ORAL APPLIANCE FOR TREATMENT OF SNORING AND SLEEP APNEA
An oral appliance (1) is provided for the treatment of snoring and obstructive sleep apnea. The oral appliance (1) includes an upper tray (10) adaptable to conform to a user's maxillary dentition and a plurality of lower trays (40), each of the lower trays (40) adaptable to conform to the user's mandibular dentition. At least some of the lower trays (40) are structured to engage the upper tray (10), each of the lower trays (40) are structured to impart a different fixed amount of mandibular advancement.
This application is a Divisional of Ser. No. 13/468,177, filed May 10, 2012 which is a Divisional of Ser. No. 11/801,994, filed May 11, 2007, now U.S. Pat. No. 8,205,617, Issued Jun. 26, 2012 and claims priority under 35 U.S.C. §119(e) from provisional U.S. patent application No. 60/813,405, filed Jun. 14, 2006 the contents of which are incorporated herein by reference.
TECHNICAL FIELDThe present invention pertains to an oral appliance and more particularly to an oral appliance for the treatment of snoring and sleep apnea.
BACKGROUND OF THE INVENTIONIndividuals suffering from sleep-related breathing disorders, such as excessive snoring and sleep apnea, have an increased risk of experiencing severe health problems. Studies have shown, for instance, that individuals suffering from obstructive sleep apnea (OSA) are more likely to have a stroke, heart failure, hypertension, and depression, among others. OSA is characterized by repetitive collapse of the upper airway during sleep. This yields episodes of reduced airflow, hypoxemia (reduced oxygen level in the blood), hypercapnia (elevated circulating carbon dioxide, CO2), and arousal from sleep to reestablish a stable airway.
Severe sleep-related breathing disorders may require positive airway pressure (PAP) therapy. Less severe sleep-related breathing disorders, however, may be treated with other therapies or devices, such as an oral appliance. Generally, an oral appliance includes upper and lower dental trays coupled together in such a way as to impart forward advancement of the user's mandible (i.e., lower jaw) relative to the user's maxilla (upper jaw). Accordingly, an oral appliance may also be referred to as a “mandibular advancement device” or “MAD”. Forward advancement of the mandible helps prevent the soft tissue of the tongue and the throat from collapsing into, and thus blocking, the user's airway during sleep.
Achieving the correct amount of forward mandibular advancement with an oral appliance is important. A user, for example, may continue to suffer from a sleep-related breathing disorder if the forward mandibular advancement imparted by the oral appliance is inadequate (e.g., the soft tissue of the user's tongue and throat are not prevented from collapsing into the user's airway). On the other hand, if the forward mandibular advancement imparted by the oral appliance is excessive, the user may experience unnecessary discomfort. The discomfort may cause undesirable arousal from sleep and/or cause the user to stop wearing the oral appliance all together.
Some oral appliances, such as those described in U.S. Pat. Nos. 5,829,441, 5,365,945, and 5,868,138, include mechanisms for adjusting the amount of mandibular advancement provided by the oral appliance. These and similar oral appliances, however, are expensive, complicated to manufacture, and have adjustment mechanisms are difficult to operate. Additionally, oral appliances incorporating adjustment mechanisms tend to be bulky, thereby adversely impacting the user's comfort level. Furthermore, known oral appliances are difficult to properly fit, do not allow sufficient vertical or horizontal movement of the jaw when worn, and are not flexible enough to allow a “one size fits all” application (e.g., the oral appliance may not be appropriate for both a user having a relatively small dental arch and a user having a relatively large dental arch).
Accordingly, a need exists for an improved oral appliance for the treatment of snoring and sleep apnea which overcomes these and other problems associated with known oral appliances.
DISCLOSURE OF THE INVENTIONIn accordance with an aspect of the present invention, an oral appliance system comprises an upper tray and a plurality of lower trays. The upper tray is adaptable to conform to a user's maxillary dentition and each of the lower trays is adaptable to conform to the user's mandibular dentition. The lower trays are structured to engage the upper tray and each of the lower trays is structured to impart a different fixed amount of mandibular advancement and/or different amount of vertical height.
According to another aspect of the present invention, an oral appliance tray comprises a moldable material and a support member. The moldable material includes a channel structured to align a user's dentition within the center thereof. The channel has a substantially V-shaped portion structured to engage an anterior portion of a user's dentition and a substantially U-shaped portion structured to engage a posterior portion of the user's dentition. The support member is structured to carry the moldable material thereon.
According to another aspect of the present invention, an oral appliance tray comprises a moldable material and a support member. The support member has a base, an outer wall, and an inner wall, which define a region adapted to couple with the moldable material. A portion of the moldable material may extend out of the region.
According to another aspect of the present invention, an oral appliance tray comprises a moldable material and a support member structured to carry a portion of the moldable material. The support member has a ramp adapted to promote alignment of a user's dentition relative to the moldable material.
According to another aspect of the present invention, an oral appliance assembly comprises an oral appliance tray adaptable to conform to a user's dentition and a holding tray adapted to promote proper insertion of the oral appliance tray into a user's mouth. The holding tray comprises a generally U-shaped frame structured to couple with the oral appliance tray and a handle located substantially at the vertex of the holding tray frame.
According to another aspect of the present invention, a method for effecting the patency of a user's airway comprises providing an oral appliance assembly comprising an upper tray adaptable to conform to a user's maxillary dentition and a plurality of lower trays each adaptable to conform to the user's mandibular dentition, wherein each of at least some of the lower trays is structured to couple with the upper tray to impart a different fixed amount of mandibular advancement, enabling a selection of at least one of the plurality of lower trays, and enabling coupling of the upper tray with a selected one of the lower trays to form an oral appliance having a desired amount of mandibular advancement.
According to another aspect of the present invention, an oral appliance tray comprises a generally U-shaped support member having a first width relative to a vertex thereof that is between approximately 0.30 inches (7.62 millimeters) and approximately 0.53 inches (13.46 millimeters) and having a second width relative to at least one of a first leg and a second leg thereof that is between approximately 0.50 inches (12.7 millimeters) and approximately 0.73 inches (18.54 millimeters).
According to another aspect of the present invention, a holding tray adapted to promote proper insertion of an oral appliance into a user's mouth comprises a generally U-shaped frame and a handle. The frame is structured to engage the oral appliance and has a base with an outer wall extending therefrom. The handle, projecting from a front surface of the outer wall, is substantially located at the vertex of the U-shaped frame.
According to another aspect of the present invention, a method for fitting an oral appliance comprises taking an impression of a user's dentition, creating a casting of the user's dentition using the impression, heating the casting to a predetermined temperature, and placing the heated casting in an oral appliance having a moldable material.
According to another aspect of the present invention, a method for fitting an oral appliance comprises enabling an oral appliance tray to couple with a holding tray, the oral appliance tray having a moldable material and the holding tray having a handle, enabling the oral appliance tray to be submerged within a heating medium without submerging at least a portion of the handle, enabling removal of the oral appliance tray from the heating medium using the handle, enabling insertion of the oral appliance tray into a user's mouth using the handle, and enabling the user to make an impression of a portion of the user's dentition.
These and other objects, features, and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention.
Directional phrases used herein, such as, for example, left, right, clockwise, counterclockwise, top, bottom, up, down, and derivatives thereof, relate to the orientation of the elements shown in the drawings and are not limiting upon the claims unless expressly recited therein.
As employed herein, the term “number” shall mean one or more than one and the singular form of “a”, “an”, and “the” include plural referents unless the context clearly indicates otherwise.
As employed herein, the statement that two or more parts are “connected” or “coupled” together shall mean that the parts are joined together either directly or joined together through one or more intermediate parts. Further, as employed herein, the statement that two or more parts are “attached” shall mean that the parts are joined together directly.
As employed herein, the term “mandibular advancement” and derivatives thereof refer to the anterior movement of a user's mandible (lower jaw) relative to the user's maxilla (upper jaw). Lateral movement, as employed herein, refers to the left/right movement of the mandible relative to a sagittal plane passing through the interproximal space of the maxillary centrals. Vertical movement, as employed herein, refers to an increase/decrease of the spacing between the occlusal surfaces of the mandibular dentition and the occlusal surfaces of the maxillary dentition.
An oral appliance 1 according to one embodiment is shown in
A top plan view of upper support member 11 without upper moldable material 24 coupled thereto, for one embodiment, is illustrated in
Traveling from leg 16b to leg 16c along base 12, bonding surface 13 generally lies on a single plane (i.e., bonding surface 13 is generally flat). In an alternative embodiment, however, it is contemplated that bonding surface 13 may be somewhat curved in order to better accommodate the Curve of Spee associated with a user's dentition. Specifically, it is contemplated that bonding surface 13 is somewhat concave to accommodate the convex Curve of Spee associated with a user's maxillary dentition.
Generally, upper support member 11 has a first width (A) at vertex 16a that is between approximately 0.30 inches (7.62 millimeters) and approximately 0.53 inches (13.46 millimeters). Upper support member 11 also has, relative to at least one of first leg 16b and second leg 16c, a second width (B) that is between approximately 0.50 inches (12.70 millimeters) and approximately 0.73 inches (18.54 millimeters). The distance between the outer portion of first leg 16b and the outer portion of second leg 16c is a third width (C) that is between approximately 2.0 inches (50.8 millimeters) and approximately 2.80 inches (71.12 millimeters). In the current embodiment, first width (A) is approximately 0.41 inches (10.41 millimeters), second width (B) is approximately 0.60 inches (15.24 millimeters), and third width (C) is approximately 2.27 inches (57.66 millimeters).
Upper support member 11 is sized such that the ratio between first width (A) and second width (B) is between approximately 0.60 and approximately 0.73 and the ratio between first width (A) and third width (C) is between approximately 0.17 and approximately 0.19. In the current embodiment, for example, the ratio between first width (A) and second width (B) is approximately 0.68 and the ratio between first width (A) and third width (C) is approximately 0.18.
Referring briefly to
In the current embodiment, first height (D) is approximately 0.31 inches (7.87 millimeters), second height (E) is approximately 0.032 inches (0.813 millimeters), the ratio between second height (E) and first height (D) is approximately 0.10, and maximum height (F) is approximately 0.37 inches (9.40 millimeters).
Upper support member 11 may be constructed of any rigid or semi-rigid material suitable for dental use. In the current embodiment, upper support member 11 has a density that is approximately between 0.040 lb/in3 and 0.050 lb/in3, a volume that is between approximately 0.12 in3 and 0.22 in3 and a weight that is between approximately 0.0071 lbs and 0.0081 lbs. For example, upper support member 11 is constructed of a polycarbonate resin thermoplastic, such as LEXAN, and has a density of approximately 0.045 lb/in3, a volume of approximately 0.17 in3, and a weight of approximately 0.0076 lbs.
Returning to
Upper moldable material 24 is not restricted within upper region 21. As seen for example in
A moldable material may be selected which yields when heated, thereby conforming to the user's dentition during fitting, and re-hardens when cooled, thereby retaining the shape of the user's dentition imparted during fitting. Such a moldable material is sometimes referred to as a “boil and bite” material. In the current embodiment, for example, moldable material 24 is an ethylene-vinyl acetate copolymer resin, such as ELVAX, having a density of approximately 0.035 lb/in3, a volume of approximately 0.75 in3, and a weight of approximately 0.0263 lbs.
Oral appliance 1 incorporating an upper tray 10 provides benefits over other oral appliances which have an upper tray comprised solely of a moldable material or comprised of a moldable material which is substantially completely contained within a support member. For example, upper support member 11 is smaller than other upper support members which completely enclose their moldable material. Furthermore, by allowing a portion of upper moldable material 24 to extend out from upper support member 11, upper tray 10 is better able to conform to the user's maxillary dentition during the fitting process. More specifically, moldable material 24 is afforded a greater range of flow allowing moldable material 24 to conform to the user's dentition even if the user's dentition includes one or more misaligned teeth. Moldable material 24, such as that extending from the end of bonding surface 13, can be manipulated during the fitting process to conform to the user's dentition. Additionally, unlike other oral appliances which are comprised solely of a moldable material, upper support member 11 provides additional support to moldable material 24 during and after the fitting process. For these and other reasons, upper support member 11 provides increased patient comfort and allows upper tray 10 to fit a greater range of dental arch sizes.
Referring now to
A top plan view of lower support member 41 without lower moldable material 54 coupled thereto, for one embodiment, is illustrated in
Traveling from leg 46b to leg 46c along base 42, bonding surface 43 generally lies on a single plane (i.e., bonding surface 43 is generally flat). In an alternative embodiment, however, it is contemplated that bonding surface 43 may be somewhat curved in order to better accommodate the Curve of Spee associated with a user's dentition. Specifically, it is contemplated that bonding surface 43 is somewhat convex to accommodate the concave Curve of Spee associated with a user's mandibular dentition.
In the current embodiment, legs 46b, 46c of lower support member 41 also include a number of bite pads 59 which are structured to help provide the desired vertical spacing (e.g., 10 millimeters of vertical spacing). Bite pads 59 may be sized to promote the proper bite angle during fitting such that of the user's bite pressure is distributed across the entire occlusal surface 44 of base 42 during the fitting process. In the current embodiment, bite pads 59 are similarly sized, however, different sized bite pads 59 are within the scope of the present invention
Generally, lower support member 41 has a first width (A′) at vertex 46a that is between approximately 0.30 inches (7.62 millimeters) and approximately 0.53 inches (13.46 millimeters). Lower support member 41 also has, relative to at least one of first leg 46b and second leg 46c, a second width (B′) that is between approximately 0.50 inches (12.70 millimeters) and approximately 0.73 inches (18.54 millimeters). The distance between the outer portion of first leg 46b and the outer portion of second leg 46c is a third width (C′) that is between approximately 2.0 inches (50.8 millimeters) and approximately 2.80 inches (71.12 millimeters). In the current embodiment, first width (A′) is approximately 0.41 inches (10.41 millimeters), second width (B′) is approximately 0.60 inches (15.24 millimeters), and third width (C′) is approximately 2.27 inches (57.66 millimeters).
In the current embodiment, lower support member 41 is sized such that the ratio between first width (A′) and second width (B′) is between approximately 0.60 and approximately 0.73 and the ratio between first width (A′) and third width (C′) is between approximately 0.17 and 0.19. In the current embodiment, for example, the ratio between first width (A′) and second width (B′) is approximately 0.68 and the ratio between first width (A′) and third width (C′) is approximately 0.18.
Referring briefly to
In the current embodiment, first height (D′) is approximately 0.32 inches (8.13 millimeters), second height (E′) is approximately 0.032 inches (0.813 millimeters), the ratio between second height (E′) and first height (D′) is approximately 0.1, and maximum height (F′) is approximately 0.42 inches (10.67 millimeters).
Lower support member 41 may be constructed of any suitable rigid or semi-rigid material. In the current embodiment, lower support member 41 has a density that is approximately between 0.040 lb/in3 and 0.050 lb/in3, a volume that is between approximately 0.12 in3 and 0.22 in3 and a weight that is between approximately 0.0071 lbs and 0.0081 lbs. For example, lower support member 41 is constructed of a polycarbonate resin thermoplastic, such as LEXAN, having a density of approximately 0.045 lb/in3, a volume of approximately 0.18 in3, and a weight of approximately 0.0081 lbs.
As mentioned above, upper tray 10 includes a ramp 30 (see
Returning to
Lower moldable material 54 is not restricted within lower region 51. As seen for example in
As discussed above in conjunction with upper moldable material 24, a lower moldable material 54 may be selected which yields when heated, thereby conforming to the user's dentition during fitting, and re-hardens when cooled, thereby retaining the shape of the user's dentition imparted during fitting (i.e., a “boil and bite” material). In the current embodiment, for example, lower moldable material 54 is an ethylene-vinyl acetate copolymer resin, such as ELVAX, having a density of approximately 0.035 lb/in3, a volume of approximately 0.66 in3, and a weight of approximately 0.0231 lbs.
Oral appliance 1 incorporating a lower tray 40 provides the same benefits over other oral appliances which have a lower tray comprised solely of a moldable material or comprised of a moldable material which is substantially completely contained within a support member as were discussed above in conjunction with upper tray 10. Accordingly, for these and other reasons, lower support member 41 provides increased patient comfort and allows lower tray 40 to fit a greater range of dental arch sizes.
Referring now to
Although the prior discussion of upper moldable material 24 and lower moldable material 54 was directed to the use of ELVAX, it should be noted that other materials and/or combinations of materials may be employed. For example, it is contemplated that upper moldable material 24 and/or lower moldable material 54 are comprised of a polycaprolactone polymer or other aliphatic polyester (for example and without limitation, TONE P-700, TONE P-767 or TONE P-787 polycaprolactone polymers manufactured by Union Carbide Corporation). U.S. Pat. Nos. 6,247,926 and 5,807,100, incorporated herein by reference, provides examples of the use of such materials.
As another example, it is contemplated that upper moldable material 24 and/or lower moldable material 54 are comprised of a combination of ELVAX and a polycaprolactone polymer or other aliphatic polyester Both the ELVAX and the polycaprolactone yield when heated. Accordingly, these materials are better able to flow around the user's dentition during the fitting process thereby providing a custom fit. After cooling, the ELVAX remains relatively flexible and promotes retention of the oral appliance 1 within the patient's mouth. The polycaprolactone, however, becomes relatively rigid after cooling. Accordingly, the polycaprolactone provides additional support to the ELVAX; support that may be lacking when the ELVAX is used alone. U.S. Pat. No. 5,051,476, incorporated herein by reference, provides one such example of the use of ELVAX and polycaprolactone.
The specific arrangement of the ELVAX and polycaprolactone may be varied while remaining within the scope of the present invention.
Although the engagement of upper tray 10 with lower tray 40 are described in conjunction with slotted engagement member 22 and elongated engagement member 52 (i.e., a hook and slot arrangement), alternative engagement mechanisms may be employed while remaining within the scope of the present invention. Furthermore, the specific arrangement of the engagement members may be altered while remaining within the scope of the present invention. For example, slotted engagement member 22 may extend from lower support member 41 of lower tray 40 and the elongated support member 52 may extend from upper support member 11. As further examples, and without limitation, the length of elongated engagement member 52, the size of hook end 52b, and the orientation of hook end 52b may be altered while remaining within the scope of the present invention.
In the current embodiment, slotted engagement member 22 includes a frangible portion 23 (see
As discussed above, each of the multiple lower trays 40 is structured to impart a different fixed amount of mandibular advancement when engaged with upper tray 10. In the current embodiment, the amount of mandibular advancement imparted by each lower tray 40 is determined by the fixed placement of elongated engagement member 52 relative to, for example, vertex 46a of the outer wall front surface 46 at vertex 46a.
For lower tray 40 illustrated in
Lower tray 40′ illustrated in
Because upper tray 10 and lower tray 40 are asymmetric, the amount of mandibular advancement may also be varied by flipping upper tray 10 and lower tray 40. For example, when upper tray 10 is fitted to a user's maxillary dentition and lower tray 40 is fitted to the user's mandibular dentition; oral appliance 1 imparts an amount of mandibular advancement to cause the user's upper central teeth to be aligned with the user's lower central teeth. However, if upper tray 10 is fitted to the user's mandibular dentition and lower tray 40 is fitted to the user's maxillary dentition; oral appliance 1 imparts an amount of mandibular advancement to cause the user's lower central teeth to extend approximately 0.197 inches (5 millimeters) out from the user's central upper teeth (i.e., to cause a Class III malocclusion or “underbite”). Accordingly, a small number of lower trays may be needed to obtain a larger range of mandibular advancement.
Oral appliance 1 may be part of an assembly/system which includes a number of holding trays which are structured to couple with the upper and lower trays.
In the current embodiment, base 78 includes a gate 77 which is structured to accommodate elongated engagement member 52. An ejector pin 76 is employed to maintain lower tray 40 in contact with holding tray 70. In the current embodiment, ejector pin 76 is located along the posterior side of gate 77. Accordingly, when lower tray 40 and holding tray 70 are coupled, ejector pin 76 engages inner wall 48 such that lower tray 40 “snaps-into” holding tray 70.
In the current embodiment, holding tray 70 also includes a handle 72 which projects from a front surface 80 of outer wall 79 at vertex 73 of frame 71. Handle 70 may be employed by the user to suspend lower tray 40 within a heating medium during the fitting process. For “boil and bite” moldable materials, for example, a user may grasp and hold handle 72 while moldable material 54 is submerged within the boiling water. Once moldable material 54 has yielded (e.g., has become soft enough to be reshaped or molded), the user may remove lower tray 40 from the boiling water and insert lower tray 40 into their mouth. Holding tray 70 promotes proper insertion of lower tray 40 into a user's mouth during the fitting process. Specifically, a user employing holding tray 70 has the additional leverage provided by handle 72 to better align lower tray 40 within their mouth.
An occlusal surface 81 of base 78 may include a number of bite pads 75 located thereon. Bite pads 75 may be constructed of an elastomeric material that increases the user's comfort during the fitting process although other materials are contemplated. Additionally, bite pads 75 may be sized to promote the proper bite angle during fitting such that of the user's bite pressure is distributed across the entire occlusal surface 81 of base 78 during the fitting process. In the current embodiment, bite pads 75 are similarly sized, however, different sized bite pads 75 are within the scope of the present invention.
It should be apparent that modifications may be made to holding tray 70 while remaining within the scope of the present invention. For example and without limitation, holding tray 70 may have an ejector pin 76 located along the anterior side of gate 77 and an inner wall which engages outer wall 45 such that lower tray 40 “snaps-into” holding tray 70. Although the discussion associated with
Operational control is passed to operation 92 after the oral appliance assembly is provided in operation 91. At Operation 92, at least one of the plurality of lower trays is selected. In the current embodiment, a lower tray may be selected based upon the particular amount of mandibular advancement that is desired. For example and without limitation, lower tray 40 is structured to provide a fixed amount of mandibular advancement to bring the user's lower central teeth into alignment with the user's upper central teeth, whereas lower tray 40′ is structured to provide a fixed amount of mandibular advancement such that the user's lower central teeth extend approximately 2.5 millimeters out from the user's upper central teeth (i.e., lower tray 40′ imparts a Class III malocclusion or “underbite”). The selection of the proper lower tray may be made by a dental professional, a user, or others.
Operational control is passed to operation 93 after one of the lower trays is selected. At Operation 93, the upper tray is coupled with the selected lower tray to form an oral appliance having a desired amount of mandibular advancement. In the current embodiment, upper tray 10 includes a slotted engagement member 22 and lower trays 40, 40′ include an elongated engagement member 52. Upper tray 10 and selected lower tray 40, 40′ may be coupled as described above in conjunction with
After the imprint is completed, operational control is passed to operation 102 at which a casting of the user's dentition is created. The casting may be made, for example, by filling the imprint with plaster of Paris or artificial stone. In the current embodiment, castings of both the user's maxillary and mandibular dentition are created. Once completed, the castings provide a facsimile of the user's maxillary and mandibular dentition.
The casting is then heated to a predetermined temperature at operation 103. In the current embodiment, each casting created at operation 102 is placed in heating medium, for example and without limitation, water. The temperature of the heating medium is maintained between approximately 180° and 220° Fahrenheit (between approximately 82.22° and 104.4° Celsius). In addition, in the current embodiment, top tray 10 and a selected lower tray 40 are also placed in the heating medium such that moldable material 24 and moldable material 54 begin to yield (i.e., soften). It should be noted that the manner of heating and the value of the predetermined temperature may be altered while remaining within the scope of the present invention.
After reaching the predetermined temperature, the casting is pressed into the moldable material of an oral appliance. In the current embodiment, the heated casting of the user's maxillary dentition is placed within upper moldable material 24 of upper tray 10. The heat retained by this casting permits upper moldable material 24 to remain in a yielded state for a longer period of time, thereby allowing a more accurate impression of the user's maxillary dentition to be formed within upper moldable material 24. Once cooled, upper moldable material 24 has been fit to the user's maxillary dentition. Likewise, the heated casting of the user's mandibular dentition is placed within lower moldable material 54 of lower tray 40. The heat retained by this casting permits lower moldable material 54 to remain in a yielded state for a longer period of time, thereby allowing a more accurate impression of the user's mandibular dentition to be formed within lower moldable material 54. Once cooled, lower moldable material 54 has been fit to the user's mandibular dentition.
After the oral appliance tray and the holding tray are coupled, operational control is passed to operation 112 at which the oral appliance tray is submerged within a heating medium while at least a least a portion of the handle remains out of the heating medium. With reference to an upper tray 10, for example, a user can grasp an end of handle 72 and submerge upper tray 10 within boiling water. The user may continue to hold handle 72 (which is not submerged in the boiling water) while upper tray 10 is submerged.
Operational control is then passed to operation 113 at which the oral appliance tray is removed from the heating medium with the handle. Continuing the example above, a user can remove upper tray 10 from the boiling water (with handle 72) after upper moldable material 24 reaches a yielded state.
Operational control is then passed to operation 114 at which the oral appliance tray is inserted into a user's mouth using the handle. Continuing with the same example, a user can insert upper tray 10 into their mouth while maintaining a grip on handle 72. Handle 72 provides additional leverage to the user such that proper alignment of upper tray 72 within the user's mouth is facilitated. Additionally, handle 72 eliminates the need for the user to touch upper tray 10 which may still be somewhat hot from being submerged within the boiling water.
After the oral appliance tray is inserted into the user's mouth, operational control is passed to operation 115 at which an impression of at least a portion of the user's dentition is made. In the current example, the user is able to bite into upper moldable material 24 which is in a yielded state. Upper moldable material 24 then flows around the user's dentition to form the impression.
Although both operational process 100 and operational process 110 can be used for fitting oral appliance 1, operational process 100 may provide more accurate results than operational process 110. Generally, a casting retains more heat than the moldable material. This heat is transferred from the casting to the moldable material, thus causing the moldable material to remain in the yielded state for an increase length of time as compared to heating the moldable material alone (e.g., operational process 110). Because the moldable material is in the yielded state for a longer length of time, the moldable material has a better opportunity to flow around the casting and form the impression. Furthermore, once placed in the moldable material, the casting remains substantially stationary; whereas a user biting directly into the moldable material (operational process 110) will move his/her jaw.
Oral appliance 1 also may be adapted for use with a patient interface device. A patient receiving treatment for sleep apnea, for instance, may be required to wear a nasal mask, oral mask, full-face mask, or other patient interface device. Examples of oral appliances used in combination with a patient interface device are found in U.S. Pat. Nos. 2,521,084; 4,470,413; 5,573,994; 5,752,510; 5,954,048; 6,012,455; 6,405,729; 6,789,543; and 7,021,312. The content of each of these patents is incorporated herein by reference.
Oral appliance 1 may also be adapted to be used in combination with a patient monitoring device and/or intraoral electromuscular stimulation device. Examples of oral appliances with electrodes extending therefrom for use with a patient monitoring device and/or intraoral electromuscular stimulation device are found in U.S. Pat. Nos. 6,618,627 and 5,190,053. The content of each of these patents is incorporated herein by reference.
Electrodes 95, 95′ may be structured, for example, to capture electromyography (EMG) activity produced by one or more of the patient's muscles (e.g., the masseter muscle). Measured EMG activity may be employed, for example and without limitation, to monitor bruxism and oral appliance wear compliance. EMG electrodes 95, 95′ may be placed at any suitable location on oral appliance 1″ such that, after fitting oral appliance 1″, the EMG activity of the targeted muscle may be captured. As shown in
Electrodes 95, 95′ may be structured, as another example, to provide intraoral electromuscular stimulation to reduce or minimize the occurrence of a breathing disorder, such as obstructive sleep apnea. Intraoral electromuscular stimulation may be employed, for instance, to provide electrical stimulation to the muscles of the upper airway responsible for maintaining the patency of the airway. Generally, electromuscular stimulation induces contraction in the muscles of the upper airway, thereby preventing or minimizing blockage of a user's airway.
It should be apparent that the number, type, function, and location of electrodes 95, 95′ may be altered while remaining within the scope of the present invention. For example, only upper tray 10″ may have electrodes 95 located thereon and/or electrodes 95, 95′ may include a wire for communicating with the monitoring system. Electrodes 95, 95′ may also be placed directly on the surface of upper moldable material 24, lower moldable material 54, or both. During the molding process the upper moldable material 24 or lower moldable material 54 is typically moved outward, i.e., toward the intraoral surfaces of the user's oral cavity as the teeth engage the moldable material. This outward movement of upper moldable material 24 and/or lower moldable material 54 serves to contact the electrode with the intraoral surfaces of the user's oral cavity so that no other electrode placement devices are needed. Nevertheless, the present invention also contemplates using electrode placement devices, such as springs and support members, to ensure that the electrodes 95, 95′ are engaged with the intraoral surfaces of the user. Furthermore, it is contemplated that other patient monitoring devices (e.g., vibration monitoring devices, sound monitoring devices, etc.) and/or components may be employed in conjunction with oral appliance 1″.
Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
Claims
1. A method of fitting an oral appliance, comprising: taking an impression of a user's dentition; creating a casting of the user's dentition using the impression; heating the casting to a predetermined temperature; and placing the heated casting in an oral appliance having a moldable material.
2. The method of claim 1, wherein the taking an impression includes at least one of taking an impression of a user's maxillary dentition and taking an impression of a user's mandibular dentition.
3. The method of claim 1, wherein heating the casting comprises heating the casting to at least 180 degrees Fahrenheit (82 degrees Celsius).
4. The method of claim 1, wherein the placing the heated casting in an oral appliance further comprises heating at least a portion of the oral appliance material until the moldable material yields.
5. The method of claim 1, wherein the placing the heated casting in an oral appliance comprises: inserting the heated casing within an oral appliance tray, the oral appliance tray comprising: a moldable material with a channel structured to align the heated casting within the center thereof, the channel having a substantially V-shaped portion structured to engage an anterior portion of the heated casting and a substantially U-shaped portion structured to engage a posterior portion of the heated casting; and a support member structured to carry the moldable material thereon.
Type: Application
Filed: Dec 14, 2016
Publication Date: Apr 6, 2017
Inventors: Eugene Nelson SCARBERRY (Trafford, PA), Gary LOTZ (Mars, PA), Lance BUSCH (Trafford, PA), Robert Dale PARKS (Pittsburgh, PA), Christopher STYGAR (Pittsburgh, PA), Ronald B. KEMNITZER (Blacksburg, VA)
Application Number: 15/378,162