCTCTGAGGGGCGCCGCTTGCCCCTCTCCGGATCGC-
CCGGGGCCCCGGCTGGCCAGAGGATGGACGAGGAGGAGGATGGAGCGGGCGCCGAGGAGTCGGGACAGCCCCG-
GAGCTTCATGCGGCTCAACGACCTGTcgggggccgggggccggccggggccggggTCAGCAGAAAAGGAC-
CCGGGCAGCGCGGA
1218 GCCTGCACAGACGACAGCACCCCCGGCGGGGGAGAGCGGCCCCAGCGGAGACTCGGCAGGGCTCAG-
GTTTCCTGGACCGGATGACTGACCTGAgcccggggcccgggcggcgctggccgggcACAGGATGCGCGGCCCG-
GAGAGCGCATCCCGGCCATCCGCCCGCGCTCGGCCCCGCAGCGCAGCTGCTGCAGATCCGCGGGGGCCGCCAC
1219 GGCCGCGCCGGGCTCAGGTTCCACCCCCGGGAGCGCGGGGCGGAGCCAGGCCGGCGCCGAGGCT-
CAGTGCCCTCCCCGCTCCGCGGCGCCGGCTGCGAAGTTGAGCGAAAAGTTTGAGGCCGGAGGGAGCGAGGC-
CGGGGAGTCCGCTCCAGCGGGGCGCTCCAGTCCCTCAGACGTGGGCTGAGCTTGGGACGAGCTGCGTTCCGCCC
CAGGCCACTGTAGGGAACGGCGGTGGCGCCTCCCC
1220 GGGGTAGTCGCGCAGGTGTCGGGCGCGGAGCCGCTTGGCCTCCTCCACGAAGGGC-
CGCTTCTCGTCCTCGTCCAGCAGCTTCCACTGCGCGCCCAGGCGCTTGGAGATCTCGGAGTTGTGCATCT-
TGGGGTTCTGCTGCGCCATCTGGCGGCGCTGAGCGGAGCTCCACACCATGAACGCGTTCATCGGCCGCTTCACC
TTCTCCAGGGGCAGCGTCCCGGGGGCCGCGGGGCTCCCAGCGCCCTCCCGCTCC
1221 tgcaggcggagaatagcagcctccctctgccaagtaagaggaaccggcctaaagga-
cattttctctctctctcctcccctctcatcgggtgaatagtgagctgctccggcaaaaagaaaccggaaat-
gctgctgcaagaggcagaaatgtaaatgtggagccaaacaataacagggctgccgggcctctcagattgcgacg
gtcctcctcggcctggcgggcaaacccctggtttagcacttctcacttccacga
1222 ccggaaatgctgctgcaagaggcagaaatgtaaatgtggagccaaacaataacagggctgccgg-
gcctctcagattgcgacggtcctcctcggcctggcgggcaaacccctggtttagcacttct-
cacttccacgactgacagccttcaattggattttctcc
1223 gcgtcggatccctgagaacttcgaagccatcctggctgaggctaatctccgctgtgcttcctct-
gcagtatgaagactttggagactcaaccgttagctccggactgctgtccttcagaccaggacccagctccagc-
ccatccttctccccacgcttccccgatgaataaaaatgcggactctgaactgatgccaccgcctcccgaaaggg
gggatccgccccggttgtcccc
1224 CCGGCTCCGCGGGTTCCGTGGGTCGCCCGCGAAATCTGATCCGGGATGCGGCGGCCCAATCGGAAG-
GTGGACCGAAATCCCGCGACAGCAAGAGGCCCGTAGCGACCCGCGGTGCTAAGGAACACAGT-
GCTTTCAAAAGAATTGGCGTCCGCTGTTCGCCTCTCCTCCCGGG
1225 CGTCGCCGGGGCTGGACGTTCGCAGCGGCGCTTCGGAAGGGGGCCCCGCGGGAGCAGCCGC-
CCGCGTCTCCAGCAGCTTCCCCTTGCCAGGCGCCGCGCGCGCCCGGTATCCCCGGGTGTCCACCTGTGCGT-
GGGGGGCTGTTTCCCGTCTGTCCAGCCGCGCCCACTTCTCAGGCCCAAAGGCCAGCAGGAAGGGTCCCGGAGGT
GGCTGGGGGCGTCCACCTGAGAAGCTCCGCTCTCGCTCAGACACCCCAC
1226 GGGCCTGCCGCCTCGTCCACCGTCCGTCGTGAGGCCGGCAGCGGACACGTGCTCATCCCACGGGGAG-
GCCCCGCGCAGCGCGGAGGACGCGCCTGAGAGAGAAAAGGGGTTCGGGAGAAGCCCGAGGACCCGGCCCGT-
GACTGGGCGCGCCCTATGCAAATGAGCGGGCGGGGCCCTCGTGTTGCTGAACGAGGGCGGGTTCGCGATGTAAA
TAAGCCCAGAGGTGGGGTCTTTGGAGAGCACTTAGGGCCCGGG
1227 GCACACCGCTGGCGGACACCCCAGTAACAAGTGAGAGCGCTCCAC-
CCCGCAGTCCCCCCCGCCTCTCCTCCCTGGGTCCCCTCGGCTCTCGGAAGAAAAAC-
CAACAGCATCTCCAGCTCTCGCGCGGAATTGTCTCTTCAACTTTACCCAACCGACGACAAGGAACCAGCCTC
1228 GCAAACCATCTTCCCCGACGCCTTCCACATAAGATGCCCTCCTGCGGGCCCTCACCTTTTGACACT-
GCCTCCCACCGCACTGGGGTCAACTCTCACCCAAGGGTTCCGCCACCTTCCACCACCAAACCAGCCTGTCCCT-
GCCACATGCCCCCCGGGCCCCAGCGCTCATCCTCTGCCCAGGCCCGCTCTTGACCCCTGACCCCGGCCTGAC-
CCCGC
1229 GGCCCTCCGCCGCCTCCAACCGCGCACCAGGAGCTGGGCAcggcggcagcggcggcagcggcg-
gcgTCGCGCTCGGCCATGGTCACCAGCATGGCCTCGATCCTGGACGGCGGCGACTACCGGC-
CCGAGCTCTCCATCCCGCTGCACCACGCCATGAGCATGTCCTGCGACTCGTCTCCGCCTGGCATGGGCATGAGC
AACACCTACACCACGCTGACACCGCTCCAGCCGCTGCC
1230 CACCACCGTGGCAAAGCGTCCCCGCGCGGTGAAGGGCGTCAGGTGCAGCTGGCTGGACATCTCG-
GCGAAGTCGCGGCGGTAGCGGCGGGAGAAGTCGTCGCCGGCCTGGCGGAGGGTCAGGTGGACCACAGGTG-
GCACCGGGCTGAGCGCAggccccgcggcggcgccgggggcagccggggTCTGCAGCGGCGAGGTCCTGGCGACC
GGGTCCCGGGATGCGGCTGGATGGGGCGTGTGCCCGGGC
1231 CACAGCCCCTTCCTGCCCGAACATGTTGGAGGCCTTTTGGAAGCTGT-
GCAGACAACAGTAACTTCAGCCTGAATCATTTCTTTCAATTGTGGACAAGCTGCCAAGAGGCTTGAGTAGGA-
GAGGAGTGCCGCcgaggcggggcggggcggggcgtggagctgggctggcagtgggcgtggcggtgc
1232 GCTTGATGCTCACCACTGTTCTTGCTGCTCAAGGGAAACCAAGTATATATTTGTGGATAG-
ATCCTAACTCAGATGATACTGTCAGAATATATAAGATTCCTATACCACATCCTGAACTCTGAAAGT-
TGCAGTTCTACGTAGAAGTTCACTGAGGGTTGTAAGAGTCAGAATGGACTCCATGGAAGTTATGGGGTGTGAAT
CAAACCTCACAGGTGAGTCAGTGGGGAGAAAGAAGCATGACA
1233 ggccaggcccggtggctcacacctgtaatcccagcactttgggaggccgaggtgggcggattgcct-
gaggtcaggagtttgagaccagcctggccaacatggtgaaaccccgtctctactaaaaataccaaaaattagc-
cagtcgtagtggtgggcacctgtaatcccagctattcaggaggctgaggcaggaggatcacttgaacccaagag
gcgggagttgcagtgagcagagatcacgccattgcaccccag
1234 GCGGGACGGGTGGCGGGAAGGAGGGAGGCGCGGCTGGGGAGAGCGCTCGGGAGCTGCCGGGCGCT-
GCGGaccccgtttagtcctaacctcaatcctgcgagggaggggacgcatcgtcctcctcgccttacagacgc-
cgaaacggagggtcccattagggacgtgactggcgcgggcaacacacacagcagcgacagccgggaGGTAAGCC
GCGTCCCAGCGGCTCCGCGGCCGGGCTCGCAGTCGCCCCAGTGA
1235 GCTTGGCCCCGCCACCCAGACCCCTCCCCCGGGGGCGCCCAGCTTGGCCTCTGGGTCCCG-
GCGCACGCGGACCCCAAGTCGGGGAGGCCGGGCTGACCGCGGCCGCCTCCCCGGCTCCGGGTAGGAGGTGG-
GCAGAGAAGGTGGGCTGAGGGGAGGAGAAACTGGGCTGCGGGGGTCCGGGAGGGTGGATTCCGAGAAACTATGT
GCCCAGCTGACCCTGCCCGCCCCGCCGCGGCCCTGCAGTCCCCGGGCCAG
1236 GCGGGGAAGGCGACCGCAGCCCACCTACCGCTGGACGCGGGTTGGGGACCCCGCCGCCCGGC-
CAGCTTTGTTcgggggcccgcggcccctcccgggcccccgcACCGCCTCGGGTGACCCGCGGT-
GTCCCAGCGCGTTGACGCAGCCTGTGATCCCTCGCGAGGCGAGGAGAAGGTCGGGGGCTTGGCTCTGCCTAATG
GCCGCCCGGGGA
1237 gcgcccaaccaccacgcccgcctaatttttgtatttttagtagagacgggttttcaccattttggc-
caggctggtctcgaaccccgacctcaggtgatctgcccaaaagtgctgggattacaggcgtcagccaccgcgc-
ccggccGGGACCCTCTCTTCTAACTCGGAGCTGGGTGTGGGGACCTCCAGTCCTAAAACAAGGGATCACTCCCA
CCCCCGCC
1238 AAAAGCCCCGGCCGGCCTCCCCAGGGTCCCCGAGGACGAAGTTGACCCTGACCGGGC-
CGTCTCCCAGTTCTGAGGCCCGGGTCCCACTGGAACTCGCGTCTGAGCCGCCGTCCCGGACCCCCGGTGC-
CCGCCGGTCCGCAGACCCTGCACCGGGCTTGGACTCGCAGCCGGGACTGACG
1239 CGCAGGTGCGGGGGAGCGTGCGGCCGGGTCCATGCGCCTGCGGGCGGCGGGGGGAGACGCGT-
TGCCTTCGGCCGGGACCACTGCACCTGCCCGCGTGGGTAATGCGCCCGC-
CGCAGACTCCGCGCACGACTCCGCCTGGGAGCGCGTTGGGGGCCGTTGGAGTCCAGCATGGCGCGGACCCCGG
1240 CCCGCCCACAGCGCGGAGTTTAGTCTGCGCGTGCCTCGCTCGAGAACGCGCTCGTGCGCATGC-
CCACAAAGGCCAAGGAGGGAGTGCGCAGGTCACGTGCGCCGGTGGTCAGCGCGCGCATTGCCTGCCCCG-
GAAGTGGTcggcgcgcggcgcggcgcgccTGGGCGCTAAGATGGCGGCGGCGTGAGTTGCATGTTGTGTGAGGA
TCCCGGGGCCGCCGCGTCGCTCGGGCCCCGCCATG
1241 GCAGGGGCCCGGGGGCGATGCCACCCGGTGCCGACTGAGGCCACCGCACCATGGCCCGCTCGCT-
GACCTGGCGCTGCTGCCCCTGGTGCCTGACGGAGGATGAGAAGGCCGCCGCCCGGGTGGACCAGGAGAT-
CAACAGGATCCTCTTGGAGCAGAAGAAGCAGGACCGCGGGGAGCTGAAGCTGCTGCTTTTGGGTGAGTCCAGGG
TCGGTGGGCGGTGGGTGGTGGGCAGTGGGCGGTGGCCAGCCGGCAGGG
1242 CATGACCGCGGTGGCTTGTGGGAAAAGTGGCTCGGAACCCCAAATCCCGGTTAGATTGCAGGCAC-
CGCCGGACGCTGGCTCCCGGAGGTTTTAGTTTTCCCTCTACCAGGAGTGTGAAGACACAGAGACTTAT-
TGCGCTGGCGAAGATGGCTGAGGCGAAGGCGTGTCCGA
1243 GCAGGTGCTCAGCGGGCAGACGCCCCGCCCCGCCCCGCCAGGTTCTGTTGGGGGCGAGGC-
CCGCGCAAGCCCCGCCTCTTCCCCGGCACCAGGGGCGGGCCCAGGTGCGCCCAGGGCCGGGGAGCGGC-
CGCGCAGGTGCCTGCCCTTTGCGCCTGCGCCCAGCTCG
1244 GGTGCGCCCTGCGCTGGCTAAAGTGCGCAAGCGCGCGAGGCTCGGGCCTTTCAAAccccggcgcgc-
cggcgccggcgTCGACACTGCGCAAGCCCAGTCGCGCCTCTCCAGAGCGGGAAGAGCGCTGCGTTCCT-
TAGCAACGAGCGTTTCCTCCAGCCCCGCCTCCCTCCGCCACACACAACCCCGC
1245 AATTTGGTCCTCCTGCGCCTGCCAAGATTGTCTgagtattgatcgaacccaggagttcgagat-
cagcttgagcaagatagcgagaacccccgcccctccacctcgtctcaaaaaaaaaaaaaaaTCGTCT-
CAGTAGCGAATAGTCTAACGGAGAATGACAGGGAAATTGGTGATCCTTTCTGGGCCCAAGAGTTAGAAATGGCT
TTGCAggccgggcgcggt
1246 GGCTTCCGCGGCGCCAATCTCCACCCGCAGTCTCCGCCTCCCGCACCTGTGGTCCGGGCCTCACG-
GTTTCAGCGCCGCGAGGCCTCACCTGCTGGTCTTGGAGCCTCAAGGGAAAGACTGCAGAGGGATCGAGGCGGC-
CCACTGCCAGCACGGCCAGCGTGGCCCAGGGCTCGCAGCACTTCCGGCCTCTCTGGCCCCGC
1247 GCCAGGAGAGGGGCCGAGCCTGCACAGGAGCTTCCTCGGTTTTCCGAGCGCCGGCCCCCCTTCTCT-
GCCTGGGAGGAGGTGGTTAGAGTCCCCTGGGTGTGTGCCCCGCAGAGGGAGCTCTGGCCTCAGTGCCCAGTGT-
GCAGACCAATGAGAGCCCCAGAGAGAAAGACGGTCATTTCCTCCCTGCATCTTCCCTTGGGGC
1248 cgagcgccggccccccttctctgcctgggaggaggtggttagagtcccctgggtgtgtgccccgca-
gagggagctctggcctcagtgcccagtgtgcagaccaatgagagccccagagagaaagacggt-
catttcctccctgcatcttcccttggggc
1249 GGTTGCGAGGGCACCCTTTGGCCCGGGGGCGCGCAGGAGAGGGCAGGGGCCAGGGGTTTCCTGGGC-
GAGGGCGCGGGGACGAGCAGGAAAAGGCCGGGGTGGGGGTGGAATTCCTCGGCGGGCAGGGGGCGCATGCGC-
CGGGCACCGTGGGGCGGGACGTGGCCCGGGAGGAGCTGGGGGGACTGGGTGGTGCACGTGCGGGC
1250 acccggacgcggtggcgcgcgcctgtaatcccagctactcgggagcctgaggcaggagaatcgct-
tgaatccgggaggcggaggttgcagtaagccgagatcgcgccactgcaccccagcctgggcgaca-
gagcaagactccTCGGTAAAGACACCACTTCGTCACCC
1251 CGCCGCCGAGCCTCAGCCACGCCTCTGTGCAGCGGGGAAGACTCCTCTCGCGCCTTCTCAGTCAGT-
CACGGATGATGCTGACCCAGCGCTCCGGGGCTTTCTACCAAGTAATCAGTCCAGACAAATGCCAAAACGAC-
CGCCACAAGGAGGACAACGGAAGTCCCGCCGCGACCGCGCGTGCGCTTACGGAAACACCACCTTTCGGAGGCCT
CATTGGCTGAAGGTCGCCGTCGCCCAACGCAGGCCATTCTGGGT
1252 gcagcctcaacctcctggggtcaagtgatcatcctggctcaaccacccaagtagccgggactacgg-
gtggccgccaccatgcccggataatttttttatttttgtggagatgggggtcccacgatgttgc-
ccagtccagtcttgaactcctgggctcaagtgatcctcccgcagcagcc
1253 CTTGCCGACCCAGCCTCGATCCCCTGCGGCGTCCAGGTCCCAATGCCCCAACGCAGGCCACCCCCG-
GCTCCTCTGTGGACTCACGAAGACAAGGTCCGGCCGCTCGGGCCGCGAGAGTCGCGCCATCACCAC-
CATTTTTCTGGATGCCCA
1254 GCGGCGTTCGGTGGTGTCCCGGTGCAGCCACGCGAGAGTAGAAGGGTGGAAAGGGGAGGTGCCCAGT-
GAAATGGAGCCTGTCCCGTGCACTTTCGGGCATTTCGAGCATCTTGTGGGCTCTCCCAAGTCGCGGC-
CCCTCCTCTGAGAGCCACAGTCAGGTCTGTCCTCAGGGGTCGAGGCGGCTGCGCTGGGGCCTCGGCCCGGGAGG
AGGCGGGGGGCACGGCCTTTCCATTTTCCCTGCTCCCCTCTGCAGAA
1255 CCGGACTCCCCCGCGCAGACCACCGTGCCAGGACAGCCCGCTCGGGAGTCGGGCCTGGAAGCAGGCG-
GACAGCGTCACCTCCCCGCAGCCGCCGGCTGGGACCCGCGGCCAGCCTTTACCCAGGCTCGCCCGGTCCCTGC-
CCGCATGGCGG
1256 ggccccctgcaagttccgcctcccgggttcacaccattctcctgcctcagcctccccagcagctgg-
gactacaggcacctgccgccacgcccggctaattttttgtatttttagtagagacagggtttcaccatgt-
tagccaggatggtctcgatctcctgaccttgtgatctgcccgcctcggcctcccaaagtgttgggattacaggc
gtgagccaccgtgtccagccTGTAACA
1257 GCCCAGGGGAGCCCTCCATTTGTAGAATGAATGAGAGTCCAGGTTATGAACAGTGCCTGGAGTGTAG-
GAACACCCTCCTTTGCCTCTTTGACAGGTCTGCATCATAACACtttttttttttttttgagacagagtct-
cactctgtcgcccaggctggagtgcagtggcacgatctcggccccctgcaagttccg
1258 CCGGCTGCAGGCCCTCACTGGTTGGGTCCGCCCGCGAGGGTGCCCTGGGCCCGGT-
GTCTCTCCTCCTTCTGAAGTTTGTTCCCATCCACCCGGCATCACCGACCGGTTTTATCCCGCTGAGGCCCTGG-
GAGATGGGTCTGGCGAGGCTCGTAGGCCGCGGATTGGCTGGCTGGGTGCAGGGGGGTGCGGGAAGGGGAGGATT
TTGCA
1259 GTCACACCTGCCGATGAAACTCCTGCGTAAGAAGATCGAGAAGCGGAACCTCAAATTGCGGCAGCG-
GAACCTAAAGTTTCAGGGTGAGATGCGTTGACTCGCGGTGGCTCAGAAGACCCACGCGCGAGCCCTG-
GCGCGTTCGGGCGGCCGGGGGCCCAGCTGCTCTGTGTGACGGAGGCAGCTTCCCCTGCAGCGTGTGTGATTGGG
GAGAGTGAAAAGGCAGCTTCCACTCGGGACCCGCGCTGCTGCCCACTC
1260 CCCTGCGCACCCCTACCAGGCAGGCTCGCTGCCTTTCCTCCCTCTTGTCTCTCCAGAGCCG-
GATCTTCAAGGGGAGCCTCCGTGCCCCCGGCTGCTCAGTCCCTCCGGTGTGCAGGACCCCG-
GAAGTCCTCCCCGCACAGCTCTCGCTTCTCTTTGCAGCCTGTTTCTGCGCCGGACCAGTCGAGGACTCTGGACA
GTAGAGGCCCCGGGACGACCGAGCTGATGGCGTCTTCGACCCCATCTTCGTCCGCAACC
1261 CCTGGGGGAGCGCGGTGGGGGTAAGATAAGGGATGGGGGCTCCGAGGGCTGGGAACTGCAGGAAG-
GAAAGAAGCGGCGGGGCCGCCCGGGTCAAGGGGCCACGTGGGGGAGGGCGGGCAGGCGGGACCGGGAGGT-
CAATAACTGCAGCGTCCGAGCTGAGCCCAGGGGAGCGGGCGAGGAGAAAGAAGCCTCAGAGCGCCCGGGAAGCC
TCGCGCGCCTGGGAGGCTTCCATCTCCCGGGACCCAGCTCTCAGCC
1262 GTGGGGCCGGGCGAGTGCGCGGCATCCCAGGCCGGCCCGAACGCTCCGCCCGCGGTGGGC-
CGACTTCCCCTCCTCTTCCCTCTCTCCTTCCTTTAGCCCGCTGGCGCCGGACACGCTGCGCCTCATCTCT-
TGGGGCGTTCTTCCCCGTTGGCCAACCGTCGCATCCCGTGCAACTTTGGGGTAGTGGCCGTTTAGTGTTGAATG
TTCCCCACCGAGAGCGCATGGCTTGGGAAGCGAGGCGCGAACCCGGCCCCC
1263 CGTCCAGGCTGTGCGctccccgttctcccctcctccccacttctccccacgcct-
tgctcgtctcccgccctcctccgacaaccgctcccctcaccctccacccctacccccgc-
ccctcctccttcctccccGGCATGCGCCATATGGTCTTCCCGGTCCAGCCAAGAGCCTGGAACCACGTGACCTG
CCCATTTGTATGCCGCGGAGCGCTCCATTCCGGCCCCTTTGTGGCCA
1264 GCGCGGCGGTGCAGCCTCTCCCGAGCGCGCTGGGTCGCCTCTGCTCGGTCTGGGGTCTGCCAG-
GCGCGATCCCCCCGGTGCAGCCGAGCCCCTCCGCAGACTCTGCGCAGGAAAGCGAAACTACCCGGCAG-
GAGAAAAGGCAGCGCTGGCGCCCGGCCCCCTTCCGCCCCCACCAATCACCGGGCGGCTCCGCGCTCAGCCAATT
AGACGCGGCTGTTCCGTGGGCGCCACCGCCTCCCTCTGCGGGCCGCTGCT
1265 aggcggcggcggtggcagtggcacccggcggggaagcagcagcCAAACCCGCGCATGATCTCGA-
GAGTTTCAGCAACATCCAGGGACTGGGCTCAGCCCCGGAGCGAGAGGGTCGTCCGCTGAGAAGCTGCGCCG-
GAGACGCGGGAAGCTGCTGCCATAAGGAGG GAGCTCTGGGAAGCCGGAGGACAGGAGGAGACGGGAGTCCAGGG
GCAGACGAGTGGAGCCCGAGGAGGCAGGGTGGAGGGAGAGTCAAGG
1266 GCGCGACCCGCCGATTGTGTCGAGTCAGCAGCGGCAGCGGGGACGCGCGAAGCCATGGCTCCCGC-
CCGCGCTCGGGAGGGCGCCGGGGGTCCTGCGCCTCCGGGAGGTTTGTGGCCGAgcgcggcgcggccccgagcg-
gccccgcagcgcccggctccccgccgcTCGCTCTCCAGGCGCCGACCCGCCTGCGTCGCCACCCTCTCGCCGCT
CCCTGCCGCCACCTTCCTCCCGCCCGGGTGCCGGGCGTCCGCT
1267 CGCGGACGCCGCTCTGCACCTGTTGCCGCCGTCACTCATCCCGCCAGGCGGGCGGGGCCGCGCGGGT-
GGCTTGGTCAGGACCTGCCATTCAGCCCAGTCGGGCTCCGGTGCTCGCCCCGGACGGCGCCCCAAGCGG-
GTCCCGGCCCCGCTGAGCACCTCCAGCAGTGGCACAGCCTCTGGAGGGGTCCGGGACGAAGCCACCCGCGCGGT
AGGGGGCGACTTAGCGGTTTCAGCCTCCAACAGCCTTGGGATCGC
1268 tgaacccgggaggcggaggttgctgtgagccgagatggcaccattgcactccagcctgggcaacaa-
gagcgaaactccgtcccccgaacaaaaaattcaaatgggaaagagaggcagatggcagagaacaggggaggg-
gctgggcaccgtggctcatgcctgtaatcccagcactttgggaggccaaggcgggtgga
1269 CTCGGCGGCGCGGGGAGTCGGAGGACGCAGCCAAGCGGCGGCGGCGAGGAGGGTCACAGCCGGAAA-
GAGGCAGCGGTGGCGCCTGCAGACGCCGCGCAGCCCGGGCAGCCCCACAGCGCAAGCTGGCTGCCGCGGCG-
GCGGGGGCTTTATCGGCGGCGCCGCGCGGGCccccgccccttcctgccgcccccgcccccggcccgccttgccc
cgccttcccgccg
1270 aggcggccacgggagggggaggggctggcaacggcgccgtgggggcggggctcgctttgtgcaag-
gtccgcgctgattgggccgtgggcgcgcgggtcccggcctgcgtcgtgggactggcgtttttggcgccggct-
gtgaggggagcgcgggggtggtggaatcgggcggtctccggttcgccaatgtggctgggtccgtaggcttgggc
agccttggagttcctcagagaccccgcgctcggtcccggcacgc
1271 GACCCGAGCGGGGCGGAGAGTGGCAGGAGGAGGCGAATCTCCGCGCTCCGGCGAACTTTATCGGGT-
TGAAGTTTCTGCTGTCGCCTCCCCTTTGCGTGCGGAGCTGGGCTTTGCGTGCGCCGCTTCTGGAAAGTCG-
GCTCCAGTCATATCCCTGGGCGCTGCCTGCGGCCGCTCCTCCCGCGCTTCTCACGGCACCTGACACGCGGAGGC
GGCGGCCGAGGGTGGGGTGCCGGCCACCACCACCCTTGGCGTGGG
1272 AGCACCTggggcggggcggagcggggcgcgcgggcccACACCTGTGGAGAGGGCCGCGCCCCAACT-
GCAGCGCCGGGGCTGGGGGAGGGGAGCCTACTCACTCCCCCAACTCCCGGGCGGTGACTCATCAACGAGCAC-
CAGCGGCCAGAGGTGAGCAGTCCCGGGAAGGGGCCGAGAGGCGGGGCCGCCAGGTCGGGCAGGTGT-
GCGCTCCGCCCCGC
1273 CCGCTCGGGGGACGTGGGAGGGGAGGCGGGAAACAGCTTAGTGGGTGTGGGGTCGCGC-
ATTTTCTTCAACCAGGAGGTGAGGAGGTTTCGACATGGCGGTGCAGCCGAAGGAGACGCTGCAGTTGGA-
GAGCGCGGCCGAGGTCGGCTTCGTGCGCTTCTTTCAGGGCATGCCGGAGAAGCCGACCACCACAGTGCGCCTTT
TCGACCGGGGCGACTTCTATACGGCGCACGGCGAGGACGCGCTGCTGGCCGC
1274 ACCGCCAGCGTGCCAGCCCCGCCCCTACCCACCAGTGTGCCAGCCCCGCCCTTCCCCACGTcgc-
cgcgcgcccgggggcggggcctggcgcgcaccgcccgcgcACGGCGAGGCGCCTGTTGATTGGCCACTGGGGC-
CCGGGTTCCTCCGGCGGAGCGCGCCTCCCCCCAGATTTCCCGCCAGCAGGAGCCGCGCGGTAGATGCGGTGCTT
TTAGGAGCTCCGTCCGACAGAACGGTTGGGCCTTGCCGGCTGTC
1275 ATTCTTggccgggtgcggtggctcacgcctgtaatcccagcactttgggaggctgaggtgggtggat-
cacctgaggtcaagagttcgagaccagcctggccaacatggtgaaaccccgtctc-
tactaaaaatacaaaaattagccgggcgtggtggtgggcacctgtaatcccagctactcagaaggttgaggcag
gagaatcgcttgaacccgggagaaggaggttgcagtgagccgagatcgcgccattgcac
1276 CGCTTCCCGCGAGCGAGCCGCCCAGAGCGCTCTGCTGGCGGCAGAGGCGGCGGCGAGGCTG-
GCGCGCTTGCCGCCGTCTGCTCGCCCCGCGGAGGCGACCTGGGCAGACGCTGCTGG-
GAACTTTGAAAAACTTTCCTGGAGCCAGGCTTGCCGCAGATTCGAGGGGAAGCCTCGGCCGCGTCCCACCCCCT
CCCAAATCCGAGTCTGCGGAGCCTGGGAGGGCTCCCAGCTTCCTATCCAAACCGCGCCGGGGCA
1277 AGCCGGCGCTCCGCACCTGCCCCTCAGCGCCTGCCGTCCGCCCCACCGCCGCGGCGC-
CCCGCACTCCTGGGCGGGCCAGGGGAGCGGGCTGGGCGGGCGATCGGGCACGCGGGATCCCTGGTCGAGC-
CCCCTTTCCTCCCGGGTCCACAGCGAGTCCCCTGAGGAAGGAGGGACCTGGGAGGAAACCACCCTCTGGGGCGG
CTCCGGCCTCCAGCCCCCGCCCCGTCTCATCGCGCCGGGCGCCCGGTGCGCCTG
1278 CGGAGCGCGCTTGGCCTCACAGGACAGTGGGTGTGGCTGGGGTGACGGGGCAGGGTGGGGAAGACTG-
GCCTAACACCAGCGCCCTCTGCCCCATGGCTGGCCAGGGACCCGCGAGTCCCTGGACACGCACTGGCCAACGC-
CAGACCCCATCTCATCGGGTGGGGAAGTCGCGGGGACACTGTCAGGGCGCCGAAGTCCGGACCCGGCTCAGAGG
CGGTGGCAGGTGAATTGCTGCGGCGCCGGG TAGG GGCGGGC
1279 ggcctcgagcccacccagacttggccaagcagccctcggccagaccaagcacactccctcggag-
gcctggcagggcccctgctttaccctgccccccacgccccgccccgacccgaccctcccaggcagcccct-
cagcgtctgccgcccgcccttgggcctttccggccagcccctccctccgcccacgcccagaacagcccatgctc
ttggaggagagcaggtgggcttgaccgggactggcccctcaccgcgg
1280 GCCGCGCCGTAAGGGCCACCCCCAGAGGCCGAGGAGGTGGGGCTGGCCTGGCTTTCTGGCCAGGT-
GGGGCTTGTCCAACCCCACAAACATCAGGGCTCACCCTGGATGTGGAAGAGAAGGAGCGAC-
CCCCAAAACGAAGCGGCTGGATCTGACCTTCCAAGGCCTGTTGGCGACGCAGGGCCCCCAGGAGGCAGAGCGCG
CGCCTGGCCCGGGCGATGGGCCTCCCGTCCCCCCAGGGCTGCCTCCCCGCCGGTG
1281 CGGCGGTGGCGGTGGGTCGGCGACCGGCGGGCCGAAGACTGGAAGCCCGGGCCGCTGAG-
GCTCCGCAgccccctccgcgccgccccggcccgcccccgccgcgccgccccttccctccccgcgcccgc-
cccTTCTTCCCCGCAGGGTCAGCGCTGGGGCTCCGGCCGTAGAGCCACGTGACCCTGGCAGGCCCTGCTCGCGG
GGCTTGGCGACAAGGACGCACGACACGGGGCGGC
1282 ACCTGCCCAGTTACTGCCCCACTCCGCGGAATAAGCTCTTACCCAC-
CGCTCCTCTTCTTCAATTCATTTCTGTTATGGAACTGTCGCGGCACTACAAAGTCTCTATGTAGT-
TATAAATAAACGTTATCTGGAAGAGCAGCCGACAACAACTTTCAAGATCTCCAATTCCCCGAC-
CCCACACTCCAACTGACGCC
1283 CCAGCGCCCGAGCCGTCCAGGCGGCCAGCAGGAGCAGTGCCAAACCGGGCAGCATCGCGACCCT-
GCGCGGGGCACCGAGTGCGCTGCTGTGCGAGTGGGATCCGCCGCGTCCTTGCTCTGCCCGCGCCGCCACCGC-
CGCCGTCTCCCGGGGCCCCCGCGCACGCTCCTCCGCGTGCTCTCGCCTACCGCTGCCGAGGAAACTGACGGAGC
CCGAGCGCGGCGGCGGGGCTCAGAGCCAGGCGAGTCAGCTGATCC
1284 CTGCTGCTGCCCGCGTCCGAGGCTCGCGGGCGGCGGGCCCGGGTGAGTGCACACCCGGCGCGCTGC-
CGGGCTCCCGGATGTGTCACCTTGTCCCGCTGCAGCCGAGATGCCGGGGGAGCGGGGCCTTCCACAC-
CCCCTCCGTGGGTGTGTGGTGAGTGTGGGTGTGTGCGCGTCTCCTCGCGTCCCTCGCTGAGGTGCCTACTGTGT
CTGCATGGGTTGGGTCCCGCGCGATG
1285 ACTGCTTAGGCCACACGATCCCCCAAGCCTGGGCTGCCAGACGTCGCCATCATTGTTCCATGCAGAT-
CATGCCCATCCTGTGCAGAAGGTCACTATAGGAACACATGGCACAGGGAAGAAAACGCCCATAGAAATTCA-
CATGGTGCTTGTCTAAACCGAAGGCAGGTGAGATCCACCCACTG
1286 GCCGGACGCGCCTCCCAAGGGCGCGGGTCCGAGGCGCAAGGCGAGCTGGAGACCCCGAAAACCAGG-
GCCACTCGGGGAGTGTCAGGAAGCACGACTGGGCGCCTTAGGACGTCCGGGCAGACGCGGCCCCCGAGGAGC-
CCCAGAGGAGCCCCAGAGGAGCCGCCTGACCCGGCCCCGACGTGCGCGATCGAGCCCGGGCTCGCCAAAGCCCC
CGCGCCCCTCCGGCCCGGACAGGCCGAGTGGACATTGTCGGAG
1287 CGGCCAGGGTGCCGAGGGCCAGCATGGACACCAGGACCAGGGCGCAGATCACCTTGTTCTCCATGGT-
GGCCATTGCCTCCTCTCTGCTCCAAAGGCGACCCCGAGTCAGGGATGAGAGGCCGCCCGAGCCCCG-
GATTTTATAGGGCAGGCTC
1288 ccgcccgcccCACAGCCAGCGGCTCCGCGCCCCCTGCAGCCACGATGCCCGCGGCCCGGCCGCCCGC-
CGCGGGACTCCGCGGGATCTCGCTGTTCCTCGCTCTGCTCCTGGGGAGCCCGGCGGCAGCGCTGGAGCGAG-
GTAAGCGCCCCGAGGGGCGGGGCGGGCAGGGGGCAAAGTTGCCGGGAGAGCGGGGCAGCCAGGGGTCGGGGCTG
ACCAGGGCGACTCAGGCACCACCCGCCGGGA
1289 GCGCCCCAGCCCACCCACTCGCGTGCCCACGGCGGCATTATTCCCTATAAGGATCTGAACG-
ATCCGGGGGCGGCCCCGCCCCGTTACCCCTTGCCCCCGGCCCCGCCCCCTTTTTGGAGGGCCGATGAGGTAAT-
GCGGCTCTGCCATTGGTCTGAGGGGGCGGGCCCCAACAGCCCGAGGCGGGGTCCCCGGGGGCCCAGCGCTATAT
CACTCGGCCGCCCAGGCAGCGGCGCAGAGCGGGCAGCAGGCAGGCGG
1290 cgtgctgggcgcaggggaaacagcgacgcacgggacaaaACAAGCTTGCAGAACAGCAGGGGGCAGA-
GAGGCTGTAAACAAGCCAACGGGCTGCACTTGTAGCGGTTCTGTTGCCAATGCCATTCAGACCCCAGTCCGG-
GATTCCGCGCTCGGGGTGCGAGAGGCCGCTCCcggggaggggcgggacccgggcggggcgggaggggcggggcg
CCCGGGCCTATTAGGTCCCGCGCCGGCAGCC
1291 GCGCACGCGCACAGCCTCCGGCCGGCTATTTCCGCGAGCGCGTTCCATCCTCTAC-
CGAGCGCGCGCGAAGACTACGGAGGTCGACTCGGGAGCGCGCACGCAGCTCCGCCCCGCGTCCGACCCGCG-
GATCCCGCGGCGTCCGGCCCGGGTGGTCTGGATCGCGGAGGGAATGCCCCGGA
1292 GGTGAGTGCGGCCCGGGGAGGGGAGGGGACCAGGGCGACCGGAGCCCCCAGCGATCCCGCCTG-
GAGCGGCCGCCAAGCTCCCTCGGGCACCCGGGTTCAGCGGGTCCCGATCCGAGGGCGTGCGAGCT-
GAGCCTCCTGGACCGGGTCCGCCGCGGACCTCGGCCTGTCACCTGAAGGTGCCGCGTGGTCTCTGAGGACGTCT
GTCGACGAGCAGGGGCCGCCGCCA
1293 GGCCGAGAGGGAGCCCCACACCTCGGTCTCCCCAGACCGGCCCTGGCCGGGG-
GCATCCCCCTAAACTTCGGATCCCTCCTCGGAAATGGGACCCTCTCTGGGCCGCCTCCCAGCGGTGGTGGC-
GAGGAGCAAACGACACCAGGTAGCCTGCCGCGGGGCAGAGAGTGGACGCGGGAAAGCCGGTGGCTCCCGCCGTG
GGCCCTACTGTgcgcgggcggcggccgagcccgggccgcTCCCTCCCAGTCGCGcgcc
1294 CCAGCGCCGCAACGCCCAGGGTGTGGGGCGGAGTAAGATGTGAAACCTCTTCAGCTCACGGCACCGG-
GCTGCAACCGAGGTCTGAATGTTGCGAAAGCGCCCCAGACGCCGCCGCTGCTTTCCGGCCGCCCCCTCGGC-
TACAGCCGCCATTTCCACGCTCCACCAATCAAATCCATTCTCGAGGAAGACGCACCGCCCCCACACGCCCCGAC
CAATCGCTCGCGCTCTGGTTGCGCTGGCGCC
1295 CCACAAGCGGGCGGGACGGCTGGAGACTGCCGGGACAGCGGCTGCCGGTGCTACGCGGGTGGTGG-
GCGGCCCGGAAATGAGCGCCCTCCGGGGACAGGGGGCTCTGCGGGGCGGCGACAGCTG-
GATTCCCAGCGCGCACAAAGCCTGCGGGAGGATCCATTGTAGCGGTCGCTCCTCCCCGCTTAGCGAGGGCGGGC
GCAGGGGCGGGGGATGTCGAAGGGTCAGGTTTGTCCAGGCCGCGCCACCTTCG
1296 CCTCTGGACAACGGGGAGCGGGAAAAAAGCTACGCAGGAGCTTGGATCGGGCGAAGCTCGCGG-
GAAACCGCTCTGGGTGCGCAGGACAAAGACGCGGGGACAGCGGGGAGGGCCGGCCGCAGCCTGCCGGGCTGC-
CCCCACGGCGCGGAACGCGCGCAGCAACCTCCACCAGGCCTCCGCGTCTGGACTCCCGCCCTGCCTCTGGGCCT
CCTCCGCCCACCGGCGGCGTCTCCCGCGAAGCCCGCTGGG
1297 GCGGGTTCCCGGCGTCTCCAAAGCTACCGCTGCCGGAAGAGCGCGGCGCCCGACGGAGCCGTGTG-
GAGGCCAAAACTCCTCCCGGAAGCCGCTACTGGCCCCGCTTGCCAGGCCCAGCGTCTTTTCTGCATAGGAC-
CCGGGGGAAGCCGGGAAGCCGTTAGGGGGCGGGGCAAGCGGG
1298 CGCCGCCCGTCCTGCTTGCTGCTGGGTCCGGTTGCCGAGGCGGAAAAGTCGCAAGCTCCTTCAGT-
CAGTCTTCTTCCTCAGCTCCTTCCGACTCCGGAAGCTGCTGTTTGGGCCCAGGCTCCCTGCATCCGAGAGC-
CCTGGGCTGACTGCTTCTGAGGCCCCGCCCCACTACTGCCTGCAGCGGGCTTCCTTACTCCGCCTGCTGGTTCC
TACTGGAGGAGAGGCCAGCATGCTTGTCAGGCACCAGCAGGTGGA
1299 CGCGCGGCCCTCCTGCACCTCGGCCAGCACTCGTAGCGCGCTGGGCGAGCCGGACCGGAAGT-
TGAAGAAGTGAAGCGCCGCGCGCGCCGCCTGCTGCAGGAGCCTGCGCGGGACCCCAGCATCCTGAGGCTGC-
CCAGGGTCGTCGGGGTCCCCGGACCCCGCGGGCGCCGCCACCGGGGCGAGCAACAGCAGCAGCGCGAGCAGCGG
GGCGGTGGGGCGCGGGCCCCTGGGCCCGGACCAGGGAGCAGGCAGCCG
1300 GGCGGGGCAAGCCCTCACCTGCGCCAATCAGGGTGCGGAGTAGGCCCCGCAGGCGCCTCACCCAT-
TGAGGGGGCGGGCTGACAGAGCAGAGGAAGGAAGGGGGTGAGGGGCCTGTGGTGGGGATCCTGGGGCTGTCGG-
GCTGAGTATGCCGTGTGGGTGGAGAGGAAGCCTCGGGGAAATCGCCCAGGTGAAGGGAGGGCTTGGTGTGGGGA
CTTGCACTGGGCAGAGGGGCAGCTTCCCTGAGAGCAGCTAAGC
1301 GGAGCGCCCCCTGGCGGTTTCAGGGCGGCTCACCGAGAGGGCGCCGGGAGCGCCCGGTTGGG-
GAACGCGCGGCTGGCGGCGTGGGGACCACCCGGCAGGACCAGGCACCAGAGCTGCGTCCCTGCTCGC
1302 CGAATGGTTCGCGCCGGCCTATATTTACCCGAGATCTTCCTCCCGGACGGCAAGGATGTGAGGCAG-
GCGAGCCGGACGCCGCTCGCAGCACCGGAGAGGGCGCACTGCAAAGGCGGGCAGCAGACCGTGGAGAGCCCGG-
GAGCGGAGCTGGACACCGCCTCGGAGGGAAGAAATGAGGTAGCGGCGGTTCCCGGACCCGGCCATGCCCGTCCC
CTGTTCTCGGAGCCCAGCGCCGTCTCGGCCAGGCCAGCCCGG
1303 TTCCGCCGGCTGGGCCCTCCGTCTACCCCCAGCGGCGAggggcggggccggcgcgggcgcAGAG-
GCGTCACGCACTCCATGGTAACGACGCTCGGCCCGAAGATGGCGGCCGAATGGGGCGGAGGAGTGGGT-
TACTCGGGCTCAGGCCCGGGCCGGAGCCGGTGGCGCTGGAGCGGGTCTGTGTGGGTCCGAAGCGTTTTACTCCT
GTTGGGCGGGCTCCGGGCCAGCGCCACATCTACTCCCGTCTCCTTGGGC
1304 CTCCGGGTcccccgcgtgcccggcccgccccggcccgcTTCCCGGGCGCTGTCTTACTCCGGGC-
CCGGGGCGCCTGCTCCGCGCCGCGTCTGCGAACCGGTGACCTGGTTTCCCCTCCAGCCCTCACGGCT-
GTCCGACTTGCGCGGCGGTGGCGGCGGCGGCCAAGAGCAGGCAAACCCGGCTCCGCCAGGGGCGCAGCGAGGAA
ATGGCCTCCTGGCGCACACCCCGCCGCCGCCGCCAGCCATCGCCACCGCC
1305 CAGCCCGGGTAGGGTTCACCGAAAGTTCACTCGCATATATTAGGCAATTCAATCTTTCATTCTGTGT-
GACAGAAGTAGTAGGAAGTGAGCTGTTCAGAGGCAGGAGGGTCTATTCTTTGCCAAAGGGGGGAC-
CAGAATTCCCCCATGCGAGCTGTTTGAGGACTGGGATGCCGAGAACGCGAGCGATCCGAGCAGGGTTTGTCTGG
GCACCGTCGGGGTAGGATCCGGAACGCATTCGGAAGGCTTTTTGCAAGC
1306 GGCGGAGAGAGGTCCTGCCCAGCTGTTGGCGAGGAGTTTCCTGTTTCCCCCGCAGCGCTGAGT-
TGAAGTTGAGTGAGTCACTCGCGCGCACGGAGCGACGACACCCCCGCGCGTGCACCCGCTCGGGACAGGAGC-
CGGACTCCTGTGCAGCTTCCCTCGGCCGCCGGGGGCCTCCCCGCGCCTCGCCGGCCTCCAGGCCCCCTCCTGGC
TGGCGAGCGGGCGCCACATCTGGCCCGCACATCTGCGCTGCCGGCC
1307 CCTCACCCCAGCCGCGACCCTTCAAGGCCAAGAGGCGGCAGAGCCCGAGGCCTGCAC-
GAGCAGCTCTCTCTTCAGGAGTGAAGGAGGCCACGGGCAAGTCGCCCTGACGCAGACGCTCCACCAGGGC-
CGCGCGCTCGCCGTCCGCCACATACCGCTCGTAGTATTCGTGCTCAGCCTCGTAGTGGCGCCTGACGTCGCGTT
CGCGGGTAGCTACGATGAGGCGGCGACAGACCAGGCACAGGGCCCCATCGCCCT
1308 CGATGACGGGATCCGAGAGAAAGGCAAGGCGGAAGGGGTGAGGCCGGAAGCCGAAGTGCCGCAGG-
GAGTTAGCGGCGTCTCGGTTGCCATGGAGACCAGGAGCTCCAAAACGCGGAGGTCTTTAGCGTCCCGGAC-
CAACGAGTGCCAGGGGACAATGTGGGCGCCAACTTCGCCACCAGCCGGGTCCAGCAGCCCCAGCCAGCCCACCT
GGAAGTCCTCCTTGTATTCCTCCCTCGCCTACTCTGAGGCCTTCCA
1309 CCGCAGGCCGCGGGAAAGGCGCGCCGAGTCCTGCAGCTGCTCTCCCGGTTCGGGAAACGCGCGGG-
GCGGGGGCGTCGGGCTTGGGACAGGGGAGGATACCAGGGCCACCTTCCCCAACCCAGGCCGCGGGGGCCCG-
GCCTCCCCGATGCAGACCACAGCGCCCTCACGGGCTGCCCTCAGGCCGCGCAGCGGGCAGCCGCCAGCCGTCAC
CCCGGGGAGCGTCCGTGGGGTGCCCAGGCA
1310 GCCCCAGTCCACCTCTGGGAGCGCCTGCGCCGCTCCGCGGAGAGTCCGTGGATCTCACAGTGAGC-
GAGTTGGGACCCAGGGAGGGGAAAAGAGAGGACCCCGGCGAGCCATTGCTGGGGCGGCGGGCTGGAGGGT-
TATCTGGGAAGTCAGCCCCGGCCTCGGTCCTCTCCACGTTGCTGCCTACGCGTGCTGCCCGGACGTAGGGC
1311 CTTGGCCGCCCCCGGGATGGGGCGAGGGGTTCCCGAGGGCTtgggagggcggcttgggaga-
gagctccggctccggaacgaggtgtcctgggaacactcccgggtctgtaacttcggacaaat-
cacgctcgctttcccggcctcagtgtgccgttctgtaacttgggtctaaCCCCGGCTCGCACACACGGCGGGGA
CGCGCACAG
1312 CCTCCATGCGCAATCCCAAGGGCGGAGAGGAATTTCAGCAGCTACGAGCAACAGAAAGGAAACGAGA-
GAGTAGCCAGACTCTCCGCGCATGGAGCCGACGGCACCCACCAGCACACCGCCGGCGCCCCCAGCCACTACT-
GCACGTCCGCccccgccccgccccgctccgcccGGCGCACCTGATGCCCAAACTGGTTGCACGGGAAGCCGAGC
ACCACCAGGCCCCGGGGTCCGAGGCGCCGCTGCA
1313 gcggcgactgcgctgccccttggctgccccttccgctctcgtaggcgcgcggggccactact-
cacgcgcgcactgcaggcctttgcgcacgacgccccagatgaagtcgccacagaggtcgcaccacgtgtgcgt-
ggcgggccccgcgggctggaagcggtggccacggccagggaccagctgccgtgtggggttgcacgcggtgcccc
gcgcgatgcgcagcgcgttggcacgctccagccgggtgcggccctt
1314 GGGCTTGCCTCCCCGCCCCTACCTTCCAGGATGTTGACAGCTGGGAATGAAAGGCAGAGGGAGG-
GAGCGCGGGGCCGGAGCGCCGCCTGGGAGTGTGCCCACTGGGTGGCCGCCTGAGGGACCCGGGAACAGAGG-
GCAAAAAGTCCTGTGACCGGACAGAGCAGAGCGGGGACTGCAATTCCCAGAAGACCCCACGGTAGGGGCGGGAC
CCAAGATGGCCGCTTGTCTGGGGACAGGAGCGGAGGCCAATACGCG
1315 GCGGCCCAAGGAGGGCGAACGCCTAAGACTGCAAAGGCTCGGGGGAGAACGGCTCTCGGAGAACGG-
GCTGGGGAAGGACGTGGCTCTGAAGACGGACAGCCCTGAGGAACCGCGGGGCGCCCAGATGGAACTCGT-
TAGCGCCCCGAGTGCAGACAATCCCGGAGGGGGAAAGGCGAGCAGCTGGCAGAGAGCCCAGTGCCGGCCAACCG
CGCGAGCGCCTCAGAACGGCCCGCCCACCC
1316 ctgcgcggcTGGCGATCCAGGAGCGAGCACAGCGCCCGGGCGAGCGCCGGGGGGAGCGAGCAGGG-
GCGACGAGAAACGAGGCAGGGGAGGGAAGCAGATGCCAGCGGGCCGAAGAGTCGGGAGCCGGAGCCGGGA-
GAGCGAAAGGAGAGGGGACCTGGCGGGGCACTTAGGAGCCAACCGAGGAGCAGGAGCACGGACTCCCACTGTGG
AAAGGAGGACCAGAAGGGAGGATGGGATGGAAGAGAAGAAAAAGCA
1317 CACCGCCTCCGGACCCCTCCCTCATCAGAAAGCCCAGGCTCCGCTCGTAGAAGTGCGCAGGCGTCAC-
CGCGCATCCAGGAGCCACGTGTCAGGAGTCACGTGTCAGGTGTCACGTGTCAGGCGTCACGTGGCTGGAGGC-
CGTTGGAGCGCCTGCGCAGCTTTTCCGCACGCGCC
1318 CCTTCCAGCCACCCCGCCCTGGGCGCCTCTGGCGCGCTCTGATGACGCTCCAAGGGAAGAGGAAGT-
GGGGATCGGCGAGCGGGTGGGTGCGCCTCGGGCCGCGGGACTCGCAGCCGCCACCGCCGCTGCCGCCTCTACG-
GCCGCGTCAGAACTGAAGAGAGGAAGGGGAGGAGCCGAGTCGAGCCTAAGCTGCCGCCCGATCTTACCCCTGAC
CCGAGGGCGGCCTGGA
1319 CGGGACACCGGGAGGACAGCGCGGGCGAGGCGCTGCAAGCCCGCGCGCAGCTCCGGGGGGCTCCGAC-
CCGGGGGAGCAGAATGAGCCGTTGCTGGGGCACAGCCAGAGTTTTCTTGGCCTTTTTTATGCAAATCTGGAGG-
GTGGGGGGAGCAAGGGAGGAGCCAATGAAGGGTAATCCGAGGAGGGCTGGTCACTACTTTCTGGGTCTGGTTTT
GCGTTGAGAATGCCCCTCACGCGCTTGCTGGAAGGGAATTC
1320 CCTGGGTTCCCGGCTTCTCAGCCACTGGAGCTGCCAGTCTCAAATTACCGGAGGGGAGGGAGGGCAG-
GCCTGGATCTCAGGATCTCGGTCCTGCATGCAATGCAAGCCTGAGCTCTCCCGCCATAAGGCTGCAGCGGTGT-
GGGCTCCTTGTGCCCAGATCCTTTGTATTCATAGGGGGAAGTGGAAGACCACGCTGCC
1321 GGCGGTGATGGGCggaggaggaggaagaggaggaggaggaagaggaggagggggaAAACGATGACAG-
GAGCTGGGGCCGGGGGGGGAAATTGGGGGGACGCGGGCGGAGGCGCGGTGCGCGCCGGCGGTGGCGGGCAC-
GAGCCCCGCGCCTGGAGGAGGAGGAGTCAGGCCGGGTAGGAGGGCTAAGGAGGTTCCCGGGAAGGCAGGGcccc
ccctcccccccctcccccccccccACACACACACACTCCCCTG
1322 CAGCCCGCCCGGAGCCCATGCCCGGCGGCTGGCCAGTGCTGCGGCAGAAGGGGGGGCCCGGCTCTGC-
ATGGCCCCGGCTGCTGACATGACTTCTTTGCCACTCGGTGTCAAAGTGGAGGACTCCGCCTTCGGCAAgccg-
gcggggggaggcgcgggccaggcccccagcgccgccgcggccACGGCAGCCGCCATGGGCGCGGACGAGGAGGG
GGCCAAGCCCAAAGTGTCCCCTTCGCTCCTGCCCTTCAGCGT
1323 GCCCGCGGGGGAATCGCAGTGAGCAGCGCGGGGCGAGGCCGCCGCGGACGCCCCGTCGGATGTGC-
CCTTCGCTGGGCCGAGCGGCGCAGGGTTGGAGAGGGAAGCGCTCGTGCCCACCTTGCTCGCAGGTGCCCT-
TGCTGACCTGGGTGATGGCCTTCTCCCCGCGGCTCTCGGCCCTCTGGCTGGCGGCGCGCAGCTGGCAGCCGCTC
GGGTAGGTGGTGCCGTCGCTGCCGCACACCGGG
1324 GCCGCGAGCCCGTCTGCTCCCGCCCTGCCCGTGCACTCTCCGCAGCCGCCCTCCGCCAAGC-
CCCAGCGCCCGCTCCCATCGCCGATGACCGCGGGGAGGAGGATGGAGATGCTCTGTGCCGGCAGGGTCCCT-
GCGCTGCTGCTCTGCCTGGGTAAGTTCTCCCCCTCTGGCTTCCGGCCGCCCCAA
1325 GCGGCCCCCTCCCGGCTGAGCCTATAAAGCGGCAGGTGCGCGCCGCCCTACAGACGTTCGCACACCT-
GGGTGCCAGCGCCCCAGAGGTCCCGGGACAGCCCGAggcgccgcgcccgccgccccgAGCTCCCCAAGCCTTC-
GAGAGCGGCGCACACTCCCGGTCTCCACTCGCTCTTCCAACACCCGCTCGTTTTGGCGGCAGCTCGTGTCCCAG
AGACCGAGTTGCCCCAGAGACCGAGACGCCGCCGCTGCG
1326 CAGCAGGGCGCGGCTTCCCTTTCCCGGGGCCTGGGGCCGCAATCAGGTGGAGTCGAGAGGCCGGAG-
GAGGGGCAGGAGGAAGGGGTGCGGTCGCGATCCGGACCCGGAGCCAGCGCGGAGCACCTGCGCCCGCGGCT-
GACACCTTCGCTCGCAGTTTGTTCGCAGTTTACTCGCACACCAGTTTCCCCCACCGCGCTTTGGGTAAGTTCAG
CCTCCCGGCGCGTCCCCGCGAGCCTCGCCCACAGCCGCCTGCTG
1327 CCGCAGCACGCTCGGACGGGCCAGGGGCGGCGACCCCTCGCGGACGCCCGGCTGCGCGCCGGGC-
CGGGGACTTGCCCTTGCACGCTCCCTGCGCCCTCCAGCTCGCCGGCGGGACCATGAAGAAGTTCTCTCGGAT-
GCCCAAGTCGGAGggcggcagcggcggcggagcggcgggtggcggggctggcggggccggggccggggccggct
gcggctccggcggcTCGTCCGTGGGGGTCCGGGTGTTCGCGGTCG
1328 GCGGAGTGCGGGTCGGGAAGCGGAGAGAGAAGCAGCTGTGTAATCCGCTGGATGCGGACCAGG-
GCGCTCCCCATTCCCGTCGGGAGCCCGCCGATTGGCTGGGTGTGGGCGCACGTGACCGACATGTGGCTGTAT-
TGGTGCAGCCCGCCAGGGTGTCACTGGAGACAGAATGGAGGTGCTGCCGGACTCGGAAATGGGG
1329 GCGCGGGGGCAGGTGAGCATGCGAAGGTTGGAGGCCGCGCCCCTTGCTGAGGCGCAGCTGGCT-
GCTCTTTTCGGGCCGGCATACGCGCGCAGCCGCAGCTGAGGTCACCCCGCTGAGGTGGTGGGGAGGGGAATG-
GTTATTCTTGAGGCACCGCATCTCTTGAGGAGGAAAGAGCCGGAAACACCTGGTCTCTCAAGCAGGTACAGCCC
GCTTCTCCCCAGCACCCCGGTGTGGGCTTCCCAAGGTCCTGCCTGA
1330 ggcgcgggggcaggtgagcatgcgaaggttggaggccgcgccccttgctgaggcgcagctggct-
gctcttttcgggccggcatacgcgcgcagccgcagctgaggtcaccccgctgaggtggtggggaggggaatg-
gttattcttgaggcaccgcatctcttgaggaggaaagagccg
1331 AGTGACGGGCGGTGGGCCTGGGGCGGCCAGCGGTGACTCCAGATGAGCCGGCCGTCCGCGTTCGCGC-
CGCGGCGGTGCGGTTGTCGCGGATCAGCAGGATCGGAGTGCGGGGCTGCTGGGCGGAGGCGTTGGCTGCAC-
CAGGGACGGCGGCG
1332 GGCGACCCTTTGGCCGCTGGCCTGATCCGGAGACCCAGGGCTGCCTCCAGGTCCGGACGCGGG-
GCGTCGGGCTCCGGGCACCACGAATGCCGGACGTGAAGGGGAGGACGGAGGCGCGTAGACGCGGCTGGG-
GACGAACCCGAGGACGCATTGCTCCCTGGACGGGCACGCGGGACCTCCCGGAGTGCCTCCCTGCAACACTTCCC
CGCGACTTGGGCTCCTTGACACAGGCCCGTCATTTCTCTTTGCAGGTTC
1333 CGCGGCAGCCCGGGTGAATGGAGCGAGGCGGCAGGTCATCCCCGTGCAGCGCCCGG-
GTATTTGCATAATTTATGCTCGCGGGAGGCCGCCATCGCCCCTCCCCCAACCCGGAGTGTGCCCGTAATTAC-
CGCCGGCCAATCGGCGGCGTCGCGCGGCCCCGGGAGTCGGCTCGGGCTAAGCTGGCCAGGGCGTCTCCAGGCAG
TGAAACAGAGGCGGGGTCGGCGGGCGATTAGCGGCCGAGGCACGCTCCTCTTG
1334 GGCGAGCGAGCGGGACCGAGCGGGGAGCGGGTGGAGGCGGCGCCACG-
GCGCGCACACACTCGCACACACGCGCTCCCACTCCAcccccggccgctccccgcccgaggggccgcgcggcg-
gccgcggggAACGATGCAACCTGTTGGTGACGCTTGGCAACTGCAggggcgcccgcggtccctgcccccacgcc
ctccgcgcgggccccgccaccccggccccgacggcgcctgcacgcccgcgtcccctg
1335 GGGGCAGTGCCGGTGTGCTGCCCTCTGCCTTGAGACCTCAAGCCGCGCAGGCGCCCAGGGCAGGCAG-
GTAGCGGCCACAGAAGAGCCAAAAGCTCCCGGGTTGGCTGGTAAGGACACCACCTCCAGCTTTAGCCCTCT-
GGGGCCAGCCAGGGTAGCCGGGAAGCAGTGGTGGCCCGCCCTCCAGGGAGCAGTTGGGCCCCGCCCGG
1336 CGCTGGCATTCGGGCCCCCTCCAGACTTTAGCCCGGTgccggcgccccctgggcccggcccgg-
gcctcctggcgcagcccctcgggggcccgggcACACCGTCCTCGCCCGGAGCGCAGAGGCCGACGCCCTAC-
GAGTGGATGCGGCGCAGCGTGGCGGCCGGAGGCGGCGGTGGCAGCGGTAAGGACCCTTCCCTCGCCCTGCGCCT
CTGGACCTGCAGGTGCTCGGGCGCGGCCCAGGCCGCCCCCTGTCTGA
1337 GAGCCGTGATGGAGCCGGGAGGAGAGGCGCATCCTCAGCAGAGCTTCCCTCCCTTGCACACGAGCT-
GACGGCGTGAACGGGGGTGTCGGGGTTGGTGCAACTATAGAAGGGAAAGGCTGGGCGGGGGTCACACATACCT-
CAGTGGCAGGCAGGCAGGCGGCAGGCAGAGCGCGCTCTCCGGGCAGTCTGAAGGACCGCGGGAATGTGGAGGGG
1338 GCCAGGGTGTCTTGGCTCTGGCCTGAGTCGGGTATGTGAAAGCCTTTTGGGGCAGGAAGGG-
GCAAAGTGATACCTGGCCGTCCCACCCTCTGGTCCCAGAAGGAGCTCTCGCTGGAGCCAG-
GCAGCCTCCAGTCCCCCTCCTTTCAGCCTTGTCATTCTCTGCATCCTGCCCAGGCCACAAAGGA
1339 CGGCTCCGGCGGGGAAGGAGGCgggctgcggctgcggctggggctgaagctggggctggggttgggg-
GACTGCCCGGGGCTTAGATGGCTCCGAGCCCGTTTGAGCGTGGTCTCGGACTGCTAACTGGACCAACG-
GCAACTGTCTGATGAGTGCCAGCCCCAAACCGCGCGCTGC
1340 GCCAGGGTGCCGTCGCGCTTGGCGCCGTCCAGGGCGGCGCTGCGCTCGTCCAGCAACACCACGGCGT-
GGTAGGCGCCGGCCAGCAGGCGGCCGCGGAGCTCGGCGTTGGGCACGATGTGCTCCAGGCCCATGGCGCCCT-
TGGCCCGGCGCCGCACGATGGTGCTGAAGCGCACGTTGACAGAGCCGGCGATGTGGCCGGCGTTGAAAGCGAAG
AAGGAGCGGCAGTCCAGCAGCAGGCATTGCGCCGCTCGCTCC
1341 CGGCTCGGTCCTGAGGAGAAGGACTCAGCCGCGGCTGCGGGACCCGGGCACCGGGAggcggtggcg-
gcggcggcggcggcagcagcggcgacagcagaggaggaagaggaggaagaaggaaagaaaaagaagaaCCAG-
GAGGAGTCCTCAACAACGACAGCGGGGACTGCGGGACCAGGGTAAAGCGGCGACGGCGGCGACGGCCCAGCAAC
CGTGA
1342 CGCGGGGAACCTGCGGCTGCCCGGGCAAGGCCACGAGGCTTCTTATACCCGGTCCTCGC-
CCCTCCAGCGCCGGCCTCGCCCGCGCTCCTGAGAAAGCCCTGCCCGCTCCGCTCACGGCCGTGCCCTGGC-
CAACTTCCTGCTGCGGCCGGCGGGCCCTGGGAAGCCCGTGCCCCCTTCCCTGCCCGGGCCTCGAGGACTTCCTC
TTGGCAGGCGCTGGGGCCCTCTGAGAGCAGGCAGGCCCGGCCTTTGTCTCCG
1343 CCGCCGCTGCTTTGGGTGGGGGGCTGACAGGGCTGCGCGCGTCGCGCTCTTGGCTGGGGCTGCGCGG-
GCCCGGGGCGCTGCGGGCGGCTCAGCGGCAGCTGCCGCGCTCTGCGCCTCCTCTGGGCGCACTGCCTGG-
GAGCACGAGACTGGTTTGTCTGATGCTGCTGCCGGAGCTGAGGTCTTGCCTGGAGATCCGAACGAGACACCACG
TCAACCGGCGCGGGGAGTCCCGTGAAGACATGAG GGCGCCAGGAG
1344 ACCTGAGCCCGCGGGGGAAccccccccccaccccoggggaaccccccccacccccgccgc-
cccccgccTGCAAGTTGTTACCAGTAAATAAAAGGGATCCTATTTTAGCAAGCCACACAGCATTAGAGG-
GCAAATAATAGTTTGGTGGCAGGAGAGCGATGAGACGGGAAAGTGTGGGGCAAAGCTTACAGTCATTGGTCCAG
ATTCTAACTGGCCTGTTAGCCAAAAAGTAAGGTTTTCTTTACCTCCGTGTTG
1345 AACGCCGGCCTCACCGGCAGACGCGCGCCCTCCTCCCAGATGCGCAGGTGACCCCGGCGGGCG-
GCGCGGGAAAGGGAAGAGCTCCGCGAGGCCGCGCGGGGGGGAAGCGGGAGAAGC-
CGCTCTTCCTATTCCACTCGCAGTCTGCGTGTGGGGGAAACGAGTGCCCGGCGTATGAAACGCCTAACTTCGCG
AAATAAAGAGAGACGTATAAAAGTTCAAGAATTCTGTCCAGACTCAAGGGCCCTTTCTCATTTA
1346 CCGTGGTCCCAGCGCTCCTGCTATTTGCATTCCAAAGCAGACACCTCATGCGCTCAACCCCGC-
CCGCAGGCGGCTCCCGCAGTCTAAGGGACCTGGCGCGAGTCCGGGAAGCGGAGGGCGCAGCTGCGCAGG-
GAAGGGGGCCGGGGGCGGGACCAGGGCGCGCGTTCCGGTCCCGGGGCGTGGC
1347 TGCGACCCGGCGCCCAAGCAGCCTGGGACCTTGCGCGGACCTGACCCCTTCAGACCGCAGGCAGTCT-
GGGAGGAGGTCCGGCCGGGGGAGGTGCAGGATCCCCGCCGTGTCTCTTTGACGACTTGGGGACTGTCACG-
GTTCTCTCCCGGCGCCCCTGGGTTCTTTTGTCCTGCACGCGGTGCGAAGGGGCCAGCAGGGAAGGAGCAGAGGA
TGGGGGGTGGGGTTGTTGGAGCCCCGCGGAGGTCTGGGAGGCCC
1348 GGCTCTGCGCTGCCTTTGGTGGCTCCTCCCTGGTCCTCTAAATGTGACACCAGGCGGATGCGGGGC-
CACAGGACCCTGGGGCTTGAGTCACACAAGAATGTCTCTGGGAGACCCGAGAGACTCACAGTTATGAAACAG-
GACCATGGTTCTTTggccgggcgcgggg
1349 gcgcgggcggcTCCTTTGTGTCCAGCCGCCGCCACCGGAGCTCCCGGGGCCTCCGCGGG-
GAGCGCGTCCCCCGCATCCGCCCGACCCCCGGGGCTGGCACGTGCTGCGCCCGGTCCGCTGAGGGGGCGGAG-
GCCCCGATCTCCCCGACCCCCCTTCTCTGCTTAGAGGAGGAGGAGCAGCGGCAGCGGCAGCAGGAGGCGACAGC
TGCCAGCCGAGGAGGCGCGGCGGAGAGGGGACTGCGGTCAGCTGCGTCCA
1350 GGCCCGTTGGCGAGGTTAGAGCGCCAGGTTGTAAGAATCGGGTCTGTGGACCTCATACCAGATAG-
GCGCGAACGCCTCTGGCAGCGGCGTCCAGGGGGTCCGGCGGCACTCGCGGTGGGGCTGCCTGGGTTGCGGGT-
GACGATCTGCGGGGTCCCGCACCCGGCCCCGCGGAGCCCGGACCCGCACGTAGGCGGCGCGGCAAAGGCACACC
CTCCTCGCGGCCGCGAACCCAGCGCCGTCCTCGCAGCGCGGCAA
1351 acccggcatccgggcaggctgcgcgcgggtgcggggcgagggcgccgcggggACTGGGACGCACGGC-
CCGCGCGCGGGACACGGCCATGGAGGACGCGGGAGCAGCTGGCCCGGGGCCGGAGCCTGAGCCCGAGC-
CCGAGCCGGAGCCCGAGCCCGCGCCGGAGCCGGAACCGGAGCCCAAGCCGGGTGCTGGCACATCCGAGGCGTTC
TCCCGACTCTGGACCGACGTGATGGGTATCCTGGTAAGTTACCTGG
1352 CCCGGACTGTAATCACGTCCACTGGGAACTGGCGCAGTAGTGGAGGGGACGCGATCAGGCCCGTG-
GCTGCGCCCAGAGCATGATAAGCCAGGGACCTCGCGGCGCAGGCGGAGGGAGGGAGAGCGTCGCGGACCCAG-
GCGGGGACAGGGAGACGCC
1353 CGCCGCCAACGCGCAGGTCTACGGTCAGACCGGCCTCCCCTACGGCCCCGGGTCTGAGGCTGCG-
GCGTTCGGCTCCAACGGCCTGGGGGGTTTCCCCCCACTCAACAGCGTGTCTCCGAGCCCGCTGATGCTACT-
GCACCCGCCGCCGCAGCTGTCGCCTTTCCTGCAGCCCCACGGCCAGCAGGTGCCCTACTACCTGGAGAACGAGC
CCAGCGGCTACACGGTGCGCGAGGCCGGC
1354 GCTGCCAGCTGCCGCTCCGGCTCCCACTTCCCACCTGCTGCCCGAGGAAGACTTCCGG-
GAGAAACGCTGTCTCCGAGCCCCCGCGCCGCCGCGCTCCCTCCGCTGCAGCAGCGGCCACCGGGTGCGCCCG-
GAGCCCTGGGACGGCCTAAACCAGTATCTCGCGGGCCCCGCGCCGGGCTCCGGGAATGGCCGCAGCAGCCCTGG
CGACCCGGGCCCCTCGGAGCTCCCCTTCAGGATCGTGCACCAAGCGCGCAC
1355 GCGCCCACCTGCGCCTCGCGGGGTCCCCGAGGTCCCGCCACCGAGCGCCCAAGGCGG-
GATCCCAGCGCGTCCTGCAGCCCGCCCAGCTTCAGGGCCGGCCCGGCGCGCGCAGGTGCGGCACTCACCGGC-
CAGGTGAAGCCGAAGGGGAAGCGGATGGGGTTGCTGAACGCGGAGTCGGCGCCCCCGCCGTCGGGCAGACTGAA
GGAGTCGACGCCCAGCACGGGGGTGACGGCGCTGCCGTAGGTGCAGGGCGGC
1356 CGGGCCAGGGCGGCATGAAGAAGTCCCGCCGCTACGTGCCCGGCACAGTGGCCCTGCGCGACGTTCG-
GCGCTACCAGAACTCCGAGCTGCTGATCAGCAAGCTGCCGCTCCTGCGAGAGCTCGGCGGTGACGCCGCT-
GCACGAGAGCGA
1357 GCTGCGACCTGGGGTCCGACGGACGCCTCCTCCGCGGGTATGAACAGTATGCCTACGATGGCAAG-
GATTACCTCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCAGCGGACACTGCGGCTCAG-
ATCTCCAAGCGCAAGTGTGAGGCGGCCAATGTGGCTGAACAAAGGAGAGCCTACCTGGAGGGCACGTGCGTG-
GAGTGGCTCCACAGATACCTGGAGAACGGGAAGGAGATGCTGCAGCGCGCGGG
1358 GTTAGGAGGGCGGGGCGCGTGCGCGCGCACCTCGCTCACGCGCCGGCGCGCTCCTTTTGCAG-
GCTCGTGGCGGTCGGTCAGCGGGGCGTTCTCCCACCTGTAGCGACTCAGGTTACTGAAAAGGCGG-
GAAAACGCTGCGATGGCGGCAGCTGGGG
1359 AGCGCACCAACGCAGGCGAGGGACTGGGGGAGGAGGGAAGTGCCCTCCTGCAGCACGCGAG-
GTTCCGGGACCGGCTGGCCTGCTGGAACTCGGCCAGGCTCAGCTGGCTCGGCGCTGGGCAGCCAGGAGCCTGG-
GCCCCGGGGAGGGCGGTCCCGGGCGGCGCGGTGGGCCGAGCGCGGGTCCCGCCTCCTTGAGGCGGGCCCGGGC
1360 CGGCTGGCCCCGCCCACTCTCCGCGGCCGGAAGTGGCGGCGCCGAGTGAGGTAAATGCGTGCCCG-
GAAGCGCGACCTCGGGCGGTTGGAGGGGCTACCGGGTCTTACCAGTCCGTGGCGGGAGTCCCGGAGGAC-
CCTCGACGGGGGAGTTGCCGAGAAAAGGCCTCGCCGGCA
1361 GGGGTTGCCGTCGCAGCCAGCTGAGTGTTGCGCCAGGGGGACAGGTATGTTCCAGGCAGTGGCAAGC-
CCAACCCGAGCAAGACCTGCGCTGAAACGGATTGGCTGCCCTCCGCCCGGAGTCCGTTCTCCCTGCAGCGGC-
CAGTGCAGAGCTCAGAGGCTCAGAAACTCGCTCTCAGCCCCCTGGAGGCGGAGCCCGGGAGATAAGGTTCGCGC
TCCCCACCCGCC
1362 CCGCACTCCCGCCCGGTTCCCCGGCCGTCCGCCTATCCTTGGCCCCCTCCGCTTTCTCCGCGCCGGC-
CCGCCTCGCTTATGCCTCGGCGCTGAGCCGCTCTCCCGATTGCCCGCCGACATGAGCTGCAACGGAG-
GCTCCCACCCGCGGATCAACACTCTGGGCCGCATGATCCGCGCCGAGTCTGGCCCGGACCTGCGCTACGAGGTG
ACCAGCGGCGGCGGG
1363 ggaccccctgggcagcaccctggccacccttccatccacaacatccagaccacacggccaagg-
gcacctgaccctgtcaaaaccccaaatccagctgggcgcggtggctcatgcctgtaatcccagcatttgggag-
gccgaggcagccgg
1364 gaggcagccggatcacgaagtcaggagttcgagaccagcctgaccaacatggtgaaaccccgtctc-
tactaaaatacaaaaattagccgggcgtggtggtgcacacc
1365 GCGCGTGCGGGCGTTGTCCCGGCAACCAGGGGGCGGGGCTGGGCGTGGCACCGCCCCGCGCTCCGCT-
GCCAGGGGCGGGAGGGAGGAATGGTTGCTTCACGCCCCGGGGGAAGAGACGGGAAGCTCGGCTCTGGGT-
TGCGGGCCCCGGCGTCTCCGCGTGGGGCGCACCGTCCGACCCCCCCCTCCCGGTGTGCAGCGCCCCGCACCGCC
CCGCCTCGCCTGGGAGAAGCCGCCGGGACGCGCC
1366 CAGGATGCGGCAGCGCCCACCCGCGCGGCGTGGAGGGGGCCGGGGGCGGCGCTCGGCGCAGATG-
GCGCTCGCTGCGAGATGGATGCTCCAGGGCGGGTAATCACTCCTGGCTCAACACAGCATCCCGGGCGGAGCG-
GATGCCAGATCCCACCGCTAAGAGCCTGGGCTGGGAAAGCAATCTTTCCAGGCAGCCCCCAGCCCGGTGCGCCG
GCCCCGACAAGTCCCAGCCCTCGGAGGCAGGGCGGGGCGCAGGGA
1367 gATGCGGCCCGCGGAGGAGAGAGCAGGAGGACGGACGGGAGGGACCTCCGCGGGGAGG-
GCGCGCgggggaggcggggagggaggcgggagggggaggggACGGTGTGGATGGCCCCGAG-
GTCCAAAAAGAAAGCGCCCAACGGCTGGACGCACACCCCGCCAGGCCTCCTGGAAACGGTGCCGGTGCTGCAGA
GCCCGCGAGGTGTCTGGGAGTTGGGCGAGAGCTGCAGACTTGGAGGCTCTTATACCTCCGTG
1368 GTTCTGCGCGCGCCCGACTCCGCTGCCCGCCCCGCCAGGCCTCCGGGAGGTGGGGGCTGGGAG-
GCGTCCCCCGCTCCCGCCCCCTCCCCACCGTTCAATGAAAGATGAACTGGCGAGAGGTGAGAAGGGAAGAGG-
GCTCCCGGCTCTCTCGGGGCGGGAATCAGTGGGCCAGAGCTCGCCGGGTGGCCGCAAG
1369 CCCGCCGTGGGCGTAGTAAccgccaccgccgccgccccccgcgccaccaccaccgccgccT-
GCCTCGCCTCTGCCCGAGCTGATGAGCGAGTCGACCAAAAAAGAGTTCGCGGCGGGGCTCTCCGAGCATGA-
CATTGTTGTGGGATAATTTGGCGAAGGGAGCAGATAGCCCTTTCTGGCTGACATTTCTTGTGCAAAACATGCT-
GAATACGATTAGCAATCCCCCCGCACCGCGGCGGGCGCCCGCAGCCAATC
1370 ACCCGCCCGGGCAGCTCCAGTCCCGGACTCCGCAGCTCGGAGCGCAGCCAGCCACGGCCATTGCGG-
GACCCTATTTATCCCGACACCTCCCCTGACGTGGGCTCGGAACGCTCCCTTGGCAGCTGCAGCCGCGGCGCGG-
GCTCCCCCTCGGCCGCCCCACCCCCAGGCCCGTCGGTGCAGAAGCGGTGACATCACCCCCTCTGGGCCGCAGC
1371 CAGCGGTCGCGCCTCGTCGGGCGACGGCTGGCAGCGAAGGCCGGAGCCACAGCGCTCGGTGTAGAT-
GCCGCACGGCTGGCCCTCGCTCAGTGCGCACGTCAGGCAGCAGCCGCAGCCCGGCTCGCGCAC-
CAGCTCCGCGCACACGGCGGGCGGAGGCGCGCACTGGGCCAGTGCACGCGCGTCGCACGGCTCGCAGCGCACCA
CGGGACCCAAGCCCGCCG
1372 GCAATCGCGCTGTCTCTGAAAGGGGTGGAGAAGGGGCTGGATGAGTCCGGAAGTGGAGATTGGCT-
GCTTAGTGACGCGCGGCGTCCCGGAAGTTGACAGATACAGGGCGAGAGGCAGTGGAGGCGGGACTTG-
GATAGGGGCGGAACCTGAGACTACCTTTCTGCGATCACAGGATTCCCGGCGGTGACTTGACCCCGGAAGTGGGG
TGTGAAGCTCCGGTGCTGGTGCGGCGGGGGA
1373 GAGCGCCCGCCGTTGATGCCCCAGCTGCTCTGGCCGCGATGGGCACTGCAGGGGCTTTCCTGT-
GCGCGGGGTCTCCAGCATCTCCACGAAGGCAGAGTTGGGGGTCTGGCAGCGCGTTCTGGACTTTGCCCGCCGC-
CAGTGCGATTCTCCCTCCCGGTTCCAGTCGCCGCGGACGATGCTTCCTCCCACCCACCGCCCGCGGGCTCAGAG
AGCAGGTCCCCGCACCGCGC
1374 CATGGCCCGCTGCGCCCTCTCCGCCGGTTGGGGAGAGAAGCTCCTGGAGCGGCCAGATACCTGTTG-
GCTCCTGAGCAGCATCGCCCAGTGCAGCCTCCGTCAGGAAAAGCAGCAGAATCGACAGCCCCAGGGGGC-
GAGCGGGGTCCATGGTGCAGGGGGTCGGGCGGCCCGCTGGGCAAGGCGTCCGAGAAAGCGCCTGGCGGGAGGAG
GTGCGCGGCTTTCTGCTCCAGGCGGCCCGGGTGCCCGCTTTATGCG
1375 GGGGGCGGGGTGCAGGGGTGGAGGGGCGGGGAGGCGGGCTCCGGCTGCGCCACGCTATC-
GAGTCTTCCCTCCCTCCTTCTCTGCCCCCTCCGCTCCCGCTGGAGCCCTCCACCCTACAAGTGGCCTACAGG-
GCACAGGTGAGGCGGGACTGGACAGCTCCTGCTTTGATCGCCGGAGATCTGCAAATTCTGCCCATGTCGGGGCT
GCAGAGCACTC
1376 CGACCCTGCGCCCGGCAGTCCCCGGGGGCCGTGCGCCCGGCCCAGGCTCGGAGGTCCAGCCCAGCG-
GCGGCTCAGGCTGCGCGCCTGGCTCCCAGCCTCAGTTTCCCCATTGGTAAAGCATTGACGGTGGTTGCGGACG-
GCTTCTGCGGACAGAGCCTTGGGCTCCGACGTCTGCGCGG
1377 GGCTTCAAGTCCACGGCCCTGTGATGGGATGTGGGCAGGGCCTGAGACAGGCCGAAC-
CCAACTCTTCACAGGGCCGAATTCTTTGCCCGCAGCCCAGCACCCCGAAGGAGCTTGCCTCGGCTTCAAG-
GCGCACCTAATGGGCACCGGATCGCTGGGGCGCTGAGGATGCCGCTCCGGGGCCTCCACGAGGCGGCCTCGCCA
CGCGCCTCGGCCA
1378 CCCCACCTGCCCGCGCTGCTTCTACCTGAAACTGGCCAAGGGCCCGAGCCCGGACCGGAGCCGT-
GACTTCCCTCCGCCGGCCACGGGGCTGCCCGGATCCGCCGGGTTATGTCGCTTGGCTTTGGGCTCAGGGGT-
CACCGTGGGCAGAGGGGGGTGCCGGGGTCGCGGACTGCCACCAGGTTGAGGAAAGGAGGGGCCTTTTGGCTGGG
GAAAGAGCGTGGTGGGGGACCCGCGGCCGATGGAATCCCTGGGGCA
1379 gcgcgcggagacgcagcagcggcagcggcagcATGTCGGCCGGCGGAGCGTCAGTCCCGCCGC-
CCCCGAACCCCGCCGTGTCCTTCCCGCCGCCCCGGGGTCACCCTGCCCGCCGGCCCCGACATCCTGCG-
GACCTACTCGGGCGCCTTCGTCTGCCTGGAGATTGTAAGTGGGGCCGCCGGAGCGAGGGTCGCGCGGGGAGCGA
GGACAGGCGGCGGCATCCTTGTCCCCCGGGCTGTCTTCCTCTGCGTCCGC
1380 GTGAGCCGGCGCTCCTGATGCGGAGAGGTGCGGCCATGTCCTGGCTGGGAGCGAAGCGC-
CCTCGCTCGGGCAGTCGGAGCGAACTGTCTCCCGCGCGCTCCGCCAGCCGGGCCCTCCCGCTGGGCCCAC-
CCCCCGAGGGGCGGGGCCAGAGCGGGCGGCACCGCCTCCTCCCCGCTGTCTGGGTCGCAGGCCTTAGCGACGGG
CTGTTCTCCGGCCCCGCCCCATTCCCAGGCTCCGCCCCC
1381 TGCCGCGGGGGTGCCAAGGGAAGTGCCAGCTCAGAGGGACCATGTGGGCGCAGGCACCCAGGCG-
GCGCCGGGAGGCCTCTCGGGACTCCAGGGCTGTCCCTCCCGCAGGCTGTCCTTCCACCTCCACCCCAGGC-
CAACGCCCTCCCGCCAGCCCAGGGTCCTGTGTCCTCGAGTCCTTCCTGGGCACCCTGGTCCCATCCTTAGCCCT
GCCCGAGGGGCCCAGCCCTGCTCCAAAAGGGCTGTGGCTCCACCCAC
1382 CTGCTGCGCGCGCTGGCTCTTCTGCGAGGCCTGCTTGAGCTTGTTGCCGCCTTTGGGCTCCGGGC-
CCTCCAGCTCGTCCCTGCAGCGCCGCGGCCGCTCCTCGTAGGCCAGGCTGGAGGCAAGCTCCTTCTCCT-
CAAAGCTGCGCTGCAGCTTCTGGAGGGCGCCCTCCCTCTCCAACAGCTTCTGCTCCAGCTCCTGGATGCTGCAC
TCGTCCGTGGAGATGGGGGAGCGG
1383 CTGGCGGCCCAGGTCGCTCCTGCCCAACCCGGGGACCCATCTCTTCCCCCGACTCCGACGACTGGT-
GCGTCTTGCCCGGACATGCCCGGCCGCAGGCGACCCGGGCCACGCACCCCCGCCGTGTCCCCCTCTCTCCCT-
GCCCTCTCCAGGCGCCAGGCACGCTCTTCCCCAGCCAGGGACCGCGGCGGGGACTCACCAACAGCAGGACCGCG
GCGACAACGAGCACAAGGGTCTTGGGGACCCGGGGCCCAGGCC
1384 AGCGCCCCGGCCGCCTGATGGCCGAGGCAGGGTGCGACCCAGGACCCAGGACGGCGTCGGGAAC-
CATACCATGGCCCGGATCCCCAAGACCCTAAAGTTCGTCGTCGTCATCGTCGCGGTCCTGCTGCCAGT-
GAGTCCCGGCCGCGGTCCCTGGCTGGGGAAGAGCGCACCTGGCGCCGGGAGGGGGCAGGGAGACGGGGACACGG
CAGGGATGCCTGGCCCTGGTCACCTGCGGCCGGGCA
1385 GCCGCACGGGACAGCCAGGGGGAGCGCGCGCTCTGCTCCCTCGCGGCCCGGTCGCTCCTGCCCAGC-
CCGGGCACCCCACTCTTCCCCTGACTCCGACGGCGGGTTCGTCCTGCCCAGACATGCCCGGCCGCAGGCGAC-
CCGGGCCAAGCATCCCCACCGTGTCCCCCTCTCTCCCTGCCCACTCCCGGCGC
1386 CCCGGACATGCCCCGCCACAAGTGACCCGGGCCAGGCACCCCCGCCGCGTCCCCCTCTCTCTCTGC-
CCCCTCCCGGTGCCAGGCGCGCTTTTCCCCAGGCAGGACCGCGGTGGGGACTCACCTGCAGCAGGAC-
CCCGACGACGACAAACTTGAAGGTCTTGTGGACCCGGAGCCGAGGGCTGGCTTCCCGCGCCGGCCTGGGT
1387 cgggggccgccgcctgacttcggacaccggccccgcacccgccaggaggggagggaaggggag-
gcggggagagcgacggcggggggcgggcggtggaccccgcctcccccggcacagcctgctgaggggaa-
gagggggtctccgctcttcctcagtgcactctctgactgaagcccggcgcgtggggtgcagcgggagtgcgagg
ggactggacaggtgggaagatgggaatgaggaccgggcggcgggaa
1388 CAGTGGCGGCCCTCGGCCTGCGGTCGGAGGCGGCGCGGGCGGGGAGGCGGCGCTGCGGGCTGGGT-
GCGCCCCGGCTCCCGGAGGTGCGGCGAGCAGGAAggcgcggggcggcgggcgcgcggcACTGACTCCGGAG-
GCTGCAGGGCTGGAGTGCGCGGGGCTCCTACGGCCGAGCCCTCGGAGCCGCCCCGCGCAGCCAATCAGCTCCCG
GCGGGGCGAGCCGCACTCGTTACCACGTCCGTCACCGGCGCG
1389 GCCCGGCGCGGATAACGGTCCGGCGGGAGGACACGGCGGTCCCTACAGCATCGCGGCGGGCCAG-
GCTCGGGCAGGGGCCGTGCTCAGGTGCGGCAGACGGACGGGCCGGCGCCTCTGAAGTCACCCG-
GCTCCTTTACGAACTGAGCCCGTTTTGGCTGGGAGGGTT
1390 GCTCCGGGTGGGGAGGGAGGCTGGCAGCTCACCCCCGGGGGCGAGGGGTCTGCGTTAGCCGTAGC-
CACGGGAGCCCGGGCTTCTGGGACGCTCAGCCGTGCGCTACCCGGTGCAGCTGCTTTCTCACCAGCTCGCGG-
GTGGGTCCTGCCGCGGCTCGGCGACCCGCGCCCCCTTGCGAGCGACCCAGCGTGAAACCAGCCCAAAGGGCG-
GCCTCGCCCG
1391 GCCTGGGCGCAGAACGGGGTCCCTCGGCAGGACCCTCGCCGCGACAGCCTCAGCAGGGGATCGTC-
GAGCAAAAGCCCGCAGGAATGCTCCTTTCTGGGGCCCCGCCCTCCCGGCCGACAGCTTTTAGGTAGACGTG-
GAGGCGACTCAGATCGCCTCGCGGTTCCCGGGATGGCGCGGTCGCCCCCAACGCGAGGCTGCCTGGGGCACCCG
GCTCTTTTCCTGGGCGTCCGCGGCC
1392 GGTCCTAATCCCCAGGCTGCGCTGACAGGATTAGGCTCCGTTCCTCCCCATAATGTTCCCAGGAC-
GAGCCTCATGGGGACGAACTACAAATCCCAGCATGCACCAGTCTTCGCCCGCCCGGCGGGAGGGCAACGGCT-
GACCAGGACCGCAGGCAAGCACCGCGGCGACGGTTCCAGCCAGGAAAATGAGAGCCTCTTGGGCCACGTTCCAA
ACGG
1393 CCGCGTCCCCGGCTGCTCCTCCTCGTGCTggcggcggcggcggcggcggcggcggcgCT-
GCTCCCGGGGGCGACGGGTGAgcggcggcgcggcgggcgggcgactgcggggcgcgcgggccggacccg-
gccTCTGGCTCGCTCCTGCTCTTTCTCAAACATggcgcggggccgggggcgcaggtggcggcgccggggcccgg
gccgggctctcgtggcgccgcgcggctcggcggctgccgggcgAACCGCAAGC
1394 GGCAGGGCTGACGTTGGGAGCGCTATGAGCTGCCGGGCAGGGTCCTCACCGGGGGCTTCCTCTGCGG-
GCCAGGGCTGCCGGGCGCCACCGGGACGCGAGCGCGCACGCCTCGGCCCGGCGGCCGCGCTCCTCGCAC-
CGCCTTCTCCGCAGGTCTTTATTCATCATCTCATctccctcttccccttctccttctcctttgcctccttctcc
tttgcctccttctcctcctcttcctccccctcctccaccaccacc
1395 CCGTGGGCGCAGGGGCTGTGGCCGGGGCGGTGGGCGGGCGGTGCCGCCAGGTGAGACTGGCTGCCGT-
GGCGCGGAGCTGCGAACTGGTCGGCGGCGCAAGGCGCGGACTCCGGTGAGTTGTGTGGAGCGCGCGCGGCCAT-
GGGCGCGGGCCACGGGCGGGTGGGAGGGTGGGGGGCCAGAGGGGCGGGGGAGGGTCACTCGGCGGCTCCCGGTG
CCGCCGCCGCCCGCCACCGCCTCTGCTCCCCGCG
1396 cctgcgcacgcgggaagggctgccggaggcgcccgtagggaggcgcgcgcgcgggcggctcagggc-
ccgcgttcctctccctcccgcctaccgccactttcccgccctgtgtgcgcccccacccccaccac-
catcttcccaccctcagcgcgggcgccc
1397 GCGGACGCAGCCGAGCTCAAAGCCGCTCTGGCCGCAGGGTGCGGACGCGTCGCGGAGTCCTCACTGC-
CCCGCCTCGCTCTGGCAGAGTGGGGAGCCAGCCGGCAAAGAATTCCGTTTTCAGCTGGGCCAAGGGGCCG-
GCGTCTCCCCACCCCCTTAGGCTCCGCCCCCTGTCCGCTGTGATCGCCGGGAGGCCAGGCCC
1398 GACCCATGGCGGGGCAGGCGGCGGCGCTGTCGGGCGGGCAGGGGTGGCGGGAGGCGGTGGCGCAGC-
GAGCAGCGGCCTCCAGCGCTGGTGGCTCCCTTTATAGGAGCGCTGGAGACACGGGCCCCGCCCGCCCTGCAGC-
CCCGCCCTGCAGTCCCGGAGCGCCGAGGAGTGCGCGCCCCCTCGCCCCCGCCCCACCTCGGCTGGGAGGCTGGT
GCGGACGCCGGGTG
1399 ccgctccccgcccctggctccgcctggc-
cccactcccctccgcgcgccttccctcttctcccccgctccccGCGGACGCTCCTCTCTTTCCCAGTGGGC-
CAACTTTATGCTGAAATTTCTTTTCTGCCCTTTTTTGGGATGTTTCCCCATTGGGAGGCGGAGCCGGGCTGCGG
CGGGGAAGGCGGAGGGCGAGGGGAAGAGTCACTGAGCTGCGGGGCATAGGGGGTCCGGGGCGAGGT-
GCCTTCTCCCACCCAG
1400 tgtgccgcgcggttgggaggagggtcgtgagcgtgagcgtgggagcgctgggggctctgctcgcgt-
gctgctctgaagttgttccccgatgcgccgtaggaagctgggattctcccatccggacgtgggacgcaggg-
gaggggtaggtttcaccgtccgggctgatgactcgtggcctccggggctcctgg
1401 CACTCACGCTCTCAGCCCGGGGAATCCCAGCGGGGAGGAGGGAGGGAG-
GTCGTTTTCTTCAGCTCCCCAGGTGGTCTGTGCTGGGTGTGCTGACGGTCCTTTTGGGAAAACAG-
GTCCACCTTTGCCAGCGTAATTCAGAAAGAGATGTAATTTTCTGAGAGCACACACCTGGGCAGGAGATCGC
1402 GGCAAGCGGGCTTCGGGAAGAATGCAGTTGGTGAGGAAGCTCGGCGAGGCGTGCCCGTGCAGCTGC-
CCCTGGCCCTGACTGCTGGTGCGAGGCAGTGCACGACTCAGCTGGCCGGGGCCTGCTGTCCCGCCGGTGC-
CACGCACCTGCAGACGCCCGGGCTGTGCCATCTCCTGGGCCGGTCCGGGGGCTGGGGCGGGGCGAAAAAGAAAA
AGCTCTGATCTCTGCCTTCGCCTCGCGCAGCTGTGCGGCGAGCCC
1403 CCCGCGGGCCGGGTGAGAACAGGTGGCGCCGGCCCGACCAGGCGCTTTGTGTCGGGGCGCGAG-
GATCTGGAGCGAACTGCTGCGCCTCGGTGGGCCGCTCCCTTCCCTCCCTTGCTCCCCCGGGCGGCCGCACGC-
CGGGTCGGCCGGGTAACGGAGAGGGAGTCGCCAGGAATGTGGCTCTGGGGACTGCCTCGCTCGGGGAAGGGGAG
AGGGTGGCCACGGTGTTAGGAGAGGCGCGGGAGCCGAGAGGTGGCG
1404 GGCGGCGGCTGGAGAGCGAGGAGGAGCGGGTGGCCCCGCGCTGCGCCCGCCCTCGCCTCACCTG-
GCGCAGGTAGGTGTGGCCGCGTCCCCTACCCGGCCGGGACTTTCTGGTAAGGAGAGGAGGTTACGGG-
GAACGACGCGCTGCTTTCATGCCCTTTCTTGTTCTACCTTCATCGGCCGAGGTAAAAGTGCTGAAACCATGTGA
ATAAAATACAGGTGGGTTCCGCCAGCTTCGCTCC
1405 GGGCCCCGGGACTCGGCTTGCACGAGCCAGTCTGGGGACCGGGGAGGCGGGGAGAGGGAAGGG-
GAAAGCGCGGACGCGGCCCAAACCTCCAGTAGCCGCAGCCGCCGTCGCCGAGTAGGGCCGGGCAGCCAGCCGG-
GCCTGGCGCAGCATCAGTGCCCGCTGCCGCTTCCGCTCGATACTCGCCCGCACCGAGGCAGGCAGCTCCGCGGG
TTGCTCTAAAGCCGCCGCCTCCGGCAAAGCCCCGTCGGCCGCC
1406 ACGGAATGTGGGGTGCGGGCCTGAATATTATAAACAAAACCAAAAAACACTGGCTGGAAAG-
GAAGTAAGCGGATTCTTCGTAAAGTCTATCAAAAGTCTTTTCGTTTCCCCCTCCCCCTTTCCCCACCGCCCAC-
CAAAATGAGCCGCGTTTGAGCACCTCAGGTCTGGAAAGCCGGCCAGGAGTGGGGGAGACCGAGGCACCCGCGGC
C
1407 GCGGCTGCTGCCGAGGCTCCTGGTTTCCACCGCCGCCCTCGGGGATCATGCCGCCATCGCGGTTCAT-
GCCGTTCTCGTGGTTCACACCGCCCTCAGGGTTCATATTACCCATGAGGCCTGGAGCTCCTTGGCCAACATG-
GCCTTCTGCGCTTGATGCTGCCCCCAGCTGAGGTGTGGGGCTTATTTTTACCTGGTATACACTCAGGCAGTAGA
ACACGGTGTCGTGGACGAGCGAACGCGCCATGGCTGGAGCGC
1408 CCGCTGCGCGAGGGAgggggcccgaggcgcccccggcccgcccTCCTCCCGGTCTTCGGATCCGAGC-
CGGTCCTCGGGAAAGAGCCTGCCACCGCGTCCCCGCAGCCACCCTCTCCGCGTGCCCGGCCCTCTCCAGTG-
GCGGGGGCACGTGGGCGCGCGGGGTGCGTGGCAAGCCGCCCCTCTCCCCACGCCCGTCCGGC
1409 GGGGTGCGGCGTCTGGTCAGCCAGGGGTGAATTCTCAGGACTGGTCGGCAGTCAAGGTGAGGACCCT-
GAGTGTAAACTGAAGAGACCACCCCCACCTGTAACAAAGAGGGCCCCACTAAGTCCCGCTTCTGCATTTG-
GTCCTGAGAGGCTCCGGTAAAGCCGTCCGGCAATGTTCCACCTGGAAAGTTCCAGGGCAGGGGAAGGGTGGGGG
GAGGGGCAGTCGCGGGGGA
1410 GCCGGGGGAAATGCGGCCTCTAAGCTCTCCGCTGAGGCGGCTTGGAAGGAATAGTGACTGACGTg-
gaggtgggggaggtggctggcccgggcgaggcccagggagagggagaggaggcgggtgggagaggaggagggT-
GTATCTCCTTTCGTCGGCCCGCCCCTTGGCTTCTGCACTGATGGTGGGTGGATGAGTAATGCATCCAGGAAGCC
TGGAGGCCTGTGGTTTCCGCACCCGCTGCCACCC
1411 tgcctggtaggactgacggctgcctttgtcctcctcctctccaccccgcctccccccaccct-
gccttccccccctcccccgtcttctctcccgcagctgcctcagtcggctactctcagccaacccccctcac-
cacccttctccccacccgcccccccgcccccgtcggcccagcgctgccagcccgagtttgcagagag-
gtaactccctttggctgcgagcgggcgagc
1412 GCGCGGGCGCCTCGATCTCCCGCGCGCGCGCGTGCGCGAGACCCCCCTTTGGCCCCCTACCCT-
GCAGCAAGGGTAGCGTGACGTAATGCAACCTCAGCATGTCAGCAGCAATATAAAGGAGAATGAGGCG-
GCGCGCCTCCCAGACGCAGAGTAGATTGTGATTGGCTCGGGCTGCGGAACCTCG
1413 CCCGGCTGGTCGGCGCTCCTCGCAGGCGGTGTCCCGGTCCGGAGCGATCTGCGCGCTCGGCCCCGCG-
GCCGCGCCCTCCCCGAAGCCCTTGCTTTGTTCTGTGAGCGCCTCGTGTCAGCCAGGCGCAGTGAGCT-
CACGGGGGCGTCCCGGGTCCGCATCCTCCCAGGAGCTGGGGAGCCGCTCGCTGGGCGCGGACCCGCTGCCTGAC
GCTGCAAACTACACGGTTTCGGTCCCCCGCGC
1414 CCGGGGCTGGGACGGCGCTTccaggcggagaaagacctccgcgggccgcgcgcggccttccccctgc-
gaggatcgccattggcccgggttggctttggaaagcggcggtGGCTTTGGGCCGGGCTCGGC
1415 GGGCGGGGTGGGGCTGGAGCtcctgtctcttggccagctgaatggaggcccagtggcaacacag-
gtcctgcctggggatcaggtctgctctgcaccccaccttgctgcctggagccgcccacctgacaacctct-
catccctgctctgcagatccggtcccatccccactgcccaccccacccccccagcactccacccagttcaacgt
tccacgaacccccagaaccagccctcatcaacaggcagcaagaaggg
1416 GTGCGGTTGGGCGGGGCCCTgtgccccactgcggagtgcgggtcgggaagcggagagagaagcagct-
gtgtaatccgctggatgcggaccagggcgctccccattcccgtcgggagcccgccgattggctgggtgtgg-
gcgcacgtgaccgacatgtggctgtattggtgcagcccgccagggtgtcactggagacagaatggaggtgctgc
cggactcggaaatggggtaggtgctggagccaccatggccagg
1417 GGCGGTGCCTCCGGGGCTCAcctggctgcagccacgcaccccctctcagtggcgtcggaact-
gcaaagcacctgtgagcttgcggaagtcagttcagactccagcccGCTCCAGCCCGGCCCGACCC
1418 GGCGGTGCCTCCGGGGCTCAcctggctgcagccacgcaccccctctcagtggcgtcggaact-
gcaaagcacctgtgagcttgcggaagtcagttcagactccagcccGCTCCAGCCCGGCCCGACCC
1419 CGGGAGCCCGCCCCCGAGAGgtgggctgcgggcgctcgaggcccagccgccgccgccgccgccgc-
cgccgccgcctccgccgccgccgccgccgccgccgccgccgcgctgccgcacgccccctggcagcg-
gcgcctccgtcaccgccgccgcccgcgctcgccgtcggcccgccgcccgctcagaggcggccctccaccggaag
tgaaaccgaaacggagctgagcgcctgactgaggccgaacccccggcccg
1420 TCCTGCCATCCGCGCCTTTGCActtttctttttgagttgacatttcttggtgctttttg-
gtttctcgctgttgttgggtgctttttggtttgttcttgtccctttttcgtttgctcatcctttttg-
gcgctaactcttaggcagccagcccagcagcccgaagcccgggcagccgcgctccgcggccccggggcagcgcg
gcgggaaccgcagccaagccccccgacacggggcgcacgggggccgggcagcccg
1421 AGGCACAGGGGCAGCTCCGGCACggctttctcaggcctatgccggagcctcgagggctggagagcgg-
gaagacaggcagtgctcggggagttgcagcaggacgtcaccaggagggcgaagcggccacgggaggggggc-
cccgggacattgcgcagcaaggaggctgcaggggctcggcctgcgggcgccggtcccacgaggcactgcggccc
agggtctggtgcggagagggcccacagtggacttggtgacgct
1422 CGACCCCTCCGACCGTGCTTCCGgtgagggtcctgggcccctttcccactctctagagaca-
gagaaatagggcttcgggcgcccagcgtttcctgtggcctctgggacctcttggccagggacaaggacccgt-
gacttccttgcttgctgtgtggcccgggagcagctcagacgctggctccttctgtccctctgcccgtggacatt
agctcaagtcactgatcagtcacaggggtggcctgtcaggtcaggcgg
1423 CCCGCAGGGTGGCTGCGTCCttccagggcctggcctgagggcaggggtg-
gtttgctcccccttcagcctccgggggctggggtcagtgcggtgctaacacggctctctctgtgctgtgg-
gacttccaggcaggcccgcaagccgtgtgagccgtcgcagccgtggcatcgttgaggagtgct-
gtttccGCAGCTGTGACCTGGCCCTCCTGGA
1424 GCGTCTGCCGGCCCCTCCCCttgtccgtcccctccgcgccgctggcgcgcgccttctgaatgc-
caagcattgccataaactccggggacaaaagcctgggtcacaaaagccccctctagaagttcacaccctgag-
gcttccctggcaaggctgggggccgtttggcccttccatgtggactgcaaaaacagtgttggaatgcaggactc
tgggtatgttctcgaaagttgttacaaccccaacccagggttgacc
1425 TAGGCCGCCGGGCAGCCACCgcgctcctctggctctcctgctccatcgcgctcctccgcgcccttgc-
cacctccaacgcccgtgcccagcagcgcgcGGCTGCCCAACAGCGCCGGA
1426 GGGGAGCGGGGACGCGAGCAgcaccagaatccgcgggagcgcggctgttcctggtagggccgtgt-
caggtgacggatgtagctagggggcgagctgcctggagttgcgttccaggcgtccggcccctgggccgtcac-
cgcggggcgcccgcgctgagggtgggaagatggtggtgggggtgggggcgcacacagggcgggaaagtggcggt
aggcgggagggagaggaacgcgggccctgagccgcccgcgcgcg
1427 GCCGGCTGGCTCCCCACTCTGCcagagcgaggcggggcagtgaggactccgcgacgcgtccgcac-
cctgcggccagagcggctttgagctcggctgcgtccgcgctaggcgctttttcccagaagcaatccag-
gcgcgcccgctggttcttgagcgccaggaaaagcccggagctaacgaccggccgctcggccactgcacggggcc
ccaagccgcagaaggacgacgggagggtaatgaagctgagcccaggtc
1428 TCGCTCACGGCGTCCCCTTGCCtggaaagataccgcggtccctccagaggatttgagggacagg-
gtcggagggggctcttccgccagcaccggaggaagaaagaggaggggctggctggtcaccagagggtggggcg-
gaccgcgtgcgctcggcggctgcggagagggggagagcaggcagcgggcggcggggagcagcatggagccggcg
gcggggagcagcatggagccttcggctgactggctggccacggc
1429 TCCCCGCTGCCCTGGCGCTCcccctttgatttattagggctgccgggttggcgcagat-
tgctttttcttctcttccatcccatcctcccttctggtcctcctttccacagtgggagtccgtgctcct-
gctcctcggttggctcctaagtgccccgccaggtcccctctcctttcgctctcccggctccggctcccgactct
tcggcccgctggcatctgcttccctcccctgcctcgtttctcgtcgcccctgct
1430 GGCCAGAGGCAGGCCCGCAGCtccctgccccgcctctgtgcctccgccaacccgacaacgct-
tgctcccaccccgatccccgcacccgcgcgaAGTGGGCCCTCCGGTCGTCGGC
1431 TGCCCGGGTCATCGGACGGGAGgccgcgccacgtgagggcggcaagagggcactggccctgcggc-
gaggccccagcgaggggcgcttccCCGAGGGGCCAGCCTGGGCA
1432 CCCAGTGCGCACGGCGAGGCagtagcccggccccgcactgctgataggtgcaggcag-
gacagtccctccaccgcggctcggggcgtcctgattggtgcggagccacgtcagtcgcacccggagaagg-
gtctgggaggaggcggaggcggaGAGGGCTGGGGAGGGCCGCG
1433 AGCGTCCCAGCCCGCGCACCgaccagcgccccagttccccacagacgccggcgggcccgg-
gagcctcgcggacgtgacgccgcgggcggaagtgacgttttcccgcggttggacgcggCGCTCAGTTGCCGG-
GCGGGG
1434 TGCTCCCCCGGGTCGGAGCCccccggagctgcgcgcgggcttgcagcgcctcgcccgcgct-
gtcctcccggtgtcccgcttctccgcgccccagccgccggctgccagcttttcggggccccgagtcgcac-
ccagcgaagagagcgggcccgggacaagctcgaactccggccgcctcgcccttccccggctccgctccctctgc
cccctcggggtcgcgcgcccacgatgctgcagggccctggctcgctgctg
1435 CGCTCGCATTGGGGCGCGTCccccatccgcccccaactgtggtgtcgcgacaggtcctattgcgggt-
gtctgcggtgggaagggcggtggtgactgggagcATGCGGGGTAACCGCAGTGGGCA
1436 TGCGGCAAGCCCGCCATGATGtccacgtgacaaaagccatgatatacatatgacaacgcctgccata-
ttgtccctgcggcaaaacccaacacgaaaagcacacagcaaagacaaagaggcccgccatgttttacactgcg-
gcaagaccttcagccgccatcttttcctgtgTGACCGCACATGTCCACCACCATGC
1437 TCTTGAGCCTCAGGAGTGAAAAGGCCCCTTGggaaaccctcacccaggagatacacaggagcactg-
gctttggcagcagctcacaatgagaaagaTGCCTGTCACAGCCTTTGCCTTCCTCTTCTATG
1438 GGACCATGAGTGTTTCCATGCTTGGCATCAGAcatgtcttctacccctattcagtctgtcatccact-
ggtcaagaatcccaaacattctaaaactgtgtccacatctcttctgggtaactcttatgattggagg-
gcttcctgaggtgtgaagtctatcacagatccagtgactaacttctagcttcatcttattctcacttaggggag
aagagttgaggcccaagcaaacctcttcttaccattggcttagggaa
1439 tcagccactgcttcgcaggctgacgttactgacgtggtgccagcgacggagggcgagaacgc-
cagcgcggcgcagccggacgtgaacgcgcagatcaccgcagcggttgcggcagaaaacagccgcattatggg-
gatcctcaactgtgaggaggctcacggacgcgaagaacaggcacgcgtgctggcagaaacccccggtatgaccg
tgaaaacggcccgccgcattctggccgcagcaccacagagtgcacag
1440 cggccagctgcgcggcgactccggggactccagggcgcccctctgcggccgacgcccggggt-
gcagcggccgccggggctggggccggcgggagtccgcgggaccctccagaagagcggccggcgccgtgact-
cagcactggggcggagcggggc