CARRIER PLATE AND BRUSH, IN PARTICULAR TOOTHBRUSH WITH CARRIER PLATE
The method for manufacturing bristle arrangements for brushes, and the device (1), the carrier pad (17), and the brush (60) which is populated with a carrier pad (17) of this type, enable simplification of the manufacture of bristle arrangements for brushes, inter alia in that the bristle bundles (5) which by means of a gas or air stream are conveyed through the conveying device (6) to the bundle-retaining plate (9) when being conveyed through the conveying device (6) are electrostatically discharged, such that they may be more easily conveyed through the conveying device (6), and in that they reduce the complexity in the fastening of bristle bundles (5) in a carrier pad (17) without anchoring, since the carrier pad (17) on the rear side has material protrusions (54) which are fused and thereafter interference-fitted in a bundle-fastening plane, in order for bristle bundles (5, 5a) which have been incorporated into the perforations (24) of the carrier pad (17) to be connected in a form-fitting and/or force-fitting manner to the carrier pad (17) in a simple manner (FIG. 3).
Latest Zahoransky AG Patents:
- Apparatus and method for forming bristle bundles, brush manufacturing machine, use of an apparatus for forming bristle bundles, brush, computer program and computer-readable medium
- Apparatus and method for forming bristle bundles, brush manufacturing machine, use of an apparatus for forming bristle bundles, brush, computer program and computer-readable medium
- DIVIDING-UP DEVICE AND BRUSH-MANUFACTURING MACHINE HAVING A DIVIDING-UP DEVICE
- APPARATUS FOR PRODUCING BRUSHWARE AND METHOD FOR OPERATING SUCH AN APPARATUS
- DEVICE FOR PRODUCING BRISTLE PRODUCTS
The invention is applied in a method for manufacturing bristle arrangements for brushes, in particular for toothbrushes, wherein bristle filaments are removed from a material box which contains a reserve of bristle filaments and are assembled to form bristle bundles, and then are directed by means of a gas or air stream through a conveying device comprising a bundle-receiving device and hollow conduits which are connected thereto, and subsequently are incorporated through perforations into a bundle-retaining plate.
The invention relates to a carrier pad having a plurality of perforations which penetrate the carrier pad, into which perforations bristle bundles which are composed of bristle filaments are insertable and fastenable without anchoring on the carrier pad.
The invention furthermore also relates to a brush, in particular a toothbrush, having a handle and a brush head, wherein the brush head has a carrier-pad receptable and a carrier pad which is fastened therein and which is populated with bristle bundles.
The above-described method may be carried out on a device for manufacturing bristle arrangements for brushes, in particular toothbrushes, having a material box containing a reserve of bristle filaments, and having at least one removal device for removing individual bristle bundles from the bristle reserve, and having a conveying device with hollow conduits, through which hollow conduits the bristle bundles are conveyable by means of a gas or air stream into perforations of a bundle-retaining plate.
Methods, carrier pads, brushes and devices as described above for manufacturing bristle arrangements are known in various forms.
In the methods and devices for manufacturing bristle arrangements which are known from the prior art issues may arise in the infeeding of bristle bundles which are composed of individual bristles through a conveying device by means of a gas or air stream in the infeeding of the bristle filaments to the portions or stations of the device which are downstream of the conveying device.
It may thus arise that individual bristle filaments or else entire bristle bundles remain stuck in the conveying device and do not reach their destination. Above all in the case of the bristle filaments being particularly fine bristle filaments, reliable infeeding of the bristle filaments through the conveying device may be particularly difficult.
Even in the case of the carrier pads which are known from the prior art and are defined at the outset and brushes which are equipped with such carrier pads, in particular the anchorless fastening of bristle bundles which are infed to the carrier pads in accordance with the method mentioned at the outset and on a device mentioned at the outset can lead to problems.
For example, the previously known carrier pads and toothbrushes which are equipped with such carrier pads require the introduction of bristle filaments, which are combined into bristle bundles, into perforations of the carrier pad and the inset molding of those ends of the individual bristle bundles which are positioned in the perforations with a material in order to fix the bristle bundles in the perforations. Furthermore, it is known to combine the bristle filaments in tufts and to fuse them together even before they are conveyed into the carrier pads to be populated with the bristle bundles.
As soon as the fused ends of the bristle bundles are introduced into the carrier pad, their ends which are introduced into the perforations of the carrier pad and are fused together are then insert molded in order to fasten the bristle bundles to the bundle-retaining plate.
SUMMARYIt is thus an object of the invention to provide a carrier pad and a brush, in particular a toothbrush, as defined at the outset which allow more efficient and simpler manufacturing of bristle arrangements and thus more efficient and simpler manufacturing of brushes, in particular of toothbrushes.
For better understanding of the invention, first of all the technical field for manufacturing bristle arrangements and brushes will be described in more detail below with reference to a particularly advantageous exemplary embodiment of a method for manufacturing bristle arrangements, which is possibly of independent inventive quality:
In the method defined at the outset, for more efficient and simpler manufacturing of bristle arrangements and thus for more efficient and simpler manufacturing of brushes, in particular of toothbrushes, it is provided that the bristle filaments forming the bristle bundles when being conveyed through the conveying device to the bundle-retaining plate are electrostatically discharged.
In particular when infeeding so-called chemically tapered bristle filaments which are distinguished by their particularly fine filament counts, clogging of the conveying device may repeatedly arise in the case of the methods which are known from the prior art, the reason for which has been identified to be electrostatic charging of the bristle filaments which form the bristle bundles. Regardless of whether by way of the gas or air stream or by way of the material of the hollow conduits through which the bristle bundles are conveyed, on account of the frictional effects which act on the bristle filaments of the bristle bundles when being conveyed through the conveying device, the bristle bundles and the bristle filaments contained in the bristle bundles may be electrostatically charged, such that they adhere to the elements of the conveying device, in particular on the hollow conduits of the conveying device, and cannot not be reliably guided through the conveying device. Moreover, there is even the risk that the bristle filaments when being conveyed through the conveying device are so severely electrostatically charged that they clog the conveying device and the passage of the bristle filaments to the bundle-retaining plate is at best restricted.
On account of electrostatically discharging the bristle filaments when being conveyed, these disadvantages may be avoided. Finally, a method may be provided by way of which even particularly fine bristle filaments, namely such which are chemically tapered, are infed in a particularly efficient manner by means of a gas or air stream to a bundle-retaining plate for further processing.
In order for the bristle bundles to be reliably discharged it may be particularly expedient for the bristle filaments forming the bristle bundles to be electrostatically discharged when being conveyed through the bundle-receiving device of the conveying device and/or when being conveyed through hollow conduits of the conveying device to the bundle-retaining plate.
In particular in the event of electrostatically discharging the bristle filaments when being conveyed through the bundle-receiving device, electrostatic charging of the bristle filaments may already be avoided when conveying through the conveying device commences.
Alternative or additional electrostatic discharging of the bristle filaments when being conveyed through the hollow conduits of the conveying device to the bundle-retaining plate may prevent the bristle filaments being statically charged by friction on the inner sides of the hollow conduits and then clogging the hollow conduits.
Particularly simple but no less reliable electrostatic discharging of the bristle filaments is possible when the bristle filaments forming the bristle bundles are earthed for electrostatic discharging when being conveyed through the conveying device, in particular when being conveyed through the bundle-receiving device and/or through the hollow conduits, to the bundle-retaining plate.
To this end, the bristle bundles when being conveyed through the conveying device, in particular when being conveyed through the bundle-receiving device and/or through the hollow ducts, to the bundle-retaining plate, may be guided past at least one electrical terminal or earth terminal which is disposed on the conveying device, and be made to establish contact therewith. It should be pointed out that this at least one electric terminal or earth terminal may be provided in the bundle-receiving device and/or also in the hollow conduits, for example.
In this manner, particularly simple yet reliable electrostatic discharging of the bristle filaments forming the bristle bundle may be achieved. It should be pointed out at this juncture that electrostatically discharging the bristle filaments forming the bristle bundles when being conveyed through the conveying device not only enables dissipation of electrostatic charges which adhere to the bristle filaments but also renders avoidable electrostatic charging of the bristle filaments in particular caused by friction which arises when the bristle filaments forming the bristle bundles are being conveyed through the conveying device.
In one embodiment of the method it may be provided that the bristle bundles from the bundle-retaining plate are directly incorporated into perforations of a carrier pad. However, in one particularly advantageous embodiment of the method it may be provided that the bristle bundles in particular with the aid of a compression die are incorporated through narrowing funnel ducts of a funnel plate into perforations of a carrier pad. This may be meaningful since the degree of compression of the bristle bundles which is required for high-quality population of carrier pads may be achieved only with great complexity by means of a gas or air stream alone. In that the bristle bundles to be infed are initially squeezed through the funnel ducts of the funnel plate, the desired degree of compression may be achieved in a comparatively simple manner, in particular when a compression die is used.
In order for the bristle bundles to be able to be fastened without anchoring in the carrier pad, it may be provided that material protrusions which protrude on the rear side of a back side of the carrier pad which faces away from the bristle bundles are heated in a welding station and are thereby fused, wherein for connecting the bristle bundles to the carrier pad a melt of the fused material protrusions is interference-fitted into a fastening plane of the bristle bundles, such that the melt flows between bristle-bundle ends, which in particular protrude from the back side of the carrier pad, and/or between filament ends of the bristle bundles, and thereafter solidifies. It is thus possible for the bristle bundles to be fastened in a form-fitting and/or force-fitting manner on the carrier pads, since on account of being interference-fitted into the bundle-fastening plane the melt may mesh, so to speak, with the ends of the bristle bundles.
In this way, a particularly simple method for the fastening of bristle bundles in a carrier pad without anchoring may be achieved.
Expediently, here the material protrusions on the carrier pad by means of a welding die may be heated, fused, and for fastening the bristle bundles to the carrier pad may be interference-fitted into a fastening plane of the bristle bundles.
The advantages of the method described may be utilized in particular when the bundle-retaining plate is infed bristle bundles of chemically tapered bristle filaments. These bristle filaments which are also referred to as CTFs are distinguished by their particularly finely tapered filament ends which in the use position are free-standing and which, on account of static charging of the particularly fine bristle filaments in this case, have to date made infeeding of such bristle filaments by means of a gas or air stream through a conveying device difficult and thus uneconomical.
In a further design embodiment of the method it may be provided that the bristle filaments are infed to a transfer station in filament pucks which are held together by means of an in particular flexible and/or air-impermeable sheathing. The filament pucks which are infed to the transfer station may then be acquired by suction by means of at least one suction gripper which is assigned to the transfer station, wherein the at least one suction gripper contacts and acquires by suction the filament pucks at their free upper side by way of a suction plate on account of which the in particular flexible and/or air-impermeable sheathing is acquired by suction in a transverse manner to the longitudinal axis of the bristle filaments and in an inward manner in the direction of a longitudinal center axis which is oriented so as to be perpendicular to the upper side of the filament puck, and said sheathing may place itself in a stabilizing manner around the bristle filaments of the filament puck which has been acquired by suction. After having been acquired by suction, the filament puck by means of the at least one suction gripper may be transferred to a de-sheathing station which is downstream of the transfer station. In this de-sheathing station the sheathing of the filament puck may be opened and removed, on account of which the bristle filaments which have been released from the sheathing may be infed, preferably in an automated manner, to a or to the already mentioned material box.
It should be pointed out at this juncture that the filament pucks of chemically tapered bristle filaments having a flexible and/or air-impermeable sheathing have been previously described in DE 10 2013 003 249, for example, which relates to a manufacturing method of such filament pucks.
The mode of functioning of the de-sheathing station described earlier is described in the German patent application DE 10 2014 109 320, for example.
It may be advantageous for the filament pucks to be provided with a spin finish having an antistatic additive for CFTs which may additionally reduce the tendency of the bristle filaments toward static charging when being conveyed.
In one advantageous refinement of the method described earlier it may moreover be provided that the filament pucks of the transfer station are infed in particular to the at least one suction gripper of the transfer station on at least one contact area of an infeed station which is preferably configured as a conveyor belt.
This may further improve the efficiency and the degree of automation of the method described earlier.
Moreover, the method may be simplified for an operator who is entrusted with carrying out the method when the filament pucks are held ready individually and/or in their supply containers at the infeed station, in particular at the at least one contact area which is preferably configured as a conveyor belt, and if and when required, are pushed onto the at least one contact area, preferably manually, in particular directly from the supply containers, but in particular in a transverse manner to the conveying direction of the at least one contact area. In this way it is possible for the operator who is entrusted with carrying out the method to prepare a certain number of filament pucks or a certain number of supply containers with filament pucks, respectively, at the contact area of the infeed station which is configured as a conveyor belt and if and when required, that is to say when the filament pucks which already have been placed onto the contact area of the infeed station have been consumed by the downstream stations of the device, the former can be indexed for replenishment. Depending on the number of filament pucks which have been placed on the contact area and depending on the processing time, that is to say the time which is required by the downstream stations for processing a filament puck, the operator who is entrusted with carrying out the method may thus have sufficient time for carrying out other tasks and many only need to approach the infeed station at certain time intervals in order to reload further filament pucks, enabling the otherwise automated manufacturing process to continue without disruption.
The object is achieved in the case of the carrier pad defined at the outset by one or more features of the invention and in particular in that the carrier pad on its back side which faces away from the bristle bundles which are guided into the perforations has a plurality of material protrusions, wherein the material protrusions are fusible and for fastening the bristle bundle on the carrier pad are force-fittable in a bundle-fastening plane.
A carrier pad of this type enables simple fastening of bristle bundles without anchoring in the carrier pad, without the bristle bundles to be fastened in the carrier pad having to be welded to one another prior to being infed into the carrier pad. The carrier pad according to the invention in a particularly advantageous manner thus supports carrying out the method described earlier.
In an embodiment of the carrier pad, it can be provided that the bristle bundles which are introducible or are introduced into the perforations are composed of tapered bristle filaments, in particular of chemically tapered bristle filaments. At least after their fastening to the carrier pad, said bristle bundles can then form a bristle arrangement consisting of tapered bristle filaments, in particular of chemically tapered bristle filaments.
In another embodiment of the carrier pad, it can be provided that one portion of the bristle bundles which are introducible or are introduced into the perforations consists of tapered bristle filaments, in particular of chemically tapered bristle filaments, and another portion of the bristle bundles which are introducible or are introduced into the perforations consists of conventional bristle filaments. Conventional bristle filaments are understood as meaning such bristle filaments which have a substantially consistent or consistent cross section over at least a large portion of their length or over their entire length. In this case, the bristle bundles consisting of tapered bristle filaments and the bristle bundles consisting of conventional bristle filaments can form a mixed bristle arrangement at least after their fastening to the carrier pad.
The bristle filaments can be composed of polyamide and/or of polyester. However, it is preferred that conventional bristle filaments, in particular those with a consistent cross section, are composed of polyamide, and tapered bristle filaments, in particular chemically tapered bristle filaments, are composed of polyester, in particular of polybutylene terephthalate (PBT for short).
Polyester has the property that it absorbs water only to a small extent or even does not absorb any water. In particular during the chemical tapering of the bristle filaments, use can be made of an alkaline solution which should subsequently be removed in a washing process. It may be necessary here to dry the washed bristle filaments for further processing. The use of polyester as material for the chemically tapered bristle filaments and the fact that polyester absorbs water only to a small extent or does not absorb it at all can facilitate and accelerate a drying process of the washed bristle filaments. In this manner, the drying process can take place on an industrially expedient scale.
It may be expedient for the bristle bundle post fusing of the material protrusions and interference-fitting of the fused material protrusions into the bundle-fastening plane to be connected to the carrier pad in a form-fitting and/or force-fitting manner. Reliable fastening of the bristle bundles in or on the carrier pad which is resistant to the required extraction forces may be enabled in this way.
It may be expedient here for the material protrusions to be configured as pimples, wherein the material protrusions may project transversely from the back side of the carrier pad. In this context, transverse means that the material protrusions may project from the back side of the carrier pad so as to substantially be extensions of the bristle bundle which has been plugged into the carrier pad. Expediently, a longitudinal center axis of the material protrusions here will be oriented so as to be perpendicular to the back side of the carrier pad.
It may furthermore be provided that the material protrusions are disposed so as to be in particular uniformly distributed around the perforations of the carrier pad or therebetween. This may facilitate uniform distribution of the melt, in particular post interference-fitting of the melt into the bristle-fastening plane, on the back side of the carrier pad and between the ends of the bristle bundles, and in particular between individual bristle filaments of the bristle bundle, and thus contribute toward reliable fastening of the bristle bundle in the carrier pad.
In order to be able to manufacture bristle arrangements having variable bristle-bundle cross sections, it may be expedient for the perforations on the carrier pad to have variable cross sections. The perforations thus may have a round and/or oval and/or circular and/or polygonal cross section, for example. The combination of perforations of different cross section here is of course possible. Furthermore, it may be provided for the perforations to be configured as elongate perforations.
The carrier pad according to the invention is particularly simple to manufacture when the material protrusions are integrally connected to the carrier pad and/or when the material protrusions are composed of the same material as the carrier pad, in particular of a fusible plastic material, preferably of a thermoplastic material. Here, the material of which the material protrusions are composed may have a lower or else a higher melting point than the material of which the bristle filaments and/or the bristle bundles are composed. A typical material of which the carrier pad and/or the material protrusions on the back side of the carrier pad may be composed is the plastic material polypropylene. A typical material of which the bristle bundles or bristle filaments, respectively, may be composed is polybutylene terephthalate (PBT).
It is advantageous for the material protrusions to narrow, in particular to narrow in a conical manner, toward their free end. If the material protrusions have a narrowing shape, fusing these material protrusions is substantially facilitated when the welding die is pushed in.
It may be advantageous for the carrier pad on its back side which faces away from the bristle bundles to have a delimitation which preferably is endless and closed and projects in particular in a perpendicular manner from the back side of the carrier pad. This delimitation here may surround the perforations and the material protrusions and comprise the back side of the carrier pad. The rear-side delimitation of the carrier pad may prevent the melt of the fused material protrusions laterally oozing out when the welding die is pushed in, and moreover may contribute toward reliable guiding of the fused material protrusions when the melt is interference-fitted into the bundle-fastening plane of the carrier pad.
Lateral oozing of the melt may be prevented in a particularly reliable manner when the delimitation of the carrier pad is at least half the height of the material protrusions which are disposed on the back side of the carrier pad. However, in one particularly advantageous design embodiment of the carrier pad this delimitation may be higher than the material protrusions on the back side of the carrier pad, in particular double the height of said material protrusions. In this way it may be particularly and reliably prevented that the melt of the fused material protrusions is laterally squeezed out when the melt is interference-fitted into the bundle-fastening plane of the carrier pad, in particular by means of a fusing die.
In a further advantageous embodiment of the carrier pad according to the invention, it can be provided that said carrier plate on its rear side facing away from the bristle bundles, at least after introduction of the bristle bundles into the perforations and/or post fusing and interference-fitting of the material protrusions, has a cover which can be sprayed on or is sprayed on in particular in an inmould process. Said cover can cover the fused material protrusions, which are located on the back side of the carrier pad, together with the ends of the bristle bundles. In addition, the cover can contribute to securely fixing the bristle bundles in their use position and to imparting a flat surface to the back side of the carrier pad, which flat surface can facilitate the fastening of the carrier pad to a brush, in particular to a toothbrush.
The object is achieved in the case of the brush defined at the outset by one or more features of the invention and in particular in that the carrier pad is a carrier pad according to one or more features of the invention.
It may be particularly advantageous here for the carrier pad to be clipped into the carrier-pad receptacle. Additionally or complementarily thereto, the carrier pad may be adhesively bonded in the carrier-pad receptacle and/or be welded therein, in particular by means of an ultrasonic welding method. In this way the carrier pad may be reliably fastened to the brush.
A further possibility for connecting the carrier pad to the brush can consist in fastening the carrier pad to the brush, in particular to the carrier-pad receptacle of the brush, by means of an inmould process.
The carrier pad according to the invention may be processed, in particular using the above-described method, on the device defined at the outset for manufacturing bristle arrangements for brushes, in particular toothbrushes. This device is possibly of independent inventive quality and in particular is characterized in that for dissipating the electrostatic charges adhering to bristle filaments and/or bristle bundles which are to be conveyed, the conveying device is electrically earthed.
In order for the to be infed to the conveying device with the aid of the at least one removal device by way of which individual bristle bundles can be removed from the bristle reserve, it may be expedient for the conveying device to have at least one bundle-receiving device on which the material-box-side ends of the hollow conduits are connected. Advantageously, the at least one bundle-receiving device and/or the hollow conduits here are/is electrically earthed in order to dissipate electrostatic charges from the bristle filaments or the bristle-bundles to be conveyed, respectively, or to avoid electrostatic charging of the bristle filaments and/or bristle bundles to be conveyed, respectively, when being conveyed through the conveying device.
For effective dissipation of electrostatic charges it may be advantageous for the at least one bundle-receiving device and/or at least one of the hollow conduits to have at least one electrically earthed terminal or earth terminal which are/is at least temporarily contacted by the bristle bundles and/or the bristle filaments contained in the bristle bundles when being conveyed through the bundle-receiving device and/or through the at least one hollow conduit. Here, in particular the bundle-receiving device and/or at least one of the hollow conduits and/or the terminal or earth terminal may be connected to the earth by way of at least one electrical conductor, in particular by way of an electrically earthed post of the device.
Moreover, in one embodiment of the device it may be provided that at least one hollow conduit as an electrically earthed terminal or earth terminal has an electrically earthed inner sleeve face of an electrically conductive material, in particular of metal, preferably of steel, stainless steel, or copper, which is contacted by the bristle bundles and/or bristle filaments contained therein when being conveyed.
Advantageously, the hollow conduits here may be configured as tubes of a flexible material and/or as Bowden cable sleeves and/or as tubular connectors of an electrically conductive material, in particular of metal, preferably of steel, stainless steel, or of copper. However, this being particularly cost-effective and well suited to dissipating electrostatic charges, the use of hollow conduits which are in each case composed of a Bowden cable sleeve is preferable.
Particularly efficient infeeding of bristle bundles to a bundle-retaining plate which is held ready on the device is enabled when the conveying device has a number of hollow conduits corresponding to the number of perforations of the bundle-retaining plate.
It may be advantageous in particular with a view to carrying out the method described earlier for the bundle-retaining plate to be configured as a conveying plate which is transferable to a further-processing installation, in particular to a welding station. In another embodiment of the invention the bundle-retaining plate on a side which in the receiving position faces away from the conveying device may have at least one carrier-pad mounting for a carrier pad, in particular for a carrier pad according to the invention.
However, it should be pointed out that the bundle-retaining plate may also be a partial brush body or an injection-molding insert which after having been populated with bristle bundles may be further processed in downstream stations of the device.
In one refinement of the device, which is of particular importance, it may be provided that the hollow conduits of the conveying device open out into in each case one guide duct of a guide element. This guide element may also be referred to as an infeed block. The guide ducts of the guide element or of the infeed block, respectively, here are in each case configured as through openings. It should be noted that the mutual outfeed-side spacings of the guide ducts are smaller here than the infeed-side spacings. It may be particularly advantageous for the exit openings of the guide ducts to be disposed according to a disposal of perforations of the bundle-retaining plate which are to be populated with bristle bundles and/or to be disposed so as to open out into these perforations. In this way, populating the bundle-retaining plate may take place in a particularly efficient manner, after infeeding of the bristle bundles through the conveying device has taken place.
The infeed ducts of the guide element or of the guide block, respectively, thus function as a type of funnel by way of which the bristle bundles to be infed may be incorporated in the bundle-retaining plate so as to be brought closer to one another as they are being conveyed.
In order for the bristle bundles to be able to be incorporated with the desired degree of compression in perforations of a carrier pad which is held ready at the device, it may be expedient for the device to have a funnel plate, having funnel ducts which in particular narrow in the conveying direction of the bristle bundles, between the bundle-retaining plate and a carrier pad, preferably a carrier pad according to the invention to be populated with bristle bundles. Through these funnel ducts the bristle bundles from the bundle-retaining plate, in which they are held ready in terms of disposal and orientation in a manner adapted to the carrier pad to be populated, may then be introduced into perforations of a carrier pad which is held ready at the funnel plate, preferably in a carrier-pad mounting of the funnel plate. It is advantageous here for entry openings of the funnel ducts to correspond in their number and disposal to exit openings of the perforations of the bundle-retaining plate and for exit openings of the funnel ducts to correspond in their number and disposal to the perforations of the carrier pad. It is furthermore advantageous for the exit openings of the funnel ducts to open out into perforations of a carrier pad which is held ready on the funnel plate, in order for the bristle bundles to be able to be incorporated from the bundle-retaining plate through the carrier plate into the carrier pad as easily as possible.
In order for the bristle bundles infed by means of the conveying device of the bundle-retaining plate to be able to be incorporated reliably and with the desired degree of compression through the funnel plate into the perforations of a carrier pad which is held ready at the funnel plate, the device may have a compression station having at least one compression die having compression fingers which in their number and disposal correspond to the perforations of the bundle-retaining plate and/or to the funnel ducts of the funnel plate and/or to the perforations of the carrier pad. With the aid of these compression fingers the bristle bundles which in particular are incorporated in the funnel plate and/or in the bundle-retaining plate may be incorporated into the perforations of the carrier pad which is held ready at the device, in particular at the funnel plate and/or at the bundle-retaining plate.
In this way the bristle filaments which are assembled to form bristle bundles can be infed having a slight degree of compression which is required for conveying through the conveying device by means of a gas or air stream and with the aid of the compression die subsequently be incorporated mechanically into the perforations of the carrier pad which is held ready and here simultaneously be compressed to the required higher degree of compression. In particular in the case of relatively high degrees of compression, mechanical compression of the bristle bundles, toward which the funnel ducts of the funnel plate described earlier may also contribute, represents a particularly simple manner of compressing and incorporating the bristle bundle into the carrier pad being held ready.
It may be advantageous above all for carrying out the method which has already been described earlier for the device to have a conveying gripper and a welding station. The conveying gripper here preferably may be configured as a turntable having at least one conveying receptacle for a funnel plate and/or bundle-retaining plate which are/is populated by bristle bundles and/or by at least one carrier pad. It should be pointed out that the bundle-retaining plate, which then additionally may assume the function of a conveying plate, by means of the conveying gripper after populating the bundle-retaining plate with bristle bundles and/or with at least one carrier pad is conveyable to a or to the welding station, wherein the bristle bundles in the welding station are connectable in particular in a form-fitting and/or force-fitting manner to the at least one carrier pad.
Furthermore, it is possible for also the at least one funnel plate to be able to be conveyed between stations of the device by means of the conveying gripper.
It may be advantageous when, for connecting the bristle bundles to the at least one carrier pad, the welding station has at least one welding die by way of which the bristle bundles are connectable to the at least one carrier pad. If the carrier pad to be processed is a carrier pad according to the invention it is possible for the at least one welding die to be used for fusing the material protrusions of the carrier pad and for interference-fitting the fused material protrusions into a bundle-fastening plane of the respective carrier pad. Here the at least one welding die in the welding position may be in contact with a back side of the carrier pad.
In one embodiment of the invention, this at least one welding die may be heated to a temperature of about 500° C. in order to weld the bristle bundles to the respective carrier pads.
It should be pointed out again at this juncture that the use of a carrier pad according to the invention together with the device as described earlier may simplify the manufacture of bristle arrangements to a particular extent, in particular when the method which likewise has been described earlier is applied.
The advantages which may be derived from the device for manufacturing bristle arrangements may be particularly great when the bristle filaments are chemically tapered filaments—CTFs—since these particularly fine bristle filaments may be subject to a particular extent to static charging when being conveyed by means of a gas or air stream through the conveying device, such that infeeding of such chemically tapered bristle filaments to date has only been possible with disproportionate complexity.
It may be expedient for the device to have a de-sheathing station which is upstream of the material box, for de-sheathing bristle filaments which are assembled by means of a sheathing to form filament pucks. The de-sheathing station here may have at least one cutting device having at least one cutting tool for opening the sheathing of the filament pucks and at least one gripping installation for removing the opened sheathing. It may be furthermore advantageous for the de-sheathing station to be connected in terms of conveying technology to the material box downstream thereof, in order for the de-sheathed bristle filaments to be infed to the material box. For this purpose, the de-sheathing station in one embodiment of the device may have at least one gripper and/or at least one slide by way of which the de-sheathed bristle filaments are infeedable to the material box, preferably in an automated manner.
In order for the bristle filaments to be able to be infed to the material box in an automated manner, the material box may have at least one conveying path which in particular is connected in terms of conveying technology to a de-sheathing station, for example the de-sheathing station which has already been mentioned earlier. In this at least one conveying path the bristle filaments which are oriented in the vertical direction may be disposed between two lateral strips, wherein the conveying path preferably opens out into a removal region of the removal installation.
In order for the introduction of the bristle filaments into the at least one conveying path to be facilitated, the at least one conveying path may have an insertion region in which the spacing of the lateral strips which delimit the at least one conveying path is reduced in the conveying direction.
Moreover, the device may have a transfer station having at least one suction gripper for transferring bristle filaments which are assembled by means of a sheathing to form filament pucks to a de-sheathing station, for example the de-sheathing station which has already been mentioned earlier. In this way, automated infeeding of the filament pucks to the de-sheathing station is possible.
Here a suction gripper, for example the suction gripper already mentioned earlier, of a transfer station, for example the transfer station already mentioned earlier, may have a suction plate which preferably is covered by a fabric, in particular by a galloon fabric, and by way of said suction plate at least one filament puck across its sheathless end side which faces away from a contact area is acquirable by suction.
Acquiring the at least one filament puck by suction and subsequently handling the at least one filament puck with the aid of the at least one suction gripper of the transfer station may be facilitated when a sheathing keeping together a filament puck in the use position on the longitudinal side radially surrounds the bristle filaments which are assembled in the filament puck, such that an end-side upper side of the filament puck is sheathless.
Expediently, the sheathing here may be configured as an endless tape, that is to say as banderole, or as a tubular portion which is placed over the bristle filaments which are assembled to form a puck or as a sleeve which is placed thereover. Advantageously, a height of the sheathing here may correspond to a length of the bristle filaments of the filament puck.
Acquiring the filament pucks which are surrounded by the sheathing by suction with the aid of a suction gripper, for example the suction gripper already mentioned earlier, may be facilitated when the sheathing of the filament pucks is composed of a flexible and/or air-impermeable material. One material which is suitable as sheathing and which is both flexible and air-impermeable is for example polyethylene, preferably PE-LD.
Furthermore, the device may have an infeed station which is connected to a transfer station, for example the transfer station already mentioned earlier, and which has at least one contact area which in particular is configured as a conveyor belt. On this at least one contact area the filament pucks may be infeedable to the transfer station and/or to the at least one suction gripper of the transfer station. In order for the individual filament pucks to be able to be reliably removed from the contact area, for example with the aid of the suction gripper, it may be expedient for the filament pucks on the at least one contact area which is preferably configured as a conveyor belt to be kept so as to be spaced apart. In order for the filament pucks on the contact area to be kept so as to be spaced apart, said contact area may preferably have a plurality of receptacle depressions which in particular in the conveying direction are spaced apart from one another and into which the individual filament pucks are placed and in which the filament pucks may be securely conveyed onward.
If the infeed station on at least one of its longitudinal sides, in particular on one of the longitudinal sides of the at least one contact area, has at least one locationally fixed depository face, which adjoins the at least one contact area, for individually pre-aligned filament pucks and/or for supply containers which are at least partially filled with filament pucks, it is possible for the contact area, in particular receptacle depressions of the contact area which on the contact area are disposed and configured so as to be spaced apart from one another, to be rapidly and efficiently populated with filament pucks, if and when required. To this end, the filament pucks may either be removed from the adjoining depository face or directly put onto the contact area from supply containers which are held ready and which likewise may be held ready on the adjoining depository face, as soon as space becomes available again on said contact area for filament pucks which are to be infed to the transfer station and/or to the at least one suction gripper of the transfer station.
It should be pointed out that the depository face here may be configured in particular in a board-shaped and/or strip-shaped manner and may expediently extend at least across part of the length of the contact area, but is locationally fixed in relation to the contact area.
It goes without saying that the device according to the invention may also have more than only one bundle-retaining plate and/or funnel plate. In the case of a device which has, for example, four bundle-retaining plates and four funnel plates which are assigned to those bundle-retaining plates and which preferably may be disposed on conveyor receptacles of a conveying gripper or of the conveying gripper already mentioned earlier, said device may operate to a particularly efficient degree.
Furthermore, each of the thus at least one bundle-retaining plate and/or of the at least one funnel plate of the device may have at least one, in particular two, three, or four carrier-pad mounting(s) for receiving in each case one carrier pad to be populated with bristle bundles, in particular a carrier pad according to the invention.
An exemplary embodiment of the invention is explained in more detail herebelow by means of the drawing in which, partially in a heavily schematic manner:
A device, which in its entity is referred to with 1, for manufacturing bristle arrangements for brushes, in particular for toothbrushes, according to
According to
In order to dissipate electrostatic charges which adhere to the bristle filaments 2 and/or bristle bundles 5 to be conveyed, the conveying device 6 is electrically earthed.
In one embodiment of the device 1 which is not illustrated in the figures, the conveying device 6 has at least one bundle-receiving device which is connected to the material-box-side ends 10 of the hollow conduits 7, wherein the at least one bundle-receiving device in this exemplary embodiment of the device 1 is electrically earthed.
In the exemplary embodiment of the device 1 illustrated in
As can be further seen from
In order to be electrically earthed, the hollow conduits 7 have at least one electric terminal or earth terminal 11 which is least temporarily contacted by the bristle bundles 5 and/or the bristle filaments 2 contained in the bristle bundles 5 when being conveyed through the hollow conduits 7, wherein in particular the hollow conduits 7 and the earth terminals 11 which are assigned to the hollow conduits 7 are earthed or connected to the earth, respectively, by way of an electric conductor 12.
In one exemplary embodiment of the device 1 which is not illustrated in the figures, this at least one electric conductor 12 is connected to the earth by way of an electrically earthed post of the device 1.
While the hollow conduits 7 in other exemplary embodiments are configured as tubes of a flexible material or else as tubular connectors of an electrically conductive material, in particular of metal, preferably of steel, stainless steel, or of copper, the hollow conduits 7 in the exemplary embodiment of the device 1 illustrated in
When being conveyed through the hollow conduits 7, the bristle filaments 2 or the bristle bundles 5, respectively, then contact this electrically conductive metal helix 13 of the Bowden cable sleeves 14, such that electric charges which adhere to the bristle filaments 2 or to the bristle bundles 5 may be reliably dissipated.
The number of hollow conduits 7 in the conveying device 6 illustrated in
In one exemplary embodiment of the device 1 not illustrated in the figures, the bundle-retaining plate 9 on a side which in the receiving position faces away from the conveying device 6 is equipped with at least one carrier-pad mounting for a carrier pad 17, such that at least one carrier pad 17 may be held ready on the bundle-retaining plate 9 in order to be filled with bristle bundles 5.
The hollow conduits 7 of the conveying device 6 open in each case into one guide duct 18 of a guide element 19, which may also be referred to as an infeed block. These guide ducts 18 are in each case configured as through openings, wherein the mutual outfeed-side spacings of the guide ducts 18 are smaller than the infeed-side spacings.
Furthermore, the exit openings 20 of the guide ducts 18 are disposed so as to correspond to a disposal of perforations 8 of the bundle-retaining plate 9 which are to be populated with bristle bundles 5 and so as to open into these perforations 8.
Furthermore,
For this purpose, each of the funnel plates 21 is displaceable to and fro in the vertical direction between two linear guides 22, in order for the funnel plates 21 to be disposed if and when required in the desired position between the respective bundle-retaining plate 9 and the at least one carrier pad 17 which is to be populated with bristle bundles 5.
Each of the funnel plates 21 has funnel ducts 23 which narrow in the conveying direction of the bristle bundles 5 and through which funnel ducts 23 bristle bundles 5 from the respective bundle-retaining plate 9 are introducible into perforations 24 of a carrier pad 17 which is held ready on the carrier plate 21 in each case in a carrier pad mounting 25 of the funnel plate 21. Here, entry openings 26 of the funnel ducts 23 correspond in their number and disposal to exit openings of the perforations 8 of the bundle-retaining plate 9, while exit openings 27 of the funnel ducts 23 correspond in their number and disposal to the perforations 24 of the at least one carrier pad 10 and open into these perforations 24 of the carrier pads 17 which are held ready on the funnel plate 21.
The device 1 has in each case one compression die 24 for each of the carrier pads 16 which is held ready on the respective bundle-retaining plate 9 or on the respective funnel plate 21, respectively. The in total four compression dies 28 here are disposed in the compression station which in
By way of these compression fingers, bristle bundles 5 which are incorporated in the bundle-retaining plate 9 or in the funnel plates 21, respectively, may be reliably and with a desired degree of compression incorporated into perforations 24 of the carrier pads 17 which are held ready on the device 1, in the present case on the funnel plate 21.
The in total four bundle-retaining plates 9 and the likewise four funnel plates 21 assigned thereto are arranged on four arms 30 of a conveying gripper 31 which are mounted so as to be pivotable about a common axis, said conveying gripper 31 being configured as a turntable.
Furthermore, the device 1 has a welding station 15 to which the bundle-retaining plate 9 and the funnel plate 21 can be transferred by means of the conveying gripper 31. In each case one conveying receptacle 33 is configured on free ends of the arms 30 of the conveying gripper 31 for each of the four pairs composed of in each case one bundle-retaining plate 9 and one funnel plate 21. The bristle bundles 5 may be connected in a form-fitting and/or force-fitting manner to the carrier pads 17 in the welding station 15
A welding die 32 by way of which the bristle bundles 5 may be connected to the respective carrier pad 17 is provided in the welding station 15 for each of the carrier pads 16 which is disposed on the funnel plate 21 in the carrier pad mounting 25. The bristle filaments 2 which are processable using the device 1 are so-called chemically tapered filaments, that is to say CTFs, wherein also conventional bristle filaments may be processed on the device.
The device 1 has a de-sheathing station 34 which is upstream of the material box 3 and which serves for de-sheathing bristle filaments 2 which are held together in filament pucks 36 by means of a sheathing 35. The de-sheathing station 34 in the device illustrated in
The filament pucks 36 illustrated in the figures are provided with a spin finish with an antistatic additive for CTFs, which may reduce the tendency of the bristle filaments 2 toward static charging when being conveyed.
In one exemplary embodiment of the device 1 (not illustrated in the figures), the de-sheathing station 34 furthermore has at least one gripping installation for removing the opened sheathings 35.
According to
The material box 3 illustrated in
It should be pointed out at this juncture that in the exemplary embodiment of the device 1 illustrated in
Upstream of the de-sheathing station 34 the device 1 has a transfer station 42 having a suction gripper 43 for transferring bristle filaments 2 which are held together in filament pucks 36 by means of a sheathing 35 to the de-sheathing station 34.
According to
As can be seen in particular from the detail identified with K and illustrated in an enlarged manner in
The galloon fabric 44 with which the suction plate 45 of the suction gripper 43 is covered prevents the bristle filaments 2 being sucked out of the respective filament puck 36 which has been acquired by suction and said bristle filaments 2 being lost for further processing.
It should be pointed out at this juncture that the device 1 according to
Like the suction gripper 43, the suction unit 16 is also covered with a fabric which is impermeable to filaments, in the present case with a galloon fabric 44, such that suctioning off bristle filaments 2 of individual bristle bundles 5 which have been sucked into the bundle-retaining plate 9 may be prevented.
From the detail which is illustrated in an enlarged manner in
The sheathing 35 or the puck sheath of the filament puck 36 here is composed of a flexible and in the present case also air-impermeable material. The material of the sheathing 35 illustrated in
Furthermore, the device 1 has an infeed station 47 which is connected to the transfer station 42. This infeed station 47 comprises three contact areas which are in each case configured as a conveyor belt 48, on which the filament pucks 36 may be infed to the transfer station 42 and to the suction gripper 43 which is assigned to the transfer station 42.
The filament pucks 36 are spaced apart on these three contact areas which are in each case configured as a conveyor belt 48
For this purpose, all three contact areas which are configured as conveyor belts 48 have a plurality of receptacle depressions 49 which are spaced apart from one another in the conveying direction and which serve for in each case receiving one filament puck 36.
According to
On account thereof, it is possible for empty receptacle depressions 49 on the three contact faces which are configured as conveyor belts 48 to be swiftly populated with new filament pucks 36.
As will be seen from
A further very similar exemplary embodiment of a carrier pad 17 according to the invention is illustrated in
According to
In an exemplary embodiment of the carrier pad 17 that is not illustrated in the figures, the bristle bundles which are introducible or are introduced into the perforations consist of tapered bristle filaments, in particular of chemically tapered bristle filaments 2a—so-called CTFs. At least after their fastening to the carrier pad, they form a bristle arrangement consisting of tapered bristle filaments 2a on the carrier pad 17.
It can be seen in the exemplary embodiment of the carrier pad 17 that is illustrated in
The bristle filaments 2 or 2a are composed of polyamide and/or of polyester, depending on application and requirements. The conventional bristle filaments 2, in particular those with a cross section which is consistent over their length, are preferably composed of polyamide while tapered bristle filaments 2a are composed of polyester. Polyester absorbs only little water, if any at all, which simplifies a drying process of the bristle filaments after their chemical tapering and makes the drying process possible for the first time on an industrially expedient scale.
The carrier pad 17 on its back side 53 which faces away from the bristle bundles 5 which are introduced into the perforations 24 has a plurality of material protrusions 54, in total five. These material protrusions 54 are fusible and, for fastening the bristle bundles 5 on the carrier pad 17, are interference-fittable in a bundle-fastening plane.
While the bristle bundles 5 in the situation illustrated in
After fusing the material protrusions 54 and interference-fitting the fused material protrusions 54 in the bundle-fastening plane, the bristle bundles 5 are connected to the carrier pad 17 in a form-fitting and/or force-fitting manner.
According to
According to
In the exemplary embodiments of the carrier pad 17 illustrated in
However, it should be pointed out that it is also provided in embodiments of the carrier pad 17 according to the invention that the perforations 24 have various cross sections, that is to say, for example, a round and/or oval and/or circular and/or polygonal cross section, or else are configured as elongate perforations in order for bristle arrangements with variously configured bristle bundles to be created.
Moreover,
In an exemplary embodiment of the carrier pad 17 that is not illustrated in the figures, this limitation 55 is higher than the material protrusions 54 on the back side 53 of the carrier pad 17.
In the exemplary embodiment of the carrier pad 17 that is illustrated in
In the use position, the carrier pad 17 illustrated in
Such a brush 60 is illustrated in
In another exemplary embodiment of the brush 60, it is provided that the carrier pad 17 is fastened to the brush 60, in particular to the carrier-pad receptacle 63 of the brush 60, by means of an inmould process.
Following the description of the device 1 and of the carrier pad 17 according to the invention, which may be processed on the device 1, there now follows a detailed description of the method which is applied on the device 1 for manufacturing bristle arrangements for brushes, in particular for toothbrushes.
The bristle filaments 2, 2a are removed from the material box 3 which contains a reserve of bristle filaments 2, 2a and assembled to form bristle bundles 5, 5a. Thereafter, the bristle bundles 5, 5a by means of a gas or air stream are guided through the hollow conduits 7 of the conveying device 6 and subsequently incorporated into the perforations 8 of the bundle-retaining plate 9.
According to
Like the suction gripper 43, the suction unit 16 is also covered with a fabric which is impermeable to filaments, in the present case with a galloon fabric 44, such that suctioning off bristle filaments 2, 2a of individual bristle bundles 5, 5a which have been sucked into the bundle-retaining plate 9 may be prevented.
In order to be able to avoid adhering of the bristle filaments 2, 2a or of the bristle bundles 5, 5a, respectively, to elements of the conveying device 6 when being conveyed through the conveying device 6 to the bundle-retaining plate 9, the bristle filaments 2, 2a forming the bristle bundles 5, 5a are electrostatically discharged when being conveyed through the conveying device 6 to the bundle-retaining plate 9.
In this way it may be prevented that the bristle bundles 5, 5a or the bristle filaments 2, 2a, respectively, on account of frictional forces acting thereupon when being conveyed through the conveying device 6, are statically charged and thus adhere to the elements of the conveying device 6.
When the device 1 illustrated in
In order to be electrostatically discharged, the bristle filaments 2, 2a forming the bristle bundles 5, 5a when being conveyed through the conveying device 6, more specifically when being conveyed through the hollow conduits 7 of the conveying device 6, to the bundle-retaining plate 9 are earthed for electrostatic discharging.
Here, the bristle filaments 2, 2a forming the bristle bundles 5, 5a, when being conveyed through the conveying device 6, for electrostatic discharging are guided past an electric terminal which is disposed on the conveying device 6 and which here is configured as an earth terminal 11 and are brought into contact with said electric terminal for electrostatic discharging. The earth terminal 11 which the bristle filaments 2, 2a forming the bristle bundles 5, 5a contact when being conveyed through the conveying device 6, in the device 1 illustrated in
In the device 1 illustrated in
The metal helix 13 illustrated in
It should be pointed out at this juncture that all hollow conduits 7 of the device 1 which are illustrated in
In one embodiment of the method it is provided that the bristle bundles 5, 5a from the bundle-retaining plate 9 are directly incorporated into perforations 24 of a carrier pad 17 which is held ready through narrowing funnel ducts 23 of the funnel plate 21.
In the method which is applied on the device 1 illustrated in
This takes place in the compression station which is referred to as 29 of the device 1 which is illustrated in
Subsequently, the material protrusions 54 which project on the rear side of the back side 53 of the carrier pad 17 which faces away from the bristle bundles 5 are heated and thereby fused in the welding station 15, wherein a melt of the fused material protrusions 54 is interference-fitted in a fastening plane of the bristle bundle 5, 5a for connecting the bristle bundles 5, 5a to the respective carrier pad 17, such that the melt flows in between ends of bristle bundles which project from the back side 53 of the respective carrier pad 17 and in between ends of bristle filaments of the bristle bundles 5, 5a and thereafter solidifies.
The material protrusions 54 on the carrier pad 17 here by means of the welding die 32 are heated, fused and interference-fitted in a fastening plane of the bristle bundle 5, 5a, in order for the bristle bundles 5, 5a to be fastened on the carrier pad 17.
Depending on necessity, the bristle bundles which are infed to the bundle-retaining plate 9 may here be bristle bundles 5 of conventional bristle filaments 2 and/or bristle bundles 5a of chemically tapered bristle filaments 2a, that is to say so-called CTFs.
The bristle filaments 2, 2a are infed to the transfer station 42 in filament pucks 36 which are held together by a flexible and air-impermeable sheathing 35. The filament pucks 36 infed to the transfer station 42 are then acquired by suction by means of a suction gripper 43 which is assigned to the transfer station 42, wherein the suction gripper 43 by way of its suction plate 45 contacts and acquires by suction the filament pucks 36 on their free upper side or end side 46.
The peculiarity here is in that the flexible and air-permeable sheathing 35, which earlier has also already been referred to as a puck sheath, is acquired by suction in a transverse manner to the longitudinal axis of the bristle filaments 2, 2a and in an inward manner in the direction of a longitudinal center axis which is perpendicularly oriented to the upper side 46 of the respective filament puck 36 and, on account thereof, places itself in a stabilizing manner around the bristle filaments 2, 2a of the filament puck 36 which has been acquired by suction.
Once the suction gripper 43 has acquired by suction one of the filament pucks 36, the filament puck 36 is transferred to the de-sheathing station 34 by means of the suction gripper 43.
As already mentioned, the filament pucks 36 which in the figures are being infed to the transfer station 42 are, at least if they are composed of chemically tapered bristle filaments 2a, provided with a spin finish with an antistatic additive for CTFs which reduces the tendency of the bristle filaments 2, 2a toward static charging when being conveyed through the conveying device 6.
According to
In the de-sheathing station 34 the sheathing 35 of the filament pucks 36 is opened and removed, and the bristle filaments 2, 2a which have been freed of the sheathing 35 are infed to the material box 3 in an automated manner.
Upstream of the transfer station 42 the device 1 has the infeed station 47 by means of which the filament pucks 36 are infed to the transfer station 42 and the suction gripper 43 of the transfer station, in the present case on a total of three contact areas of the infeed station 47 which are configured as conveyor belts 48.
The filament pucks 36 are individually held ready at the infeed station 47 on the three contact areas which are configured as conveyor belts 48 or, as is illustrated in
The method for manufacturing bristle arrangements for brushes, and the device 1, the carrier pad 17, and the brush 60 which is populated with a carrier pad 17 of this type, enable simplification of the manufacture of bristle arrangements for brushes, inter alia in that the bristle bundles 5, 5a which by means of a gas or air stream are conveyed through the conveying device 6 to the bundle-retaining plate 9 when being conveyed through the conveying device 6 are electrostatically discharged, such that they may be more easily conveyed through the conveying device 6, and in that they reduce the complexity in the fastening of bristle bundles 5, 5a in a carrier pad 17 without anchoring, since the carrier pad 17 on the rear side has material protrusions 54 which are fused and thereafter interference-fitted in a bundle-fastening plane, in order for bristle bundles 5,5a which have been incorporated into the perforations 24 of the carrier pad 17 to be connected in a form-fitting and/or force-fitting manner to the carrier pad 17 in a simple manner.
Claims
1. A carrier pad (17) comprising a carrier pad body with a plurality of perforations (24) which penetrate the carrier pad body, into which perforations bristle bundles (5, 5a) which are comprised of bristle filaments (2) are insertable and fastenable without anchoring on the carrier pad (17), the carrier pad (17) includes a back side (53) which faces away from the bristle bundles (5) which are guided into the perforations (24) on which there is a plurality of material protrusions (54), the material protrusions (54) are fusible and for fastening the bristle bundles (5, 5a) on the carrier pad (17) are force-fittable in a bundle-fastening plane.
2. The carrier pad (17) as claimed in claim 1, wherein the bristle bundles (5, 5a) which are introducible or are introduced into the perforations (24) are comprised of tapered bristle filaments (2a), and at least after their fastening to the carrier pad (17) form a bristle arrangement consisting of tapered bristle filaments (2a), or wherein a portion of the bristle bundles (5, 5a) which are introducible or are introduced into the perforations (24) are formed of tapered bristle filaments (2a), and another portion of the bristle bundles (5, 5a) which are introducible or are introduced into the perforations (24) are comprised of conventional bristle filaments (2), and the bristle bundles (5a) formed of the tapered bristle filaments (2a) and the bristle bundles (5) comprised of the conventional bristle filaments (2) form a mixed bristle arrangement (58) at least after fastening to the carrier pad (17).
3. The carrier pad (17) as claimed in claim 1, wherein the bristle filaments (2, 2a) are comprised of at least one of polyamide or polyester.
4. The carrier pad (17) as claimed in claim 1, wherein the bristle bundles (5) post fusing of the material protrusions (54) and interference-fitting of the fused material protrusions (54) into the bundle-fastening plane are connected to the carrier pad (17) in at least one of a form-fitting or force-fitting manner.
5. The carrier pad (17) as claimed in claim 1, wherein the material protrusions (54) are configured as pimples, and the material protrusions (54) project transversely from the back side of the carrier pad (17).
6. The carrier pad (17) as claimed in claim 1, wherein the perforations (24) have at least one of a round, oval, circular, or polygonal cross section.
7. The carrier pad (17) as claimed in claim 1, wherein the material protrusions (54) are integrally connected to the carrier pad (17) or the material protrusions (54) are comprised of a same material as the carrier pad (17), or the material protrusions (54) are integrally connected to and comprised of the same material as the carrier pad (17).
8. The carrier pad (17) as claimed in claim 1, wherein a material forming the material protrusions (54) has a lower melting point than a material forming at least one of the bristle filaments (2, 2a) or the bristle bundles (5, 5a).
9. The carrier pad (17) as claimed in claim 1, wherein a material forming at least one of the bristle filaments (2, 2a) or the bristle bundles (5, 5a) has a lower melting point than a material forming the material protrusions (54).
10. The carrier pad (17) as claimed in claim 1, wherein the material protrusions (54) narrow toward free ends thereof.
11. The carrier pad (17) as claimed in claim 1, wherein the carrier pad (17) on the back side (53) which faces away from the bristle bundles (5, 5a) has a delimitation (55) which projects from the back side (53) of the carrier pad (17) and which surrounds the perforations (24) and the material protrusions (54), and the delimitation (55) of the carrier pad (17) is at least half a height of the material protrusions (54) which are disposed on the back side (53) of the carrier pad (17).
12. The carrier pad (17) as claimed in claim 1, wherein the carrier pad (17) on the back side (53) facing away from the bristle bundles (5, 5a) further includes, at least after introduction of the bristle bundles (5, 5a) into the perforations (24) or post fusing and interference-fitting of the material protrusions (54), a cover (59) which is sprayable on or is sprayed.
13. A brush (60) comprising a handle (61) and a brush head (62), the brush head (62) has a carrier-pad receptacle (63) and the carrier pad (17) according to claim 1 which is populated with the bristle bundles (5, 5a) is fastened therein.
14. The brush (60) as claimed in claim 13, wherein the carrier pad (17) is at least one of clipped, welded, or adhesively bonded into the carrier-pad receptacle (63).
15. The brush according to claim 13, wherein the carrier pad (17) is fastened to the brush (60) by an inmould process.
16. The carrier pad (17) of claim 2, wherein the conventional bristle filaments (2) are comprised of polyamide and the tapered bristle filaments are comprised of polyester.
17. The carrier pad (17) of claim 1, wherein the material protrusions (54) are uniformly distributed around the perforations (24).
18. The carrier pad (17) of claim 1, wherein the perforations (24) are configured as elongate perforations.
19. The carrier pad (17) of claim 7, wherein the material is a fusible plastic material.
Type: Application
Filed: Jul 13, 2015
Publication Date: May 4, 2017
Applicant: Zahoransky AG (Todtnau)
Inventor: Ingo Kumpf (Todtnau)
Application Number: 15/318,862