METHOD AND APPARATUS FOR IDENTIFYING A USER OF AN ELECTRONIC DEVICE USING BIOELECTRICAL IMPEDANCE
A method for identifying a user of an electronic device is presented. In the method, for each of a plurality of users, a bioelectrical impedance of the user is measured, a value based on the measurement is generated, and the value is associated with information corresponding to the user. A bioelectrical impedance of a current user of the electronic device is also measured, and a value based on this measurement is generated. The value associated with the current user is compared with at least one of the values associated with the plurality of users. In response to the comparison, the electronic device is operated based on the information corresponding to one of the plurality of users in response to the current user interacting with the electronic device if the value associated with the current user indicates the current user is the one of the plurality of users.
Latest ECHOSTAR TECHNOLOGIES L.L.C. Patents:
- Apparatus, systems and methods for generating 3D model data from a media content event
- METHODS AND SYSTEMS FOR ADAPTIVE CONTENT DELIVERY
- Systems and methods for facilitating lighting device health management
- Audible feedback for input activation of a remote control device
- Apparatus, systems and methods for synchronization of multiple headsets
Identification of a user of an electronic device has long been either desirable or necessary, depending on the device and the particular environment in which the device is used. For example, access to a computer system or communication network is often strictly controlled or regulated, especially when the data accessible on such a system is of an extremely sensitive or confidential nature, such as corporate, financial, medical, or military records. Typically, the system being protected requires a prospective user to provide some proof of identity, such as a user name and/or password or other confidential data, before the user is granted to access the system.
Various circumstances, such as lost or forgotten passwords, stolen passwords, and other maladies, often lead to either an authorized user being denied access to a system, or an unauthorized user being granted access. Also, memorization and entry of user names and passwords, or other identifying information, is often considered tedious and overly time-consuming.
In response, alternative ways of securely identifying a user have been implemented or proposed. For example, the use of fingerprint scanners, retinal scanners, and similar devices which measure some user physical characteristic have been proposed to identify potential users to restrict access to a computer system to those authorized to do so. The use of such devices typically eliminates the need to enter a password or other identifying data, thus reducing the time required to access the secured system. However, some user-accessible systems may not involve the extremely sensitive or confidential data that warrant such intensive security measures.
Many aspects of the present disclosure may be better understood with reference to the following drawings. The components in the drawings are not necessarily depicted to scale, as emphasis is instead placed upon clear illustration of the principles of the disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views. Also, while several embodiments are described in connection with these drawings, the disclosure is not limited to the embodiments disclosed herein. On the contrary, the intent is to cover all alternatives, modifications, and equivalents.
The enclosed drawings and the following description depict specific embodiments of the invention to teach those skilled in the art how to make and use the best mode of the invention. For the purpose of teaching inventive principles, some conventional aspects have been simplified or omitted. Those skilled in the art will appreciate variations of these embodiments that fall within the scope of the invention. Those skilled in the art will also appreciate that the features described below can be combined in various ways to form multiple embodiments of the invention. As a result, the invention is not limited to the specific embodiments described below, but only by the claims and their equivalents.
A bioelectrical impedance of a current user of the electronic device is then measured (operation 108), and a value based on that measured bioelectrical impedance is generated (operation 110). The value associated with the current user is compared with at least one of the values associated with the plurality of users (operation 112). In response to this comparison, the electronic device is operated based on the information corresponding to one of the plurality of users in response to the current user interacting with the electronic device if the value associated with the current user indicates the current user is the one of the plurality of users (operation 114).
While
An example of an electronic device 200 capable of performing the operations of the method 100 is shown in
The electronic device 200 includes a memory 202, a communication interface 204, and control logic 206. The communication interface 204 may be any communication interface configured to receive values 210 based on measured bioelectrical impedances of users of the electronic device 200. The bioelectrical impedance of the user may be measured on any portion of the body of the user. In general, the electronic device 200 employs the values 210 based on the impedance measurements to distinguish one user of the device 200 from another.
As shown in
The communication interface 204 is also configured to receive user commands 214 for the electronic device 200. The communication interface 204 may be any wired or wireless communication interface capable of receiving the user commands 214. While
The user commands 214 may be any commands or instructions which the electronic device 200 performs some function in response thereto. In one implementation, such commands 214 may be initiated by way of a menu system provided to the user by the electronic device 200.
The control logic 206 of the electronic device 200 may include any control circuitry capable of performing the various tasks described below. For example, the control logic may be a processor, such as a microprocessor, microcontroller, or digital signal processor (DSP), configured to execute instructions directing the processor to perform the functions enumerated below. In another implementation, the control logic 206 may be hardware-based logic, or may include a combination of hardware, firmware, and/or software elements.
The control logic 206 is coupled with a memory 202. The memory 202 may be any device or component capable of storing digital data, such as one or more integrated circuits of static random access memory (SRAM), dynamic random access memory (DRAM), flash memory, and the like. In another implementation, the memory 202 may be a magnetic or optical disk drive, or other type of storage device. Further, while the memory 202 is depicted as residing within the electronic device 200, the memory 202 may be located external to the electronic device 200 and coupled to the device 200 by way of a dedicated connection, communication network, or other communication means.
In operation, the control logic 206 is configured to, for a plurality of users, receive a value 210 based on a measured bioelectrical impedance of the user from the communication interface 204, and associate the value 210 with information 208 corresponding to the user. This user information 208 and associated user values 210 are stored in the memory 202 of the electronic device 200. The control logic 206 then receives a value 212 based on a measured bioelectrical impedance of a current user via the communication interface 204. The control logic 206 compares the current value 212 with at least one of the values 210 associated with the plurality of users. If the comparison indicates that the current user and one of the plurality of users are the same, the control logic 206 operates the electronic device 200 based on the information 208 associated with the one of the plurality of users in response to user commands 214 initiated by the current user.
A particular example of an entertainment system 301 configured to employ the user identification method discussed above is presented in
Specific instances of the media content receiver 302 include, but are not limited to, television set-top boxes for satellite, cable, and terrestrial broadcast systems; terrestrial, cable, and satellite radio receivers; and computer systems, as well as any other device capable of receiving media content, such as audio/video programming, and presenting the content for display to a user. In the context of the embodiments discussed herein, the term “audio/video” may refer to video and associated audio, video only, or audio only. In the discussion below, the media content receiver 302 is presumed to operate as a satellite television set-top box receiver.
In addition to the media content 370, the media content receiver 302 also receives user commands 374 and user bioelectrical impedance values 376 from a remote control device 350. The remote control device 350 transmits the user commands 374 and the impedance values 376 by way of wired or wireless transmission to the media content receiver 302 for further processing. In
In one embodiment, the remote control device 350 measures a bioelectrical impedance of a user, and transfers a value 376 based on that impedance to the media content receiver 302. The receiver 302 then associates the value 376 with information corresponding to the user. In the case of a satellite set-top box, the information may include, but is not limited to, a list of favorite channels specified by the user, programming recommendations for the user, parental control information associated with the user, purchase information associated with the user, and peer group information (described below) associated with the user. The information may include any other data associated with that particular user operating the receiver 302 via the commands 374 transferred from the remote control device 350 to the receiver 302.
Ultimately, each user interacting with the receiver 302 by way of the remote control device 350 may be identified with the user's own set of information maintained in the media content receiver 302 by way of a value 376 based on a bioelectrical impedance measurement of that user. As a result, when another user begins interacting with the receiver 302 through the remote control device 350, the remote control device 350 may measure the impedance of this latest user, generate a value 376 based on the impedance, and transmit the value 376 to the receiver 302. The receiver 302 may then compare this value 376 to previous values 376 to determine the identity of the latest user, and control the operation of the receiver 302 based on the information corresponding to that user.
Referring to
The remote control transmitter 458 is configured to receive the user commands 374 from the control circuitry 456 and transmit the commands 374 to the electronic device 302. The transmitter 458 may transmit the commands 374 by wireless technology, such as by way of UHF or IR signals, as indicated above, although other communication methods, such as wired, optical, and acoustic communication technology, may be utilized in other embodiments.
In the configuration of
In general, impedance includes two components: a resistance component and a reactance (i.e., capacitance and/or inductance) component. Depending on the particular implementation, the control circuitry 456 may measure either or both of these components as the bioelectrical impedance of a user. For example, to measure the resistance component of the impedance, a direct current (DC) current source may be used as the source 616, while an alternating current (AC) current source may serve as the source 616 for a reactance measurement. To measure both resistance and reactance, both AC and DC current sources may be used in a serial fashion in conjunction with the impedance monitor 618. Other methods of measuring either or both of the resistance and the reactance may be used in other examples.
To allow the user to initiate a bioelectrical impedance measurement, the control circuitry 456 may monitor the user contact interface 452 to determine if a finite resistance is detected from one user contact surface 510 to another in one embodiment. If the control circuitry 456 detects a finite impedance, the control circuitry 456 may then initiate a more precise measurement of the impedance appearing across the user contact surfaces 510. Thus, the user may initiate the impedance measurement by merely making contact with both user contact surfaces 510A, 510B.
In another example, a user that has just grasped the remote control 350 may wish to initiate the impedance measurement to alert the receiver 302 of the desire of the user to interact with the receiver 302. To that end, the user may press one of the keys of the user command interface 454 before or while making contact with the user contact surfaces 510. In this case, the user specifically initiates the impedance measurement process to identify the user, thus precluding the possibility that inadvertent contact with the user contact surfaces 510 will cause an unnecessary or unwanted impedance measurement.
In another arrangement, the remote control device 350 may include a sensor (not shown in
In some applications, the control circuitry 456 may determine that the measured bioelectrical impedance for a particular user should be should be ignored. For example, the measured impedance for a user may lie outside a predetermined range of acceptable impedances. For example, an insufficient amount of contact between the user and the user contact surfaces 510 may cause an extraordinarily high impedance reading that is not likely to be duplicated the next time the user impedance is measured. In response, the control circuitry 350 may indicate to the user by way of the user command interface 454 that the impedance must be measured again, and continue with a subsequent impedance measurement. In another implementation, the control circuitry 454 may indicate to the receiver 302 that the previous impedance measurement was unusable. In turn, the receiver 302 may alert the user of this status by way of a display, a connected output device, or other means.
Based on a successful impedance measurement, the control circuitry 456 generates a value 376 based on the measured bioelectrical impedance. The value 376 may take any number of forms, such as a value in ohms of the actual impedance, an integer or fractional value, or some other type of value. The control circuitry 456 then transfers the value 376 to the transmitter 458, which transmits the value 376 to the media content receiver 302.
The content input interface 710 receives the media content 370 shown in
In one implementation, the incoming media content 370 may incorporate one of the Motion Picture Experts Group (MPEG) standards for data encoding and compression, such as MPEG-2 or MPEG-4. Other data formatting or encoding methods, both analog and digital, may be employed in other embodiments.
The content output interface 712 of the media content receiver 302 is configured to deliver audio/video programming to an output device (not shown in
The remote control receiver 708 is configured to receive the user commands 374 and the bioelectrical impedance values 376 from the remote control device 350. More specifically, the remote control receiver 708 is configured to receive the signals transmitted by way of the remote control transmitter 458 of the remote control device 350. As stated above, the signals may be UHF or IR wireless signals, or communication signals propagated according to another signal technology.
Within the media content receiver 302, communicatively coupled with each of the memory 706, the remote control receiver 708, the content input interface 710, and the content output interface 712, is the control logic 704. In one embodiment, the control logic 704 may include one or more processors, such as microprocessors, microcontrollers, digital signal processors (DSPs), or any other processor configured to execute software instructions for performing the various tasks identified with the control logic 704, such as coordinating the activities of the other components of the media content receiver 302, as well as the specific operations discussed in greater detail below. The software may be stored in a memory, such as the memory 706 shown in
In operation, the control logic 704 receives a first bioelectrical impedance measurement value 376 from the remote control receiver 708. In response, the control logic 704 may first check to determine if other impedance values have been previously received and stored in the memory 706. Presuming this impedance value 376 is indeed the first impedance value received, the control logic 704 may store the value 376 as a first user value 705A in the memory 706 and associate the value 705A with first user information 707A.
Generally, the user information 707 may be any information useful in the operation of the media content receiver 302 that is associated with, or corresponds to, a particular user. In one example, the user information 707 may include a list of favorite television channels as specified by that particular user. In another example, the user information 707 includes one or more program viewing recommendations made available by a provider of the programming, a movie critic, or other entity. Such recommendations may be based on the user's age or other demographic information. In another case, the information 707 may include parental control information, such as the identification of one or more channels selected by the user to be blocked from younger users. Further, the user information 707 may include purchase information, such as the identification of products previously purchased by the user through the receiver 302, credit card and other billing information associated with the user, and so. According to another example, the user information 707 may include “peer group” information associated with the user. In one embodiment, peer group information is information necessary to share content or otherwise communicate with other receiver 302 users identified by the original user as the peer group. In one example, the users of the peer group may all be users of the same receiver 302 of
Any impedance value 376 received by the media content receiver 302 may be checked for validity by comparing the value 376 to a predetermined range of potential values (or to previously stored values 705, if the user is known to be a previous user), and indicating to the current user if the associated bioelectrical impedance measurement should be attempted again, similar to the method described above in connection with the remote control device 350 of
In one embodiment, the most recently received impedance value 376 is identified with the current user of the media content receiver 302. Thus, user commands 374 received through the remote control receiver 708 after or concurrently with the received impedance value 376 are performed within the context of the user information 707 associated with the current impedance value 705. For example, if the user requests a favorite channels list, the list incorporated within or referenced by the user information 707 linked to the most recently received impedance value 376 is presented to the user.
The control logic 704 may also associate the name of the user with the bioelectrical impedance value in one implementation. In one example, the user may use a menu selection provided by the control logic 704 to input the name of the user by way of one or more user commands 374. In turn, the control logic 704 associates the input name with the most recently received impedance value 376. If the name has been previously input, the user may be able to select the name from a list of previously entered names in another embodiment. The name may then be presented to the user via the content output interface 712 or another communication path so that the current user may verify that the control logic 704 has correctly identified the current user.
At some point, the control logic 704 receives another bioelectrical impedance measurement value 376 by way of the remote control receiver 708. Again, this most recent impedance value 376 is compared to the previously stored impedance values (in this case, the value 705A). If the comparison indicates that the user associated with the stored value 705A is not the same user corresponding to the most recently received value 376, the control logic 704 may presume that the most recently received value 376 corresponds with a new user, and thus stores the received value 376 as a new value 705B in the memory and associates the value 705B with its own user information 707B.
In another implementation, the user may be able to employ a user command 374 or other means to indicate that the user is interacting with the receiver 302 for the first time, and thus wishes the receiver 302 to treat the impedance value 376 of this user as being new. In that case, such a user command 374 may effectively place the receiver 302 into a “learning mode” in which the receiver 302 presumes that the current impedance value 376 is to be associated with a new user. Otherwise, if the comparison between the latest value 376 and the stored value 705A signifies that the most recently received value 376 is associated with the user corresponding to the previously stored value 705A, the corresponding user information 707A is employed in the operation of the receiver 302 at least until a new impedance value 376 is received.
In another example, if the comparison indicates that the user associated with the stored value 705A is not the same user corresponding to the most recently received value 376, the control logic 704 may treat the current user as a “guest”. In this instance, the control logic 704 does not attempt to store the received value 376 in the memory 706 and associate new user information 707 with the received value 376. Instead, the control logic 704 may allow the current user to operate the receiver 302 under a default set of user information. In one example, the default user information may prevent access to certain channels, prohibit purchases from the service provider via the receiver 302, and so on. Handling the current user in this manner may be appropriate under circumstances in which the current user is not expected to be interacting with the receiver 302 for more than a few days.
The comparison between different bioelectrical impedance values may be performed in a number of ways. In one example,
In some cases, the ranges of two or more adjacent stored values 705 overlap, in which a newly received value 376 may be identified with both of the nearby values 705. To address this possibility, the control logic 704 may display the user name of each stored value 705 in question, and allow the user to select the appropriate name by way of the user commands 374.
In an alternative arrangement, the control logic 704 may select boundaries between each stored value 705 that reduce or eliminate the possibility of a newly received value 376 not being associated with one of the stored values 705.
In one implementation, the control logic 704 may determine that a received impedance value 376 associated with one of the stored impedance values 705 may provide a better representative value for the current user against which future received values 376 may be compared. As a result, the control logic 704 may replace the stored impedance value 705 for the current user with the received value 376 in such a situation.
Various embodiments as described herein for identifying a user of an electronic device may provide a number of benefits. In general, bioelectrical impedance measurement, normally associated with body composition analysis and the like, is employed as an automatic means for identifying a current user from among two or more potential users. As a result, modes of operation of the electronic device that depend at least in part on an accurate identification of the current user may be accomplished without requiring the user to explicitly indicate the identity of the current user to the device. Instead, by merely grasping a remote control device or other component associated with the electronic device, or even a portion of the electronic device itself, such that the bioelectrical impedance measurement of the user may take place, the electronic device may identify the user quickly and automatically without further user intervention.
While several embodiments of the invention have been discussed herein, other embodiments encompassed by the scope of the invention are possible. For example, while various embodiments have been described primarily within the context of satellite set-top boxes, any other electronic device whose operation depends at least in part on an identification of the user, such as cable and terrestrial set-top boxes; satellite, cable, and terrestrial radio receivers; DVRs; and various computer and communication systems, may benefit from application of the various concepts described herein. In addition, aspects of one embodiment disclosed herein may be combined with those of alternative embodiments to create further implementations of the present invention. Thus, while the present invention has been described in the context of specific embodiments, such descriptions are provided for illustration and not limitation. Accordingly, the proper scope of the present invention is delimited only by the following claims and their equivalents.
Claims
1. A method of identifying a user of an electronic device, the method comprising:
- measuring a bioelectrical impedance of the user;
- generating a value based on the measured bioelectrical impedance of the user; and
- measuring a bioelectrical impedance of a current user of the electronic device;
- generating a value based on the measured bioelectrical impedance of the current user;
- comparing the value associated with the current user with the value associated with the user; and
- replacing the value associated with the user with the value associated with the current user when the value associated with the current user indicates that the current user is the user.
2. The method of claim 1, wherein:
- measuring the bioelectrical impedance of the user comprises measuring a resistance of the user.
3. The method of claim 1, wherein:
- measuring the bioelectrical impedance of the user comprises measuring a reactance of the user.
4. The method of claim 1, wherein:
- measuring the bioelectrical impedance of the user comprises measuring a bioelectrical impedance across two locations on a hand of the user.
5. The method of claim 1, further comprising associating the value with information corresponding to the user, and wherein:
- the electronic device comprises a media content receiver.
6. The method of claim 5, wherein:
- the information corresponding to the user comprises a favorite channels list associated with the user.
7. The method of claim 5, wherein:
- the information corresponding to the user comprises programming recommendations for the user.
8. The method of claim 5, wherein:
- the information corresponding to the user comprises parental control information associated with the user.
9. The method of claim 5, wherein:
- the information corresponding to the user comprises purchase information associated with the user.
10. The method of claim 5, wherein:
- the information corresponding to the user comprises peer group information associated with the user.
11. The method of claim 1, wherein:
- the value associated with the current user indicates the current user is the user if the value associated with the current user is within one of a predetermined difference and a predetermined percentage of the value of the user.
12. The method of claim 1, wherein:
- the value associated with the current user indicates that the current user is the one of the plurality of users if the value associated with the current user is closer to the value associated with the user than to another value associated with any other of a plurality of users that include the user.
13. (canceled)
14. The method of claim 1, further comprising:
- re-measuring the bioelectrical impedance of the user if the value associated with the user resides outside a predetermined range.
15. The method of claim 1, further comprising:
- re-measuring the bioelectrical impedance of the current user if the value associated with the current user resides outside a range associated with values associated with a plurality of users that includes the user.
16. The method of claim 1, further comprising:
- receiving an indication from the current user that the current user is not one of a plurality of users of the electronic device; and
- in response to receiving the indication, associating the value associated with the current user with information corresponding to the current user.
17. The method of claim 1, further comprising:
- in response to the comparison, operating the electronic device based on default information in response to the current user interacting with the electronic device if the value associated with the current user indicates the current user is not the user.
18. The method of claim 1, further comprising:
- in response to the comparison, associating the value associated with the current user with information corresponding to the current user if the value associated with the current user indicates the current user is not the user.
19. An electronic device, comprising:
- a memory;
- a communication interface configured to receive values based on measured bioelectrical impedances a user of the electronic device, and to receive user commands for the electronic device; and
- control logic configured to: identify a current user based on a measured bioelectrical impedance from the communication interface; and in response to the identification, control the operation of the electronic device based on peer group information corresponding to the user in response to user commands initiated by the current user.
20. The electronic device of claim 19, further comprising:
- a content input interface configured to receive media content; and
- a content output interface configured to present the received media content to the user;
- wherein the control logic is further configured to control the content input interface and the content output interface based on the information corresponding to the current user when the current user is interacting with the electronic device.
Type: Application
Filed: Jul 26, 2016
Publication Date: Nov 17, 2016
Applicant: ECHOSTAR TECHNOLOGIES L.L.C. (Englewood, CO)
Inventor: David A. Kummer (Highlands Ranch, CO)
Application Number: 15/219,934