PROCESS AND DEVICE FOR INTRODUCING ADDITIVE MATERIALS IN A RECEPTACLE AT THE AREA OF HIGHEST PRESSURE

The invention relates to a method and a device for introducing and/or adding non-dry-powder additive materials and/or coating materials with a liquid, solid, semi-solid, or paste-like consistency or in suspended or emulsified form, for example, peroxides, fats, waxes, IV improvers, polymers, or similar materials, to an existing lumpy or particulate material which is moved and mixed, and optionally warmed and reduced to small pieces in a receptacle and/or compressor (1), said material being in particular polymer particles and/or flakes, wood fibers, paper cuttings, or similar materials. According to the invention, the additive material is introduced below the level of the material and/or material particles already in the receptacle (1).

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/516,177, filed Jan. 12, 2010, which is a National Stage of International Application No. PCT/AT2007/000527 filed Nov. 22, 2007, which claims priority to Austrian Patent Application No. A 1951/2006, filed Nov. 23, 2006, the disclosures of all applications being incorporated herein by reference.

BACKGROUND OF THE INVENTION

The invention relates to a process according to a method for introducing and adding a non-dry particulate to a material and a device for introducing and adding a non-dry particulate to a material.

Numerous processes and devices are known from the prior art in which the liquid additives are either sprayed from above onto the plastic material or added in the fluid bed process.

It is known from U.S. Pat. No. 4,522,957 to add liquid additives to plastic granules in a mixer.

In WO 00/38895, to reduce the dust nuisance or dust formation, a process of this type is further improved, in a first step, by spraying the liquid additives onto the plastic granules in a spray chamber in the countercurrent process, followed by a static mixing process.

In EP 7624, a liquid additive is added to the plastic granules, namely in an inert gas current.

In WO 84/02530, the plastic granules are first whirled in a continuous mixer and, in this turbulent state, wetted with a highly heated liquid additive in the gas stream.

A process is known from WO 9425509 in which polymer granules are wetted in a mixing device with a liquid additive via an injection nozzle, whereby, to improve the wetting, the surface of the plastic granules is structured irregularly or is roughened.

A process and a mixing device are described in WO 2006/010291 in which a liquid additive is added to plastic granules via an injection device in a mixer and the mixture subsequently reaches an extruder.

Furthermore, a process is known from EP 9817 in which the plastic granules are first wetted with a “coupling agent” or carrier which is to ensure better distribution of the liquid additive on the surface of the plastic granules. In particular, paraffins or paraffin-like substances are noted as coupling agents.

Furthermore, a process is known from U.S. Pat. No. 4,703,093 in which a liquid additive is added to already preheated plastic granules.

DE 263 16 22 describes a process for the simultaneous and continuous feeding of powdery solids and liquids in treatment machines. This occurs via a ring nozzle, wherein the liquid is formed into a tubular casing in the centre of which the solids are introduced.

However, processes of this type are primarily suitable only for highly fluid, finely sprayable additives and function only inadequately for highly viscous, sluggish additives or for additives of solid or semi-solid consistency. In most cases, the plastic material is only wetted incompletely and unevenly.

If highly viscous additives are heated to higher temperatures in order to enable them to be added nevertheless in a highly fluid form, then deposits or precipitates of the additives are often formed at cooler points or colder surfaces of the device.

This leads to difficulties and inaccuracies during dosing and to contamination of the devices.

BRIEF SUMMARY OF THE INVENTION

The object of the invention is to create a process and a device by means of which the non-dry particle-like, highly viscous additives can be easily and uniformly added to a given fragmented material, in particular a plastic material or polymer particles. The surface of the material should thereby be wetted as completely and uniformly as possible with the additives and the additives should be uniformly distributed or dispersed within the material particles. Moreover, the additives should be added in correct dosages and be able to prevent deposits and thus contaminations at undesired points.

These objects are solved by the characterizing features of the disclosed embodiments.

The process of the invention or the device of the invention make it possible to very uniformly and homogeneously advantageously apply additives or coating substances to fragmented, particle-like materials, so that a complete wetting of the surface of the material particles results.

Moreover, in this way, the smallest amounts of additives can also be accurately dosed, since the entire amount of the additives used are introduced directly into the material particles and there is no possibility for the additives to be deposited. In particular, this is ensured by the fact that the additives do not come into contact with any colder components of the container or reactor. This does not result in any contaminations whatsoever or material deposits of condensed or solidifed additives at undesirable points in the reactor, as a result of which frequent cleaning is no longer required. The precipitation of additives or dust with additives at cooler points is greatly reduced or even prevented in comparison to the introduction by spraying the additives onto the material particles from above, which is known from the prior art.

The dynamic movement or rotation of the material particles in the container facilitates the introduction of the additives, the application onto the surfaces of the material particles and promotes the uniform distribution or dispersion of the additives on the material particles. This is ensured thereby that the material particles glide along or rotate past on the inside of the side wall of the container and, in this way, take or carry along the additives flowing out there.

Thus, by means of the process according to the invention, the entire surface is wetted and the additives optimally distributed in the mixture of the particles.

One or more feeding devices can be provided. These feeding devices are arranged on the inside of the side wall of the container or lead into the container on the inside of the side wall of the container.

There are various possibilites for attaching and placing the feeding devices. It is especially advantageous to provide several feeding devices which are, for example, arranged at the same level above the container bottom or mixing tool and are preferably uniformly distributed over the periphery of the inner wall of the container.

A further possibility is to arrange the individual feeding devices in a straight vertical row or a diagonally upward extending row above one another, optionally offset or in the form of a spiral. The feeding devices may also be, in particular, statistically or uniformly distributed, or only a single feeding device can be provided.

The feeding devices are arranged in the container in such a way that they are, in particular, continuously and permanently situated below the level of the material found in the container, so that the additives can be exclusively added directly into the quantity of the rotating material particles. In most cases, a mixing vortex is formed due to the movement of the material particles inside the container, which is also schematically shown in The FIGURE. Advantageously, the edge or the uppermost level of the mixing vortex should be located above the feeding devices during the entire process.

Advantageously, the feeding devices are arranged at the level of the middle third area of the fill level of the material in the container or the mixing vortex, as a result of which the additives are uniformly disperse on the material particles.

In particular for very highly viscous additives, it is advantageous if the feeding devices are arranged in that area or at that level of the inside of the container at which the moved or rotating material particles exert the highest pressure. As a result, a good distribution of the material is ensured. This area or the pressure exerted by the material on the side wall is determined in dependency on the rotational speed, the type, number and form of the mixing tool.

The feeding devices can be formed as simple feed connections or feed openings in the side wall of the container or also be designed in the form of feed nozzles. The additives are preferably dosed or supplied via dosing pumps, e.g. gear pumps or diaphragm pumps. These control the amount of the additives added. Since, as described, all of the additives can be introduced directly into the material particles, they can be dosed very accurately and free of loss. Losses due to deposits or the like are largely excluded.

In order not to disturb the movement of the material particles inside the container, it is advantageous if the feeding devices are sealed flush with the inner wall of the container and do not project or protrude inside the container.

Usually, the additive which is to be introduced into the material emerges from the feeding devices in the form of droplets or in pasty form. As a result of the movement forced by the mixing tool, the material particles move along the inner wall of the container, come into contact with it and rub against it. Consequently, the additives just emerging through the feeding device are immediately and directly carried along by the material particles and are distributed all the better in the mixture.

For some additives, a wetting of the container wall by the additives may be desirable in order to consequently produce a better dispersion of the additives with the material particles. To enable this, an additional separate heating device can be provided which merely heats the inside of the side wall of the container or the container side wall. This heating device is advantageously independent of temperable or heatable mixing tools or further heating devices for heating the material in the container. In this way, the viscosity of the additives is reduced, as a result of which the flowability of the additives is improved and the inner wall of the container is better wetted. Consequently, an even better distribution of the additives is given on the material particles.

To prevent obstructions of pasty or highly viscous additives, the feeding devices themselves and their feed lines or storage tanks may also be heatable. In this way, solid or pasty waxes can be added in sufficiently fluidized form, e.g. at room temperature. If necessary, the pressure which is exerted on the additives or with which the additives are supplied can also be adjusted accordingly, in particular selected at a corresponding level, in order to be able to introduce highly viscous additives.

Basically, it is advantageous to treat the material at an increased temperature or rather to maintain the temperature of the material higher, since the viscosities of the additives are lowered as a result and a better distribution and homogeneous dispersion of the material particles take place.

Furthermore, it can be advantageous to avoid or reduce a wetting of the inner wall of the container by the additives. This can be accomplished, for example, by special coatings or also by special embossings of the container wall. In this way, the additive droplets adhering to the inner wall of the container can better loosen from the side wall and be more easily carried along by the material or by the moving material particles and a wetting of the container wall is omitted.

Further advantages and embodiments of the invention can be found in the description and the attached drawing.

The invention is schematically illustrated with reference to embodiments in the drawing and is described by way of example in the following with reference to the drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

The FIGURE shows a schematic view of a device according to the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A device according to the invention is shown in a schematic sectional view in The FIGURE.

The device in the form of a cutting compacter shown in The FIGURE has a receptacle 1 in the bottom area of which a crushing or mixing tool 4 that is pivotable about a vertical axis is provided which is actuated by a drive motor 5. At the level of this crushing and mixing tool 4, an opening is provided in the side wall of the receptacle 1 to which the housing 2 of a screw extruder is attached. An extruder screw 3 which is actuated by a drive motor 6 is located in the housing 2. The crushed and mixed material, in particular a plastic material, conveyed by the screw extruder emerges from the screw housing through the outlets 7. When plastic material is processed, the material is first melted or plasticized in the extruder. The container 1 may also be acted upon with a vacuum.

The material to be treated is given in the receptacle 1. The material is present in the receptacle 1 in a fragmented or particle-like form and thus has a large surface in relation to its volume. The material can be, for example, thermoplastic material in the form of flakes, granules, foil waste or the like. Wood fibres, newsprint paper or the like are also feasible. Due to the continuous dynamic movement or rotation of the material particles in the receptacle 1 caused by the mixing tool 4, the individual particles are thoroughly mixed and, optionally, depending on the configuration of the mixing tool 4, the material is also crushed and/or precompacted and perhaps also heated or dried or crystallized. The movement of the material particles in the receptacle 1 serves, in particular with plastic materials, to ensure that the individual plastic particles do not stick together when heated and that the fragmented character of the material remains intact.

Furthermore, a feeding device 10 in the form of a feed connection is provided in the lower area of the side wall of the container 1, which opens into the container 1 via an opening, whereby the opening seals flush with the inner surface of the side wall and no part of the feeding device 10 protrudes inside the container. One or more additives or coating substances can be dosed into the receptacle 1 via this feeding device 10.

The feeding device 10 is configured such that it is suitable for feeding non-dry particle-shaped or non-dry powdery or non-dry granular or non-dry crystalline additives. Dry powdery or granular additives, e.g. pigments, fillers or the like, are for the most part added from the top via a simple feed funnel. Thus, pumpable highly fluid or viscous, solid, semi-solid or pasty additives, in particular of higher viscosity, are added via the feeding device 10. For example, the feeding device 10 is suitable for adding highly fluid additives, such as plasticizers, peroxides, etc., viscous additives or also pasty, or more solid additives having a cream-like or pasty consistency, e.g. fats or waxes or also polymers. The term solid additives refers, for example, to waxes or fats which are inherently stable at room temperature, but nevertheless are still ductile and moldable. Originally, powdery additives or aggregates, such as pigments, fillers or the like, can also be added in this way by means of a carrier solution as dispersion or suspension, perhaps also as a suspension or emulsion.

According to the Figure, the feeding device 10 is placed below the level of the rotating material particles found in the container 1 or below the uppermost edges of the mixing vortex. Additives are therefore not added from the top, for example by spraying or drop by drop, but through the side wall of the container 1. The feeding device 10 or the feed opening is thereby always brushed over by material that moves past and the emerging additives are carried along and in this way applied to the material particles and dispersed or distributed within the material particles. As is clearly seen in the Figure, the feeding device 10 is displaced vertically above the upper edge of the mixing tool 4 such that a vertical gap is present between the feeding device 10 and the mixing tool upper edge.

The dispersion of the additives functions all the better, the larger the surfaces of the material particles are.

The additives, in particular reactive additives, are added, depending on the degree of dilution, through an eventual carrier of the additives, in amounts of between 0.01 and 20% by weight. For example, when using PET flakes as receiver material, a quantity of 0.2 to 0.6% of an additive is applied.

The maximum amount with which the additives are to be used is that amount which is necessary to wet the entire surface of the material found in the container 1 or the entire surface of the material particles.

Depending on the type of additive used and its reactivity, a reaction of the additive with the material perhaps does not take place until in the extruder or in the molten mass.

Finally, the material is completely melted in the extruder and, if necessary, filtered and/or degassed.

The process according to the invention can be carried out in one step, but can also be included in a two or more step process. Advantageously, the additives are thereby already added in the first step, in a pretreatment container connected upstream or in a first receptacle 1. For this purpose, the feeding devices are arranged in this pretreatment container. The further treatment of the material and/or the addition of further additives or an eventual drying or crystallizing then takes place in further containers 1.

Claims

1. A device for introducing and adding non-dry particulate, additives, or coating stuffs of a liquid, solid, semi-solid, or pasty consistency to a lumpy or particulate material, the device comprising:

at least one receiving receptacle or cutting condenser comprising: a lateral wall, at least one mixing tool disposed inside the receptacle or cutting condenser, wherein the at least one mixing tool moves the material, and
at least one feeding device for adding the particulate, additives, or coating stuffs, wherein said feeding device is disposed on the lateral wall and displaced vertically above an upper edge of the mixing tool such that a vertical gap is present between the feeding device and the mixing tool upper edge, and wherein said feeding device is arranged in a region of the lateral wall such that during operation the at least one mixing tool is operated to move the material above the gap to communicate with the feeding device such that said material exerts maximum pressure onto the region of the lateral wall where said feeding device is positioned.

2. The device according to claim 1, wherein said at least one feeding device is arranged at an inner side of said lateral wall of said receptacle to discharge into said receptacle through said lateral wall, or is formed in the lateral wall of said receptacle.

3. The device according to claim 1, wherein said at least one feeding device comprises an outlet opening or a nozzle.

4. The device according to claim 1, wherein said at least one feeding device is flush with the inside of the lateral wall of said receptacle.

5. The device according to claim 1, wherein a surface of the inner side of said receptacle is a non-wettable surface.

6. The device according to claim 1, wherein the at least one mixing tool is rotatable about a vertical axis.

7. The device according to claim 1, wherein the at least one mixing tool also comminutes the lumpy or particulate material.

8. The device according to claim 1, wherein the material is plastic material in the form of non-molten polymeric particles, wood fibers or scraps of paper.

9. The device according to claim 1, wherein the non-dry particulate, additives, or coating stuffs is in a suspended or emulsified form.

10. The device according to claim 9, wherein the non-dry particulate, additives, or coating stuffs is of an elevated viscosity.

11. The device according to claim 10, wherein the non-dry particulate, additives, or coating stuffs comprises at least one member of the group consisting of: peroxides, fats, waxes, IV enhancers, and polymers.

12. The device according to claim 1, wherein the material particles are moved within the receptacle.

13. The device according to claim 1, wherein the material particles are rotated within said receptacle.

14. The device according to claim 3, wherein said at least one feeding device is fed by at least one metering pump.

15. The device according to claim 14, wherein the at least one metering pump is a gear pump or diaphragm pump.

16. The device according to claim 14, wherein the at least one metering pump is configured to meter said additives in the form of droplets.

17. The device according to claim 4, wherein the feeding device does not protrude or project from the inner side of said receptacle towards an interior of said receptacle.

18. The device according to claim 5, wherein the non-wettable surface comprises anti-adhesion coating or embossing.

19. A device for introducing an additive to a material, the device comprising:

a receptacle, comprising: a lateral wall; a mixing tool disposed inside the receptacle and configured to mix the material; and a feeding device disposed on the lateral wall and configured to introduce the additive to the receptacle, wherein a vertical location of said feeding device has been predetermined and preselected as a location above a top of the mixing tool at which a pressure of the material is highest.
Patent History
Publication number: 20170008194
Type: Application
Filed: Sep 3, 2015
Publication Date: Jan 12, 2017
Patent Grant number: 10507594
Inventors: Gerhard Wendelin (Linz), Klaus Feichtinger (Linz), Manfred Hackl (Linz)
Application Number: 14/845,221
Classifications
International Classification: B29B 7/42 (20060101); B02C 18/22 (20060101); B02C 18/12 (20060101); B29B 7/60 (20060101); B29B 7/88 (20060101);