MONOPOLAR AND BIPOLAR ELECTROSURGICAL INSTRUMENTS
An electrosurgical pencil with integrated tweezers includes-an elongated housing having an open distal end and an actuator operatively associated therewith. First and second jaw members extend distally through the open distal end of the elongated housing and are transitionable between a closed position and an open position upon actuation of an actuator. One or both of the jaw members is configured to treat tissue with monopolar energy and both jaw members are configured to treat tissue with bipolar energy. One or more switches is operably coupled to a controller disposed in the housing and configured to activate the first and second jaw members to treat tissue with monopolar and bipolar energy.
This application is a continuation application of U.S. patent application Ser. No. 14/692,992, filed on Apr. 22, 2015, which is a continuation application of U.S. patent application Ser. No. 13/344,729, filed on Jan. 6, 2012, now U.S. Pat. No. 9,023,035, the entire contents of each of which are hereby incorporated herein by reference.
BACKGROUNDTechnical Field
The present disclosure relates generally to electrosurgical instruments and, more particularly, to an electrosurgical pencil configured for both monopolar and bipolar use and other surgical instruments including monopolar and bipolar functionality.
Background of Related Art
Electrosurgical instruments have become widely used by surgeons in recent years. By and large, most electrosurgical instruments are hand-held instruments, e.g., an electrosurgical pencil or electrosurgical forceps, which transfer radio-frequency (RF) electrical energy to a tissue site. The electrosurgical energy is returned to the electrosurgical source via a return electrode pad positioned under a patient (i.e., a monopolar system configuration) or a smaller return electrode positionable in bodily contact with or immediately adjacent to the surgical site (i.e., a bipolar system configuration). The waveforms produced by the RF source yield a predetermined electrosurgical effect known generally as electrosurgical cutting and fulguration.
In particular, electrosurgical fulguration includes the application of electric spark to biological tissue, for example, human flesh or the tissue of internal organs, without significant cutting. The spark is produced by bursts of radio-frequency electrical energy generated from an appropriate electrosurgical generator. Coagulation is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dehydrated/dried. Electrosurgical cutting/dissecting, on the other hand, includes applying an electrical spark to tissue in order to produce a cutting, dissecting and/or dividing effect. Blending includes the function of cutting/dissecting combined with the production of a hemostasis effect. Meanwhile, sealing/hemostasis is defined as the process of liquefying the collagen in the tissue so that it forms into a fused mass. Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize, seal, cut, desiccate, and/or fulgurate tissue.
The basic purpose of both monopolar and bipolar electrosurgery is to produce heat to achieve the desired tissue/clinical effect. In monopolar electrosurgery, devices use an instrument with a single, active electrode to deliver energy from an electrosurgical generator to tissue, and a patient return electrode (usually a plate positioned on the patient's thigh or back) as the means to complete the electrical circuit between the electrosurgical generator and the patient. In bipolar electrosurgery, the electrosurgical device includes two electrodes that are located in proximity to one another for the application of current between their surfaces. Bipolar electrosurgical current travels from one electrode, through the intervening tissue to the other electrode to complete the electrical circuit.
As used herein the term “electrosurgical pencil” is intended to include instruments which have a handpiece that is attached to an active electrode and which is used to cauterize, coagulate and/or cut tissue. Typically, the electrosurgical pencil may be operated by a handswitch or a foot switch. The active electrode is an electrically conducting element that is usually elongated and may be in the form of a thin flat blade with a pointed or rounded distal end. Alternatively, the active electrode may include an elongated narrow cylindrical needle which is solid or hollow with a flat, rounded, pointed or slanted distal end. Typically electrodes of this sort are known in the art as “blade”, “loop” or “snare”, “needle” or “ball” electrodes.
As mentioned above, the handpiece of the electrosurgical pencil is connected to a suitable electrosurgical energy source (i.e., generator) which produces the radio-frequency electrical energy necessary for the operation of the electrosurgical pencil. In general, when an operation is performed on a patient with an electrosurgical pencil, electrical energy from the electrosurgical generator is conducted through the active electrode to the tissue at the site of the operation and then through the patient to a return electrode. The return electrode is typically placed at a convenient place on the patient's body and is attached to the generator by a conductive material. Typically, the surgeon activates the controls on the electrosurgical pencil to select the modes/waveforms to achieve a desired surgical effect. Typically, the “modes” relate to the various electrical waveforms, e.g., a cutting waveform has a tendency to cut tissue, a coagulating wave form has a tendency to coagulate tissue and a blend wave form is somewhere between a cut and coagulate wave from.
SUMMARYThe present disclosure is directed to an electrosurgical pencil with integrated ligasure tweezers. In accordance with one aspect of the present disclosure the electrosurgical pencil includes an elongated housing having an open distal end and including an actuator operatively associated therewith. First and second jaw members extend distally through the open distal end of the elongated housing and are transitionable between a closed position and an open position upon actuation of an actuator. One or both of the jaw members are configured to treat tissue with monopolar energy and both jaw members are configured to treat tissue with bipolar energy. One or more switches are operably coupled to a controller disposed in the housing and configured to activate the first and second jaw members to treat tissue with monopolar and bipolar energy.
It is contemplated that the electrosurgical pencil may further include a sensor operably coupled to the pencil and configured to sense tissue disposed between the jaw members. The sensor provides a signal to the controller to disable monopolar activation if tissue is sensed between the jaw members and to disable bipolar activation if no tissue is sensed between the jaw members.
It is also contemplated that the electrosurgical pencil may further include an intensity controller that controls the amount of energy delivered to tissue when treating tissue with monopolar energy. The intensity controller would preferably be in the form of a slide potentiometer or could include a pressure sensitive activator that adjusts the amount of electrosurgical energy supplied based on the amount of pressure applied to the intensity controller.
The jaw members may be biased in the second, closed position and may be electrically isolated from one another such that the jaw members may treat tissue with bipolar energy when the jaw members are disposed in the second, closed position.
The actuator may protrudes from a side portion of the elongated housing and the side portion of the elongated housing. The elongated housing may include two flexible portions disposed on opposite sides thereof. The flexible portions are adjacent to the actuator such that compression of the two flexible portions in a direction substantially perpendicular to the longitudinal axis results in actuation of the actuator.
The open distal end of the elongated housing may include a flexible section. The flexible section is configured to allow the first and second jaw members to be radially spaced at a diameter larger than the open distal end of the elongated housing when in the open position.
According to another aspect of the present disclosure, an electrosurgical pencil is provided which includes an elongated housing having first and second jaw members extending through a distal end thereof. The first and second jaw members are transitionable between a first position wherein the jaw members are disposed in spaced relation relative to one another and a second position wherein the jaw members are approximated relative to one another. One or both of the jaw members are configured to treat tissue with monopolar energy and both jaw members are configured to treat tissue with bipolar energy. An actuator is operably coupled to the jaw members and actuatable to transition the jaw members between the first and second positions. The actuator is operably coupled to a controller that senses the disposition of the jaw members. A switch is disposed in the housing in operative communication with the controller and is configured to activate the jaw members with bipolar energy if the jaw members are disposed in the first position and to activate at least one of jaw members with monopolar energy if the jaw members are disposed in the second position.
It is contemplated that the surgical pencil may include an intensity controller that controls the amount of energy delivered to tissue when treating tissue with monopolar energy. It is also contemplated that the intensity controller may be a slide potentiometer or may include a pressure sensitive activator that adjusts the amount of electrosurgical energy delivered to tissue based on the amount of pressure applied to the intensity controller.
It is also contemplated that the actuator may be pressure sensitive such that the actuator adjusts the position of the jaw members relative to one another based on the amount of pressure applied to the actuator.
It is further contemplated that the jaw members may be biased in the second, closed position and that the actuator may protrude from a side portion of the elongated housing. The side portion of the elongated housing may include a flexible portion covering the actuator where the application of force to the flexible portion in a direction substantially perpendicular to the longitudinal axis results in actuation of the actuator.
According to another aspect of the present disclosure, an electrosurgical pencil is provided which includes an elongate housing having first and second jaw members extending through a distal end thereof. The first and second jaw members are transitionable between a closed position in which the jaw members are configured to treat tissue with monopolar energy and an open position in which the jaw members are configured to treat tissue with bipolar energy. A controller is disposed within the elongated housing and configured to sense whether the first and second jaw members are in the open or closed position and to automatically configure the jaw members to treat tissue with monopolar energy when the jaw members are in the closed position and bipolar energy when the jaw members are in the open position.
These and other features will be more clearly illustrated below by the description of the drawings and the detailed description of the preferred embodiments.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.
Particular embodiments of the presently disclosed electrosurgical pencil are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to that portion which is further from the user while the term “proximal” refers to that portion which is closer to the user or surgeon.
As seen in
Referring now to
Actuators 350, 360 extend through openings 232, 242 defined in shell portions 230 and 240 on opposite sides of housing 200. (See
In use, a physician may utilize electrosurgical pencil 100 in either a monopolar mode or a bipolar mode as described below. When in a monopolar mode, the surgeon does not actuate actuators 350, 360 and jaw members 330, 340 are oriented in the second, closed position. Energy may then be applied via jaw members 330 and/or 340 to tissue in conjunction with a return pad “R”. (See
When the desired tissue is clamped between jaw members 330 and 340, the surgeon may activate bipolar energy or alternatively bipolar energy may be automatically delivered to jaw members 330 and 340 as described below in relation to electrical assembly 400. In bipolar mode no return pad is included or necessary. Additionally, a safety switch “S3” (
The operational features of the electrical assembly 400 and intensity controller 700 are described below with reference to
In use, knife 1620 is initially in the retracted position and jaw members 1330 and 1340 are biased toward the second, closed position. A surgeon first actuates opposing shaft portions 1310 and 1320 to transition jaw members 1330 and 1340 to the first, open position and places tissue between jaw member 1330 and 1340 before releasing shaft portions 1310 and 1320 to clamp the tissue therebetween. After tissue has been clamped between jaw members 1330 and 1340, the surgeon activates knife 1620 by translating knife actuator 1630 distally along slot 1612. As knife actuator 1630 is translated distally, knife 1620 also translates distally thereby cutting through tissue clamped between jaw members 1330 and 1340. Alternatively, knife 1620 itself may be supplied with electrosurgical energy to enhance the cutting effect. Once the tissue is cut the surgeon translates knife actuator 1630 proximally along slot 1612 to retract knife 1620 along elongated section 1610. A spring (not shown) may be included to release knife actuator 1630 to allow knife 1620 to automatically retract. In use, the forceps 1300 is initially biased with the jaw member 1330 and 1340 in the second, closed position which allows the surgeon to treat tissue with monopolar energy similar to an electrosurgical pencil. Electrosurgical energy is transmitted to the tissue from one or both jaw members 1330, 1340, and through the tissue to a return electrode or pad. During surgery, the surgeon has the option of opening jaw members 1330 and 1340 to receive and clamp tissue disposed therebetween, similar to a forceps, and to treat the tissue clamped therebetween with bipolar energy. The surgeon can then deploy the knife 1620 to cut the tissue after a seal is formed.
Referring now to
During use, when a surgeon wishes to use a bipolar mode, the surgeon translates inner shaft 2310 proximally to transition jaw members 2330 and 2340 from the second, closed position to the first, open position (e.g. increasing the spacing between jaw members 2330 and 2340). Once jaw members 2330 and 2340 are in the first, open position the surgeon places tissue between jaw members 2330 and 2340 and translates inner shaft 2310 distally, thereby approximating jaw members 2330 and 2340 and clamping the tissue. Electrosurgical energy may then be applied as described below.
In addition jaw assembly 2300 may include a leaf spring 2370 (
In another embodiment, shown in
During use, and as shown in
Referring now to
In yet another embodiment of the present disclosure, as shown in
In yet another embodiment of the present disclosure, as shown in
In use, a surgeon applies pressure on actuators 7350 and 7360 to actuate wedge 7370 distally. As wedge 7370 translates distally it slides along sloped portions 7332 and 7342 of jaw members 7330 and 7340 to transition jaw members 7330 and 7340 from the second, closed position to the first, open position (e.g. spaced further apart). The surgeon then places the desired tissue between jaw members 7330 and 7340 and releases the pressure on actuators 7350 and 7360. The biasing force of jaw members 7330 and 7340 forces wedge 7370 proximally to transition jaw members 7330 and 7340 from the first, open position back to the second, closed position, thereby clamping onto the tissue therebetween. Electrosurgical energy may then be applied to the tissue.
For the purposes herein, the terms “switch” or “switches” includes electrical actuators, mechanical actuators, electro-mechanical actuators (rotatable actuators, pivotable actuators, toggle-like actuators, buttons, etc.) or optical actuators.
With reference to
In use, depending on which activation switch 410, 420 or 430 is depressed a respective tactile element 412, 422, 432 is pressed into contact with VDN 450 and a characteristic signal is transmitted to electrosurgical generator “G” via a cable 520 (
Activation switches 410, 420 and 430 are configured and adapted to control the mode and/or “waveform duty cycle” to achieve a desired surgical intent. For example, first activation switch 410 can be set to deliver a characteristic signal to electrosurgical generator “G” which in turn transmits a duty cycle and/or waveform shape that produces a cutting and/or dissecting effect/function. Meanwhile, second activation switch 420 can be set to deliver a characteristic signal to electrosurgical generator “G” which in turn transmits a duty cycle and/or waveform shape which produces a division or dividing with hemostatic effect/function. Finally, third activation switch 430 can be set to deliver a characteristic signal to electrosurgical generator “G” which in turn transmits a duty cycle and/or waveform shape which produces a hemostatic effect/function.
One of switches 410, 420 or 430 may be set to activate a monopolar mode and another of switches 410, 420 or 430 may be set to activate a bipolar mode or the same switch 410, 420 or 430 may be set to activate either a monopolar mode or a bipolar mode depending on which position jaw members 330 and 340 are situated. Safety switches “S3” and “S3′” (
As seen in
As such, a VDN 450 and/or switches 410, 420, 430 may be selected which are less complex and/or which are relatively inexpensive since the switches do not have to transmit current during activation. For example, if RF wires 530 and 532 are provided, switches 410, 420, 430 may be constructed by printing conductive ink on a plastic film. On the other hand, if RF wires 530 and 532 are not provided, switches 410, 420, 430 may be of the type made of standard stamped metal which adds to the overall complexity and cost of the instrument.
With reference to
VDN 450 includes a first variable resistor “R1” having a maximum resistance of 2000 ohms. First resistor “R1” is a variable resistor which is represented in
When intensity controller 700 is translated to a third, middle position along first resistor “R1”, corresponding to switch “S1c”, a “park position” is established in which no resistance is present. Accordingly, electrosurgical generator “G” measures a maximum voltage value of zero volts.
VDN 450 further includes a second variable resistor “R2” having a maximum resistance of 2000 ohms. Second resistor “R2” is represented in
Second resistor “R2” is selectively actuatable by any one of activation switches 410, 420 and 430. The location where second resistor “R2” is actuated by an activation switch 410, 420 or 430 is represented as a second set of switches “S2a-S2c”. In operation, depending on which switch “S2a-S2c” of the second set of switches “S2” is closed, by actuation of a particular activation switch 410, 420 or 430, the value of the resistance of second resistor “R2” is changed. The change of the resistance value of second resistor “R2” causes a change in voltage along first transmission line 452 which is measured by electrosurgical generator “G” which, in turn, activates and transmits a different mode of operation to electrosurgical pencil 100.
In operation, if more than one activation switch 410, 420 or 430 is actuated simultaneously (i.e., a “multi-key activation” scenario), electrosurgical generator “G” will measure a unique voltage which does not correspond to any preset known voltage stored therein and thus does not activate or transmit any mode of operation to electrosurgical pencil 100.
One of switches “S2a”-“S2c” may correspond to the hemostatic/coagulation effect/function which can be defined as having waveforms with a duty cycle from about 1% to about 12%. Another of switches “S2a”-“S2c” may correspond to the cutting and/or dissecting effect/function which can be defined as having waveforms with a duty cycle from about 75% to about 100%. The last of switches “S2a”-“S2c” may correspond to a bi-polar sealing function which may automatically perform a sealing function based on sensor feedback and generator “G” control. It is important to note that these percentages are approximated and may be customized to deliver the desired surgical effect for various tissue types and characteristics.
VDN 450 may further include safety switch “S3” and safety switch “S3′” for disabling bipolar or monopolar activation depending on the position of jaw member 330 and 340. Safety switch “S3” is disposed in series with switch “S2c” and may be closed when jaw members 330 and 340 are in the first, open position and open when jaw members 330 and 340 are in the second, closed position. Safety switch “S3′” is disposed in series with each of switches “S2b” and “S2a” and may be closed when jaw members 330 and 340 are in the second, closed position but open when jaw members 330 and 340 are in the first, open position. Safety switch “S3′” may be a single switch disposed in series with a parallel circuit of switches “S2a” and “S2b” or alternatively may be two separate switches “S3′” each disposed in series one of switches “S2a” and “S2b”. Safety switch “S3” may also only be closed when tissue is sensed between jaw members 330 and 340 as described below.
Electrosurgical pencil 100 may further include a sensor (not shown) operably coupled to electrosurgical pencil 100 and configured to sense tissue disposed between jaw members 330 and 340. The sensor may provide a signal to controller terminal 460 to disable monopolar activation if tissue is sensed between jaw members 330, 340 by opening safety switch “S3′” or disable bipolar activation if no tissue is sensed between jaw members 330, 340 by opening safety switch “S3”. The sensor may also be used to assist in determining the required intensity level and adjustments during bipolar use for sealing or coagulating operations.
As seen throughout
As seen in
Intensity controller 700 may be configured to function as a slide potentiometer, sliding over and along VDN 450. Intensity controller 700 has a first position wherein nubs 710, 720 are at a proximal-most position (e.g., closest to plug 500 and element 730 being located at a proximal-most position) corresponding to a relative low intensity setting, a second position wherein nubs 710, 720 are at a distal-most position (e.g., closest to jaw members 330, 340 and element 730 being located at a distal-most position) corresponding to a relative high intensity setting, and a plurality of intermediate positions wherein nubs 710, 720 are at positions between the distal-most position and the proximal-most position corresponding to various intermediate intensity settings. As can be appreciated, the intensity settings from the proximal end to the distal end may be reversed, e.g., high to low.
Nubs 710, 720 of intensity controller 700 and corresponding guide channels 270, 280 may be provided with a series of cooperating discreet or detented positions defining a series of positions, e.g., five, to allow easy selection of the output intensity from the low intensity setting to the high intensity setting. The series of cooperating discreet or detented positions also provide the surgeon with a degree of tactile feedback. A plurality of discreet detents 290 may be defined in an inner upper surface of side shell portions 230, 240 for cooperating with and selectively engaging a resilient finger 740 extending upwardly from intensity controller 700. Accordingly, in use, as intensity controller 700 slides distally and proximally, resilient finger 740 selectively engages detents 290 to set the intensity level as well as to provide the user with tactile feedback as to when the intensity controller has been set to the desired intensity setting.
Intensity controller 700 is configured and adapted to adjust the power parameters (e.g., voltage, power and/or current intensity) and/or the power verses impedance curve shape to affect the perceived output intensity during monopolar activation. For example, the greater intensity controller 700 is displaced in a distal direction the greater the level of the power parameters transmitted to jaw members 330, 340. Conceivably, current intensities can range from about 60 mA to about 240 mA when using an electrosurgical blade and having a typical tissue impedance of about 2K ohms. An intensity level of 60 mA provides very light and/or minimal cutting/dissecting/hemostatic effects. An intensity level of 240 mA provides very aggressive cutting/dissecting/hemostatic effects. Accordingly, the preferred range of current intensity is from about 100 mA to about 200 mA at 2K ohms. During bipolar operation, the intensity controller 700 is inoperable.
The intensity settings may be preset and selected from a look-up table based on a choice of electrosurgical instruments/attachments, desired surgical effect, surgical specialty and/or surgeon preference. The selection may be made automatically or selected manually by the user. The intensity values may be predetermined or adjusted by the user.
When monopolar use is selected, and depending on the particular electrosurgical function desired, the surgeon depresses one of activation switches 410, 420, 430, in the direction indicated by arrow “Y” (see
When bipolar use is selected, each jaw member 330, 340 is set to a different potential and electrosurgical energy is transmitted through tissue disposed therebetween. Intensity controller 700 is deactivated. The surgeon manipulates actuators 350 and 360 to transition jaw members 330, 340 from the second position to the first position, thereby providing a space for receiving tissue. Once the surgeon places jaw members 330, 340 in the desired position, with tissue between jaw members 330, 340, the surgeon releases actuators 350 and 360, allowing jaw members 330, 340 to transition toward the second position and thereby clamp or compress the tissue under a spring bias and proportionally create an appropriate pressure between jaw members 330 and 340. Jaw members 330, 340 may be configured to compress tissue therebetween under working pressure to coagulate tissue or form a tissue seal (e.g., about 3 kg/cm2 to about 16 kg/cm2). To form a seal, jaw members 330, 340 cooperate to compress tissue within the working pressure range while maintaining a gap between jaw members 106a, 106b to within the range of 0.001 inches to 0.006 inches. A variety of stop members or stop member arrangements may be utilized to provide the appropriate gap distance between jaw members 330 and 340, e.g., as in U.S. Pat. No. 7,473,253. After the tissue is clamped at the appropriate working pressure and the sensor determines that there is tissue between jaw members 330 and 340, electrosurgical energy is activated either automatically or through manipulation of one of activation switches 410, 420 or 430 by the surgeon to coagulate or seal the tissue. The surgeon then manipulates actuators 350, 360 once more to release the tissue.
It is contemplated that the features found in the above embodiments may be combined with any other embodiment and are not limited to their particular embodiment.
Although the subject apparatus has been described with respect to particular embodiments, it will be readily apparent, to those having ordinary skill in the art to which it appertains, that changes and modifications may be made thereto without departing from the spirit or scope of the subject apparatus.
Claims
1-20. (canceled)
21. An end effector assembly of a surgical instrument, comprising:
- a monopolar assembly configured to apply monopolar energy to tissue; and
- first and second jaw members configured to conduct bipolar energy through tissue grasped therebetween, the first and second jaw members movable from an open position to a closed position to grasp tissue therebetween, the first and second jaw members further movable to an isolated position wherein the first jaw member is at least partially received within a cavity defined within the second jaw member to isolate the first jaw member from the monopolar element.
22. The end effector assembly according to claim 21, wherein the second jaw member is part of the monopolar assembly, the second jaw member configured to deliver monopolar energy to tissue.
23. The end effector assembly according to claim 21, wherein the monopolar assembly includes an electrode operably coupled to the second jaw member.
24. The end effector assembly according to claim 21, wherein the monopolar assembly includes an electrode extending distally from the second jaw member.
25. The end effector assembly according to claim 21, wherein both of the first and second jaw members are movable between the open position, the closed position, and the isolated position.
26. The end effector assembly according to claim 21, wherein one of the first jaw member or the second jaw is stationary while the other of the first jaw member or the second jaw member is movable between the open position, the closed position, and the isolated position.
27. The end effector assembly according to claim 21, wherein the first and second jaw members are electrically isolated from one another.
28. The end effector assembly according to claim 21, further comprising a sensor configured to sense whether tissue is disposed between the first and second jaw members, the sensor configured to provide a signal to disable monopolar activation if tissue is sensed between the first and second jaw members.
29. The end effector assembly according to claim 21, further comprising a sensor configured to sense whether tissue is disposed between the first and second jaw members, the sensor configured to provide a signal to disable bipolar activation in the absence of tissue sensed between the first and second jaw members.
30. A surgical instrument configured for both monopolar and bipolar use, the surgical instrument comprising:
- a housing;
- an actuator operably coupled to the housing;
- at least one energy activation switch operably coupled to the housing; and
- an end effector assembly operably coupled to the housing and positioned distally thereof, the end effector assembly including: a monopolar assembly configured to apply monopolar energy to tissue; and first and second jaw members configured to conduct bipolar energy through tissue grasped therebetween, the first and second jaw members movable from an open position to a closed position to grasp tissue therebetween, the first and second jaw members further movable to an isolated position wherein the first jaw member is at least partially received within a cavity defined within the second jaw member to isolate the first jaw member from the monopolar assembly.
31. The surgical instrument according to claim 30, wherein the energy activation switch is configured to supply bipolar energy to the end effector assembly in a first mode of operation and to supply monopolar energy to the end effector assembly in a second mode of operation.
32. The surgical instrument according to claim 30, wherein the at least one energy activation switch includes a first activation switch configured to supply bipolar energy to the end effector assembly and a second activation switch configured to supply monopolar energy to the end effector assembly.
33. The surgical instrument according to claim 31, wherein the monopolar assembly includes an electrode extending distally from the second jaw member.
34. The surgical instrument according to claim 31, wherein the second jaw member is part of the monopolar assembly, the second jaw member configured to deliver monopolar energy to tissue.
35. The surgical instrument according to claim 31, wherein both of the first and second jaw members are movable between the open position, the closed position, and the isolated position.
36. The surgical instrument according to claim 31, wherein one of the first jaw member or the second jaw is stationary while the other of the first jaw member or the second jaw member is movable between the open position, the closed position, and the isolated position.
37. The surgical instrument according to claim 31, wherein the first and second jaw members are electrically isolated from one another.
38. The surgical instrument according to claim 31, further comprising a sensor configured to sense whether tissue is disposed between the first and second jaw members, the sensor configured to provide a signal to disable monopolar activation if tissue is sensed between the first and second jaw members.
39. The surgical instrument according to claim 31, further comprising a sensor configured to sense whether tissue is disposed between the first and second jaw members, the sensor configured to provide a signal to disable bipolar activation in the absence of tissue sensed between the first and second jaw members.
40. The surgical instrument according to claim 31, wherein the actuator is operably coupled to the end effector assembly and configured to move the first and second jaw members between the open position, the closed position, and the isolated position.
Type: Application
Filed: Sep 26, 2016
Publication Date: Jan 12, 2017
Inventors: JAMES D. ALLEN, IV (BROOMFIELD, CO), STEPHEN M. KENDRICK (BROOMFIELD, CO), DENNIS W. BUTCHER (LONGMONT, CO), DANIEL A. JOSEPH (GOLDEN, CO)
Application Number: 15/275,981