STAPLES AND STAPLE DELIVERY AND DRILL GUIDES
The present disclosure provides staples, and corresponding staple guides, for applying a compressive force between biological elements. The staples may include a bridge portion and a pair of tines extending from the bridge portion configured for implantation into biological elements. The tines may be spaced a first distance in a first state of the bridge portion. The bridge portion may be elastically deformable into a second state with the pair of tines spaced a second distance that is greater than the first distance and the tines pre-loaded to apply a compressive force therebetween. The guides may include a staple engagement portion operable to maintain the biased state of the staple, and/or a drill guide portion operable to facilitate the formation of apertures spaced the second distance in the biological elements.
Latest NEXTREMITY SOLUTIONS, INC. Patents:
This application is continuation of PCT Application PCT/US2015/031990 filed on May 21, 2015, entitled, Staples and Staple Delivery and Drill Guides, which claims priority to U.S. Provisional Patent Application No. 62/001,261 filed on May 21, 2014, entitled Tissue Staples and Staple Delivery and Drill Guides, and U.S. Provisional Patent Application No. 62/041,350 filed on Aug. 25, 2014, entitled Staples and Staple Delivery and Drill Guides, the entirety of which are hereby expressly incorporated by reference in their entireties.
BACKGROUNDThe present disclosure generally relates to staples or retainers, and particularly relates to staples or retainers and staple or retainer delivery and drill guides.
Some staples are used in place of, or in addition to, sutures to hold biological elements together. For example, staples are commonly used to close openings, incisions, or wounds. Staples are also typically used to attach or couple biological elements together, such as bone segments. Stapling is relatively faster than suturing by hand, and also typically more accurate and consistent. As staples may be more consistent than sutures, they may be less likely to leak blood, air or other biological contents, and allow the ingress of foreign bodies.
Some biological elements may heal or form a single construct quicker and/or more securely when a compressive pressure or force is applied between the biological elements. For example, bone segments may fuse together quicker and more securely when a compressive force is applied and maintained across the junction between the bone segments. Further, when a compressive pressure or force is applied between biological elements, the biological elements may be less painful and more stable during a healing process of the biological elements.
As a result, improved staples that are able to apply a compressive pressure or force between biological elements are needed. Further, corresponding apparatus and systems are needed to quickly and accurately implement such improved staples.
SUMMARY OF THE INVENTIONIn one aspect, the present disclosure provides a staple for applying a compressive force between biological elements. The staple includes a non-linearly extending bridge portion and a pair of tines. The pair of tines extend from the bridge portion and include free ends configured to be implanted into the biological elements. The pair of tines being spaced apart a first distance in a first state of the bridge portion. The bridge portion is elastically deformable into a second state such the pair of tines are spaced apart a second distance that is greater than the first distance.
In some embodiments, the pair of tines may extend from opposing ends of the bridge portion. In some embodiments, the bridge portion may extend between the pair of tines. In some such embodiments, the bridge portion may include a plurality of linearly extending portions that are angled with respect to each other. In some other such embodiments, the bridge portion may define an arcuate shape. In some other such embodiments, the bridge portion may define a serpentine pattern extending between the pair of tines. In some embodiments, in the second state of the bridge, the pair of tines may be pre-loaded to apply a compressive force between the tines.
In some embodiments, the bridge portion may include at least two distinct portions that extend at least partially between the pair of tines. In some embodiments, the at least two distinct portions of the bridge portion may extend along differing non-linear paths between the pair of tines. In some embodiments, at least one of the bridge portion and the pair of tines may have a circular or rectangular cross-section. In some embodiments, the bridge portion may have a cross-section that is larger proximate to the pair of tines than distal to tines. In some embodiments, the bridge portion may include an aperture.
In some embodiments, the bridge portion may extend between the pair of tines on a first side of the pair of tines. In some such embodiments, an intermediate portion of the bridge portion may be positioned furthest from of the pair of tines on the first side. In some embodiments, the bridge portion may extend between the pair of tines on a first side of the pair of tines and a second side of the pair of tines that substantially opposes the first side.
In some embodiments, each tine may extend along a first direction defined between the bridge portion and the free end thereof, and the bridge may portion extend between the tines along a second direction. In some such embodiments, an intermediate portion of the bridge portion between the pair of tines may be positioned further along the second direction toward the free end of the tines. In some other embodiments, the first and second directions may be substantially perpendicular. In some embodiments, each of the tines may include an engagement mechanism positioned on a portion of the tines that substantially faces the other tine of the pair of tines along the first direction. In such some embodiments, the engagement mechanisms of the pairs of tines include at least one barb structure.
In some embodiments, each engagement mechanism of the pairs of tines may include a first portion proximate to the free end of the respect tine and extending toward the bridge portion; a first ramp portion extending from the first portion toward the bridge portion and along the first direction toward the other tine of the pair of tines; a plateau portion extending from the first ramp portion toward the bridge portion; a second ramp portion extending from the plateau portion toward the bridge portion and along the first direction toward the other tine of the pair of tines a distance greater than the first ramp portion; and a relief portion extending from the plateau portion and at least along the first direction away from the other tine of the pair of tine, the intersection of the relief portion and the second ramp portion forming a tip. In some such embodiments, the second ramp portion and the relief portion may form a barb structure. In some other such embodiments, each engagement mechanism of the pairs of tines may further include a plurality of the barb structures. In some other such embodiments, the first portion of the engagement mechanism may include a first portion proximate to the free end of the respect tine that extends toward the bridge portion and along the first direction toward the other tine of the pair of tines, and a second portion that extends from the first portion to the first ramp portion and along the first direction away from the other tine of the pair of tines.
In another aspect, the present disclosure provides a method of compressing two biological elements. The method includes obtaining a staple that includes a bridge portion extending non-linearly between a pair of tines, the tines being spaced a first distance in a first state of the bridge portion. The method also includes forming a first pair of apertures within a pair of biological elements, the first pair of apertures being spaced a second distance that is greater than the first distance. The method further includes elastically deforming the bridge portion of the staple into a second state to increase the space between of the first pair of tines from the first distance to the second distance. The method also includes maintaining the second state of the bridge portion. The method further includes implanting the pair of tines of the staple into the pair of apertures formed in the pair of biological elements. The method also includes releasing the potential energy of the elastic deformation of the second state of the bridge portion to apply a compressive force to the pair of biological elements via the tines.
In some embodiments, the method may further include forming the first pair of apertures within the pair of biological elements via a pair of openings in a drill guide portion of a guide, the pair of openings being spaced the second distance along the first direction. In some embodiments, maintaining the second state of the bridge portion may include engaging the staple with a staple engagement portion of a guide. In some embodiments, releasing the energy of the elastic deformation of the second state of the bridge portion may include disengaging the staple from the staple engagement portion of the guide.
In another aspect, the present disclosure provides a guide for a staple that is configured to apply a compressive force between biological elements. The guide includes a staple engagement portion that is operable to releasably engage and maintain an elastically deformed state of a non-linearly extending bridge portion of a staple to pre-load a compressive force between a pair of tines extending from the bridge portion and spaced a first distance.
In some embodiments, releasing the guide may further include a drill guide portion including a pair of openings spaced the first distance for facilitating the formation of a pair of apertures spaced the first distance in a pair of biological elements. In some embodiments, the guide may further include a handle portion, and the staple engagement portion and the drill guide portion may be provided at opposing longitudinal ends of the handle. In some such embodiments, the staple engagement portion and the drill guide portion may be configured for use in opposing orientations of the handle portion.
In some embodiments, the guide may further include a staple releasably engaged with the staple engagement portion such that a deformed state of a non-linearly extending bridge portion of the stable is maintained and a pair of tines extending from the bridge portion and spaced a first distance are pre-loaded in compressive. In some embodiments, the staple engagement portion may be further operable to elastically deform the bridge portion of a staple from a first state into the elastically deformed state.
These and other objects, features and advantages of this disclosure will become apparent from the following detailed description of the various aspects of the disclosure taken in conjunction with the accompanying drawings.
Each embodiment presented below facilitates the explanation of certain aspects of the disclosure, and should not be interpreted as limiting the scope of the disclosure. Moreover, approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about,” is not limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. When introducing elements of various embodiments, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances, the modified term may sometimes not be appropriate, capable, or suitable. Any examples of operating parameters are not exclusive of other parameters of the disclosed embodiments. Components, aspects, features, configurations, arrangements, uses and the like described, illustrated or otherwise disclosed herein with respect to any particular embodiment may similarly be applied to any other embodiment disclosed herein. Like reference numerals preceded by differing numerals are used throughout the figures and accompanying description of the exemplary staple embodiments of the present disclosure to indicate structurally or functionally like or similar elements, aspects, elements, components, functions, etc.
The present disclosure provides staples that provide compression to a least one biological element. The staples may be used in a wide variety of applications, including but not limited to tissue. For example, the staples described herein may be utilized across a joint or space between biological elements (e.g., tissue or bone segments) to apply compression to the joint. However, the staples may be utilized in numerous non-surgical applications where compression between a joint or the like is desired.
The staples may include an offset bridge extending between a pair of legs or tines that are inserted into tissue. The bridge may be “offset” in that it does not linearly extend between the pair of tines. Rather, the offset bridge may define a shape or pattern that allows the bridge to elastically deform or bias and thereby vary the distance between the pair of tines. In use, the bridge may be deformed before implantation from a neutral or natural state into an extended state with the distance between the pair of tines enlarged or extended (as comparted to the neutral or natural state). In situ, the tines of an elastically deformed or biased offset staple that are in the extended state may be coupled to two biological elements (e.g., two segments of hard or soft tissue) such that the bridge extends over or across a space or joint between the biological elements, and the offset staple thereby applies a compressive force to the two biological elements. When used with tissue, the closure and, potentially, compression of the space/joint between the two biological elements via the staple may facilitate fusion or healing of the biological elements.
The present disclosure also provides offset staple delivery and drill guides, as shown in
As shown in
The bridge is “offset” in that it does not extend linearly directly between the pair of tines. Rather, the offset bridge defines a shape or pattern as it extends between upper ends of the tines that oppose the free ends thereof, as shown in the multitude of exemplary shapes in the figures and discussed below. The pattern, pathway and/or configuration of the offset bridge may be any configuration or arrangement that allows the bridge to elastically deform to vary the distance or space between the pair of tines. The offset bridge may elastically deform or bias such that the tines are spaced further from each other as compared to a neutral or non-biased state of the staple. The offset bridge may be compressed and/or extended in the deformed or biased state as compared to the neutral state. For example, at least a portion of the bridge may be compressed, and at least another portion of the bridge may be extended or enlarged, in the deformed or base state. Such an extended or enlarged state of the tines via elastic deformation of the offset bridge may thereby provide a pre-loaded compressive force acting to “pull” or “push” (depending upon the configuration of the offset bridge) the tines closer together (i.e., to the neutral state of the staple).
In use, the offset bridge of the staple may be elastically deformed or biased into the extended state of the tines (i.e., deformed or biased such that the distance between the pair of tines is enlarged or extended from a neutral or natural position/orientation), and the tines may then be coupled to differing biological elements (e.g., differing portions of a biological segment or differing biological segments). The tines may be coupled to opposing sides of an intersection or junction of two biological elements such that the bridge extends over or across the intersection. In this way, in situ, the bridge may act to force the biological elements toward one another via the tines (i.e., exert a compressive force to the space between the biological elements). This compressive force may substantially close the space and, potentially, apply a compressive force to the closed space.
As shown in
In the first state or neutral state of the offset bridge 12 as shown in solid lines in
In some embodiments, in the extended or biased state (as shown in dashed lines in
As also shown in
The tines 14 may extend substantially linearly, as shown in
In some embodiments, as shown in
As shown in
As shown in
As shown in
As shown in
As shown in the top view of
As shown in
As shown in
As shown in the exemplary staples 810, 910 and 1010 of
As shown in the exemplary staple 1110 of
As shown in
As shown in the exemplary staple 1410 of
As also shown in
Another exemplary staple 1610 according to the present disclosure is shown in
The engagement mechanism 1626 disposed on the tines 1614 of the staple 1610 may be barbs or similar shaped projections configured to engage biological elements and to increase the compressive load of the tines 1614 and/or barbs 1626 to the biological elements as compared to tines 1614 or engagement mechanism 1626 of prior staples, as shown in
As noted above, in situ, a pair of tines 1614 may exert a compressive force to biological elements or any other material that is positioned substantially between the tines 1614. In this way, the interior surface 1660 of the tines 1614 may abut or otherwise transfer at least some of the compressive forces to the biological elements during use. The interior surface 1660 of the tines 1614 of the staple 1610 shown in of
Although
The engagement mechanism 1626 may include a first ramp or sloped portion 1668 of the interior surface 1660 that extends from the first portion 1666 of the interior surface 1660 of the tines 1614, as shown in
Extending from the first ramp portion 1668, the interior surface 1660 and engagement mechanism 1626 of the tines 1614 may further include a plateau portion 1670. The plateau portion 1670 may be substantially planar and may extend substantially vertically (e.g., when the tines 1614 are oriented substantially vertically), as shown in shown in
The interior surface 1660 and engagement mechanism 1626 of the tines 1614 may further include a second ramp or sloped portion 1672 extending from the plateau portion 1670 and towards the bridge 1612, as shown in
The interior surface 1660 and engagement mechanism 1626 of the tines 1614 may also include a first relief portion 1674 extending from the second ramp portion 1672, as shown in
The first ramp portion 1668 and the plateau 1670 positioned adjacent to the first interior barb structure 1675 (e.g., the plateau 1670 and the second ramp portion 1672 of the barb structure 1675 being adjacent) may allow the engagement mechanism 1626 of the staple 1610, in situ, to exert a greater amount of compressive force and a more uniform compressive force to the biological elements or other material positioned substantially between the tines 1614 following implantation of the staple 1610. For example, the ramp portion 1668 and/or the plateau 1670 may act to increase the potential compressive load of the staple 1610, in situ, as compared to an identical staple 1610 with the first interior barb structure 1675 and not the first ramp portion 1668 and/or the plateau 1670.
As shown in
The interior surface 1660 and engagement mechanism 1626 of the tines 1614 may include at least one additional interior barb structure 1675′ between the first interior barb 1675 and the bridge 1612. For example, as shown in
Similar to the staple 1610 of
The outer-facing sides 1764 of the tines 1714 (i.e., the surfaces facing away from the opposing tine 1714) may include portions that are planar or extend parallel to the first portion 1780 and second portion 1782 of the interior surfaces 1760 of the tines 1714, as shown in
As shown in
As shown in
As shown in
The engagement mechanisms 2094 of the staple delivery guide 2092 may be operable to removably engage the corresponding engagement mechanisms 2096 of the staple 2010 and at least selectively maintain the extended or biased state of the staple 2010. In other embodiments, the staple 2010 may not include the engagement mechanisms 2096, and the engagement mechanisms 2094 of the staple delivery guide 2092 may be configured to engage portions of the staple 2010 (e.g., portions of the bridge 2012, tines 2014, etc.) and at least selectively maintain the extended or biased state of the staple 2010. The staple delivery guide 2092 may thereby be operable to maintain a deformed or biased state of the staple 2010 to effectuate implantation of the staple 2010 in the extended or biased state (i.e., implantation of the tines 2014 into biological elements). For example, the staple delivery guide 2092 may engage and maintain the extended or biased state of the staple 2010, and the free ends 2020 of the tines 2014 may be driven or otherwise forced into biological elements by via force applied through the handle 2096 of the staple delivery guide 2092.
After implantation, the engagement mechanisms 2094 of the staple delivery guide 2092 may be selectively disengaged from the corresponding engagement mechanisms 2096 of the staple 2010. For example, the staple delivery guide 2092 and or the staple 2010 may be configured such that relative force above a defined threshold between the engagement mechanisms 2094 of the staple delivery guide 2092 and the staple 2010 may disengage the engagement mechanisms 2094 from the staple 2010. For example, after implantation of the staple 2010, the staple delivery guide 2092 may be forced away from the biological elements and the staple 2010 in a direction substantially opposing an implantation direction (e.g., along an implantation direction defined by the orientation and configuration of the tines 2014) which forces the engagement mechanisms 2094 to disengage from the implanted staple 2010. In some embodiments, after implantation of the staple 2010, the staple delivery guide 2092 may be forced in a direction angled with respect to the implantation direction.
In some embodiments, the staple delivery guide 2092 may also be operable to deform or bias the offset bridge 2012 into the extended or biased state. In some embodiments, the staple 2010 may be provided engaged with the delivery guide 2092 in the extended or biased state to a user. For example, a staple kit may contain one or more delivery guides 2092 with staples 2010 removably engaged thereto in the extended or biased state.
As shown in
On another portion of the handle portion 2196, the staple delivery and drill guide 2192 may include a drill guide portion 2152, as shown in
As shown in
As also shown in
Another exemplary offset staple delivery and drill guide 2292 according to the present disclosure is shown in
The staple engagement portion 2294 of the guide 2292 is configured to removably couple with an offset staple 2210, such as the offset staples described herein. The staple engagement portion 2294 may be configured with a groove, channel or other engagement mechanism configured to removably engage or “hold” an offset staple 2210 in the elastically deformed or biased state of the staple 2210 as shown in
As discussed above, the guide 2292 may also include a drill guide portion 2252 configured to facilitate the formation of apertures in biological elements. The apertures formed via the drill guide portion 2252 may facilitate the insertion of the pair of tines 2214 of the staple 2210 engaged with the staple engagement portion 2294 of the guide 2292 into the biological elements, as described above. The drill guide portion 2252 of the guide 2292 may include at least one pair of openings 2254 to facilitate the formation of the apertures with a drill or other tool, as shown in
The openings 2254 and engagement sleeves 2253 of the of the drill guide portion 2252 may be spaced such that the tines 2214 of a corresponding offset staple 2210 coupled to the staple engagement portion 2294 (in the elastically deformed or biased state of the staple 2210 and/or bridge 2212) are aligned with (and ultimately insert into) apertures formed via the drill guide openings 2254 and engagement sleeves 2253. In this way, the offset staple delivery and drill guide 2292 of
In some embodiments, the staples and guides disclosed herein may include one or be formed of a physiologically compatible material, such as a physiologically compatible metal (e.g., titanium, titanium alloy, stainless steel, nickel titanium (nitinol)), a carbon fiber, a polymer, and combinations thereof. In some embodiments, the staples and guides of the present disclosure may include one or more component or portion that is radiolucent.
It is to be understood that the above description is intended to be illustrative, and not restrictive. Numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the invention as defined by the following claims and the equivalents thereof. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the various embodiments without departing from their scope. While the dimensions and types of materials described herein are intended to define the parameters of the various embodiments, they are by no means limiting and are merely exemplary. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the various embodiments should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Also, the term “operably” in conjunction with terms such as coupled, connected, joined, sealed or the like is used herein to refer to both connections resulting from separate, distinct components being directly or indirectly coupled and components being integrally formed (i.e., one-piece, integral or monolithic). Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure. It is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the systems and techniques described herein may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the disclosure may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims. Further, any aspect, component, function, other feature disclosed herein with respect to a particular staple or guide embodiment may equally be employed with a differing staple or guide embodiment disclosed herein for its same or similar purpose.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Claims
1. A staple for applying a compressive force between biological elements, comprising:
- a non-linearly extending bridge portion; and
- a pair of tines extending from the bridge portion and including free ends configured to be implanted into the biological elements, the pair of tines being spaced apart a first distance in a first state of the bridge portion,
- wherein the bridge portion is elastically deformable into a second state such the pair of tines are spaced apart a second distance that is greater than the first distance.
2. The staple of claim 1, wherein the pair of tines extend from opposing ends of the bridge portion.
3. The staple of claim 1, wherein bridge portion extends between the pair of tines.
4. The staple of claim 3, wherein the bridge portion includes a plurality of linearly extending portions that are angled with respect to each other.
5. The staple of claim 3, wherein the bridge portion defines an arcuate shape.
6. The staple of claim 3, wherein the bridge portion comprises a serpentine pattern extending between the pair of tines.
7. The staple of claim 1, wherein the bridge portion includes at least two distinct portions that extend at least partially between the pair of tines.
8. The staple of claim 1, wherein the at least two distinct portions of the bridge portion extend along differing non-linear paths between the pair of tines.
9. The staple of claim 1, wherein at least one of the bridge portion and the pair of tines have a circular or rectangular cross-section.
10. The staple of claim 1, wherein the bridge portion has a cross-section that is larger proximate to the pair of tines than distal to tines.
11. The staple of claim 1, wherein the bridge portion includes an aperture.
12. The staple of claim 1, wherein the bridge portion extends between the pair of tines on a first side of the pair of tines.
13. The staple of claim 12, wherein an intermediate portion of the bridge portion is positioned furthest from of the pair of tines on the first side.
14. The staple of claim 1, wherein the bridge portion extends between the pair of tines on a first side of the pair of tines and a second side of the pair of tines that substantially opposes the first side.
15. The staple of claim 1, wherein each tine extends along a first direction defined between the bridge portion and the free end thereof, and wherein the bridge portion extends between the tines along a second direction.
16. The staple of claim 15, wherein an intermediate portion of the bridge portion between the pair of tines is positioned further along the second direction toward the free end of the tines.
17. The staple of claim 15, wherein the first and second directions are substantially perpendicular.
18. The staple of claim 1, wherein each of the tines include an engagement mechanism positioned on a portion of the tines that substantially faces the other tine of the pair of tines along the first direction.
19. The staple of claim 18, wherein the engagement mechanisms of the pairs of tines include at least one barb structure.
20. The staple of claim 18, wherein each engagement mechanism of the pairs of tines includes:
- a first portion proximate to the free end of the respect tine and extending toward the bridge portion;
- a first ramp portion extending from the first portion toward the bridge portion and along the first direction toward the other tine of the pair of tines;
- a plateau portion extending from the first ramp portion toward the bridge portion;
- a second ramp portion extending from the plateau portion toward the bridge portion and along the first direction toward the other tine of the pair of tines a distance greater than the first ramp portion; and
- a relief portion extending from the plateau portion and at least along the first direction away from the other tine of the pair of tine, the intersection of the relief portion and the second ramp portion forming a tip.
21. The staple of claim 20, wherein the second ramp portion and the relief portion form a barb structure.
22. The staple of claim 20, wherein each engagement mechanism of the pairs of tines further includes a plurality of the barb structures.
23. The staple of claim 20, wherein the first portion of the engagement mechanism includes a first portion proximate to the free end of the respect tine that extends toward the bridge portion and along the first direction toward the other tine of the pair of tines, and a second portion that extends from the first portion to the first ramp portion and along the first direction away from the other tine of the pair of tines.
24. The staple of claim 1, wherein in the second state of the bridge, the pair of tines are pre-loaded to apply a compressive force between the tines.
25. A method of compressing two biological elements, comprising:
- obtaining a staple that includes a bridge portion extending non-linearly between a pair of tines, the tines being spaced a first distance in a first state of the bridge portion;
- forming a first pair of apertures within a pair of biological elements, the first pair of apertures being spaced a second distance that is greater than the first distance;
- elastically deforming the bridge portion of the staple into a second state to increase the space between of the first pair of tines from the first distance to the second distance;
- maintaining the second state of the bridge portion;
- implanting the pair of tines of the staple into the pair of apertures formed in the pair of biological elements; and
- releasing the potential energy of the elastic deformation of the second state of the bridge portion to apply a compressive force to the pair of biological elements via the tines.
26. The method of claim 25, further comprising forming the first pair of apertures within the pair of biological elements via a pair of openings in a drill guide portion of a guide, the pair of openings being spaced the second distance along the first direction.
27. The method of claim 25, wherein maintaining the second state of the bridge portion comprises engaging the staple with a staple engagement portion of a guide.
28. The method of claim 27, wherein releasing the energy of the elastic deformation of the second state of the bridge portion comprises disengaging the staple from the staple engagement portion of the guide.
29. A guide for a staple that is configured to apply a compressive force between biological elements, comprising:
- a staple engagement portion operable to releasably engage and maintain an elastically deformed state of a non-linearly extending bridge portion of a staple to pre-load a compressive force between a pair of tines extending from the bridge portion and spaced a first distance.
30. The guide of claim 29, further comprising a drill guide portion including a pair of openings spaced the first distance for facilitating the formation of a pair of apertures spaced the first distance in a pair of biological elements.
31. The guide of claim 30, further comprising a handle portion, and wherein the staple engagement portion and the drill guide portion are provided at opposing longitudinal ends of the handle.
32. The guide of claim 31, wherein the staple engagement portion and the drill guide portion are configured for use in opposing orientations of the handle portion.
33. The guide of claim 29, further comprising a staple releasably engaged with the staple engagement portion such that a deformed state of a non-linearly extending bridge portion of the stable is maintained and a pair of tines extending from the bridge portion and spaced a first distance are pre-loaded in compressive.
34. The guide of claim 29, wherein the staple engagement portion is further operable to elastically deform the bridge portion of a staple from a first state into the elastically deformed state.
Type: Application
Filed: Nov 21, 2016
Publication Date: Mar 9, 2017
Patent Grant number: 10420547
Applicant: NEXTREMITY SOLUTIONS, INC. (WARSAW, IN)
Inventors: LON S. WEINER (RUMSON, NJ), JORGE MONTOYA (BERKLEY HEIGHTS, NJ), JOHN R. PEPPER (CHESHIRE, CT), STUART D. KATCHIS (SCARSDALE, NY), LAWRENCE KIEFER (NEWARK, NJ)
Application Number: 15/357,323