Customizable Arch Support System

A customizable arch support system for use in fashionable high heeled shoes, designed to provide superior configurability and comfort for the wearer. More particularly, the system provides configurability so that it will provide superior support and comfort for the wearer, while maintaining minimal cross section profile which causes less limitations for the shoe designer.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is related to and claims priority from prior provisional application Ser. No. 62/211,695, filed Aug. 28, 2015, entitled “ADJUSTABLE ARCH SUPPORT SYSTEM”, the contents of all of which are incorporated herein by this reference and are not admitted to be prior art with respect to the present invention by the mention in this cross-reference section.

FIELD OF THE INVENTION

The present invention relates generally to an insole arch support system for use in female designer shoes, but can also be used in men's and children's shoes. More specifically, the present invention relates to a customizable arch support system allowing the wearer to personally tailor the arch support to their specific foot arch height by selecting a molded arch support insert that best conforms to the wearer's unique foot arch.

BACKGROUND OF THE INVENTION

Orthotic devices are typically contoured, plate-like structures which fit in a shoe so as to correct or control the position and function of the foot. These orthotic devices are of a fixed design once manufactured, and are no longer configurable once they are made. Since the most critical functions of the foot generally involve the heel and mid-foot portions, a degree of rigidity is required in these areas in order for the device to carry out its biomechanical purposes. Hence, many devices of this type have a rigid, inflexible plate or cap which extends from the heel of the foot through the mid-foot, and sometimes generally extending to the metatarsal heads, known as the ball of the foot. Thus, they are typically only useful in flat or mostly flat-soled shoes.

The construction of these devices often presents a problem from the standpoint that this makes the device too thick for use in many types of shoes. Particularly in the area of women's high-heeled shoes where the interior volume is extremely limited and the rigidity does not allow these devices to fit over the steeply contoured shape of women's high-heeled shoes. A custom, rigid orthotic device may become problematic when fitting into shoes having an elongated shaft or throat, such as boots. The additional thickness of the insole when using a custom orthotic device may limit the footwear designer's ability to maintain a sleek, thin, fashionable look.

Further, any additional thickness applied to the interior volume sole of the shoe may result in discomfort or injury. A custom device may be too wide or too narrow to fit the wearer's foot comfortably when inserted in the shoe. In particular, tightness of the vamp of the shoe may lead to nerve damage, injuring the wearer. To go without support of the arch of the foot can result in severe cramping of the abductor hallucis, which will draw in the adjacent flexor muscles, resulting in pain and inability to perambulate.

If the arch of the foot is not properly supported, a wearer may exhibit none of the traditional symptoms of over-pronation (foot posture) until presenting with pain, which may be in the knees or lower back. The source of discomfort may be hidden within the foot, leading to misdiagnosis and potential further injury. Of particular concern is a wearer with an existing injury that seems to resolve until using a high-heeled shoe, exacerbating the injury and prolonging length of treatment for relief.

A fixed design, un-configurable custom orthotic would be prescribed; however, the needs of a recovering injury can change minutely or drastically, rendering the cost of a custom orthotic prohibitive to resolution if frequent changes are needed by the wearer. Further, conditions such as pregnancy may change the size and shape of a woman's foot daily, making a fixed design, un-configurable custom orthotic impractical, and potentially harmful to the wearer.

Fashionable shoes may also be designed to have a narrow toe. If the load of the body weight is not distributed appropriately, with the aid of an appropriately sized arch, the toes may be compressed into the shoes by the weight of the body, which may lead to permanent deformation of the toes as they conform to their environment.

Accordingly, there exists the need for an orthotic insole having minimal thickness and still provides a solution for the variability of the arch in the foot among different wearers, or the changing need of a single wearer, while remaining fashionable in the field of heeled shoes.

BRIEF SUMMARY OF THE INVENTION

The present invention overcomes the problems cited above by providing an insole, which may be integral to the shoe or may be separate, and is configured to removably attach an arch support insert into a fastening system in the mid-foot arch portion of the insole. A plurality of arch support inserts are available such that the wearer may choose to use the insole without an arch support insert or fasten the appropriate sized and shaped arch support insert to the insole. Current additive manufacturing and 3D scanning technology makes it possible to provide affordable, completely customizable arch support inserts. An arch support insert cover is provided to protect the arch support insert from the wearer's bare feet. Because the insole and arch support contain a fastening means, the arch support insert remains correctly positioned on the mid-foot arch of the insole during use in any type of footwear, including women's high-heeled shoes. A properly fitted insole with the insert attached will disperse the weight equally upon the bones and ligaments of the foot, giving balance to the wearer along with improved spinal health; hence, an overall positive impact on the body as a whole.

The customizable arch support system comprises a shoe insole that is configured to allow the addition of a removably attached arch support insert. A plurality of differently sized and shaped arch supports are provided to fit the specific arch in the wearer's foot. A fastening means is used to attach said arch support inserts to said insole of the shoe. Covers are provided that will be positioned above the insole and arch support insert in the shoe. The arch support insert is removably attached to the insole via a fastening means, preferably a snap-type fastening system. However, other fastening means may be used, such as hook and loop fasteners, double-sided adhesive tape, or other fastening means. The arch support insert is available in a plurality of arch configurations ranging from a low arch to a high arch, or individually customized, so that it may accommodate the specific wearer's arch.

The insole is thin when compared to other arch support systems while remaining configurable and still applicable to the steeply down-curved platform found in women's fashionable high-heeled shoes. A shank conforms to the curve of the shoe under the heel and arch of the foot, and provides structural integrity to aid in supporting and distributing the wearer's body weight from ball of the foot, through the arch, to the heel of the foot. By selecting an appropriate insert, this arch support system will result in a shoe insole that inherently provides greater body stability and balance to the wearer by distributing body weight over the entire foot, thereby lessening the pressure on the metatarsal heads, the ball of the foot and the heel cup within the shoe.

The following preferred embodiment of the present invention describes the position and configuration and construction of the elements of the invention, which are an insole, a snap-type fastening system, an arch support insert and a cover. The insole is comprised of several layers of material and at least one female snap-type fastener to construct an insole that conforms to the curvature of a steeply down-curved arch typical in women's high-heeled shoes. A shank is located on a first layer of fiberboard and synthetic adhesive along the centerline of the mid-foot area. A preferably flexible cellulose board layer is then placed on top of the first insole layer with a synthetic adhesive layer, with at least one female snap-type fasteners set into the material. The layers are crimped and shaped to conform to the inside of the shoe. Then, a layer of the synthetic adhesive material is placed on the flexible cellulose board layer and a microcellular urethane cushioning layer(s) is placed on the synthetic adhesive layer that has been configured and adapted by cut-outs to reveal the female snap-type fasteners. The insole layers may be made of a variety of shock absorbing materials. U-shaped gel or polymer material pads are adhered in the heel portion of the insole and formed to cup the heel of the foot. The heel cup may extend upward into the shoe to reduce and customize the heel volume for narrower heel widths. Finally, after the shoe is constructed, a cover or sock liner of leather or synthetic material, with circular cut-outs to leave the at least one snap-type fastener exposed, is adhered to the top of the insole layers. This creates a cushioning insole that will accept attachment of the arch support insert while not taking up too much space within the tight confines of typical women's fashion high-heeled shoes.

The fastening means that attach the arch support insert to the insole is preferably comprised of a typical snap-type fastener system, further comprising an at least one male snap-type fastener fitting into an at least one female snap-type fastener. Alternately preferably, other types of fastening systems may be used such as hook and loop fastening system, among others.

The arch support insert is comprised of a compressible, cushioning material molded to conform to the arch of the mid-foot and at least one male snap-type fastener permanently attached to the bottom of the arch support insert. The compressible, cushioning material is preferably covered with a leather or lightweight synthetic fabric, possibly with a layer of gel or urethane foam between the cushioning material and the cover. Alternately preferably, a leather, or mesh material may be used to protect the compressible, cushioning material from body oils and other contaminants.

The arch support insert is preferably formed from ethylene-vinyl acetate (EVA). Alternately preferably, the arch support insert may be formed from polyurethane (PU) foams, silicone, nylon or Santoprene-brand thermoplastic vulcanizates (a thermoplastic elastomer), or similar materials. The arch support insert is molded to generally conform to a human being's foot arch in various arch heights and lengths. At least one male snap-type fastener corresponds to at least one female snap-type fastener located in the insole to removably attach the arch support insert to the insole of the shoe.

A cover is comprised of a durable material is structured and arranged to cover or envelope the arch support insert to protect the arch support insert from the wearer's foot. The material of the cover may be comprised of leather, canvas or other durable material on top of the arch support insert, and a flexible fabric, leather, or mesh-type material to wrap around the arch support insert and hold the cover in place. Alternatively, the cover may be multiple pieces of a durable material with the at least one male snap-type fastener located to correspond to the matching at least one female snap-type fastener. The arch support insert may be covered with a top layer of durable material with no cover on the underside or sandwiched between two layers of durable material with the cover preferably stitched around the perimeter.

The arch support insert is available in many different sizes to match a wearer's mid-foot arch size. Among the many different sizes available, the insert will function to support a low arch, medium arch, high-arch, or be customizable to the wearer's specific foot. A wearer will simply select the arch support insert size that best fits their individual foot, place the cover around the arch support insert, and fasten the covered arch support insert to the insole of the shoe. Alternatively, the wearer will select the appropriate arch support insert with the cover already attached and fasten it to the insole of the shoe.

In an alternate embodiment, the insole is further comprised of additional gel inserts, or similar-type cushioning materials, that are located at the ball of the foot and in the heel cup areas for further cushioning within the insole of the shoe. Due to the nature of women's high-heeled shoes, more pressure is placed on the ball of the foot because of the steeply-arched downward curvature of the shoe from heel to toe. This causes the ball of the foot to bear greater pressure because of the intimate contact of the ball of the foot and the heel within the shoe. By providing a gel insert in the area of the ball of the foot and the heel cup combined with the arch support insert, less pressure will be applied to these areas while wearing a high-heeled shoe, and such pressure that is applied will be dispersed by the gel inserts.

A method of providing customizable arch support in fashionable women's high-heeled shoes comprising the steps of: selecting an arch support insert based on wearer's particular arch in the mid-foot region, and attaching said arch support insert to an insole using a snap-type fastening system.

BRIEF DESCRIPTION OF THE DRAWINGS

The particular objects and features of the invention as well as the advantages will become apparent from the following description taken in connection with the accompanying drawings in which:

FIG. 1 shows a top view of the shoe insole of the customizable arch support system.

FIG. 2 shows a top view of the cover or sock lining exposing the female snap-type fasteners attached to the insole of the customizable arch support system.

FIG. 3A is a top view of the arch support insert of the customizable arch support system.

FIG. 3B is a bottom view of the arch support insert of the customizable arch support system.

FIG. 3C is a side view of the arch support insert of the customizable arch support system.

FIG. 3D is an alternate side view of the arch support insert of the customizable arch support system.

FIG. 4 is a top view of the customizable arch support insert system with the arch support insert fastened to the shoe insole.

FIG. 5 is a cross section of the customizable arch support system.

DETAILED DESCRIPTION OF BEST MODE AND PREFERED EMBODIMENTS OF THE INVENTION

The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following description of the invention taken in conjunction with the accompanying drawings.

Now referring to the drawings, FIG. 1 shows a top view of one preferred embodiment of the shoe insole 100 of the customizable arch support system without an arch support insert attached, where the shoe insole 100 comprises at least one shank 108, where the shank 108 is encompassed within the shoe insole 100. The shank 108 is preferably configured and arranged so that it is imbedded and sandwiched between the layers of the shoe insole 100 of the customizable arch support system. Preferably the shank 108 is constructed from a metallic material, such as steel. Alternately preferably, the shank 108 may be constructed from aluminum. Alternately preferably, the shank 108 may be constructed form carbon fiber. Alternately preferably, the shank 108 may be constructed from reinforced fiberglass. Alternately preferably, the shank 108 may be constructed from injected molded plastic. Alternate material choices for the shank will be obvious to those skilled in the art.

The shoe insole 100 preferably has a cushioning material 102 affixed at the cushioning material's edges with beveled foam and adhesive 104 to the upper surface and positioned and configured so that it will be located under the ball of the wearer's foot when the shoe is on the wearer. Alternately preferably, the cushioning material 102 may be integrated into the customizable arch support system by sandwiching the cushioning material 102 between the layers that make up the shoe insole 100 of the customizable arch support system. Alternate cushioning materials will be obvious to those skilled in the art.

As further shown in FIG. 1, the shoe insole 100 of the customizable arch support system preferably further comprises an attachment means, preferably female half of snap fasteners 106 configured and arranged such that they are located under the arch area of the wearer's foot. Alternately preferably, the attachment means may be the male half of snap fasteners. Alternately preferably, the attachment means may be the loop half of a hook and loop fastener system, such as Velcro. Alternately preferably, the attachment means may be the hook half of a hook and loop fastener system, such as Velcro. Alternate attachment means will be obvious to those skilled in the art.

As further shown in FIG. 1, the shoe insole 100 of the customizable arch support system preferably further comprises at least one cupped portion 110 located under a wearer's heel. In this preferred embodiment said cupped portion 110 is comprised of a cushioning plastic or polymer material. In this preferred embodiment, said customizable arch support system further comprises at least one cushioning means 102 under a ball of a wearer's foot. In this preferred embodiment, said cushioning means 102 is comprised of a gel material. The cupped portion 110 preferably comprises a cupped heel segment having an upper area and a contoured section 112, which transitions between the upper area and the upper surface located under the wearer's heel. Preferably, the cupped portion 110 is constructed using gel or urethane foam. Alternately preferably, the cupped portion 110 is constructed using injection molded plastic material. Alternate material choices for the cupped portion 110 will be obvious to those skilled in the art.

As shown in FIG. 2, the shoe insole 200 of the customizable arch support system comprises a sock lining cover cut to expose the female half of the snap fasteners, but without an arch support insert attached. In this preferred embodiment, the lower surface of the female half of snap fasteners 206 are configured and arranged such that they are located under the arch area of the wearer's foot, and further extend from the upper surface to the lower surface of the shoe insole 200 of the customizable arch support system. Alternately preferably, the arch support insert can also be attached directly to the insole with the sock lining covering the arch support insert.

As further shown in FIG. 2, a shaped and contoured edge portion 214 is configured and arranged so that the shoe insole 200 of the customizable arch support system may have a tight fit, with low tolerances, within the wearer's shoe, so that the shoe insole 200 of the customizable arch support system does not easily slide or move within the wearer's shoe.

As shown in FIG. 3A through FIG. 3D, four different views of the arch support insert 352 which attaches to the shoe insole 100 of the customizable arch support system. The arch support insert 352 has an upper surface 354 preferably contoured to match the arch of the wearer's foot. The preferable curve of the upper surface 354 of the arch support insert 352 can be observed more clearly from either side, as in FIG. 3C and FIG. 3D. The lower surface 356 of the arch support insert 352 is preferably contoured to match the inner shape of the wearer's shoe and the upper surface of the shoe insole 100 of the customizable arch support system.

The male half of snap fasteners 358 are shown in FIG. 3B configured and arranged on the lower surface 356 of the arch support insert 352 so that they can be removably attached to the female half of snap fasteners 106 on the upper surface of the shoe insole 100 of the customizable arch support system.

As shown in FIG. 4, the customizable arch support system comprises at least one shoe insole 400, an arch support insert 452, where the arch support insert 452 is removably attached to the shoe insole 400 using at least one fastening means. In this preferred embodiment, the fastening means is preferably comprised of at least one connected snap 460. The connected snaps 460 shown in FIG. 4 are comprised of the fastened pair of snaps, being the male half of snap fasteners 358 as shown in FIG. 3B and the female half of snap fasteners 106 shown in FIG. 1. FIG. 4 further illustrates the shaped and contoured edge portion 414 which is configured and arranged on the lower surface of the shoe insole 400. Alternately preferably, the fastening means is comprised of a hook and loop fastening system.

As shown in FIG. 5, the customizable arch support system further comprises at least one cover 570, where the cover 570 is placed over the arch support insert 552. Alternately preferably, the cover 570 envelopes the arch support insert 552. In this preferred embodiment, the cover 570 is preferably comprised of a sheet of leather. Alternately preferably, the cover 570 may be made of a sheet of light weight synthetic material. Alternate material choices for the cover 570 will be obvious to those skilled in the art.

As further shown in FIG. 5, the lower layer is comprised of the shoe insole 500, further comprising a shank 508, a cupped heel portion 510, and a cushioning portion 502. The arch support insert 552 is removably attached to the shoe insole 500 by a fastening means. The fastening means used to removably attach the shoe insole 500 to the arch support insert 552 is preferably comprised of a snap mechanism 560. The arch support insert 552 is preferably comprised of two bonded layers, a lower layer 576 made from a compressible material with high density and low compressibility, and an upper layer 574 made from a compressible material with low density and high compressibility. Alternately preferably, the arch support insert 552 can also made of one layer of compressible material. Alternately preferably, the arch support insert 552 can be fabricated using additive manufacturing and 3D scanning technology to customize an arch support insert 552 to exactly match a wearer's mid-foot arch.

In other preferred embodiments, the compressibility of the upper and lower layers of the arch support insert 552 may be reversed, wherein the upper layer 574 is less compressible than the lower layer 576. In another preferred embodiment, the arch support insert 552 may have an upper layer 574 made from urethane foam and a lower layer 576 made from a polymer material. In another preferred embodiment, the shoe insole 500 may be made from fiberboard. In another preferred embodiment, the shoe insole 500 may be constructed using an additive manufacturing process, commonly referred to as 3D printing, using a combination of shock-absorbing materials. In another preferred embodiment, the snap mechanism 560 may be affixed to the arch support insert 552 using synthetic tape. Alternate material choices for components of the customizable arch support insole system will be obvious to those skilled in the art.

Further, the present invention relates to a method of customizing the arch support in a heeled shoe preferably comprising the steps of: selecting an arch support insert closely matching a wearer's mid-foot arch 352, fastening the arch support insert into the wearer's shoe, and placing a cover 570 over the arch support insert. Alternately preferably, the arch support insert is positioned inside the cover prior to fastening the arch support insert into the wearer's shoe.

Claims

1. A customizable arch support system integrated into a shoe comprising:

at least one shoe insole,
at least one arch support insert,
wherein said arch support insert is removably attached to said shoe insole using at least one fastening means.

2. A customizable arch support system integrated into a shoe as in claim 1, wherein said fastening means is comprised of at least one snap.

3. A customizable arch support system integrated into a shoe as in claim 1, wherein said fastening means is comprised of a hook and loop fastening system.

4. A customizable arch support system integrated into a shoe as in claim 1, further comprising: at least one shank, wherein said shank is encompassed within said shoe insole.

5. A customizable arch support system integrated into a show as in claim 4, wherein said shank is comprised of a rectangular metal bar.

6. A customizable arch support system integrated into a shoe as in claim 1, further comprising:

at least one cover, wherein said cover is placed over said arch support insert.

7. A customizable arch support system integrated into a shoe as in claim 6, wherein said cover is comprised of a sheet of leather.

8. A customizable arch support system integrated into a shoe as in claim 6, wherein said cover is comprised of a sheet of synthetic fabric.

9. A customizable arch support system integrated into a shoe as in claim 1, further comprising: at least one cupped portion located under a wearer's heel.

10. A customizable arch support system integrated into a shoe as in claim 9, wherein said cupped portion is comprised of a polymer material.

11. A customizable arch support system integrated into a shoe as in claim 9, wherein said cupped portion is comprised of a gel material.

12. A customizable arch support system integrated into a shoe as in claim 1, further comprising at least one cushioning means under a ball of a wearer's foot.

13. A customizable arch support system integrated into a shoe as in claim 12, wherein said cushioning means is comprised of a gel material.

14. A customizable arch support system integrated into a shoe as in claim 12, wherein said cushioning means is comprised of a urethane foam material.

15. A customizable arch support system integrated into a shoe as in claim 12, wherein said cushioning means is comprised of a a combination of a gel material and a urethane foam material

16. A method of customizing the arch support in a shoe comprising the steps of:

selecting an arch support insert closely matching a wearer's midfoot arch,
fastening said arch support insert into the wearer's shoe, and
placing a cover over the arch support insert.
Patent History
Publication number: 20170055629
Type: Application
Filed: Aug 29, 2016
Publication Date: Mar 2, 2017
Inventor: Evelyn Schickling (Phoenix, AZ)
Application Number: 15/250,517
Classifications
International Classification: A43B 7/14 (20060101); A43B 3/24 (20060101); A43B 17/14 (20060101); A43B 17/02 (20060101); A43B 17/00 (20060101);