HVAC Vent Control

An intelligent Heating, Venting, and Air Conditioning (HVAC) vent includes a room temperature sensor, a duct air flow temperature sensor, and a duct pressure sensor. Data from the sensors in compared to a temperature setting to determine an optimal vent louver position. A battery powered motor adjusts the louver position to optimal vent louver position. A remote device interface allows a user to monitor room temperature and to adjust the temperature setting from remote locations.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the priority of U.S. Provisional Patent Application Ser. No. 62/166,553 filed May 6, 2015, which application is incorporated in its entirety herein by reference.

BACKGROUND OF THE INVENTION

The present invention relates Heating, Venting, and Air Conditioning (HVAC) vents and in particular to an intelligent, remotely controlled vent.

HVAC vents are generally installed in each room in a building or residence to release an air flow into the room. The vents generally have louvers with a single manually adjustable position to control the air flow into the room. In some instances the optimal air flow into a particular room may change based on the time of the day, or the use of the room, and a user may not be home and able to make changes. Further, some rooms may become cooler or hotter than other rooms due to a variety of localized effects, and continuously providing the same cooling or heating to all of the rooms in a building or home may result in some rooms receiving more cooling or heating than intended.

BRIEF SUMMARY OF THE INVENTION

The present invention addresses the above and other needs by providing an intelligent Heating, Venting, and Air Conditioning (HVAC) vent which includes a room temperature sensor, a duct air flow temperature sensor, and a duct pressure sensor. Data from the sensors in compared to a temperature setting to determine a vent louver position. A battery powered motor adjusts the louver position to optimal vent louver position. A remote device interface allows a user to monitor room temperature and to adjust the vent

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

The above and other aspects, features and advantages of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:

FIG. 1 is a room including an intelligent HVAC vent according to the present invention.

FIG. 2 shows a front view of the intelligent HVAC vent according to the present invention mounted to a room wall.

FIG. 3 shows a rear view of the intelligent HVAC vent according to the present invention.

FIG. 4A shows a detailed front view of the intelligent HVAC vent according to the present invention.

FIG. 4B shows a detailed front perspective view of the intelligent HVAC vent according to the present invention.

FIG. 5A shows a detailed left rear view of the intelligent HVAC vent according to the present invention.

FIG. 5B shows a detailed right rear view of the intelligent HVAC vent according to the present invention.

FIG. 6 shows temperature and pressure sensors on the rear of the intelligent HVAC vent according to the present invention.

FIG. 7A shows perspective rear view of a gear layout the rear of the intelligent HVAC vent according to the present invention.

FIG. 7B shows side view of a gear layout the rear of the intelligent HVAC vent according to the present invention.

FIG. 8 shows a control method for the intelligent HVAC vent according to the present invention.

FIG. 9 shows a start remote function method for the intelligent HVAC vent according to the present invention.

FIGS. 10A-10C show a second embodiment of gears for the intelligent HVAC vent according to the present invention.

Corresponding reference characters indicate corresponding components throughout the several views of the drawings.

DETAILED DESCRIPTION OF THE INVENTION

The following description is of the best mode presently contemplated for carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of describing one or more preferred embodiments of the invention. The scope of the invention should be determined with reference to the claims.

A room 10 including an intelligent Heating, Venting, and Air Conditioning (HVAC) vent (or register) 12 according to the present invention is shown in FIG. 1. The vent 12 is connected to duct 14 by a duct connection 18. The vent receives an air flow 15 from a central HVAC system through the duct 14. The air flow may be heated, cooled, or merely an air circulation flow. The central HVAC system is generally controlled by a single thermostat.

A front view of the vent 12 mounted to a room wall 11 is shown in FIG. 2. The vent 12 includes fixed louvers 20a directing an air flow into the room. A room temperature sensor 16a faces into the room to measure room temperature. The sensor 16a may be an Infra Red (IR) sensor or a diode room temperature sensor, or a combination of an Infra Red (IR) sensor and a diode room temperature sensor. A battery pocket 22 on the front of the vent 12 allows batteries to be changed without dismounting the vent 12 from the wall 11.

A rear view of the vent 12 is shown in FIG. 3. A duct temperature sensor 16b and a duct pressure sensor 24 are shown mounted to a rear surface of the vent 12, allowing measuring the temperature and pressure of the air flow 25. The sensors 16b and 24 may also be detached from the vent and mounted inside the duct 14, either wired or wirelessly communicating with the vent 12. The wireless communication can be Bluetooth or wifi.

A detailed front view of the vent 12 is shown in FIG. 4A and a detailed front perspective view of the vent 12 is shown in FIG. 4B. The room temperature sensor 16a is shown below the fixed louvers 20a and the battery pocket 22 is shown between the fixed louvers 20a. The fixed louvers 20a preferably are vertical fixed louvers.

A detailed left rear view of the vent 12 is shown in FIG. 5A, a detailed right rear view of the vent 12 is shown in FIG. 5B, and a detailed view of the duct sensors in shown in FIG. 6. The duct temperature sensor 16b and the duct pressure sensor 24 are mounted above moving louvers 20b. A sensor notch 26 in the top moving louver 20b provides clearance for the duct sensors when the moving louvers 20b are closed or nearly closed.

A perspective rear view of a gear layout the rear of the vent 12 is shown in FIG. 7A and a side view of a gear layout the rear of the vent 12 is shown in FIG. 7B. A motor 32 rotates a worm 34 which turns a driven worm gear 36a. The driven worm gear 36a connects to additional gears 36b through louver gears 38 attached to the moving louvers 20b allowing the motor 32 to operate all of the moving louvers 20b simultaneously. A trimpot 42 is connected to one of the gears 36 or 38 to allow determining the position of the moving louvers 20b. A circuit assembly 30 attached to the vent 12 automatically adjusts the moving louvers 20b without user intervention to control the room temperature when the HVAC is running based on user desired temperature by opening or closing the louvers 20b. The circuit assembly 30 also receive commands 52 transmitted from a remote control or smart device 50 via Bluetooth or wifi and send data 54 to the remote control.

FIG. 8 shows a control method for the vent 12. The method includes initializing a main program at step 100, initializing a Bluetooth/wifi module checking for a remote connection at step 103, checking if there is a connection from a smartphone application or remote control at step 104a, starting remote function at step 102, if there is not a connection from a smartphone application or remote control at step 104a, reading a potentiometer connected to gears in order to determine the vent position at step 105, determining if the vent position has changed at step 106, saving memory when position is charging at step 107, reading pressure from a pressure sensor at step 111, determining if there is air flow, and if there is air flow, opening or closing the vent based on a temperature algorithm in order to be more efficient and low power consumption at step 112, again if there is a connection from a smartphone application or remote control at step 104b and if there is a connection from a smartphone application or remote control, starting remote function at step 102, if there is not a connection from a smartphone application or remote control at step 104, checking if auto mode is on at step 120, if the auto mode is not on at step 120, returning to main program initialization 101, if the auto mode is not on at step 120, reading TPA (the temperature of air flow from HVAC ventilation fan) from a temperature sensor, reading TPU (the temperature set by the user) for desired user temperature from memory, reading TPR (the temperature of the room read by infrared sensor) from infrared thermopile to check sensor, and checking air pressure calibration configuration at step 113, testing if “((TPA−TPU)*(*TPU−TPR))>0” at step 113, closing the vent if ((TPA−TPU)*(TPU−TPR))<0 at step 115 and writing the vent position at step 118, opening the vent if ((TPA−TPU)*(TPU−TPR))<0 at step 115 and writing the vent position at step 118, entering sleep mode if ((TPA−TPU)*(TPU−TPR))=0 at step 119, sending vent current position either opened or closed, temperature and air flow status to App/RC. at step 114, and entering in sleep mode for half second at step 119.

FIG. 9 expands the start remote function step 102 of FIG. 8. The method includes asking application for App at step 121, testing for a password match at step 122, if the match fails, counting the number of failures at step 123, asking again at step 121 if less than 3 failures, disconnecting and returning to main program initialization at step 101 of FIG. 8 if 3 failures, If the password matched, checking for: TPA, TPR, TPU, air flow, vent battery level, and current vent position at step 125, sending all data information to phone App at step 16, testing for receipt of commands at step 127, if no commands received, test for lost connection/session timeout at step 141, if lost connection/session timeout, return to main program initialization at step 101 of FIG. 8, otherwise return to step 125, if command is received at step 127, testing for set temp command received at step 128, if set temp command received, save new command in memory at step 129 and return to step 125, if no set temp command received, testing for move vent command at step 130, if move vent command received, save new command in memory at step 131 and return to step 125, if no move vent command received, testing for new password command at step 132, if move vent command received, save new command in memory at step 133 and return to step 125, if no change password command received, testing for calibrate airflow command at step 134, if calibrate airflow command received, turning on air flow and writing airflow sensor data at step 135, turning air flow off at step 136, and return to step 125, if no calibrate airflow command received, testing for change auto mode command at step 137, if change auto mode command received, writing auto mode ON or OFF in memory at step 138, and return to step 125, if no change auto mode command received, testing for change vent name command at step 139, if change vent name command received, writing new vent name in memory at step 140, and return to step 125, if no change vent name command received, return to step 125.

FIGS. 10A-10C shown a second embodiment of gears for the intelligent HVAC vent including a motor 32, a pinion gear 64 driving a rack 60, and the rack 60 drives driving louver gears 62 on the moving louvers 20 allowing the motor 32 to operate all of the moving louvers 26b simultaneously. A trim pot 32 is connected to the motor 42 to measure louver position.

While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.

Claims

1. An intelligent Heating, Venting, and Air Conditioning (HVAC) vent, comprising:

a room;
a central HVAC unit;
a duct in fluid communication with the central HVAC unit;
a vent in fluid communication between the room and the central HVAC unit through the duct receiving an air flow from the central HVAC unit;
moving louvers controlling the release of the air flow through the vent into the room;
an electric motor operatively connected to the moving louvers, wherein operation of the motor opens and closes the moving louvers;
a power source;
a circuit electrically connecting the power source to the electric motor;
a room temperature sensor electrically connected to the circuit;
a duct temperature sensor in communication with the duct to sense an air flow temperature of the air flow;
a duct pressure sensor in communication with the duct to sense an air flow pressure of the air flow; and
a control in wireless communication with the circuit and sending commands and receiving data from the circuit.

2. The HVAC vent of claim 1, further including a trimpot in mechanical communication with the moving louvers to measure a position of the moving louvers.

3. The HVAC vent of claim 1, wherein the power source is at least one battery.

4. The HVAC vent of claim 1, wherein the room temperature sensor is attached to the vent and faces towards the room.

5. The HVAC vent of claim 4, wherein the room temperature sensor is an Infra Red (IR) sensor.

6. The HVAC vent of claim 4, wherein the room temperature sensor is a diode temperature sensor.

7. The HVAC vent of claim 1, wherein:

the electric motor rotates a worm which turns a driven worm gear; and
the driven worm gear connects to additional gears through louver gears attached to the moving louvers allowing the motor to operate all of the moving louvers simultaneously.

8. The HVAC vent of claim 1, wherein:

the electric motor rotates a pinion gear;
the pinion gear drives a rack; and
the rack drives louver gears on the moving louvers allowing the motor to operate all of the moving louvers simultaneously.

9. The HVAC vent of claim 1, wherein:

the motor includes a pinion gear driving a rack; and
the rack drives driving louver gears on the moving louvers allowing the motor to operate all of the moving louvers simultaneously.

10. An intelligent Heating, Venting, and Air Conditioning (HVAC) vent, comprising:

a room;
a central HVAC unit;
a duct in fluid communication with the central HVAC unit;
a vent in fluid communication between the room and the central HVAC unit through the duct receiving an air flow from the central HVAC unit;
moving louvers controlling the release of the air flow through the vent into the room;
a trimpot in mechanical communication with the moving louvers to measure a position of the moving louvers;
an electric motor operatively connected to the moving louvers, wherein operation of the motor opens and closes the moving louvers, wherein: the electric motor rotates a pinion gear; the pinion gear drives a rack; and the rack drives louver gears on the moving louvers allowing the motor to operate all of the moving louvers simultaneously;
a power source;
a circuit electrically connecting the power source to the electric motor;
a room temperature sensor electrically connected to the circuit;
a duct temperature sensor in communication with the duct to sense an air flow temperature of the air flow;
a duct pressure sensor in communication with the duct to sense an air flow pressure of the air flow; and
a control in wireless communication with the circuit and sending commands and receiving data from the circuit.

11. An intelligent Heating, Venting, and Air Conditioning (HVAC) vent, comprising:

a room;
a central HVAC unit;
a duct in fluid communication with the central HVAC unit;
a vent in fluid communication between the room and the central HVAC unit through the duct receiving an air flow from the central HVAC unit;
moving louvers controlling the release of the air flow through the vent into the room;
a trimpot in mechanical communication with the moving louvers to measure a position of the moving louvers;
an electric motor operatively connected to the moving louvers, wherein: the motor includes a pinion gear driving a rack; and the rack drives driving louver gears on the moving louvers allowing the motor to operate all of the moving louvers simultaneously;
a power source;
a circuit electrically connecting the power source to the electric motor;
a room temperature sensor electrically connected to the circuit;
a duct temperature sensor in communication with the duct to sense an air flow temperature of the air flow;
a duct pressure sensor in communication with the duct to sense an air flow pressure of the air flow; and
a control in wireless communication with the circuit and sending commands and receiving data from the circuit.
Patent History
Publication number: 20160348930
Type: Application
Filed: May 19, 2016
Publication Date: Dec 1, 2016
Inventor: Mauro Mirante (Glendora, CA)
Application Number: 15/158,886
Classifications
International Classification: F24F 11/00 (20060101); F24F 3/044 (20060101);