Casting of HDMI Content
In response to receiving user-interface activity information from a portable electronic device that specifies user instruction to cast high-definition multimedia-interface (HDMI) content associated with a content source from a first A/V display device to a second A/V display device, an audio/video (A/V) hub accesses device-state information that specifies a current state of the second A/V display device. Then, the A/V hub performs the casting of the HDMI content from the first A/V display device to the second A/V display device using a dynamic number of operations based on the device-state information, so that the HDMI content is displayed on a display in the second A/V display device.
This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Application Ser. No. 62/211,825, “Displaying HDMI Content in a Tiled Window,” filed on Aug. 30, 2015, the contents of which are herein incorporated by reference.
BACKGROUNDField
The described embodiments relate to display techniques, including casting of high-definition multimedia-interface (HDMI) content to a display.
Related Art
The versatility and capabilities of consumer-electronics or entertainment devices is increasing their popularity. For example, the communication capabilities of these entertainment devices allow users to access content from a wide variety of sources, including high-definition content.
However, while the entertainment devices typically include high-resolution displays that allow users to view high-definition content, the interface circuits and the communication bandwidth in many entertainment devices can pose obstacles to simultaneous viewing of high-definition content.
In addition, the user interfaces associated with many entertainment devices can be difficult to use. For example, the process of identifying content from a particular source, selecting the content and having the content piped to a particular display often requires that users perform multiple operations. This convoluted process is time-consuming and cumbersome. Moreover, users often make mistakes when attempting to navigate through a complicated set of options in different menus, which frustrates users and degrades their user experience.
SUMMARYThe described embodiments include an audio/video (A/V) hub. This A/V hub includes: an interface circuit that, during operation, communicates with a portable electronic device, a first A/V display device, a second A/V display device and a content source; and a control circuit coupled to the interface circuit. During operation, the control circuit receives, via the interface circuit, user-interface activity information from the portable electronic device that specifies a user instruction to cast content (such as high-definition multimedia-interface or HDMI content) associated with the content source from the first A/V display device to the second A/V display device. Then, the control circuit accesses device-state information that specifies a current state of the second A/V display device. Moreover, the control circuit performs the casting of the content from the first A/V display device to the second A/V display device (and, in particular, from the content source to the second A/V display device) using a dynamic number of operations based on the device-state information, so that the content is displayed on a display in the second A/V display device.
The A/V hub may include a port that is coupled to the interface circuit and the first A/V display device and/or the second A/V display device. This port may be compatible with an HDMI standard. Moreover, during operation the control circuit may determine the device-state information using a state-detection circuit that is coupled to at least a pin in the port. Alternatively or additionally, the device-state information may be inferred based on device commands previously provided to the second A/V display device.
Furthermore, the user instruction may be based on activation of a single virtual command icon displayed in a user interface on a touch-sensitive display in the portable electronic device. Alternatively, the user instruction may be based on activation of a physical button. In some embodiments, during operation the control circuit: generates user-interface information that specifies the user interface that includes one or more virtual command icons, including the virtual command icon, which are associated with the first A/V display device and the second A/V display device; and provides the user-interface information to the portable electronic device for display on the touch-sensitive display in the portable electronic device.
Additionally, the casting may be performed without further user action.
Note that, when the device-state information indicates that the second A/V display device is powered on, a power-on operation may be excluded from the dynamic number of operations. Moreover, when the device-state information indicates that the second A/V display device is set to receive the content from the content source, an operation to set the second A/V display device to receive the content from the content source may be excluded from the dynamic number of operations.
Furthermore, the first A/V display device and the second A/V display device may be associated with different providers.
In some embodiments, the control circuit includes: a processor; and a memory, coupled to the processor, which stores a program module that, during operation, is executed by the processor. The program module may include instructions for at least some operations performed by the control circuit.
Note that the casting may include receiving the content from the content source, transcoding the content based on a format of a display in the second A/V display device, and providing the transcoded content to the second A/V display device.
Another embodiment provides a computer-program product for use with the A/V hub. This computer-program product includes instructions for at least some of the operations performed by the A/V hub.
Another embodiment provides a method for performing casting of content. This method includes at least some of the operations performed by the A/V hub.
Another embodiment provides the A/V display device.
Another embodiment provides the portable electronic device.
This Summary is provided merely for purposes of illustrating some exemplary embodiments, so as to provide a basic understanding of some aspects of the subject matter described herein. Accordingly, it will be appreciated that the above-described features are merely examples and should not be construed to narrow the scope or spirit of the subject matter described herein in any way. Other features, aspects, and advantages of the subject matter described herein will become apparent from the following Detailed Description, Figures, and Claims.
Note that like reference numerals refer to corresponding parts throughout the drawings. Moreover, multiple instances of the same part are designated by a common prefix separated from an instance number by a dash.
DETAILED DESCRIPTIONIn a first group of embodiments, in response to receiving user-interface activity information from a portable electronic device (such as a cellular telephone or a remote control) that specifies user selection of a content source, an audio/video (A/V) hub provides a request for high-definition multimedia-interface (HDMI) content to the content source based on the user selection. When the A/V hub receives the HDMI content from the content source, the A/V hub provide the HDMI content and display instructions to an A/V display device (such as a consumer-electronic device, e.g., a television) as frames with the HDMI content are received from the content source, so that the HDMI content is displayed in a tiled window on the display in the A/V display device while other HDMI content from another content source is displayed on the display.
In a second group of embodiments, an A/V hub determines display instructions specifying information to be displayed on a display in an A/V display device that includes icons associated with content sources. These content sources are located at arbitrary locations in a structure, including locations external to an environment that includes the A/V hub and the A/V display device. Then, the A/V hub provides the display instructions to the A/V display device for display on the display.
In a third group of embodiments, an A/V hub determines display instructions specifying information to be displayed on a display in an A/V display device that includes icons associated with content sources. Then, the A/V hub provides the display instructions to the A/V display device for display on the display. In response to receiving a user selection of a content source based on activation of a single command feature in a portable electronic device that is associated with the content source, the A/V hub provides a request for HDMI content to the content source. When the A/V hub receives the HDMI content from the content source, the A/V hub provide the HDMI content and second display instructions to an A/V display device as frames with the HDMI content are received from the content source, so that the HDMI content is displayed in a tiled window on the display in the A/V display device.
In a fourth group of embodiments, in response to receiving user-interface activity information from a portable electronic device that specifies user instruction to cast HDMI content associated with a content source from a first A/V display device to a second A/V display device, an A/V hub accesses device-state information that specifies a current state of the second A/V display device. Then, the A/V hub performs the casting of the HDMI content from the first A/V display device to the second A/V display device using a dynamic number of operations based on the device-state information, so that the HDMI content is displayed on a display in the second A/V display device.
By dynamically adapting the displayed HDMI content in response to user selections, this display technique may make it easier for a user to control an entertainment device (such as the A/V hub, the A/V display device and/or one or more content sources) with fewer errors or mistakes. Moreover, by providing a simple and intuitive user interface in the portable electronic device and display instructions for the A/V display device, this display technique may make it easier for a user to: select HDMI content from different content sources, change how the HDMI content is displayed and/or where the HDMI content is displayed. Consequently, the display technique may reduce user frustration and/or may improve the user experience when using the portable electronic device, the A/V hub, the A/V display device and/or one or more content sources.
In the discussion that follows the portable electronic device, the A/V hub, the A/V display device, the one or more content sources, and/or an entertainment device (such as a consumer-electronic device) may include radios that communicate packets or frames in accordance with one or more communication protocols, such as: an Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard (which is sometimes referred to as ‘Wi-Fi®,’ from the Wi-Fi® Alliance of Austin, Tex.), Bluetooth® (from the Bluetooth Special Interest Group of Kirkland, Wash.), a cellular-telephone communication protocol, a near-field-communication standard or specification (from the NFC Forum of Wakefield, Mass.), and/or another type of wireless interface. In the discussion that follows, Wi-Fi is used as an illustrative example. For example, the cellular-telephone communication protocol may include or may be compatible with: a 2nd generation of mobile telecommunication technology, a 3rd generation of mobile telecommunications technology (such as a communication protocol that complies with the International Mobile Telecommunications-2000 specifications by the International Telecommunication Union of Geneva, Switzerland), a 4th generation of mobile telecommunications technology (such as a communication protocol that complies with the International Mobile Telecommunications Advanced specification by the International Telecommunication Union of Geneva, Switzerland), and/or another cellular-telephone communication technique. In some embodiments, the communication protocol includes Long Term Evolution or LTE. However, a wide variety of communication protocols may be used. In addition, the communication may occur via a wide variety of frequency bands. Note that the portable electronic device, the A/V hub, the A/V display device, the one or more content sources, and/or an entertainment device may communicate using infra-red communication that is compatible with an infra-red communication standard (including unidirectional or bidirectional infra-red communication).
Communication among electronic devices is shown in
As described further below with reference to
As can be seen in
In the described embodiments, processing of a packet or frame in portable electronic device 110 and A/V hub 112 (and optionally one or more of the one or more A/V display devices 114 and/or the one or more content sources 116) includes: receiving wireless signals 120 with the packet or frame; decoding/extracting the packet or frame from received wireless signals 120 to acquire the packet or frame; and processing the packet or frame to determine information contained in the packet or frame (such as the information associated with a data stream). For example, the information from portable electronic device 110 may include user-interface activity information associated with a user interface displayed on touch-sensitive display 124 in portable electronic device 110, which a user of portable electronic device 110 uses to control A/V hub 112, the one or more A/V display devices 114 and/or one of the one or more content sources 116. (In some embodiments, instead of or in additional to touch-sensitive display 124, portable electronic device 110 includes a use interface with physical knobs and/or buttons that a user can use to control A/V hub 112, the one or more A/V display devices 114 and/or one of the one or more content sources 116.) Alternatively, the information from A/V hub 112 may include device-state information about a current device state of one or more of A/V display devices 114 or one of the one or more content sources 116 (such as on, off, play, rewind, fast forward, a selected channel, selected content, a content source, etc.), or may include user-interface information for the user interface (which may be dynamically updated based on the device-state information and/or the user-interface activity information). Furthermore, the information from A/V hub 112 and/or one of the one or more content sources 116 may include audio and video that are displayed on one or more of A/V display devices 114, as well as display instructions that specify how the audio and video are to be displayed. (However, as noted previously, the audio and video may be communicated between components in system 100 via wired communication. Therefore, as shown in
Note that the communication between portable electronic device 110 and A/V hub 112 (and optionally one or more of the one or more A/V display devices 114 and/or the one or more content sources 116) may be characterized by a variety of performance metrics, such as: a data rate, a data rate for successful communication (which is sometimes referred to as a ‘throughput’), an error rate (such as a packet error rate, or a retry or resend rate), a mean-square error of equalized signals relative to an equalization target, intersymbol interference, multipath interference, a signal-to-noise ratio, a width of an eye pattern, a ratio of number of bytes successfully communicated during a time interval (such as 1-10 s) to an estimated maximum number of bytes that can be communicated in the time interval (the latter of which is sometimes referred to as the ‘capacity’ of a channel or link), and/or a ratio of an actual data rate to an estimated data rate (which is sometimes referred to as ‘utilization’). Moreover, the performance during the communication associated with different channels may be monitored individually or jointly (e.g., to identify dropped packets).
The communication between portable electronic device 110 and A/V hub 112 (and optionally one or more of the one or more A/V display devices 114 and/or the one or more content sources 116) in
As noted previously (and described further below with reference to
One problem with using existing remote controls to control the operation of another component or entertainment device is that the remote control does not receive any feedback from the entertainment device. For example, many existing remote controls use infra-red communication. However, typically existing infra-red communication protocols are unidirectional or one-way communication, i.e., from a remote control to the entertainment device. Consequently, the remote control usually does not have any knowledge of the effects of the commands or instructions that are communicated to the entertainment device. In particular, the remote control is typically unaware of a current state of the entertainment device, such as whether the entertainment device is in: a power-on state, a power-off state, a playback state, a trick-mode state (such as fast forward, fast reverse, or skip), a pause state, a standby (reduced-power) state, a record state, a state in which content associated with a given content source (such as cable television, a satellite network, a web page on the Internet, etc.) is received or provided, and/or another state. (Note that one or more of the states may be nested or concurrent with each other, such as the power-on state and the playback state.) By operating blindly in this way, existing remote control are unable to leverage knowledge of the current state of the entertainment device to improve the user experience.
This problem is addressed in system 100. In particular, as described further below with reference to
Using the device-state information A/V hub 112 and/or portable electronic device 110 may dynamically adapt the user interface displayed on touch-sensitive display 124 on portable electronic device 110. For example, A/V hub 112 may provide, via radio 118-2, device-state information to portable electronic device 110 specifying a current state of the given entertainment device. (Thus, this feedback technique may include bidirectional or two-way communication between A/V hub 112 and portable electronic device 110.) After radio 118-1 receives the device-state information, portable electronic device 110 (such as a program module executed in an environment, e.g., an operating system, in portable electronic device 110) may generate a user interface that includes one or more virtual command icons associated with the current state and one or more related states of the given entertainment device. Note that the one or more related states may be related to the current state in a state diagram (which may be stored in memory in portable electronic device 110) by corresponding operations that transition the given entertainment device from the current state to the one or more related states. Then, portable electronic device 110 may display the user interface on touch-sensitive display 124.
In some embodiments, A/V hub 112 provides information specifying the type of the given entertainment device, the manufacturer of the given entertainment device, and/or context information that specifies a context of content (such as A/V content) displayed on the entertainment device (such as A/V display device 114-1). For example, the context may include a type of the content (such as sports, television, a movie, etc.), a location in the content (such as a timestamp, an identifier of a sub-section in the content and/or a proximity to a beginning or an end of the content), etc. In these embodiments, the one or more virtual command icons (and, thus, the user interface) may be based on the type of the given entertainment device, the manufacturer and/or the context. Thus, only virtual command icons that are relevant to the given entertainment device, the manufacturer and/or the context may be included in the user interface.
Moreover, when the user activates one of the virtual command icons in the user interface, the touch-screen I/O controller in portable electronic device 110 may provide user-interface activity information specifying activation of a virtual command icon in the one or more virtual command icons, where the activation of the virtual command icon specifies a transition of the given entertainment device from the current state to a new current state in the state diagram. As noted previously, the activation of the virtual command icon may involve a user of portable electronic device 110 contacting touch-sensitive display 124 within a strike area of the virtual command icon and then releasing the contact. In response to receiving the user-interface activity information, portable electronic device 110 may: modify the user interface to change the one or more virtual command icons based on the new current state; and display the modified user interface on touch-sensitive display 124. Note that portable electronic device 110 may wait to change the one or more virtual command icons until the device-state information received from A/V hub 112 indicates that the given entertainment device has transitioned to the new current state in response to a command or an instruction associated with the activation of the one of the virtual command icons. Thus, portable electronic device 110 may repeatedly perform the generating and the displaying operations so that the user interface is dynamically updated as the current state changes.
Alternatively or additionally, instead of portable electronic device 110 generating the user interface, A/V hub 112 may generate user-interface information that specifies the user interface (or instructions specifying objects or graphical information in the user interface) based on the one or more related states in the state diagram (which may be stored in memory in A/V hub 112) and one or more of: the device-state information, the type of the given entertainment device, the manufacturer of the given entertainment device, the context, user-interface activity information specifying activation (by the user) of one of the virtual command icons in the user interface (which may be received, via radios 118, from portable electronic device 110), and/or a display format in portable electronic device 110. Then, A/V hub 112 may provide, via radios 118, the user-interface information to portable electronic device 110 for display on touch-sensitive display 124.
In this way, the user interface may be dynamically updated as the components in system 100 respond to commands or instructions received from portable electronic device 110 and/or A/V hub 112, so that the currently relevant one or more virtual icons are included in the user interface. This capability may simplify the user interface and make it easier for the user to navigate through and/or use the user interface.
Moreover, as described further below with reference to
Furthermore, as described further below with reference to
In some embodiments, as described further below with reference to
Additionally, as described further below with reference to
In these ways, the display technique may allow a user to control the A/V hub, one or more A/V display devices and/or one or more content sources with less effort (such as in less time, with fewer operations and/or with less confusion), and to do so with fewer errors or mistakes. Consequently, the display technique may reduce user frustration and/or may improve the user experience when using the portable electronic device, the A/V hub, the one or more A/V display devices and/or the one or more content sources.
Although we describe the network environment shown in
We now describe embodiments of a display technique.
Then, the A/V hub provides, via the interface circuit, a request for high-definition multimedia-interface (HDMI) content (operation 212) to the content source based on the user selection. Moreover, the A/V hub receives, via the interface circuit, the HDMI content (operation 214) from the content source, and the A/V hub may optionally determine the display instructions (operation 216) based on a format of the display. The request from the A/V hub in response to the activation of the virtual command icon or the physical button may include one or more commands or instructions for the content source, including selectively activating or turning on the content source (if the content source is not already activated or turned on) and/or specifying the HDMI content. Therefore, in some embodiments, the request may be based, at least in part, on device-state information about the content source.
Next, the A/V hub provides, via the interface circuit, the HDMI content and display instructions (operation 218) to an A/V display device as frames with the HDMI content are received from the content source, so that the HDMI content is displayed on a display in the A/V display device. For example, providing the HDMI content and the display instructions may involve transcoding the HDMI content based on a format of the display. Note that the display instructions specify that the HDMI content is to be displayed in a tiled window on the display while other HDMI content from another content source is displayed on the display.
In some embodiments, the A/V hub optionally performs one or more additional operations (operation 220). For example, the A/V hub may optionally: receive, via the interface circuit, the other HDMI content from the other content source; and provide, via the interface circuit, the other HDMI content to the A/V display device, so that the other HDMI content is displayed on the display. Moreover, the A/V hub may optionally provide second display instructions that specify how the other HDMI content is to be displayed on the display. Furthermore, the A/V hub may optionally determine the second display instructions based on a format of the display.
Note that method 200 may address security issues associated with the concurrent display of the tiled window(s). For example, the HDMI content may be displayed in the tiled window on the display while the other HDMI content from the other content source is displayed on the display without a risk of hacking (such as intentional communication of malicious content, such as malicious software, malware or a so-called ‘virus’).
For example, interface circuit 318 in portable electronic device 110 may receive user-interface information 312, which is then provided to processor 320. Alternatively, processor 320 may generate user-interface information 312. Then, based on user-interface information 312, processor 320 may provide information specifying user interface 316 to touch-sensitive input/output (I/O) controller 322, which provides the information specifying user interface 316 to touch-sensitive display 124.
Moreover, touch-sensitive display 124 may provide to information specifying user interaction 324 to touch-sensitive I/O controller 322. In turn, touch-sensitive I/O controller 322 may interpret the information specifying user interaction 324 to determine user-interface activity information 326. For example, user-interface activity information 326 may specify user selection of one of content sources 116, such as user activation of the virtual command icon associated with the one of content sources 116. Touch-sensitive I/O controller 322 may provide user-interface activity information 326 to processor 320, which may provide user-interface activity information 326 to interface circuit 318.
Next, portable electronic device 110 (such as via interface circuit 318) may provide user-interface activity information 326 to A/V hub 112. After receiving user-interface activity information 326, interface circuit 314 may provide user-interface activity information 326 to processor 310. In response, processor 310 may instruct interface circuit 314 to provide request 328 for HDMI content 330 to the one of content sources 116. In addition, processor 310 may optionally determine display instructions 332 based on a format of a display in A/V display device 114-1. Alternatively, display instructions 332 may be predetermined or predefined.
After receiving request 328, the one of content sources 116 may provide HDMI content 330 to A/V hub 112. Next, interface circuit 314 may provide HDMI content 330 and/or display instructions 332 (which may be provide differentially when there or changes or regularly, such in each packet or in one of every N packets) to A/V display device 114-1 as frames with HDMI content 330 are received from the one of content sources 116, so that HDMI content 330 is displayed on the display in A/V display device 114-1. (Alternatively, in some embodiments interface circuit 314 provides HDMI content 330 to processor 310, which instructs interface circuit 314 to provide HDMI content 330 and display instructions 332 to A/V display device 114-1 as frames with HDMI content 330 are received from the one of content sources 116.)
Note that display instructions 332 may specify that HDMI content 330 is to be displayed in a tiled window on the display while additional HDMI content from another of content sources 116 is displayed on the display. For example, A/V hub 112 may optionally: receives, via interface circuit 314, the additional HDMI content from the other of content sources 116; and provides, via interface circuit 314, the additional HDMI content to A/V display device 114-1, so that additional HDMI content is displayed on the display. Moreover, processor 310 may optionally determine additional display instructions that specify how the additional HDMI content is to be displayed on the display based on a format of the display. Furthermore, interface circuit 314 may optionally provide the additional display instructions to A/V display device 114-1.
The user may create, modify or discontinue a tiled window by activating a single command feature in a user interface displayed on the portable electronic device. This is shown in
Next, the A/V hub provides, via the interface circuit, a request for HDMI content (operation 416) to the content source based on the user selection, and receives, via the interface circuit, the HDMI content (operation 418) from the content source. In some embodiments, the A/V hub optionally determines second display instructions (operation 420) based on a format of the display. The request from the A/V hub in response to the activation of the virtual command icon or the physical button may include one or more commands or instructions for the content source, including selectively activating or turning on the content source (if the content source is not already activated or turned on) and/or specifying the HDMI content. Therefore, in some embodiments, the request may be based, at least in part, on device-state information about the content source.
Furthermore, the A/V hub provides the HDMI content and the second display instructions (operation 422) to the A/V display device as frames with the HDMI content are received from the content source, so that the HDMI content is displayed on a display in the A/V display device, where the second display instructions specify that the HDMI content is to be displayed in a tiled window on the display. For example, providing the HDMI content and the second display instructions may involve transcoding the HDMI content based on a format of the display.
Additionally, the A/V hub may optionally perform one or more additional operations (operation 424). For example, the A/V hub may: receive, via the interface circuit, second user-interface activity information from the portable electronic device, where the second user-interface activity information specifies user de-activation of the content source based on activation of the single command feature in the portable electronic device that is associated with the content source; provide, via the interface circuit, a request to discontinue the HDMI content to the content source; and provide third display instructions to the A/V display device, so that display of the tiled window on the display is discontinued.
Alternatively or additionally, the A/V hub may: receive, via the interface circuit, third user-interface activity information from the portable electronic device, where the third user-interface activity information specifies user selection of a second content source based on activation of a second single command feature in the portable electronic device that is associated with the second content source; provide, via the interface circuit, a request for second HDMI content to the second content source; receive, via the interface circuit, the second HDMI content from the second content source; and provide the second HDMI content and third display instructions to the A/V display device as frames with the second HDMI content are received from the second content source, so that the second HDMI content is displayed on the display in the A/V display device concurrently with the HDMI content in the titled window. Note that the third display instructions specify that the second HDMI content is to be displayed in a second tiled window on the display.
Furthermore, subsequently, the A/V hub may receive, via the interface circuit, fourth user-interface activity information from the portable electronic device that specifies user selection of one of the tilted window and the second tiled window. In response, the A/V hub may provide fourth display instructions to the A/V display device, so that given HDMI content, which is one of the HDMI content and the second HDMI content, is displayed in a central tiled window on the display and display of a given tiled window, which is one of the tiled window and the second tiled window, is discontinued.
Moreover, processor 310 may optionally provide, via interface circuit 314, user-interface information 512 to portable electronic device 110. After receiving user-interface information 512, portable electronic device 110 may optionally display an associated user interface on a touch-sensitive display (such as touch-sensitive display 124 in
Next, portable electronic device 110 may provide user-interface activity information 514 that specifies user selection of one of content sources 116 (such as user activation of a single command feature associated with the one of content sources 116) to A/V hub 112. After receiving user-interface activity information 514, interface circuit 314 may provide user-interface activity information 514 to processor 310. In response, processor 310 may instruct interface circuit 314 to provide request 516 for HDMI content 518 to the one of content sources 116. In addition, processor 310 may optionally determine display instructions 520 based on a format of the display in A/V display device 114-1. Alternatively, display instructions 520 may be predetermined or predefined.
After receiving request 516, the one of content sources 116 may provide HDMI content 518 to A/V hub 112. Furthermore, interface circuit 314 may provide HDMI content 518 and display instructions 520 to A/V display device 114-1 as frames with HDMI content 518 are received from the one of content sources 116, so that HDMI content 518 is displayed on the display in A/V display device 114-1. Note that display instructions 520 may specify that HDMI content 518 is to be displayed in a tiled window on the display while additional HDMI content from another of content sources 116 is displayed on the display. (Alternatively, in some embodiments interface circuit 314 provides HDMI content 518 to processor 310, which instructs interface circuit 314 to provide HDMI content 518 and display instructions 1520 to A/V display device 114-1 as frames with HDMI content 518 are received from the one of content sources 116.)
In response to receiving, via interface circuit 314, user-interface activity information 522 from portable electronic device 110, processor 310 may optionally determine and provide display instructions 524 to A/V display device 114-1 and/or optional command 526 to the one of content sources 116. For example, if user-interface activity information 522 specifies de-activation of the one of content sources 116 based on user activation of the single command feature (or another single command feature) in portable electronic device 110, display instructions 524 may indicate that the tiled window on the display is discontinued. In addition, processor 310 may provide optional command 526 to the one of content sources 116 to discontinue HDMI content 518. Alternatively, user-interface activity information 522 may specify user selection of the tilted window, and display instructions 524 may indicate that HDMI content 518 is displayed in a central tiled window on the display and display of the tiled window on the display is discontinued.
In some embodiments, user-interface activity information 522 specifies user selection of another one of content sources 116 (such as user activation of another single command feature associated with the other one of content sources 116). In these embodiments, optional command 526 requests additional HDMI content from the other one of content sources 116. As the additional HDMI content is received by A/V hub 112, interface circuit 314 may provide the additional HDMI content and display instructions 524 to A/V display device 114-1 as frames with the additional HDMI content are received from the one of content sources 116, so that the additional HDMI content is displayed on the display in A/V display device 114-1. Note that display instructions 524 may specify that the additional HDMI content is to be displayed in another tiled window on the display while HDMI content 518 from the one of content sources 116 is displayed on the display in the tiled window.
In this way, the display technique may make it easier and more intuitive for a user to control the content and the layout of the content displayed on the A/V display device (such as how and where the content is displayed). In the process, the display technique may reduce user frustration, and thus may improve user satisfaction when using the portable electronic device, the A/V hub, the A/V display device and/or the one or more content sources.
In an exemplary embodiment, the portable electronic device includes a touch-sensitive display and the user interface includes features (such as virtual command icons) associated with the content sources and the layout of the content displayed on the A/V display device. This user interface is shown in
In some embodiments, if the user makes and maintains contact with the surface of the touch-sensitive display within a strike area associated with one of virtual command icons 610 or if the user activates this virtual command icon, the resulting user-interface activity information from the portable electronic device instructs the A/V hub to provide display instructions for a list of display options to be displayed on the A/V display device. In addition, if the user makes and maintains contact with the surface of the touch-sensitive display within a strike area associated with one of virtual command icons 610 or if the user activates this virtual command icon, an associated one of virtual command icons 612 may be displayed. In particular, user interface 600 may be modified (either by the portable electronic device and/or in response to user-interface information received from the A/V hub) to include one of virtual command icons 612 associated with a display option. For example, the display option may include: discontinuing the display of the HDMI content from the content source (and, thus, to discontinue or close the tiled window), as indicated by the circle with the ‘X’ for virtual command icon 612-1; and/or, if the one of virtual command icons 612 associated with a new content source (i.e., a content source whose HDMI content is not currently displayed), displaying the HDMI content from the new content source in another tiled window, as indicated by the circles with the ‘+’ for virtual command icon 612-2. In particular, if the user makes and maintains contact with the surface of the touch-sensitive display within a strike area associated with virtual command icon 610-1 or if the user activates this virtual command icon, virtual command icon 612-1 may be displayed. Thus, if the user touches virtual command icon 610-1, the corresponding one of virtual command icons 612 (the circle with the ‘X’) may be displayed. Then, if the user slides the contact area over virtual command icon 612-1 and releases the contact (thereby providing an activation command), the portable electronic device providing user-interface activation information to the A/V hub that instructs the A/V hub to communicate with the DVR to discontinue the data stream with content (such as HDMI content) from the DVR. Alternatively, if the user makes and maintains contact with the surface of the touch-sensitive display within a strike area associated with virtual command icon 610-2 or if the user activates this virtual command icon, virtual command icon 612-2 may be displayed. Thus, if the user touches virtual command icon 610-2, the corresponding one of virtual command icons 612 (the circle with the ‘+’) may be displayed. Then, if the user slides the contact area over virtual command icon 612-2 and releases the contact (thereby providing an activation command), the portable electronic device providing user-interface activation information to the A/V hub that instructs the A/V hub to communicate with the Blue-Ray player to initiate a data stream with content (such as HDMI content) that will be displayed on the A/V display device (such as in a tiled window). Note, therefore, that virtual command icons 612 may be dynamically displayed in the user interface depending on which virtual command icon 610 is selected, and may depend upon the current state of the associated content source, as well as whether at least one other content source is currently providing a data stream with content (such as HDMI content).
Note that the content sources may be associated with different providers and may be at arbitrary locations in an environment (such as in different rooms in a structure than the A/V hub and the A/V display device). Thus, the display technique may be independent of or insensitive to the actual location of the content source(s) that provide the HDMI content. In these embodiments, if the user makes and maintains contact with the surface of the touch-sensitive display within a strike area associated with one of virtual command icons 610 and/or 612, user interface 600 may be modified (either by the portable electronic device and/or in response to user-interface information received from the A/V hub) to include information specifying the location of an associated content source in the environment (such as in the information displayed in one of virtual command icons 610). However, in other embodiments virtual command icons 610 indicates available content sources to the user without indicating the locations of the content sources. Thus, the display technique may allow the portable electronic device and the A/V hub to operate in a content-source-location independent manner, i.e., the associated HDMI content may be displayed independently of a location of the associated content source.
Similarly, as described further below with reference to
Alternatively, the user selects a content source that is currently providing a data stream to an A/V display device at the user's current location, then user interface 600 may be modified (either by the portable electronic device and/or in response to user-interface information received from the A/V hub) to include information specifying available A/V display devices or information associated with the available A/V display devices (such as locations in the environment of the A/V display devices). Next, if the user activates one of the virtual command icons associated with one of the available A/V display devices (such as a virtual command icon associated with a location, e.g., a television in the living room or a bedroom), the resulting user-interface activity information from the portable electronic device may instruct the A/V hub to provide display instructions to the specified A/V display device and to route or cast the HDMI content from one of the content sources to the specified A/V display device. Once again, this may involve one or more commands or instructions from the A/V hub, and the one or more commands or instructions may be selected intelligently based on device-state information. In this way, the user may simply and intuitively cast content, such as HDMI content, from one A/V display device to another A/V display device.
We now describe embodiments of the information displayed on the A/V display device during methods 200 (
When the user activates one of the virtual command icons associated with one of content sources 710 (such as DVR), the A/V hub may provide display instructions and, after requesting and receiving HDMI content from the one of content sources 710, may provide the HDMI content to A/V display device. As shown in
Similarly, when the user selects another of the virtual command icons associated with a second one of the content sources (such as a Blue-Ray player) and then activates a ‘+’ virtual command icon that is dynamically displayed next to the selected other virtual command icon, the A/V hub may provide display instructions and, after requesting and receiving additional HDMI content from the second content source, may provide the additional HDMI content to A/V display device. As shown in
While
Furthermore, as discussed previously, the user may use the user interface on the portable electronic device to discontinue the display of HDMI content from one of the content sources. For example, after tiled window 810 is displayed, if the user holders their finger in contact with the surface of the touch-sensitive display on the portable electronic device within the strike area of a virtual command icon associated with the DVR, the user interface on the portable electronic device and the information to be displayed on the display in the A/V display device may be modified to indicate that the user has the option to discontinue the display of HDMI content from the one of the content sources (such as the DVR). In particular, a virtual command icon represented by an ‘X’ in a circle may be displayed adjacent to the virtual command icon for the DVR. If the user activates this virtual command icon, the A/V hub may provide display instructions to the A/V display device to discontinue tiled widow 810 and may instruct the DVR to discontinue providing the HDMI content. As shown in
In some embodiments, the user may use the user interface on the portable electronic device to move the HDMI content displayed in a tiled window to a central tiled window in the display in the A/V display device. This is illustrated in
Then, if the user slides over and activates the virtual command icon for the streaming TV/media player (by contacting and releasing the surface of the touch-sensitive display within an associated strike area) the positions of tiled windows 1210 may be reversed. (Note that an additional virtual command icon that allows the user to discontinue the displaying of tiled window 1210-2 is also dynamically displayed.) In particular, in response to activating the virtual command icon for the streaming TV/media player, the A/V hub may provide display instructions that transitions the associated HDMI content to a central tiled window and discontinues the initial tiled window. The result is shown in
While the preceding discussion illustrated the use of a virtual command icons in a user interface displayed on a touch-sensitive display in the portable electronic device, in other embodiments the user may activate physical buttons. For example, the user may point the portable electronic device at a location on the A/V display device and may press a button. The location on the A/V display device, which may correspond to a virtual command icon, may be identified based on an infra-red signal from the portable display device, wireless ranging and/or orientation of the portable display device, etc. This user-interface information may be used by the A/V hub to perform one or more commands or instructions and, as needed, to modify the displayed user interface on the A/V display device.
In some embodiments, tiled windows with video content are displayed without the user activating an associated virtual command icon or a physical button. For example, the display of a tiled window may be event driven, such as when a security or intrusion-detection device is trigger (such as based on sound or motion detection) or when a baby monitor detects motion or a baby crying. In these cases, a tiled window with video from a security camera or a baby camera may be automatically displayed based on the context. This may allow the user to visually assess whether further action is required.
Embodiments of the display technique are further illustrated in
Then, the A/V hub provides, via an interface circuit in the A/V hub, the display instructions (operation 1412) to the A/V display device for display on the display.
Next, the A/V hub may optionally receive, via the interface circuit, user-interface activity information (operation 1414) from a portable electronic device that specifies user selection of a content source. For example, the user-interface activity information may include activation of a virtual command icon displayed in the user interface on a touch-sensitive display in the portable electronic device. Alternatively, the user-interface activity information may include activation or changing a state or configuration of a physical button. Note that the A/V hub may optionally: generate user-interface information that specifies the user interface that includes one or more virtual command icons, including the virtual command icon, which are associated with the content sources; and provides the user-interface information to the portable electronic device for display on the touch-sensitive display in the portable electronic device. However, in other embodiments the user-interface information is optionally generated by the portable electronic device.
In response, the A/V hub may optionally perform one or more additional operations (operation 1416). In particular, the A/V hub may optionally: provide, via the interface circuit, a request for HDMI content to the content source; selectively provide, via the interface circuit, an activation command to the content source based on device-state information of the content source (such as when the content source is not already turned on or activated); receive, via the interface circuit, the HDMI content from the content source; and provide, the HDMI content and second display instructions to the A/V display device as frames with the HDMI content are received from the content source, so that the HDMI content is displayed on the display in the A/V display device. In some embodiments, the A/V hub may optionally determine the second display instructions based on a format of the display. Note that providing the HDMI content and the second display instructions involves transcoding the HDMI content based on the format of the display.
Moreover, processor 310 may optionally provide, via interface circuit 314, user-interface information 1512 to portable electronic device 110. After receiving user-interface information 1512, portable electronic device 110 may optionally display an associated user interface on a touch-sensitive display (such as touch-sensitive display 124 in
Next, portable electronic device 110 may provide user-interface activity information 1514 that specifies user selection of one of content sources 116 (such as user activation of a single command feature associated with the one of content sources 116) to A/V hub 112. After receiving user-interface activity information 1514, interface circuit 314 may provide user-interface activity information 1514 to processor 310. In response, processor 310 may instruct interface circuit 314 to provide request 1516 for HDMI content 1518 to the one of content sources 116. In addition, processor 310 may optionally determine display instructions 1520 based on a format of the display in A/V display device 114-1. Alternatively, display instructions 1520 may be predetermined or predefined.
After receiving request 1516, the one of content sources 116 may provide HDMI content 1518 to A/V hub 112. Furthermore, interface circuit 314 may provide HDMI content 1518 and display instructions 1520 to A/V display device 114-1 as frames with HDMI content 1518 are received from the one of content sources 116, so that HDMI content 1518 is displayed on the display in A/V display device 114-1. Note that display instructions 1520 may specify that HDMI content 1518 is to be displayed in a tiled window on the display while additional HDMI content from another of content sources 116 is displayed on the display. (Alternatively, in some embodiments interface circuit 314 provides HDMI content 1518 to processor 310, which instructs interface circuit 314 to provide HDMI content 1518 and display instructions 1520 to A/V display device 114-1 as frames with HDMI content 1518 are received from the one of content sources 116.)
In this way, the display technique may make it easier and more intuitive for a user to control the content and the layout of the content displayed on the A/V display device (such as how and where the content is displayed). In particular, by allowing the user to see content sources in a network throughout the environment that includes the A/V hub regardless of their locations and/or the current state of the content sources (which may also be displayed), the display technique may allow the user to select content sources at different locations in the environment and, thus, may provide location-independent operation. In the process, the display technique may reduce user frustration, and thus may improve user satisfaction when using the portable electronic device, the A/V hub, the A/V display device and/or the one or more content sources.
We now describe embodiments of the information displayed on the A/V display device (in conjunction with one or more virtual command icons in the user interface on the portable electronic device) during method 1400 (
When the user activates one of the virtual command icons associated with one of content sources 1610 (such as the DVR in the bedroom), the A/V hub may provide display instructions and, after requesting and receiving HDMI content from the one of content sources 1610, may provide the HDMI content to A/V display device. As shown in
Embodiments of the display technique are further illustrated in
In response, the A/V hub accesses device-state information (operation 1812) that specifies a current state of the second A/V display device. For example, as described further below with reference to
Then, the A/V hub performs the casting (operation 1814) of the HDMI content from the first A/V display device to the second A/V display device using a dynamic number of operations based on the device-state information, so that the HDMI content is displayed on a display in the second A/V display device (which may be provided by a different manufacturer than the first A/V display device). Note that, from the user perspective, the casting operation is from the first A/V display device to the second A/V display device. However, in practice, the casting operation involves the content source providing the HDMI content to the second A/V display device. After the casting operation, the HDMI content may or may not still be displayed on the first A/V display device.
In general, casting may include operations such as: turn on or power on the A/V hub; turn on or power on the second A/V display device; set to correct input or content source; and/or enable casting. Once the user instruction is received, the casting may occur in an automated manner. Note that when the device-state information indicates that the second A/V display device is already powered on, a power-on operation may be excluded from the dynamic number of operations. Moreover, when the device-state information indicates that the second A/V display device is already set to receive the HDMI content from the content source, an operation to set the second A/V display device to receive the HDMI content from the content source may be excluded from the dynamic number of operations. In some embodiments, the casting may include receiving the HDMI content from the content source, transcoding the HDMI content based on a format of a display in the second A/V display device, and providing the transcoded HDMI content to the second A/V display device.
Note that the casting may be performed without further user action after activating the single virtual command icon or the single physical button. (Thus, method 1800 may be used by the user to perform so-called one-step or one-operation casting, even though it may involve the A/V hub performing multiple commands or instructions.)
Next, portable electronic device 110 may provide to A/V hub 112 user-interface activity information 1912 (such as user activation of a single virtual command icon) that specifies a user instruction to cast the HDMI content associated with a content source from A/V display device 114-1 to A/V display device 114-2. After receiving user-interface activity information 1912, interface circuit 314 may provide user-interface activity information 1912 to processor 310.
In response, processor 310 may access device-state information 1914 of A/V display device 114-2 in memory 1916 and/or may measure or determine device-state information 1914 using state-detection circuit 1918, a device-state diagram and/or a history of previous device commands provided to and/or received by A/V display device 114-2. Based on device-state information 1914, processor 310 may dynamically adapt or change a number of operations in a casting process 1920 based on device-state information 1914. Next, processor 310 may provide, via interface circuit 314, display instructions 1922 to A/V display devices 114-1 and display instructions 1924 to A/V display devices 114-2 to perform casting process 1920. Note that processor 310 may optionally determine display instructions 1924 based on a format of the display in A/V display devices 114-2. Alternatively, display instructions 1924 may be predetermined or predefined.
In this way, the display technique may make it easier and more intuitive for a user to control the content and the layout of the content displayed on the A/V display device (such as how and where the content is displayed). In particular, the display technique may allow the user, with minimum effort or operations, to cast content (such as HDMI content) from one A/V display device to another A/V display device. In the process, the display technique may reduce user frustration, and thus may improve user satisfaction when using the portable electronic device, the A/V hub, and/or one or more A/V display devices.
Consequently, methods 200 (
In some embodiments of methods 200 (
Note that in this display technique the A/V hub may display the HDMI content (and, more generally, video content) to an arbitrary A/V display device (including an A/V display device that is located remotely from the A/V hub, such as in another room) without a need for a separate set-top box that is located proximate to the A/V display device. Instead, the A/V hub may perform all of the frame-by-frame transcoding of the video content that is needed for the A/V display device to display the video content before providing the video content to the A/V display device. Thus, in contrast with many existing cable and satellite systems, the A/V hub may provide video content to multiple A/V display devices (such as N A/V display devices) without the use of N associated set-top boxes. Consequently, the A/V hub may eliminate the need for a separate set-top box in the same room as an A/V display device (although there may be a local wireless receiver that is associated with the A/V hub). This capability may be enabled by the knowledge of the device state information and the content selected by the users that is available to the A/V hub. In addition, this capability may eliminate the need for a user to know where or how a particular A/V display device is connected to a content source, such as cable television or a satellite dish.
We now describe embodiments of the information displayed on the A/V display device (in conjunction with one or more virtual command icons in the user interface on the portable electronic device) during method 1800 (
As noted previously, the device-state information (such as whether an entertainment device is: electrically coupled to A/V hub 112 in
When the electrical coupling between the entertainment device and input connector 2112 is detected, control logic 2124 may optionally attempt to identify the entertainment device by providing consumer-electronics-control commands (which may be compatible with an HDMI standard) to the entertainment device. Alternatively or additionally (such as when the attempt is unsuccessful), control logic 2124 may provide a set of first control commands associated with different types of entertainment devices until, in response, content activity (such as packets or frames associated with a data stream of content communicated to and/or from the entertainment device) is detected by control logic 2124 via input connector 2112. For example, the set of first commands may include: a play command for the different types of entertainment devices; and/or a trick-mode command (such as fast forward, reverse, fast reverse, or skip) for the different types of entertainment devices. Moreover, when the content activity is detected, control logic 2124 may provide a set of second control commands associated with different providers of entertainment devices until a change in a state of the entertainment device is detected by control logic 2124 via input connector 2112 and state-detection circuit 2110. The set of second control commands may include: power-on control commands for the different providers of entertainment devices; and/or power-off control commands for the different providers of entertainment devices.
Alternatively or additionally, during operation control logic 2124 may detect whether there is electrical coupling between the entertainment device and input connector 2112 using state-detection circuit 2110 (
We now describe embodiments of an electronic device.
Memory subsystem 2312 includes one or more devices for storing data and/or instructions for processing subsystem 2310 and networking subsystem 2314. For example, memory subsystem 2312 can include dynamic random access memory (DRAM), static random access memory (SRAM), and/or other types of memory. In some embodiments, instructions for processing subsystem 2310 in memory subsystem 2312 include: one or more program modules or sets of instructions (such as program module 2322 or operating system 2324), which may be executed by processing subsystem 2310. Note that the one or more program modules may constitute a computer-program mechanism, such as a computer program or software. Moreover, instructions in the various modules in memory subsystem 2312 may be implemented in: a high-level procedural language, an object-oriented programming language, and/or in an assembly or machine language. Furthermore, the programming language may be compiled or interpreted, e.g., configurable or configured (which may be used interchangeably in this discussion), to be executed by processing subsystem 2310.
In addition, memory subsystem 2312 can include mechanisms for controlling access to the memory. In some embodiments, memory subsystem 2312 includes a memory hierarchy that comprises one or more caches coupled to a memory in electronic device 2300. In some of these embodiments, one or more of the caches is located in processing subsystem 2310.
In some embodiments, memory subsystem 2312 is coupled to one or more high-capacity mass-storage devices (not shown). For example, memory subsystem 2312 can be coupled to a magnetic or optical drive, a solid-state drive, or another type of mass-storage device. In these embodiments, memory subsystem 2312 can be used by electronic device 2300 as fast-access storage for often-used data, while the mass-storage device is used to store less frequently used data.
Networking subsystem 2314 includes one or more devices configured to couple to and communicate on a wired and/or wireless network (i.e., to perform network operations), including: control logic 2316, interface circuits 2318 and associated antennas 2320. (While
Networking subsystem 2314 includes processors, controllers, radios/antennas, sockets/plugs, and/or other devices used for coupling to, communicating on, and handling data and events for each supported networking system. Note that mechanisms used for coupling to, communicating on, and handling data and events on the network for each network system are sometimes collectively referred to as a ‘network interface’ for the network system. Moreover, in some embodiments a ‘network’ between the electronic devices does not yet exist. Therefore, electronic device 2300 may use the mechanisms in networking subsystem 2314 for performing simple wireless communication between the electronic devices, e.g., transmitting advertising or beacon frames and/or scanning for advertising frames transmitted by other electronic devices as described previously.
Within electronic device 2300, processing subsystem 2310, memory subsystem 2312, networking subsystem 2314 and optional feedback subsystem 2334 are coupled together using bus 2328. Bus 2328 may include an electrical, optical, and/or electro-optical connection that the subsystems can use to communicate commands and data among one another. Although only one bus 2328 is shown for clarity, different embodiments can include a different number or configuration of electrical, optical, and/or electro-optical connections among the subsystems.
In some embodiments, electronic device 2300 includes a display subsystem 2326 for displaying information on a display (such as the communication warning message), which may include a display driver, an I/O controller and the display. Note that a wide variety of display types may be used in display subsystem 2326, including: a two-dimensional display, a three-dimensional display (such as a holographic display or a volumetric display), a head-mounted display, a retinal-image projector, a heads-up display, a cathode ray tube, a liquid-crystal display, a projection display, an electroluminescent display, a display based on electronic paper, a thin-film transistor display, a high-performance addressing display, an organic light-emitting diode display, a surface-conduction electronic-emitter display, a laser display, a carbon-nanotube display, a quantum-dot display, an interferometric modulator display, a multi-touch touchscreen (which is sometimes referred to as a touch-sensitive display), and/or a display based on another type of display technology or physical phenomenon.
Furthermore, optional feedback subsystem 2334 may include one or more sensor-feedback mechanisms or devices, such as: a vibration mechanism or a vibration actuator (e.g., an eccentric-rotating-mass actuator or a linear-resonant actuator), a light, one or more speakers, etc., which can be used to provide feedback to a user of electronic device 2300 (such as sensory feedback about the status of a user instruction to change the state of one of the components in system 100 in
Electronic device 2300 can be (or can be included in) any electronic device with at least one network interface. For example, electronic device 2300 can be (or can be included in): a desktop computer, a laptop computer, a subnotebook/netbook, a server, a tablet computer, a smartphone, a cellular telephone, a consumer-electronic device (such as a television, a set-top box, audio equipment, video equipment, etc.), a remote control, a portable computing device, an access point, a router, a switch, communication equipment, test equipment, and/or another electronic device.
Although specific components are used to describe electronic device 2300, in alternative embodiments, different components and/or subsystems may be present in electronic device 2300. For example, electronic device 2300 may include one or more additional processing subsystems, memory subsystems, networking subsystems, and/or display subsystems. Moreover, while one of antennas 2320 is shown coupled to a given one of interface circuits 2318, there may be multiple antennas coupled to the given one of interface circuits 2318. For example, an instance of a 3×3 radio may include three antennas. Additionally, one or more of the subsystems may not be present in electronic device 2300. Furthermore, in some embodiments, electronic device 2300 may include one or more additional subsystems that are not shown in
Moreover, the circuits and components in electronic device 2300 may be implemented using any combination of analog and/or digital circuitry, including: bipolar, PMOS and/or NMOS gates or transistors. Furthermore, signals in these embodiments may include digital signals that have approximately discrete values and/or analog signals that have continuous values. Additionally, components and circuits may be single-ended or differential, and power supplies may be unipolar or bipolar.
An integrated circuit may implement some or all of the functionality of networking subsystem 2314, such as one or more radios. Moreover, the integrated circuit may include hardware and/or software mechanisms that are used for transmitting wireless signals from electronic device 2300 and receiving signals at electronic device 2300 from other electronic devices. Aside from the mechanisms herein described, radios are generally known in the art and hence are not described in detail. In general, networking subsystem 2314 and/or the integrated circuit can include any number of radios.
In some embodiments, networking subsystem 2314 and/or the integrated circuit include a configuration mechanism (such as one or more hardware and/or software mechanisms) that configures the radios to transmit and/or receive on a given channel (e.g., a given carrier frequency). For example, in some embodiments, the configuration mechanism can be used to switch the radio from monitoring and/or transmitting on a given channel to monitoring and/or transmitting on a different channel. (Note that ‘monitoring’ as used herein comprises receiving signals from other electronic devices and possibly performing one or more processing operations on the received signals, e.g., determining if the received signal comprises an advertising frame, calculating a performance metric, performing spectral analysis, etc.) Furthermore, networking subsystem 2314 may include at least one port (such as an HDMI port 2332) to receive and/or provide the information in the data stream to A/V display device 114-1 (
While a communication protocol compatible with Wi-Fi was used as an illustrative example, the described embodiments may be used in a variety of network interfaces. Furthermore, while some of the operations in the preceding embodiments were implemented in hardware or software, in general the operations in the preceding embodiments can be implemented in a wide variety of configurations and architectures. Therefore, some or all of the operations in the preceding embodiments may be performed in hardware, in software or both. For example, at least some of the operations in the display technique may be implemented using program module 2322, operating system 2324 (such as drivers for interface circuits 2318) and/or in firmware in interface circuits 2318. Alternatively or additionally, at least some of the operations in the display technique may be implemented in a physical layer, such as hardware in interface circuits 2318.
Moreover, while the preceding embodiments included a touch-sensitive display in the portable electronic device that the user touches (e.g., with a finger or digit, or a stylus), in other embodiments the user interface is display on a display in the portable electronic device and the user interacts with the user interface without making contact or touching the surface of the display. For example, the user's interact(s) with the user interface may be determined using time-of-flight measurements, motion sensing (such as a Doppler measurement) or another non-contact measurement that allows the position, direction of motion and/or speed of the user's finger or digit (or a stylus) relative to position(s) of one or more virtual command icons to be determined. In these embodiments, note that the user may activate a given virtual command icon by performing a gesture (such as ‘tapping’ their finger in the air without making contact with the surface of the display). In some embodiments, the user navigates through the user interface and/or activates/deactivates functions of one of the components in system 100 (
Furthermore, while A/V hub 112 (
While the preceding embodiments illustrated the display technique with audio and/or video content (such as HDMI content), in other embodiments the display technique is used in the context of an arbitrary type of data or information. For example, the display technique may be used with home-automation data. In these embodiments, A/V hub 112 (
Moreover, in the display technique different types of content may be treated similarly. For example, audio may be output and a corresponding image or icon may be displayed in a tiled window. Furthermore, the other operations (such as casting) associated with the user interface and the information displayed on the A/V display device may have the same look and feel and functionality as with HDMI content.
In the preceding description, we refer to ‘some embodiments.’ Note that ‘some embodiments’ describes a subset of all of the possible embodiments, but does not always specify the same subset of embodiments.
The foregoing description is intended to enable any person skilled in the art to make and use the disclosure, and is provided in the context of a particular application and its requirements. Moreover, the foregoing descriptions of embodiments of the present disclosure have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present disclosure to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Additionally, the discussion of the preceding embodiments is not intended to limit the present disclosure. Thus, the present disclosure is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
Claims
1. An audio/video (A/V) hub, comprising:
- an antenna;
- an interface circuit, coupled to the antenna, configured to communicate with a portable electronic device, a first A/V display device, a second A/V display device and a content source; and
- a control circuit, coupled to the interface circuit, configured to: receive, via the interface circuit, user-interface activity information from the portable electronic device, wherein the user-interface activity information specifies a user instruction to cast content associated with the content source from the first A/V display device to the second A/V display device; access device-state information that specifies a current state of the second A/V display device; and perform the casting of the content from the first A/V display device to the second A/V display device using a dynamic number of operations based on the device-state information, so that the content is displayed on a display in the second A/V display device.
2. The A/V hub of claim 1, wherein the content includes high-definition multimedia-interface (HDMI) content and the A/V hub includes a port that can couple to at least one of the first A/V display device and the second A/V display device;
- wherein the port is compatible with an HDMI standard; and
- wherein the interface circuit is coupled to the port.
3. The A/V hub of claim 2, wherein the control circuit is configured to determine the device-state information using a state-detection circuit that is coupled to at least a pin in the port.
4. The A/V hub of claim 1, wherein the user instruction is based on activation of a single virtual command icon displayed in a user interface on a touch-sensitive display in the portable electronic device.
5. The A/V hub of claim 4, wherein the control circuit is configured to:
- generate user-interface information that specifies the user interface that includes virtual command icons, including the virtual command icon, which are associated with the first A/V display device and the second A/V display device; and
- provide the user-interface information to the portable electronic device for display on the touch-sensitive display in the portable electronic device.
6. The A/V hub of claim 1, wherein the user instruction is based on activation of a single physical button.
7. The A/V hub of claim 1, wherein the device-state information is inferred based on device commands previously provided to the second A/V display device.
8. The A/V hub of claim 1, wherein the casting is performed without further user action.
9. The A/V hub of claim 1, wherein, when the device-state information indicates that the second A/V display device is powered on, a power-on operation is excluded from the dynamic number of operations.
10. The A/V hub of claim 1, wherein, when the device-state information indicates that the second A/V display device is set to receive the content from the content source, an operation to set the second A/V display device to receive the content from the content source is excluded from the dynamic number of operations.
11. The A/V hub of claim 1, wherein the first A/V display device and the second A/V display device are associated with different providers.
12. The A/V hub of claim 1, wherein the control circuit comprises:
- memory configured to store a program module; and
- a processor, coupled to the memory, configured to execute the program module, wherein the program module includes instructions for at least some operations performed by the control circuit.
13. A non-transitory computer-program product for use in conjunction with an audio/video (A/V) hub, the computer-program product comprising a computer-readable storage medium that stores a computer-program mechanism that, when executed by the A/V hub, causes the A/V hub to perform casting of content, the computer-program mechanism including:
- instructions for receiving, via an interface circuit in the A/V hub, user-interface activity information from a portable electronic device, wherein the user-interface activity information specifies a user instruction to cast the content associated with a content source from a first A/V display device to a second A/V display device;
- instructions for accessing device-state information that specifies a current state of the second A/V display device; and
- instructions for performing the casting of the content from the first A/V display device to the second A/V display device using a dynamic number of operations based on the device-state information, so that the content is displayed on a display in the second A/V display device.
14. The computer-program product of claim 13, wherein the computer-program mechanism includes instructions for determining the device-state information using a state-detection circuit that is coupled to at least a pin in a port in the A/V hub that can couple to the second A/V display device.
15. The computer-program product of claim 13, wherein the user instruction is based on activation of a single virtual command icon displayed in a user interface on a touch-sensitive display in the portable electronic device; and
- wherein the computer-program mechanism includes: instructions for generating user-interface information that specifies the user interface that includes virtual command icons, including the virtual command icon, which are associated with the first A/V display device and the second A/V display device; and instructions for providing the user-interface information to the portable electronic device for display on the touch-sensitive display in the portable electronic device.
16. The computer-program product of claim 13, wherein the device-state information is inferred based on device commands previously provided to the second A/V display device.
17. The computer-program product of claim 13, wherein the casting is performed without further user action.
18. The computer-program product of claim 13, wherein, when the device-state information indicates that the second A/V display device is powered on, a power-on operation is excluded from the dynamic number of operations; and
- wherein, when the device-state information indicates that the second A/V display device is set to receive the content from the content source, an operation to set the second A/V display device to receive the content from the content source is excluded from the dynamic number of operations.
19. The computer-program product of claim 13, wherein the first A/V display device and the second A/V display device are associated with different providers.
20. An A/V hub-implemented method for performing casting of content, wherein the method comprises:
- receiving, via an interface circuit in the A/V hub, user-interface activity information from a portable electronic device, wherein the user-interface activity information specifies a user instruction to cast the content associated with a content source from a first A/V display device to a second A/V display device;
- accessing device-state information that specifies a current state of the second A/V display device; and
- performing the casting of the content from the first A/V display device to the second A/V display device using a dynamic number of operations based on the device-state information, so that the content is displayed on a display in the second A/V display device.
Type: Application
Filed: Aug 30, 2016
Publication Date: Mar 2, 2017
Inventor: Gaylord Yu (San Francisco, CA)
Application Number: 15/250,941