Cutting Method for Inner Circumferential Face or Outer Circumferential Face of Work
A cutting method in which, in cutting an inner circumferential face or an outer circumferential face of a work based on turning of a main shaft around a predetermined position serving as a center, control is enabled to make a cutting velocity constant. To achieve the object, a cutting method is provided for an inner circumferential face or an outer circumferential face of a work, using a cutting tool projecting from a main shaft which turns around a predetermined position serving as a center and for which a turning radius is adjustable, wherein, in the case that a turning angular velocity of the main shaft is represented as ω, a distance from a turning center to a tip of the cutting tool is represented as R, and a cutting velocity of the tip of the cutting tool is set to a constant value C, making the cutting velocity of the cutting tool is made constant by performing control such that ω changes in association with a change in the distance R so that ω = ( C 2 - R . 2 ) 1 2 / R is formulated (where {dot over (R)} denotes a time differential of the distance R), thus providing an even cut face.
The present invention relates to a cutting method for an inner circumferential face and an outer circumferential face of a work using a cutting tool of a main shaft which turns around a predetermined position serving as a center and for which a turning radius is adjustable, the cutting being performed by making a cutting velocity of the cutting tool constant.
The “turning of the main shaft” is not limited to rotation of the main shaft along a central axis thereof but refers to rotations including revolution of the main shaft around the predetermined position serving as a center.
What is called an orbit machining that a main shaft turns around a predetermined center has been adopted as a method for forming an inner circumferential face and an outer circumferential face of a work into curved faces variously shaped like cylinders, tapered shapes, flanges, or the like, as disclosed in Patent Literature 1. This machining method is technically advantageous in that machining can be achieved at whatever position a table supporting the work is located.
A cutting velocity needs to be constant in order to provide an even cut face. However, for the orbit machining method according to the related art as is described above, no configuration that makes a cutting velocity constant has been adopted.
Patent Literature 2 discloses a configuration, for cutting method of gear shaped object, needed to maintain a constant cutting velocity from a cutting start point to a cutting end point.
However, Patent Literature 2 only discloses that the cutting velocity is made constant simply under the control of an NC lathe and fails to clarify what qualitative or quantitative criteria are used to make a cutting velocity constant.
Patent Literature 3 discloses that a CAM controls the number of rotations of the main shaft to obtain a constant cutting velocity. However, Patent Literature 3 also fails to clarify a specific configuration concerning what criteria are used to make a cutting velocity constant.
Furthermore, Patent Literatures 2 and 3 are predicted on cutting based on rotation of the main shaft along a central shaft thereof and do not disclose or suggest that the cutting velocity is constant when the main shaft turns around a predetermined position serving as a center as is the case with the present invention.
Thus, for the cutting of the inner circumferential face or the outer circumferential face of the work based on turning of the main shaft, no cutting method has been proposed in which the cutting velocity of the cutting tool is controlled to be constant.
RELATED ART LITERATURE Patent LiteraturePatent Literature 1: JP H08-126938 A
Patent Literature 2: JP 2000-190126 A
Patent Literature 3: JP 2001-113443 A
BRIEF SUMMARY OF THE INVENTIONAccording to the present invention, there is provided a cutting method in which, in cutting an inner circumferential face or an outer circumferential face of a work based on turning of a main shaft around a predetermined position serving as a center, control is enabled to make a cutting velocity constant.
According to the present invention, there are further provided a basic configuration (1); a cutting method for an inner circumferential face or an outer circumferential face of a work using a cutting tool projecting from a main shaft which turns around a predetermined position serving as a center and for which a turning radius is adjustable, wherein, in the case that a turning angular velocity of the main shaft is represented as ω, a distance from a turning center to a tip of the cutting tool is represented as R, and a cutting velocity of the tip of the cutting tool is set to a constant value C, the cutting velocity of the cutting tool is made constant by performing control such that ω changes in association with a change in the distance R so that
is formulated (where R denotes a time differential of the distance R), and a basic configuration ({dot over (2)}) the cutting method for an inner circumferential face or an outer circumferential face of the work of the basic configuration (1), wherein a position of the turning center of the main shaft is movable in an orthogonal direction or an oblique direction to a plane orthogonal to the turning central axis, and when the position of the turning center of the main shaft is movable in the oblique direction, a supporting position of the work on a table on which the work is placed is also moved in association with the movement in the oblique direction to maintain a state where cutting is enabled.
In the aspect of the present invention, the basic configuration (1) makes a cutting velocity constant to provide an even cut face, while the basic configuration (2) enables the inner circumferential face or the outer circumferential face of the work to be formed into any of various curved faces.
That is, the aspect of the present invention eliminates the need for control based on complicated calculations or operations as disclosed in Patent Literature 2 and 3.
As is denoted in
In the present invention, elements to be controlled are parameters indicative of the turning angular velocity of the main shaft 1 with respect to the turning center, and the turning radius of the main shaft 1 (these elements correspond to the basic configuration (1)), and further the moving position and the moving velocity of the turning center in the orthogonal direction or the oblique direction with respect to a plane orthogonal to a central axis 6 for turning of the main shaft 1 (the above-described elements correspond to the basic configuration (2)). For the basic configuration (1), the number of the parameters is two, and for the basic configuration (2), the number of the parameters is three.
The main shaft 1 and the cutting tool 2 make turning motion around a predetermined central position. A tip of the cutting tool 2 cuts an inner circumferential face of the work 3 as is denoted in
That is, circumferential curved faces in
Criteria based on expressions for the basic configuration (1) and corresponding to a technical demand for provision of an even cut face will be described below.
As is denoted in
{dot over (X)}={dot over (R)} cos θ−R{dot over (θ)} sin θ,{dot over (Y)}={dot over (R)} sin θ+R{dot over (θ)} cos θ
is formulated (dots over reference characters indicate time differentials).
Therefore, when the cutting velocity is represented as V,
V2={dot over (X)}2+{dot over (Y)}2={dot over (R)}2+{dot over (R)}2{dot over (θ)}2
is formulated.
According to the above-described relational expressions, wherein, in the case that the turning angular velocity of the main shaft 1 is represented as ω1 and the rotating angular velocity of the table 4 is represented as ω2, the constant value C may be preset and controlled to formulate
in association with the distance R and {dot over (R)} that is a time differential of the distance R, in order to allow the tip of the cutting tool 2 to operate at a constant cutting velocity V.
In the present invention, to form each of the inner and outer circumferential faces into any of various cutting shapes, the following embodiment may be adopted. That is, as shown in the basic configuration (2), the position of the turning center of the main shaft 1 is movable in an orthogonal direction or an oblique direction to the plane orthogonal to the turning central axis 6. When the position of the turning center of the main shaft 1 is movable in the oblique direction, a supporting position of the work 3 on the table 4 on which the work 3 is placed is also moved in association with the movement in the oblique direction to maintain a state where cutting is enabled.
When the turning center of the main shaft 1 is movable in the oblique direction as is described above, the turning central axis 6 of the main shaft 1 moves by itself. Thus, the supporting position of the work 3 on the table 4 on which the work 3 is placed is forced to move with synchronized state to the position of the turning center in order to maintain a state where the cutting tool 2 can cut the work 3.
When the tapered shape has circumferential curved faces at opposite ends thereof, the turning radius may be approximately constant at an initial stage and a final stage of turning as is denoted in
As is apparent from
The above-described drawings all denote that the turning center of the main shaft 1 is moved in the direction orthogonal to the plane orthogonal to the turning central axis 6, that is, in the same direction as that of the turning central axis 6. When the turning center is moved in the direction oblique to the plane, a tapered shape is obtained which generally changes in the oblique direction.
Alternatively to the embodiments denoted in
(1) In an inner region of the work 3 that is close to the turning center, the distance from the turning center to the tip of the cutting tool 2 is sequentially increased to move the tip along a helical locus, in the case that the distance reaches a maximum state, the maximum state is maintained to form an inner wall in a ring shape.
(2) In an outer region of the work 3 that is away from the turning center, the distance from the turning center to the tip of the cutting tool 2 is sequentially reduced to move the tip along a helical locus, in the case that the distance reaches a minimum state, the minimum state is maintained to form an outer wall in a ring shape.
In the above-described embodiment, the ring shape can be quickly obtained.
Thus, in the present invention, the work 3 is cut with a summation of the cutting velocity to allow the inner circumferential face and the outer circumferential face to be quickly formed. The need for special control for the summation is not required to achieve simple control.
ExampleIn an example, a plurality of main shafts 1 and cutting tools 2 projecting from the respective main shafts 1 are adopted.
In this example, the plurality of cutting tools 2 performs cutting to further increase the cutting velocity, while the properties of the individual cutting tools 2 related to the cut face are averaged to allow a more even cut face to be provided.
As is described above, the present invention enables the inner circumferential face and the outer circumferential face of the work to be cut into any of various shapes with even cut faces at a constant cutting velocity. Thus, the present invention has enormous applicability.
Claims
1. A cutting method for an inner circumferential face or an outer circumferential face of a work using a cutting tool projecting from a main shaft which turns around a predetermined position serving as a center and for which a turning radius is adjustable, comprising the step of: ω = ( C 2 - R. 2 ) 1 2 / R is denoted (where {dot over (R)} denotes a time differential of the distance R).
- in the case that a turning angular velocity of the main shaft is represented as ω, a distance from a turning center to a tip of the cutting tool is represented as R, and a cutting velocity of the tip of the cutting tool is set to a constant value C, making the cutting velocity of the cutting tool constant by performing control such that ω changes in association with a change in the distance R so that
2. The cutting method for an inner circumferential face or an outer circumferential face of a work according to claim 1,
- wherein a position of the turning center of the main shaft is movable in one of: an orthogonal direction and an oblique direction to a plane orthogonal to the turning central axis, and
- when the position of the turning center of the main shaft is movable in the oblique direction, moving a supporting position of the work on a table on which the work is placed in association with the movement in the oblique direction to maintain a state where cutting is enabled.
3. The cutting method for an inner circumferential face or an outer circumferential face of a work according to claim 2, further comprising the step of moving the position of the turning center of the main shaft in one of the orthogonal direction and the oblique direction, while the turning radius is sequentially changed.
4. The cutting method for an inner circumferential face or an outer circumferential face of a work according to claim 2, further comprising the step of moving the position of the turning center of the main shaft in one of the orthogonal direction and the oblique direction, while the turning radius is changed in a stepwise manner.
5. The cutting method for an inner circumferential face or an outer circumferential face of a work according to claim 1, wherein a position of the turning center of the main shaft is not moved in the orthogonal direction nor the oblique direction, and further comprising the step of forming a ring shape by the following steps:
- (1) in an inner region of the work that is close to the turning center, sequentially increasing the distance from the turning center to the tip of the cutting tool to move the tip along a helical locus, in the case that the distance reaches a maximum state, so that the maximum state is maintained to form an inner wall in a ring shape, and
- (2) In an outer region of the work that is away from the turning center, sequentially reducing the distance from the turning center to the tip of the cutting tool to move the tip along a helical locus, in the case that the distance reaches a minimum state, so that the minimum state is maintained to form an outer wall in a ring shape.
6. The cutting method for an inner circumferential face or an outer circumferential face of a work according to claim 1, further comprising the step of adopting a plurality of main shafts and cutting tools projecting from the respective main shafts.
Type: Application
Filed: Mar 14, 2016
Publication Date: Apr 6, 2017
Inventors: Kouichi Amaya (Fukui City), Toshihiko Kato (Fukui City), Yasuori Takezawa (Fukui City), Zempoh Shirahama (Fukui City), Tetsuya Igarashi (Fukui City), Shuichi Ohashi (Fukui City)
Application Number: 15/069,156