DMLS ORTHOPEDIC INTRAMEDULLARY DEVICE AND METHOD OF MANUFACTURE
An orthopedic device, such as an intramedullary nail for internal fixation of a bone and a method of manufacturing the same. The orthopedic device may be formed from a medical grade powder via an additive manufacturing process. The forming process may include heat treating the additive manufactured component and machining the heat treated additive manufactured component to form the orthopedic device. Further, the orthopedic device may be formed to include an internal sensor probe channel that extends within at least a portion of the wall of the device, but which does not protrude through an outer portion of the wall. Embodiments further include a dynamizing intramedullary nail that accommodate adjustments in the relative axial positions of one or more sections of the orthopedic device. The devise may include features in an inner region of the orthopedic device that may alter an elastic modulus of the orthopedic device.
The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/978,804, filed Apr. 11, 2014, and U.S. Provisional Patent Application Ser. No. 61/978,806, filed Apr. 11, 2014, both of which are incorporated herein by reference in their entirety.
FIELD OF THE INVENTIONThe present invention relates generally to implants for use in orthopedic surgeries or procedures, and more particularly but not exclusively relates to an orthopedic intramedullary device, such as, for example, an orthopedic intramedullary nail, for internal fixation of a bone and a method of manufacturing the same.
BACKGROUNDOrthopedic fixation devices may be used, for example, to stabilize an injury, to support a bone fracture, to fuse a joint, and/or to correct a deformity. The orthopedic fixation device may be attached permanently or temporarily, and may be attached to the bone at various locations, including implanted within a canal or other cavity of the bone, implanted beneath soft tissue and attached to an exterior surface of the bone, or disposed externally and attached by fasteners such as screws, pins, and/or wires. Some orthopedic fixation devices allow the position and/or orientation of two or more bone pieces, or two or more bones, to be adjusted relative to one another. Orthopedic fixation devices are generally machined or molded from isotropic materials, such as metals including, for example, titanium, titanium alloys, stainless steel, cobalt-chromium alloys, and tantalum.
Additionally, the primary function of an intramedullary (IM) nail is to stabilize the fracture fragments, and thereby enable load transfer across the fracture site while maintaining anatomical alignment of the bone. Although there are a large number of different commercially available intramedullary nails in the market place, there are no universal guidelines stating the conditions at which each nail will perform at its optimum for a given case. Further, the optimal degree of implant stiffness is a topic of some debate, and the mechanisms underlying the interaction between the local mechanical environment and fracture healing are generally not well known.
Further, the effect of altered fixation stiffness, in terms of torsion and bending, on fracture healing may provide insight into the pathogenesis and ideal treatment of fractures and non-unions. However, for at least cost containment reasons, similar implants are used for both simple and complex fractures. Consequently, finding a relatively optimal solution in terms of axial bending and torsional stiffness, that is closer to bone rather than titanium or stainless steel, is likely to accelerate fracture healing for a specific type of fracture.
There remains a need to provide an improved orthopedic intramedullary device for internal fixation of a bone and a method of manufacturing the same. The present invention satisfies this need and provides other benefits and advantages in a novel and unobvious manner.
BRIEF SUMMARYAn aspect of the present invention is a method for manufacturing an orthopedic device that includes forming from a medical grade powder, and via an additive manufacturing process, an additive manufactured orthopedic component. The method further includes heat treating the additive manufactured orthopedic component and machining the heat treated additive manufactured orthopedic component to form the orthopedic device.
Another aspect of the present invention is an intramedullary nail that includes a wall comprising one or more laser sintered layers of a medical grade powder. The wall has an outer portion and an inner portion, the inner portion generally defining an inner cannulated region of the intramedullary nail. The intramedullary nail further includes an internalized channel for housing a miniaturized sensor probe that extends into at least a portion of the wall. Additionally, the internal sensor probe channel does not extend through the outer portion of the wall.
Additionally, an aspect of the present invention is an intramedullary nail that has a first section coupled to a second section by a telescopic portion. The telescopic portion has an outer diameter that sized to be slidingly received in an inner region of at least one of the first and second sections to accommodate adjustments in the relative axial positions of the first and second sections. Further, the first and second sections are structure for implantation into a bone. The intramedullary nail also includes a mechanical actuator that is adapted to provide a biasing force to bias the relative axial positions of the first and second sections.
Another aspect of the present invention is an intramedullary nail that includes a wall having an outer portion and an inner portion, the inner portion generally defining an inner region of the intramedullary nail. The intramedullary nail further includes a first screw hole and a second screw hole, the first and second screw holes extending through at least the outer portion of the wall. Additionally, the intramedullary nail includes one or more protrusions in the wall between the first and second screw holes, the one or more protrusions not extending through at least the outer portion of the wall. Further, the one or more protrusions are structured to alter the torsional and flexural moduli of the intramedullary nail.
Another aspect of the present invention is an intramedullary nail having a first section having a wall, the wall generally defining an inner region of the first section. The intramedullary nail also includes a second section that is coupled to an inner section, the inner section being sized for lateral displacement in at least a portion of the inner region of the first section. Further, the inner section is selectively detachable from the first section by a locking screw to selectively alter the mechanical properties of the intramedullary nail.
The description herein makes reference to the accompanying figures wherein like reference numerals refer to like parts throughout the several views.
The foregoing summary, as well as the following detailed description of certain embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings, certain embodiments. It should be understood, however, that the present invention is not limited to the arrangements and instrumentalities shown in the attached drawings.
DESCRIPTION OF THE ILLUSTRATED EMBODIMENTSFor the purpose of promoting an understanding of the principles of the present invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is hereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates. The following descriptions and illustrations of non-limiting forms and embodiments of the present invention are exemplary in nature, it being understood that the descriptions and illustrations related thereto are in no way intended to limit the inventions disclosed herein and/or their applications and uses.
Orthopedic devices require certain material properties and/or tolerances for both optimal manufacturing and performance under stress loading conditions within the human body. For fixation devices, such as, for example, intramedullary (IM) nails, such properties or characteristics may include four-point bend fatigue, flexural modulus, torsional rigidity, tensile strength/ductility/yield strength, porosity, surface finishes, and geometrical tolerances/part accuracy. While traditional wrought/machined Ti-64 nails may meet current required standards, with the advent of rapid manufacturing technologies (RMT) there lies an opportunity for relatively significant reductions in both crude manufacturing and the overall cost of goods. Further, global market sales of implantable devices manufactured with titanium are estimated to reach $26 billion by 2020, which emphasizes the need for alternative manufacturing processes to meet the anticipated volumes. Further, additive manufacturing has the advantage of providing near net-shaped products/parts to multiple markets without having to rely on a highly skilled labor force. Additionally, given its design freedom, using additive manufacturing in designing and manufacturing implant devices, such as, for example, intramedullary ails, may open up the possibility of developing an implant, which is specific to the characteristics of the patient, including, for example, the patient's age, bone quality, and injury type, among other characteristics.
RMT technologies include, but are not limited to, direct metal fabrication (DMF), direct metal laser sintering (DMLS), electron beam welding (EBM) and solid free-form fabrication. These technologies have been used in various industries including orthopedics for reconstructive, trauma and rehabilitation devices. In general, DMLS may use a three-dimensional (3D) computer-aided design (CAD) model, which may be created through programs, such as, for example, Magics® by Materialise®, to produce a three-dimensional metal sintered model that is created layer-by-layer through irradiating metal powder with a laser. For example,
However, the use of DMLS can create a number of issues relating to material performance and functionality that cannot be tolerated in orthopedic devices, including porosity, part tolerance, part design, and surface finish, which require additional post-processing, each of which will be summarized in turn below.
(A) Porosity: Sub-optimal laser beam optics can create areas of porosity within materials that lead to poor material characteristics and subsequent poor/reduced performance. These porosity issues are typically mainly attributable to un-sintered powder within the manufactured parts and entrapment of residual gas such as argon and oxygen during sintering. For example,
(B) Part Tolerance: Sub-optimal laser beams (power) can create devices with specifications outside the required tolerances. For instance, with respect to intramedullary nails, such areas that are outside required tolerances that may be produced by sub-optional laser beams include the internal/external portions of the nail, as well as areas associated with an internal screw diameter.
(C) Part Design: Given the complex geometry of trauma fixation devices such as intramedullary nails, determining which design features should be turned on during the laser sintering stage is critical. Equally, identifying a suitable support structure design required to hold the part during post-processing is also critical to quality of the final part.
(D) Additional Processing: At present, the optimal post DMLS processing to impart mechanical properties is generally unknown or is sub-optimal. Techniques are known in the art such as, for example, Hot Isostatic Processing (HIP) where implants are subjected to both elevated temperature and isostatic gas pressure to consolidate and reduce porosity within materials. Shot Peening, in which implants are bombarded with shot to create plastic deformation, and re-melting of the sintered layers to reduce the porosity of the growing parts, are other strategies directed at improving part performance.
Additionally, the use of DMLS can create a number of issues relating to cost of goods and productivity. For example, in at least certain situations, the cost of metal powder which may be around $200-$400/kg depending on the grade of Ti-6AL4V powder purchased, e.g. Plasma Rotating Electrode Process (PREP), gas atomized, and EL1 grade 23. Further, machine cost/build time may be around $97/hour depending on the size of the manufacturing cell, the capital equipment and level of depreciation, and the staff. Additionally, part throughput, which may be 100 nails per build, can take around 109 hours to complete (65.4 minutes per nail), compared to, for example, 600 nails per day (2.4 minutes per nail), which may be attained using highly developed subtractive machining operations that are carried out in medical device manufacturing cells. The efficiency of the additive manufacturing process can be improved using a laser sintering machine with a bigger footprint and equipped with 4 scanners, e.g. SLM 500 quad scanner. 800 nails (sized 20 cm long ×10 mm OD) can be built in 160 hrs equating to 12 minutes per nail using boundary scanning “in situ shelling” strategy. The SLM500 is capable of producing around 40,000 nails per year, if run to full capacity and adopting the boundary scanning strategy. If the supply of atomized powder costed at £30/Kg can be used in preference to material supplied from a powder supplier (typically $250-400/Kg), the average cost per nail can approach $120 per part.
The cost of metal powder is typically controlled by suppliers who may charge a premium given the limited number of suppliers available in certain market places. For example, European supply companies, and more specifically UK suppliers, often offer radically cheaper and environmentally benign powder compared with existing titanium production methods, such as, for example, the energy-intensive gas-atomized and toxic Kroll process, which constitutes a costly and labor-intensive four-step process. Such suppliers may take rutile and transform it directly into powdered titanium using electrolysis, which is cost-effective and thus generally essential to the supply chain. The low-cost titanium powder can be used in a variety of new applications, whereas previously the metal has been excessively expensive for use in mass production of lower value items. For example, gas atomized powder directly from bar stock is a potential route for reducing Ti-64 power cost to around £30/Kg.
The present invention provides an optimal DMLS manufacturing route for orthopedic devices with material performances matching those for wrought/cast/machined titanium parts.
In one form of the present invention, a method of manufacturing an elongated orthopedic device via direct laser sintering is provided including the steps of: a) producing a virtual three-dimensional (3D) elongated device model; b) manufacturing an elongated device in an appropriate build direction via direct metal sintering according to the three-dimensional (3D) model utilizing a laser power of at least 300 Watts (W), and using a powder of at least Grade 5 quality, such as, for example, a TiAl6v4 powder; c) subjecting the elongated device to Hot Isostatically Pressing (HIP) utilizing a temperature of at least 1000 degrees with a cooling rate of between 0.24 and 72 degrees C. min−1; d) machining and polishing the HIP processed elongated device; and e) wherein the mechanical performance is equivalent to the four-point bend performance of wrought titanium.
In another form of the present invention, an orthopedic implant such as, for example, an intramedullary nail, is manufactured via the following steps and processes:
(A) Creation of a CAD File: An appropriate file type, such as, for example, a .stl formatted file, is uploaded into a three-dimensional (3D) software provider such as, for example, Magics® by Materialise®, among others, in an orientation that is suitable for manufacturing. Such files may include, for example, a non-supported vertical build structure of an intramedullary (IM) nail, among other components or devices.
(B) Build Orientation: The parts can be built in a multitude of build orientations from 0 to 90 degrees, which will produce anisotropic physical properties that are sensitive to mechanical loading. They can also be built with or without the use of custom-designed support structures to assist with the post machining process,
(C) Design Optimization: RMT can be used to give significant design freedom regarding the internal geometry (
RMT can also be used to produce patient matched implants through optimization of the curvature of the intramedullary nail. This may avoid a mismatch in the radius of curvature between the intramedullary nail and the bone, particular the distal femur, which could otherwise lead to anterior cortical perforation. For example, the radius of curvature of the femur is estimated to be 120 cm (+/−36 cm). Yet, femoral nail designs typically have less curvature, with a radius ranging from 186 to 300 cm. Additionally, nails can also be designed to suit each individual fracture. According to such an embodiment, a computer model of each individual fracture can be created, and this model can then be used to test different fixation strategies in order to select a system that will create a specific mechanical environment for assumed load-bearing requirements.
(D) Selection of Three-Dimensional (3D) Printer: The intramedullary nails can be built using various commercial machines from suppliers such as, for example, SLM Solutions, Renishaw, Realizer, EOS, Concept Laser and Arcam. The relative merits of each technology are generally based upon: (a) machine productivity (i.e., size of the chamber (along the x, y, and z axes), scanning speed, and number of lasers); (b) part quality (i.e., accuracy, surface finish, tolerances/resolution); and (c) capital and running costs (e.g., consumption of gas and electricity).
(E) Laser Sintering: Hard re-coaters, such as, for example, the EOS M270/M280/M290 from EOS, may produce parts with superior mechanical properties and reduced porosity given that any weakly-bound, partially sintered material is more likely to be removed at each build layer. Soft re-coaters may produce parts that may also be contaminated with silicone blade debris, which would in turn need to be investigated to satisfy regulations. The soft re-coater blades can potentially wear out after one build, which in turn adds additional cost to the manufacturing process. Hard re-coater blades can be made from high speed steel, and the debris released from these arms into the part is perceived to be less of a problem than soft re-coater blades. Hard re-coater blades are also more economical as to powder use. Modern laser sintering machines supplied by SLM Realizer can produced focused beam spot sizes of 30 microns, which can produce parts with superior grain structure and resolution that enables novel design features to be realized, e.g. internalized channels.
(F) Powder Specification: Medical grade Ti-64 powder is available in a number of different formats depending on the end application and the selection of the three-dimensional (3D) printer. Grade 5 gas or plasma atomized powders are typically used in laser sintering, may have a particle size range of either 15 to 45 microns (μm) or 20 to 63 microns (μm), and are typically supplied at a cost of £150/kilogram. Grade 23 ELI powder may be either a gas-atomized or centrifugal PREP powder with a particle size range of between 45 and 100 microns (μm), and is typically supplied at £250/kilogram, and may contain reduced levels of oxygen, nitrogen, carbon and/or iron. Making a decision to switch to virgin powder for subsequent builds, or utilizing unused powder from previous builds, can be determined from QA testing of the built parts and the powder bed. Clearly, building parts from unused powder left over from previous builds will reduce the cost burden and demand for purchasing several tons of powder to cover the manufacture of large quantities of intramedullary nails (i.e., 10,000 or more).
(G) Selection of Build Parameters: Build parameters selected for additive manufacturing techniques, including selective layer melting (SLM), laser sintering, and e-beam processing, among other techniques, in the production of an intramedullary nail, may be unique to the brand or manufacturer of the equipment used to perform the additive manufacturing. For example, laser sintering or e-beam processing of Ti-64, may be unique to the machine suppliers. Moreover,
With regard to scanning strategy, although certain additive manufacturing techniques, such as selective layer melting (SLM), are capable of producing fully dense materials, it may be necessary or beneficial to use one or more of the following scanning strategies to reduce part porosity:
- (1) Layer Re-melt: As illustrated in
FIGS. 10A-10D , re-melting of the laser sintered layers may help reduce the porosity of the growing parts using a double scan strategy. Further, the variable focusing optic in some systems, such as, for example, in the 1 kilowatt (kW) SLM Renishaw SLM250 system, may enable the use of high laser powers at relatively slow speeds, with relatively large spot sizes at the center of the layer compensating for the high heat losses. Further, high laser powers at relatively high speeds can be utilized at the surface areas (i.e., boundaries of the layer) in order to achieve high surface quality.FIG. 10A illustrates a transverse section of an intramedullary nail highlighting the hatch area in the wall section of the intramedullary nail associated with a double scan strategy.FIG. 10B illustrates uni-directional X and Y scanning (i.e., directions are parallel with one another), andFIG. 10C illustrates multi-directional X and Y scanning (i.e., directions are arranged transverse to one another at, for example, 90 degrees).FIG. 10D illustrates parameters used in the re-melting of the layers utilizing a double scan strategy. - (2) Alernative Scanning: As illustrated in
FIGS. 11A-11D , alternative scanning strategies may be implemented, such as, for example, via use of a Realiser SLM100 system. Such alternative scanning strategies may include an X and Y alternating hatch laser raster, as illustrated inFIGS. 11A and 11B , and a circumferential laser raster, as shown inFIGS. 11C and 11D . - (3) In-Line Monitoring: Ultra-low oxygen content may be maintained in the build atmosphere. An oxygen concentration below 50 parts per million may be crucial when processing reactive materials, and may contribute relatively significantly to material integrity and mechanical performance. With regard to a real-time melt pool monitoring system, SLM and e-beam qualification through the creation of a database that may include a variety of information, such as, for example, laser power, scan strategy, match strategy, among other information that may describe the effect of process part parameters on resultant mechanical properties of the built part, such as the built intramedullary nail.
(H) Post-Processing of RMT Parts: Post-processing of RMT parts may include, but is not limited to the following steps or processes.
(I) Heat Treatment: Heat treating the parts that are built via an additive manufacturing process can involve any combination of the steps of HIPPING (Hot Isostatically Pressed System), stress relief, and annealing, among other steps.
-
- (a) HIPPING: a hot isostatic pressing (HIP) may be employed to reduce the porosity of metals and improve the mechanical properties and workability of the material. HIPPING may include the following steps:
- (1) Evacuation/Purge (e.g., 3 times to below 15 mb);
- (2) Sustain Temperature: a typical HIP temperature may be, for example, between approximately 920° Celsuis and approximately 1000° Celsius, and optimum temperature may be approximately 980° Celsius+/10° Celsius. If the HIP temperature is above 1000° Celsius, the additive manufactured parts may become contaminated with nickel given that HIPPING furniture is typically made from Nickel-based alloys. This may be more evident at HIP temperatures approaching 1050° Celsius. This could in turn be mitigated by either (a) wrapping the parts in titanium (Ti) foil, (b) standing the parts on either recrystallized alumina plates or boxes so that the titanium (Ti) cannot make contact with the nickel (Ni) based load plates, or (c) laying the wrapped parts on a saffil blanket;
- (3) Sustain Pressure (MPa): such as, for example, a pressure during a least a portion of the HIP process of 103 MPa+/−5 MPa;
- (4) Sustain Time (minutes): such as, for example, a sustain time of 120 minutes+15/−0 minutes for the HIP process;
- (5) Cooling Rate (° Celsius/minute): for example, less than 10° Celsius/minute; and
- (6) Heating Rate (° Celsius/minute): for example, less than 10° Celsius/minute.
- (b) Stress Relieving Procedure: Stress relieving may be done in a stress relieving furnace under argon atmosphere or in a vacuum furnace. A stress relieving process may involve one or more of the following steps, among other steps:
- (1) Ramp up in 60 minutes the temperature of the additive manufactured built part to an elevated temperature, such as, for example, a temperature of about 800° Celsius, in a Centorr vacuum furnace;
- (2) Hold the elevated temperature of the additive manufactured built part a predetermined time period, such as, for example, for around 2 hours; and
- (3) Power off the furnace heating power and open the furnace door when the temperature of the additive manufactured built part drops down to a set cooled temperature, such as, for example, a temperature of approximately 400° Celsius. The maximum cooling rate to reduce the temperature of the additive manufactured built part from the elevated temperature to the set cooled temperature may be, but is not limited to, 55° Celsius/minute, while the cooling rate from the set cooled temperature of about 100° Celsius, may be slower, such as, for example, about 35° Celsius/minute.
- (c) Annealing: An annealing process may involve the following steps:
- (1) Heat the additive manufactured built part at an annealing temperature, such as, for example, approximately 1000° Celsius for a dell time of 2 hours in an argon inert atmosphere. This temperature exceeds the β transus temperature of 995° C. for Ti-64 alloy; and
- (2) Nitrogen quench to room temperature. Note that the 1000° Celsius heat treatment may be for taking the alpha phase into solution and fully sintering adjacent powder that may have only been partially sintered to the component.
- (a) HIPPING: a hot isostatic pressing (HIP) may be employed to reduce the porosity of metals and improve the mechanical properties and workability of the material. HIPPING may include the following steps:
- (2) Machining Operations: The surface improvement techniques outlined below for the external and internal geometries of the additive manufactured built part may provide a finished surface that improves mechanical performance, and reduces the risk of bacterial contamination by eliminating surface negatives commonly inherent on most machined surfaces. The removal of sharp edges from the additive manufactured built part also may help contribute to a much smoother, less destructive introduction into the human body were tissues could otherwise be damaged or traumatized by sharp edges and the like.
- (a) Machining Operations—External Geometry: The following optional surface finishing steps can be used to remove the alpha case from the external surface of the additive manufactured built part, which is typical of three-dimensional (3D) printed Ti-64 parts. The surface finishing operations may also help flatten out the surface meeting, improve part accuracy, and introduce a compressive layer into the first 0.2 millimeters (mm) of the surface.
- (1) Removal of Alpha Case Layer via Grit Blasting: The alpha case layer is removed, which may be approximately 30 microns deep although not necessarily uniform. The alpha case layer can be removed in a variety of different manners, including using mechanical abrasion methods in the form of aluminum oxide media. This step can be carried out manually based on experience to observe the sparks created by the alpha case to help determine when the substrate has been breached (i.e., the sparks will be extinguished when the alpha case has been removed). In a production environment, an automated set may be established, which could in turn give a more uniform metal removal. Mechanical removal has the advantage of helping to prepare the surface for subsequent operations, as well being a lower cost option over chemical milling. Maintaining the geometry of the additive manufactured built part may also provide some challenges as the material removal rate between the alpha case and the substrate will vary considerably. This approach can be used to attack both the outside and inside surfaces of the intramedullary nail. The loss of material from this step (typically 0.2 microns (μm)) would be factored into the outside diameter (OD) and inside diameter (ID) of the build the additive manufactured built part and/or the associated model of the CAD file.
- (2) Vibratory Polishing: Depending on the surface condition post-blasting, the parts may need to be rough polished to remove or truncate peaks prior to peening. This step may ensure that the peening process compresses the entire surface without risk of folding over surface asperities which would otherwise create stress raisers.
- (3) Creation of a Compressive Layer of Residual Stress: Following removal of the alpha case layer and preparation of the surface, shot peening parameters would be specified to induce an optimum layer of compressive residual stress with a maximum magnitude of between approximately 800-1000 mega Pascal (MPa), and a depth of around 0.2 millimeters (mm).
FIG. 12 illustrates that the compressive layer will have a refined grain structure and will effectively delay the initiation and propagation of fatigue cracks. Specifically,FIG. 12 illustrates a typical peen stress distribution curve for a Ti-64 ALM part. Peening of the sample surface has the effect of increasing the surface hardness, as well as introducing the beneficial compressive residual stress that lowers the tensile stresss felt at the surface.
- (b) Machining Operations—Internal Geometry: The following optional surface finishing steps can be used to finish the internal surface of the part.
- (1) Extrude Honing: Extrude Honing is an interior surface finishing process characterized by flowing an abrasive-laden fluid through a work piece, which effectively performs erosion. This fluid is typically very viscous, and has the consistency of putty or dough. It may specifically be used to remove burrs, polish surfaces, form radii, and even remove material. The nature of AFM makes it ideal for interior surfaces of an intramedullary nail, slots, holes, cavities, and other areas that may be difficult to reach with other polishing or grinding processes.
- (a) Machining Operations—External Geometry: The following optional surface finishing steps can be used to remove the alpha case from the external surface of the additive manufactured built part, which is typical of three-dimensional (3D) printed Ti-64 parts. The surface finishing operations may also help flatten out the surface meeting, improve part accuracy, and introduce a compressive layer into the first 0.2 millimeters (mm) of the surface.
In another form of the present invention, manufacturing of an orthopedic implant may utilize optimal processing conditions during formation of the part. In one embodiment, manufacturing of an orthopedic implant includes optimized fatigue performance of three-dimensional (3D) printed Ti-64 parts.
(A) Laser Power: The mechanical properties of additive manufactured parts may be dependent upon how much power is used to build them, such as, for example, the energy density of the laser beam that was used to produce the parts. As a general rule, the greater the energy density used to manufacture the part, the rougher the part surface finish will be. This phenomenon may be caused by heat from the part “leaking” into the surrounding powder material and encouraging the powder to fuse to the surface of the part. Therefore, increasing the energy density of the laser beam may increase the surface roughness and the overall strength or the parts.
For example, a batch of twelve (12) additive manufactured Ti-64 samples resembling the distal section of a tibial nail was formed via laser sintering. The following processing conditions were implemented using a Renishaw 250 ALM: (a) scanning speed of 150 millimeters/second (mm/s); (b) focus offset of 0 millimeters (mm); (c) a point distance of 65 microns (μm); (d) an exposure time of 250 μs; and, (e) a laser power varied between 120 watts (W) and 400 watts (W). Such processing included, and provided related information regarding, the following:
- (1) Metallography: The twelve ALM samples were exposed to varying laser powers of 120 W, 160 W, 200 W, 240 W, 280 W, and 350 W before being submitted for axial sectioning into four parts (S1-S4 (
FIG. 13 ); distal to proximal), and subsequent metallurgical investigation was used according to the schematic representative illustrated inFIG. 13 . Specifically,FIG. 13 illustrates a three-dimensional (3D) model of the LM test part which attempts to clone the distal end of a standard intramedullary nail. - After cutting, the sections Ti-6Al-4V ALM samples ere cold mounted in acrylic resin and polished with SiC paper (80, 220, 800, 1200, 2400 grit) to 1 micron. Porosity in the wall section of the samples was measured from scanning electron microscope (SEM) images using standard image analysis software. The degree of porosity for each sectioned sample was determined in the wall section from SEM images captured using image analysis software. The results of the study are summarized in
FIG. 14 , which illustrates an example of the effect of laser power on porosity as a function of positive along the ALM sample (S1 to S4 (FIG. 13 )). Porosity ranged between 0.03% and 1.7% in the wall section, and tended to be highest towards the proximal end of the specimen (S4). In general, porosity decreased relative to increasing laser power, thereby implying improved consolidation of the powdered structure. - An SEM image captured from the fracture surface of an ALM part laser sintered to 400 watts (W) is illustrated in
FIG. 15 , which is characteristic of both ductile and brittle failure. This in turn indicates that there is some porosity in the core structure combined with some un-sintered powder. Specifically,FIG. 15 illustrates an SEM image captured from the fracture surface of an ALM part laser sintered to 400 watts (W). The morphology is mainly ductile, but deformation is quite poor around pre-existing cracks because of the relatively poor work hardenability of the alloy. - (2) Four-Point Bending Test: ASTM test method (P1264-03) was consulted on the four-point bending fatigue testing method for intramedullary fixation devices. The samples that were exposed to varying laser powers of 140 W, 180 W, 220 W, 260 W, 300 W, and 400 W were submitted for four-point bend cyclic fatigue testing. Two loading conditions were used, namely, 200 newton (N) to 2000 newton (N), and 300 newton (N) to 3000 newton (N). Additionally, a machined Ti-64 nail was cut to a similar length (77.04 mm) to the shortest sample nail and tested using the 300 newton (N) to 3000 newton (N) method to validate the use of the test rig with relatively short nails. The machined Ti-64 nail survived 106 cycles with no sign of damage and did not move on the test rig. The ALM samples were tested using the same method by using the 200 newton (N) to 2000 newton (N) loading conditions. The number of cycles to failure for each sample was recorded, and the samples were photographed to record the failure mode. In all cases, the length/diameter (L:D) ratio was fixed at 7:1, and all tests were conducted at 5 hertz (Hz). The test results are summarized in
FIGS. 14 and 15 , withFIG. 16 illustrating the summarized test results conducted at 5 Hz, andFIG. 17 illustrating the effect of laser power on four-point bend fatigue properties of Ti-64 ALM parts conducted at step load of 2000:200 newton (N) at 5 hertz (Hz).
(B) Standard Fatigue Performance of Laser Sintered and E-beam Melted Coupons: In order to determine whether there is any accrued benefit in using a particular machine supplier to build Ti-64 nails, as listed in
When the ALM Ti-64 coupons outlined in
Referring to
(C) HIPPING: Hipping can be very effective at increasing the fatigue performance of ALM Ti-64 parts, as illustrated in
HIP treatment may refine the crystal structure to produce a lamella structure, with some similarity to conventionally manufactured titanium when heated above the β transus temperature and cooled slowly.
As illustrated in
The ALM samples were given an HIP treatment at 980° Celsius, so it is likely that the β transus was not reached, and therefore the phase change to β was not achieved. This incidence, combined with the slow rate of cooling of 10° C. min−1, explains the difference between the wrought microstructure and the studied ALM samples. In order to create a suitable structure by heat treatment, a β transus temperature must be reached. This will then allow an ordered lamella structure to be produced on cooling. The width of the lamella is dictated by the cooling rate, with a finer structure being achieved at faster rates of cooling. It has been found that the width of the lamella (t) should be microns, and the size of the colonies of parallel lamella (d) should be 30 microns for maximum fatigue strength.
A more ordered, parallel structure should be achieved if the HIP temperature is increased to 1000° Celsius so that full β transus is achieved. In order to achieve an ordered structure of α+β lamella-type alloys, cooling rates from the β transus temperature should be between 0.24° C. min−1 and 72° C. min−1, with the faster cooling rate producing smaller lamella. The cooling rate in the HIP furnace used for the current batch of ALM parts is 10° C. min−1, and the lamella produced had widths of between 4.05 microns and 6.12 microns,
(D) HIPPING & Machining/Polishing: Post-machining of the external surface of the part has a significant improvement in fatigue performance. For example, techniques such as abrasive fluid machining results in the flattening out of the surface and a reduction in the number of crack initiation sites in the test part. As illustrated in
The combined impact of HIPPING and external polishing produces parts which has fatigue properties that are comparable to the wrought parts (i.e., run out at 1M cycles when loaded between 4000 newton (N) and 400 newton (N) at 5 hertz (Hz)) as illustrated in
The present invention provides at least the following advantages over the prior art: (1) mechanical properties similar to wrought parts; (2) Grade 5 Ti powder can be used, which in turn may provide an economic advantage; and, (3) improved part tolerance. However, it should be understood that these advantages are exemplary and do not in any way limit the scope of the present invention.
Embodiments of the present invention further provide an optimal DMLS manufacturing route for orthopedic devices, with a potential six-fold reduction in manufacturing time. In another embodiment, a method of manufacturing en elongated orthopedic device via direct laser sintering is provided, including the following steps:
(1) Producing a virtual 3D dimensional external elongated device model;
(2) Manufacturing an elongated device in an appropriate build direction via direct metal sintering according tot he 3D model utilizing a laser power of at least 300 watts (W) and TiAl6V4 powder of at least Grade 5 quality, and wherein the powder is only sintered around the outside and inside circumference of the model to a set diameter, leaving the central section between the inside and outside circumference consisting essentially of un-sintered powder;
(3) Scanning at greater than 4 times the normal speed for laser sintering (i.e., 3000 millimeters/second);
(4) Subjecting the elongated ALM device to Hot Isostatically Pressing (HIP) utilizing a temperature of at least 1000° Celsius with a cooling rate of between 0.24° C. min−1 and 72° C. min−1, thereby ensuring the central powder section is sintered; and
(5) Machining and polishing the HIP processed elongated device to the required geometrical and surface tolerances (e.g., 32 Ra μm (Realizer)).
The following two scanning strategies (“Hyper” laser scan and “Boundary Scan—in situ shelling”) assume that the bulk of the cost of goods of manufacturing an ALM nail is associated with the build time in the DMLS machine.
(A) “Hyper” Laser Scan: The economic advantages of operating a laser sintering machine at a “hyper-scanning speed” is apparent from the data outlined in
The production costs for making 100 nails using standard scanning conditions (scanning speed <1000 mm/s) for an SLM DMLS machine is shown in
(B) Boundary Scan: A second approach for reducing the cost of building the parts in the DMLS chamber is to use a scanning strategy which restricts the sintering to the boundary layers (i.e., the outside and inside surface of a cannulated part), aptly termed the “Baked Bean Can or in situ shelling” model. This scanning strategy omits the hatch or core scan of the part. A three dimensional model of the proximal end of a Trigen Meta tibial nail highlighting the concept of boundary layer scanning is illustrated in
Additionally, in certain embodiments of the present invention, an intramedullary nail or other types of implants are manufactured via the following steps and processes.
(I) Boundary Scan:
(II) Hyper-Laser Scan:
Referring to
Hyper-scanned parts supplied by SLM solutions were subjected to heat treatment only, and the number of cycles to failure compared to standard scanned parts produced after the same step in the process,
In another embodiment of the present invention, an anti-microbial nail may be provided. The cost saving realized from the scanning strategies discussed above may enable other cost effective processes to be included within the process map.
In a further embodiment of the present invention, a silver hip implant may be provided. Specifically, as illustrated in
In still another embodiment of the present invention, a silver-coated bead blast treatment may be provided. As illustrated in
The present invention provides significant savings in terms of cost of goods over prior implants and methods of manufacture. However, it should be understood that these advantages are exemplary and do not in any way limit the scope of the present invention.
Another embodiment of the present invention provides an orthopedic implant device, such as, for example, an intramedullary nail that has the design freedom of additive manufacturing, and which includes a longitudinal internal channel that is capable of housing a removable sensor probe that is configured to register distal and proximal locking holes. The orthopedic implant device may also have an internal geometry that facilitates variable stiffness in the anterior-posterior (A/P) plane and medial lateral (M/L) plane and/or an internal geometry that offers a lower stiffness implant for larger patients. A further embodiment of the present invention provides a minimally invasive method for auto-dynamization so as to provide biomechanical loading to the healing fracture.
(A) In Situ Distal and Proximal Sensor Probe for Intra-Operative Screw Hole Targeting: embodiments of the present invention include a longitudinal internal channel created in the wall section of an orthopedic device, such as an intramedullary nail, using additive manufacturing for housing a removable sensor probe for registration of the distal and proximal screw holes. For example,
The shape of the internal sensor probe channel 302 may be created using additive manufacturing based upon the constraints imposed by the geometry of the intramedullary nail 300. In the illustrated embodiment, the internal sensor probe channel 302 is located within the wall section 306 of the intramedullary nail 300 to ensure that the probe that may be received in the channel 302 does not become incarcerated in the intramedullary canal during removal. The longitudinal channel is approximately 1.5 mm in diameter extending the length of the nail and terminating just above superior distal screw hole. Locating the internal sensor probe channel 302 within the wall section 306 will avoid the need for a welded lid, which otherwise can add complexity and cost to the manufacturing process.
The intramedullary nail 300 depicted in
Additionally, the use of additive manufacturing may permit the intramedullary nail 300 to be manufactured without the use of an exit point or opening that may be associated with the removal of non-sintered powder from the internal sensor probe channel 302. More specifically, micro CT images acquired from testing intramedullary nails 300 after three-dimensional (3D) printing indicated that the internal sensor probe channel 302 did not become contaminated with residual, non-sintered powder,
(B) Self-Dynamizing Nail: One of the fundamental concepts in orthopedics is the understanding that appropriate mechanical loading accelerates fracture healing. This is based upon the process of adaptation, according to which bone architecture is constantly optimized in response to the mechanical environment, and which occurs in response to dynamic rather than static loading. More specifically, it is related to the peak strain magnitude and the loading frequency. Although conventional intramedullary nails permit weight bearing forces to be exerted thereon, they often isolate the fracture from compression forces due to the presence of locking screws, whose primary purpose is to prevent rotation. Moreover, intramedullary nails can actually cause cases of fracture of non-union as a result of the fixed distance between the fractured ends and constant load share throughout the healing period imposed on the fracture by virtue of the rigid structure of the intramedullary nails.
Conventional axial dynamization of statically locked intramedullary nails involves the removal of one or more interlocking screws two to three months after initial surgery in an outpatient setting. This approach requires an invasive procedure, and typically has a resolution of around 1 to 5 millimeters (mm), which is often dictated by the width of the slot in the intramedullary nail, and may only be available in one section of the intramedullary nail. A self-dynamizing intramedullary nail would overcome some of these shortfalls, and provide a step-wise improvement in accelerating bone healing through continuous adjustment of the loading share applied to the fracture site. Further, a self-dynamizing intramedullary nail may help prevent the occurrence of delayed healing or non-union of the fracture by permitting appropriate axial movement of the fractured ends of the bone towards each other.
According to certain embodiments, developing a self-dynamizing intramedullary nail may include the following:
(1) Telescopic Intramedullary Nail Components:
In the embodiment shown in
Additionally, as indicated by
According to certain embodiments, a distal end 508a and/or proximal end 508b of the telescopic section 504, 504′ may include one or more guides or feet 510 that may assist in retaining the first section 502a or the second section 502b in alignment along a central longitudinal axis 512 of the dynamizing nail 500. Alternatively, according to other embodiments, the guides or feet 510 extend from an inner wall 514 of the first or second section 502a, 502b in which the telescopic section 504 is slidingly received. According to other embodiments, an outer wall 516 of the telescopic section 504, 504′ may be sized relative to the mating inner region 506a, 506b into which the telescopic section 504 is slidingly received so as to prevent misalignment of the first and second sections 502a, 502b along the central longitudinal axis 512.
Referencing
(2) Actuator-Controlled Dynamization: The dynamizing nail 500 can be equipped with at least one mechanical actuator 526 that may bias and/or influence the orientation of the dynamizing nail 500. For example, according to certain embodiments, the actuator 526 may be a spring that exerts a force against opposing regions of the first and second sections 506a, 506b to extend or compress the length of the dynamizing nail 500. Referencing
Additionally, the actuator 526 may be a spring that can be linear or non-linear in nature, as indicated in
K=Ko+Kn (Eq. 1)
where K is the spring rate, Ko is the constant rate (linear part), and Kn is the function of displacement (non-linear part). Additionally, according to certain embodiments, the actuator 526 may further include a dash pot, which, for example, may be used along with the spring to provide more uniform and steady displacement to stabilize the bone ends displacement during weight bearing.
The actuator 526, or a combination of actuators 526, including a spring in combination with other types of actuators, may facilitate or otherwise allow axial movement that is comparable to displacement that may be cause by conventional dynamization of the distal screw. For example, according to certain embodiments, the actuator(s) 526 may facilitate axial displacement of around 1 to 5 millimeters (mm). Additionally, such on-board actuator(s) 526 may also provide controlled, cyclic compression forces, control the size of a gap between the ends of the fractured bone, and provide adjustable intramedullary nail stiffness, thereby at least assisting in making the nail 500 more compliant with the surrounding bone as healing progresses.
Alternatively, the actuator 626 could be encapsulated in its extended state, allowing the two bone fragments 632a, 632b to be pulled together as the polymer encapsulate degrades away. The actuator 626 and/or the polymer encapsulate can also be filled with active agents or molecules to help facilitate fracture healing and/or reduce bacterial colonization of the implant 600 using growth factors. Such active agents may include, but are not limited to, heavy metal ions, such as, for example, gold and silver.
According to another embodiment, the polymer encapsulated actuator 626 is activated periodically by an external application of physical energy, such as, for example, heat, ultrasound, or electricity. Such activation may facilitate an altering of physical properties of the polymer encapsulate, such as, for example, like Young's Modulus of flexural modulus, among other properties. Such alteration of physical properties of the polymer encapsulate may change the polymer encapsulate from being in a condition in which the polymer encapsulate at least assists in impeding or otherwise resisting relative axial displacement of first and/or second portions 602a, 602b of the nail 600 that may otherwise result in compression or expansion of the length of the dynamizing nail 600. Thus, movement of the actuator 626 can be provided on-demand.
The telescopic section 504, 604 of the dynamizing intramedullary nail 500, 600 can be developed so that it offers either unidirectional or bi-directional translation, as illustrated, for example, in
(3) Actuation-Controlled Dynamization: According to certain embodiments, the actuator 526, 626, as discussed above with respect to at least
(4) Actuation—Spring and Shape Memory Collar Assembly: According to certain embodiments, a dynamizing intramedullary nail 800 may further include a activatable shape memory sleeve or collar 802, as shown in
The sleeve or collar 802 may be a shape memory collar, such as, for example, a shape memory polymer or metal allow that is trained to contract when activated, such as, for example, upon being heated above body temperature, to accommodate fixed translation of the actuator 804. Alternatively, the sleeve or collar 802 may be constructed from a piezoelectric material that, upon being activated from an inactive state to an active state, deforms in response to an externally applied voltage in a manner that increases or decreases a size of the sleeve or collar 802. Thus, the sleeve or collar 802 may provide a locking mechanism for the self dynamizing nail 800 as the sleeve or collar 802 is adjusted from being in an active or inactive state. Therefore, the sleeve or collar 802 may have a first size, such as a length (as indicated by “L” in
For example, according to certain embodiments, as shown in
Additionally, displacement of the actuator 804, and thus adjustments in the relative positions of the first and second sections 810a, 810b, may be controlled by the use of an adjustable controller 816, such as, for example, a pin or screw. As shown in the embodiment illustrated in
(5) Activation of Counterbalancing Springs Using a Resorbable Encapsulate.
Referencing
(C) Variable Stiffness Nail in the Anterior-Posterior (A/P) and Medial-Lateral (M/L) Planes: the ability to independently control bending or torsional stiffness in either the A/P or M/L plane may permit an intramedullary nail to be structured to attain optimal fracture healing or reduced the incidence of periprosthetic fracture. A localized reduction in bending stiffness at the distal end of the nail could prevent the risk of per-prosthetic fracture if the patient received a joint replacement. The cross-sections depicted by items B-H in
(D) Internal Geometry Offering Lower Stiffness Implant for Larger Patients: The ability to fill the intramedullary canal for the larger sized patient with a lower stiffness implant may help accelerate healing of the fracture, especially if the bone is pathological. To avoid any complications associated with externally-designed geometrical features such as bony ingrowth, a number of designs that exploit the design freedom of additive manufacturing are outlined below.
Referencing
According to an exemplary embodiment, the nail 1200 shown in
Referencing
Such a variable modulus nail 1300 may enable the implant to present a higher stiffness during fracture healing, which may be useful for at least severely comminuted fractures where greater nail stiffness and stabilization are required during initial healing. However, the configuration of intramedullary nail 1300 may enable, once the fractured bone has healed, a reduction in the elastic modulus of the nail 1300 in a minimally invasive fashion and without the need for removing the nail 1300. For example, if another, stiff intramedullary nail were to be removed after bone healing, loading on the bone could increase significantly, which could lead to re-fracture in situations where there was significant patient activity. Such situations may include osteoporotic fractures where high-rigidity nails, such as, for example, nails having approximately 300% of the bending rigidity of an osteoporotic femur, can reduce bone strength. However, after fracture healing, a low-rigidity nail, such as, for example, the intramedullary nail 1300 of
While the implants and methods set forth above have been described in association with an orthopedic intramedullary nail, it should be understood that the implants and methods may also be used in other technological areas and/or in association with other types of orthopedic implants. Various changes and modifications to the described embodiments described herein will be apparent to those skilled in the art, and such changes and modifications can be made without departing from the spirit and scope of the invention and without diminishing its intended advantages. Additionally, while the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered illustrative and not restrictive in character, it being understood that only selected embodiments have been shown and described and that all changes, equivalents, and modifications that come within the scope of the inventions described herein or defined by the following claims are desired to be protected.
Claims
1.-21. (canceled)
22. An intramedullary nail, comprising:
- a wall comprising one or more laser sintered layers of a medical grade powder, the wall having an outer portion and an inner portion, the inner portion generally defining an inner region of the intramedullary nail; and
- an internal sensor probe channel that extends into at least a portion of the wall, the internal sensor probe channel not extending through the outer portion of the wall.
23. The intramedullary nail of claim 22, wherein the internal sensor probe channel is sized to receive insertion of a sensor probe that is configured for intra-operative screw hole targeting.
24. The intramedullary nail of claim 23, wherein at least a portion of the internal sensor probe channel is generally parallel to, and does not extend through, the inner portion of the wall.
25. The intramedullary nail of claim 24, wherein the internal sensor probe channel is not in fluid communication with an aperture that is configured to remove un-sintered medical grade powder from the intramedullary nail.
26. The intramedullary nail of claim 22, wherein at least a portion of the inner portion includes a tapered inner wall.
27. The intramedullary nail of claim 26, wherein the tapered inner wall extends between a distal hole screw and a proximal hole screw of the intramedullary nail.
28. An intramedullary nail, comprising:
- a first section coupled to a second section by a telescopic portion, the telescopic portion having an outer diameter sized to be slidingly received in an inner region of at least one of the first and second sections to accommodate adjustments in a relative axial position of the first and second sections, the first and second sections structured for implantation into a bone; and
- an actuator adapted to provide a biasing force to bias the relative axial positions of the first and second sections.
29. The intramedullary nail of claim 28, wherein the telescopic portion is and end portion of either the first section or the second section.
30. The intramedullary nail of claim 28, wherein the telescopic portion is a sleeve that is positioned in the inner regions of both the first and second sections, the sleeve being adapted to accommodate axial displacement of both the first and second sections relative to the sleeve.
31. The intramedullary nail of claim 28, further comprising one or more protrusions that limit at least the relative axial displacement of the first and second sections.
32. The intramedullary nail of claim 28, wherein one of the telescopic portion and the inner region of either or both of the first and second sections include one or more flutes that are each received in a mating recess in the other of the telescopic portion and the inner region of either or both of the first and second sections, the one or more flutes and the mating recess structured to prevent rotational displacement of the first section relative to the second section.
33. The intramedullary nail of claim 28, wherein the actuator is a non-linear or variable rate spring.
34. The intramedullary nail of claim 28, wherein the actuator is embedded in a degradable polymer, the degradable polymer adapted to release, as the degradable polymer degrades, a bioactive agent that is structured to stimulate healing of a fracture of the bone and/or prevent infection in the bone.
35. The intramedullary nail of claim 34, wherein the degradable polymer is structured to provide a force to maintain the actuator in one of an expanded or compressed state until the degradable polymer degrades to a degree in which the biasing force of the actuator can overcome the force of the degradable polymer.
36. The intramedullary nail of claim 34, wherein the degradable polymer is adapted to at least partially degrade upon application of an external physical energy source to the degradable polymer.
37. The intramedullary nail of claim 28, wherein the actuator is an elastomeric bushing.
38. The intramedullary nail of claim 28, further comprising a collar positioned about at least a portion of the telescopic section, the collar being selectively adjustable between a first size and a second, smaller size to alter a compressive state of the actuator.
39. The intramedullary nail of claim 38, wherein the collar is a shape memory material that is adjusted between the first and second sizes by the application and removal of an activation energy source.
40. The intramedullary nail of claim 39, wherein the activation energy source is at least one of a threshold body temperature and a received electronic voltage.
41. The intramedullary nail of claim 28, wherein the actuator comprises a first spring and a second spring that are each positioned in a slot in the intramedullary nail, the first spring encapsulated in a first resorbably housing, the second spring encapsulated in a second resorbable housing, the first resorbable housing and the second resorbably housing exerting opposing forces on an intermediary element that is positioned between the first resorbable housing and the second resorbable housing.
42. The intramedullary nail of claim 28, wherein the first and second portions each include a wall having an outer portion and an inner portion, and wherein the wall of at least one of the first and second portions includes an internal sensor probe channel that extends into at least a portion of the wall and does not extend through the outer portion of the wall.
43. The intramedullary nail of claim 28, wherein the first and second portions each comprise one or more laser sintered layers of a medical grade powder.
44. The intramedullary nail of claim 43, wherein the medial grade powder is at least a grade 5 powder.
45. The intramedullary nail of claim 44, wherein the medical grade powder is a TiAl6V4 powder.
46. The intramedullary nail of claim 45, wherein the one or more laser sintered layers have been subjected to a heat treatment process.
47. The intramedullary nail, comprising:
- a wall having an outer portion and an inner portion, the inner portion generally defining an inner region of the intramedullary nail;
- a first screw hole and a second screw hole, the first and second screw holes extending through at least the outer portion of the wall; and
- one or more protrusions in the wall between the first and second screw holes, the one or more protrusions not extending through the outer portion of the wall, the one or more protrusions structured to selectively alter an elastic modulus of the intramedullary nail.
48. The intramedullary nail of claim 47, wherein the one or more protrusions comprise one or more flutes that extend into the wall from the inner portion.
49. The intramedullary nail of claim 47, wherein the one or more protrusions comprise a plurality of channels that extend within an inner ware of the wall, the plurality of channels not extending through the inner and outer portions of the wall.
50. The intramedullary nail of claim 49, wherein at least some of the plurality of channels have a cylindrical configuration.
51. The intramedullary nail of claim 50, wherein the plurality of channels are generally parallel to a longitudinal axis of the intramedullary nail.
52. The intramedullary nail of claim 47, wherein the wall comprises one or more laser sintered layers of a medical grade powder.
53. The intramedullary nail of claim 52, wherein the medial grade powder is at least a grade 5 powder.
54. The intramedullary nail of claim 53, wherein the medical grade powder is a TiAl6V4 powder.
55. The intramedullary nail of claim 54, wherein the one or more laser sintered layers have been subjected to a heat treatment process.
56. The intramedullary nail, comprising:
- a first section having a wall, the wall generally defining an inner region of the first section; and
- a second section coupled to an inner section, the inner section sized for lateral displacement in at least a portion of the inner region of the first section, the inner section being selectively detachable from the first section by a locking screw to alter an elastic modulus of the intramedullary nail.
57. The intramedullary nail of claim 56, wherein the first section, the second section, and the inner section each comprises one or more laser sintered layers of a medical grade powder.
58.-60. (canceled)
Type: Application
Filed: Apr 10, 2015
Publication Date: Feb 2, 2017
Inventors: Darren James Wilson (York), David Bradford Harness (Eads, TN), Henry Faber (Memphis, TN)
Application Number: 15/302,899