ADAPTIVE DATA RATE CONTROL FOR NARROWCAST NETWORKS
A system to provide narrowcast communications uses adaptive data rate control to individual subscribers such that the effects of precipitation or other link conditions, which are not common to all subscribers, is mitigated. The invention takes advantage of the fact that the narrowcast data consist of packets which are individually addressed to specific subscribers, or groups of subscribers. The narrowcast data is communicated on a plurality of channels, each of potentially differing data rates. The subscribers are assigned a particular channel, based upon their link quality, to receive packets addressed to them. The lower data rate channel will be less affected by adverse link conditions and are hence assigned to subscribers most likely to incur adverse link conditions.
This application is a continuation of U.S. application Ser. No. 13/649,772, filed Oct. 11, 2012, which is a continuation of U.S. patent application Ser. No. 13/471,011, filed May 14, 20120, now U.S. Pat. No. 8,311,491 issued on Nov. 13, 2012, which is a continuation of U.S. patent application Ser. No. 13/031,086 filed Feb. 18, 2011, now U.S. Pat. No. 8,208,864 issued on Jun. 26, 2012, which is a continuation of U.S. patent application Ser. No. 11/744,557 filed May 4, 2007, now U.S. Pat. No. 7,916,680 issued on Mar. 29, 2011, which is a continuation of U.S. patent application Ser. No. 09/519,155 filed Mar. 6, 2000, now U.S. Pat. No. 7,215,650 issued May 8, 2007, which claims the benefit of U.S. Provisional Application No. 60/149,615, filed Aug. 16, 1999, which are each herein incorporated by reference for all purposes.
BACKGROUND OF THE INVENTIONThe present invention relates to narrowcast communication systems, and more particularly to a method for providing adaptive data rate control for narrowcast communication systems.
A satellite communications narrowcast network typically consists of a large Earth terminal, referred to as a hub, transmitting an uplink to a satellite repeater. The satellite repeater receives, amplifies, and re-transmits the signal on a downlink to a plurality of subscriber terminals. Each of the subscriber terminals receives the downlink signal from the satellite. In many applications the data is individually addressed to a single subscriber terminal or to small group of subscriber terminals (narrowcast) which is a subset of all terminals which receive the transmission. In a typical application, the hub time division multiplexes (TDM) the individually addressed packets data into a single stream. Each subscriber terminal receives and demodulates the downlink data stream, but only processes the data which is individually addressed to that particular subscriber terminal.
To service the largest possible number of subscriber terminals, the hub terminal should transmit the TDM data stream at the highest possible data rate. The received carrier to noise spectral density, C/No, for each of the subscriber terminals may be different and may be time varying due to different link and propagation conditions. Such link conditions are due to, but not limited to, variations in the satellite EIRP to specific subscriber terminals based upon location, as shown by the satellite transmit antenna contours in
Several techniques have been developed to overcome the problem of rain fading. For example, U.S. Pat. No. 4,941,199 describes a methodology for adjustment of the Hub EIRP as to maintain a constant C/No as seen by the satellite. The adjustment is determined by having the Hub terminal monitor the downlink of its own transmission. This technique is useful in compensating for rain fading on uplink transmissions but does not provide any compensation for downlink transmissions.
A technique is described in U.S. Pat. No. 4,228,538 that provides uplink and downlink rain fade mitigation on point-to-point satellite links. This approach uses feedback from the receiving terminal on the receiver signal quality. The transmitting terminal adjusts its output power in accordance with the signal quality indication determined by the receiving terminal. The effectiveness of this approach is limited in the case of downlink rain fade because, in many cases, the hub terminal uplink EIRP cannot be arbitrarily increased without having an adverse effect on the transponder operation point or input backoff. Similar schemes have been devised to get around this limitation by using the signal quality indication to vary the code rate of the transmission. Although this eliminates the aforementioned problem, it is still not an acceptable approach for a narrowcast system, where multiple subscriber terminals will, in general, indicate different signal qualities. In addition, adaptation of the code rate alone, from rate=½ to rate=⅞, can typically only provide about 2 dB of adjustment in the Eb/No requirement. If one maintains the symbol rate constant, the information rate will change by 2.4 dB from a rate=½ to rate=⅞ code. The total adjustment range in the C/No requirement is thus about 4.4 dB. For high link availability, this is not sufficient for many rain regions especially in the higher frequency bands, such as the Ka band.
An applicable technique is found in U.S. Pat. No. 4,837,786. In this patent, Gurantz and Wright describe a method where two orthogonal BPSK carriers are provided using QPSK modulation. One BPSK carrier contains a high data rate where the other uses a lower data rate. In an alternate embodiment of the referenced invention, individual addressing of portions of the frame is described. This embodiment is suitable for narrowcast applications where most ground stations would receive their data on the higher data rate channel. Ground stations adversely affected by precipitation would receive their data on the lower data rate channel. The limitation of this method is that subscriber terminals only have two choices for their quality of service, mainly the higher data rate or the lower data rate. Moreover, 50 percent of the channel resources have to be dedicated to the lower channel rate.
An opportunity exists for a method of data rate control that: i) compensates for the differences in downlink conditions for a narrowcast network; ii) provides a large range of adjustment for the C/No requirement; and iii) provides many different data rates or C/No options.
SUMMARY OF THE INVENTIONThe present invention comprises a method for providing adaptive data rate control for satellite narrowcast transmissions. The present invention enables the data rate to be different to different subscriber terminals thus allowing individualized compensation for the affects of downlink rain fading and link parameter variation.
The present invention comprises a satellite repeater to provide connection between the hub terminal uplink and the subscriber terminal downlinks. The hub terminal transmits individually addressed packets to a plurality of subscriber terminals on a plurality of channels (FDM or TDM). Subscriber terminals are assigned specific carriers to receive information that will be individually addressed to them. The subscriber terminals shall only need to receive and demodulate one of the multiple channels originating from the hub terminal's transmission. The subscriber terminals are assigned a channel based upon their received C/No. Subscriber terminals of like or near like C/No are assigned the same channel.
In one particular embodiment of the present invention, the number of FDM carriers and the attributes of each carrier are determined a priori based upon an initial estimate of C/No metrics within the anticipated subscriber population. Attributes of the FDM carriers include characteristics such as data rates, the modulation scheme and a coding scheme used on each of the carriers, and the fraction of transponder resources, power and bandwidth, used by each carrier. The estimation of C/No within the subscriber population is mostly a function of subscriber terminal sizes (G/T), satellite EIRP variation over the location of the coverage area, and rain fade statistics for the region of service.
Each subscriber terminal determines a signal quality metric such as C/No based on the quality of its received signals. The quality metrics are communicated to the hub terminal by each of the subscriber terminals. The hub terminal reassigns subscriber terminals to carriers based on the received quality metrics. In this way, each subscriber terminal maintains a maximum data rate as environmental conditions vary over time by being periodically reassigned to a different carrier in response to the changing conditions. The newly assigned carrier would then be used by the subscriber terminal to receive its data services. Thus, when downlink rain fading occurs, a particular subscriber terminal that would be adversely affected by the rain fade, would be assigned to a different carrier that employs a lower data rate, and hence has a lower C/No requirement.
A return channel is provided for communicating the signal quality metrics from the subscriber terminal to the hub terminal. In one embodiment, the return channel uses the existing satellite communication links. This has the advantage of utilizing existing circuitry to implement the return channel. Alternatively, the return channel can be a ground-based communication link.
In an alternate embodiment of the present invention, the attributes of each channel may be dynamically altered to accommodate changes in the distribution of C/No among the active subscriber terminals. Instead of providing a set of pre-defined carriers, the attributes of the each channel are periodically redefined to optimize network performance metrics based upon the received signal quality metrics of the subscriber terminals. Attributes of the channels which can be redefined include, but are not limited to, characteristics such as data rates, the modulation scheme, and a coding scheme used on each of the carriers. Thus, under clear sky conditions, each subscriber terminal can be assigned a particular channel to receive their information based upon the data rate that each terminal can support and the current loading traffic conditions on each of the carriers. As rain fading in any part of the coverage area starts to occur, the assignment of individual subscriber to channels, as well as the attributes of the individual carriers may be altered to keep the composite network performance optimized.
The present invention is advantageous in that it improves the downlink data rate without requiring an increase in satellite resources, such as bandwidth and power, nor does it require additional EIRP to be provided at the hub terminal.
The invention will be better understood upon reference to the following detailed description with reference to the accompanying drawings.
In one embodiment of the invention, the system capacity is increased by the use of multiple FDM (frequency division multiplexed) carriers to convey the information. It is noted that the invention is not limited to any one type of transmission scheme. The invention is described in terms of FDM signaling by way of example only.
Continuing,
The hub terminal must also receive transmissions from each of the subscriber terminals. These transmissions consist of subscriber terminal data as well as received signal quality metrics such as received C/No estimates. The subscriber terminal's transmissions are received at the hub terminal by the antenna 212. The RF circuitry 210 provides low noise amplification and downconversion. The signal is demodulated within the demodulator 216 which provides data detection and FEC decoding. The demodulated bits are then split into data bits 220 and signal quality metric bits 222 by the demultiplexer 218. The FDM carrier control 214 provides the control signals for assignment of data packets to specific FDM carrier, and FDM carrier attributes such as data rate, code rate, and power level. The basis for control is the received signal quality metrics 222 from each of the subscriber terminals.
The hub terminal communicates the assignment of the subscribers terminals to one of the FDM carriers via a forward control channel. This control channel contains assignment information and is multiplexed in with the data services that the subscriber terminal receives. The multiplexing technique is most logically a time division multiplexed (TDM) approach but could any of a number of other known techniques such as frequency division multiplexing (FDM), or code division multiplexing (CDM).
Subscriber terminals are categorized into one of N groups, according to an initial signal quality metric. For example, in a preferred embodiment of the invention the current downlink C/No measurement of each subscriber terminal is used. Each group of subscriber terminals is assigned one particular FDM carrier for subscribers in that group to receive their individually addressed packets of information. FDM carriers are assigned to each of the groups of subscriber terminals based upon the minimum C/No of a subscriber terminal within a group. The attributes of that carrier such as its data rate, modulation scheme, coding scheme, and fraction of the network resources (an) are set such that all subscriber terminals within that group can demodulate the FDM carrier with an acceptable level of data errors, as determined by the Bit Error Rate for example. An example of the grouping for N=4 carriers is shown in
Subscriber terminals continually monitor their own signal quality and detect changes in their received C/No due to rain fading or other time varying phenomena. These subsequent C/No's, or other link quality metrics such as, but not necessarily limited to, bit error rate, are reported back to the hub terminal via a return channel. In a preferred embodiment of the invention, the return channel is shared with the satellite communications link. The information can be conveyed by any of a number known multiple access techniques such as time division multiplexing (TDMA), frequency division multiplexing (FDMA), or code division multiplexing (CDMA). Of course, the return channel can be provided by a communication medium other than the satellite link. For example, a land-based medium can be used, such as a land line, a line-of-sight wireless link, and the like.
An example of the apparatus used by the subscriber terminal to determine its received C/No and report this value back to the hub terminal is illustrated by the simplified block diagram of
The subscriber terminal receivers carrier assignments and re-assignments through the forward control channel. This is typically control data time division multiplexed (TDM) in with the service data. In response to a carrier re-assignment message in the forward control channel, the subscriber terminal re-tunes its RF equipment 302 to the new FDM carrier frequency.
In alternate embodiments, functions such as the system margin subtraction or the C/No estimation could be performed at the hub terminal. In such an embodiment, the subscriber terminal would transmit signal quality metrics, such as, but not limited to, Eb/No, bit error rate or block error rate, to the hub terminal. In this embodiment, the FDM carrier control 214 would be suitably configured to produce the C/No quality metric upon which carrier reassignment is then based.
The hub terminal uses the feedback from all subscriber terminals to make changes in the assignments of subscriber terminals to particular FDM carriers. The assignment information is conveyed over the forward control channel. The subscriber terminals then adjust their receiver circuitry accordingly in order to receive subsequent data over the new FDM carrier, as discussed above.
In another embodiment of the present invention, the hub terminal can specify different FDM carrier attributes instead of making new assignments of subscriber terminal to pre-defined FDM carriers. Attributes of an FDM carrier include characteristics such as data rates, the modulation and coding schemes, and the fraction of transponder resources such as power and bandwidth. In this embodiment, the hub terminal can redefine the attributes of the carriers and assign the redefined carriers to the subscriber terminals. This approach obviates the need for defining an a priori set of carriers.
Variations which combine both approaches are contemplated. For example, an initial set of carriers can be defined and assigned to the subscriber terminals. As the downlink conditions change, the hub terminal can redefine the attributes accordingly and make new assignments of the subscribers to the carriers. In general, the idea is to monitor the downlink signal quality of a subscriber terminal and change its carrier assignment in order to provide reliable data transfer at a high data rate.
In the foregoing embodiment of the invention, the satellite uses a single transponder circuit to transmit a plurality of FDM carriers; i.e. all of the carriers are transmitted in a signal occupying a single frequency range. In yet another embodiment of the invention, each FDM carrier could occupy an entire transponder. Thus, for each FDM carrier, the satellite repeater includes a transponder circuit to transmit the carrier. Each carrier, therefore, occupies a different frequency range.
In this embodiment, the apparatus of
Rain fades on the hub uplink will also affect the C/No as measured on each of the subscriber terminal downlinks. The response of the present invention to a 3 dB rain fade on the hub terminal uplink will be for all subscriber terminals to report a reduction in their measured C/No of 3 dB. The assignment algorithms resident in the hub terminal control will reassign subscriber terminals to FDM carriers that require 3 dB less C/No. Alternative embodiments of the present invention might also adjust carrier attributes and the number of carriers in response to this fade event. To prevent the loss in C/No, as measured by the subscriber terminals due to uplink rain fades at the hub terminal, the present invention can be used in conjunction with an uplink power control system. In
Prior art techniques, such as the one described in U.S. Pat. No. 4,941,199, attempt to maintain the C/No constant at the satellite. This is accomplished by providing compensation for uplink fades at the hub terminal. The present invention includes an uplink power control circuit in order to compensate for uplink fades. However, unlike the prior art, the present invention is advantageous in providing compensation for conditions which result in downlink fades at the subscriber terminals. Thus, the present invention is overall less susceptible to the signal degrading effects of environmental phenomena such as rain fade.
Claims
1. (canceled)
2. A hub terminal for communicating with a first subscriber terminal and a second subscriber terminal via a satellite, comprising: a demultiplexer coupled to the data source and configured to switch the first data packet into a first carrier modulation circuit and the second data packet into a second carrier modulation circuit; the first carrier modulation circuit configured to provide modulation and coding for a first carrier signal for transmitting the first data packet to the satellite and the second carrier modulation circuit configured to provide modulation and coding for a second carrier signal for transmitting the second data packet to the satellite; a first gain control circuit coupled to the first carrier modulation circuit and configured to adjust signal level of the first carrier signal and a second gain control circuit coupled to the second carrier modulation circuit and configured to adjust signal level of the second carrier signal; and a first transponder coupled to the first gain control circuit and configured to transmit the first carrier signal to the satellite and a second transponder coupled to the second gain control circuit and configured to transmit the second carrier signal to the satellite.
- a data source configured to generate a first data packet comprising a first address for the first subscriber terminal and a second data packet comprising a second address for the second subscriber terminal;
3. The hub terminal of claim 2, wherein the first gain control circuit is adjusted based on a saturated output power of the first transponder.
4. The hub terminal of claim 2, wherein the first gain control circuit is adjusted based on a gain of the first transponder.
5. The hub terminal of claim 2, wherein the first gain control circuit is adjusted based on an output power backoff of the first transponder.
6. The hub terminal of claim 2, further comprising an uplink power control circuit configured to change power level of the first carrier signal transmitted from the hub terminal to the satellite.
7. The hub terminal of claim 6, wherein the power level of the first carrier signal is determined based on rain fade condition for the first carrier signal between the hub terminal and the satellite.
8. The hub terminal of claim 7, wherein the rain fade condition of the first carrier signal between the hub terminal and the satellite is determined based on monitoring a downlink between the satellite and the hub terminal.
9. The hub terminal of claim 2, wherein the first transponder transmits only the first carrier signal and the second transponder transmits only the second carrier signal.
10. The hub terminal of claim 2, wherein the first carrier signal occupies a first frequency range and the second carrier signal occupies a second frequency range, wherein the first frequency range is different from the second frequency range.
11. The hub terminal of claim 2, wherein the first carrier signal and the second carrier signal are frequency-division multiplexed (FDM) carrier signals.
12. The hub terminal of claim 2, wherein the first carrier signal and the second carrier signal are time-division multiplexed (TDM) carrier signals.
13. The hub terminal of claim 2, wherein the first carrier signal and the second carrier signal are code division multiplexed (CDM) carrier signals.
14. A method for communicating with a first subscriber terminal and a second subscriber terminal via a satellite, comprising:
- generating a first data packet comprising a first address for the first subscriber terminal and a second data packet comprising a second address for the second subscriber terminal;
- assigning the first data packet to a first carrier signal and the second data packet to a second carrier signal;
- modulating and coding the first carrier signal according to a first modulation and coding scheme and the second carrier signal according to a second modulation and coding scheme;
- adjusting gain of the first carrier signal and the second carrier signal;
- transmitting to the satellite, using a first transponder, the first carrier signal; and
- transmitting to the satellite, using a second transponder, the second carrier signal.
15. The method of claim 14, wherein the gain for the first carrier signal is adjusted based on a saturated output power of the first transponder.
16. The method of claim 14, wherein the gain for the first carrier signal is adjusted based on a gain of the first transponder.
17. The method of claim 14, wherein the gain for the first carrier signal is adjusted based on an output power backoff of the first transponder.
18. The method of claim 14, further comprising adjusting a power level of the first carrier signal transmitted from the hub terminal to the satellite.
19. The method of claim 18, wherein the power level of the first carrier signal is determined based on rain fade condition for the first carrier signal between the hub terminal and the satellite.
20. The method of claim 19, wherein the rain fade condition of the first carrier signal between the hub terminal and the satellite is determined based on monitoring a downlink between the satellite and the hub terminal.
21. The method of claim 14, wherein the first carrier signal and the second carrier signal are or one or more of frequency-division multiplexed (FDM) carrier signals, time-division multiplexed (TDM) carrier signals or code division multiplexed (CDM) carrier signals.
Type: Application
Filed: Sep 1, 2016
Publication Date: Apr 27, 2017
Inventors: Mark J. Miller (San Marcos, CA), Mark D. Dankberg (Encinitas, CA)
Application Number: 15/254,106