POST-TENSIONING APPARATUS AND SYSTEM FOR STRUCTURES
The present invention pertains in general to post-tensioning apparatus and systems surrounding the fabrication and repair of concrete and other construction materials. The present invention surrounds apparatus and system directed to the post-tensioning for reinforcement of existing and new concrete structures through the application of tensile forces between two attachment points anchored to the structure to be mended.
This application claims the benefit of U.S. Provisional Patent Application 62/253,681 entitled “Post-Tensioning Apparatus and System for Structures” filed on Nov. 11, 2015, the entire contents of which are incorporated herein by reference in its entirety for all purposes.
FIELD OF THE INVENTIONThe present invention pertains in general to post-tensioning apparatus and systems surrounding the fabrication and repair of concrete and other construction materials. The present invention surrounds apparatus and system directed to the post-tensioning for reinforcement of existing and new concrete structures through the application of tensile forces between two attachment points anchored to the structure to be mended.
BACKGROUND OF THE INVENTIONThe field of concrete installation and maintenance, particularly surrounding structural or load bearing concrete, requires site preparation and formula of mix to create the desired preparation. Although mechanically strong in compression, concrete is relatively weak in tensile and bending loads and is subject to cracking and breakage under such conditions.
Practices including techniques of post-tensioning, which involves the pre-stressing of steel tendons within the concrete form to account for its relative weakness in tension. This practice is often used in installation for purposes such as commercial and residential construction where beams, floors and bridging components must span a length exceeding longer than practical with ordinary reinforced concrete.
Although the practice of post-tensioning aims to pre-load concrete and place it under a resting compressive load to counteract tensile and bending loads to mitigate mechanical failures. However, uncontrollable variables such as frost heaving, ground movement, erosion, water infiltration and others compromise the structural integrity of concrete and can cause cracking and mechanical failure of the structure of the concrete installation.
Due to the costly or nature or logistical impossibility of the replacement of concrete installations, many solutions aim to repair concrete after mechanical failure. Although it may seem sensible to replace a concrete installation in some situations, it will be appreciated that even the wholesale demolition and reinstallation of the concrete may not guarantee against failure in the future.
Cracks in concrete are caused due to the mechanical failure of the concrete in a localized area due to a possible variety of problems with the installation. For this reason, tensioning may be desired in scenarios such as the cross-linking of independently poured concrete installations or providing tension in “post-tensioning” to repair a concrete installation using tensile strengthening features. The application of metal structure for the tensile reinforcement is typically placed across a mechanical failure zone such as a fissure or crack where the concrete installation has mechanically failed. Post-tensioning typically involves preloading of a metal structure prior to adding more concrete to reinforce the repair.
SUMMARY OF THE INVENTIONSome solutions aim to fill the crack with a bonding adhesive or cement to repair the concrete. However, the lack of strength afforded by cements, often referred to as hydraulic cement, proves problematic. When considering the structural integrity of a concrete installation, the cost of repeated failure depends upon the application of the concrete. And cement patches have a high risk of repeated failure due to weak bond and structural integrity of the cement.
Other solutions to the mechanical failure of concrete resulting in cracks is addressed through internal metal stitching as proposed by U.S. Pat. No. 5,476,340, ('340), and U.S. Pat. No. 5,771,557, ('557), incorporated herein by reference, to Contrasto. Constrasto '340 discloses a method surrounding the use of apparatus '557 to bridge a crack using a series of cuts across a crack, inserting metal structure, and making additional cuts across the previous cuts and metal structure to add cross structure in the form of metal brackets prior to the addition of filler material. Contrasto '340 fails to provide any method of tension application to the concrete.
Constrasto '557 aims to provide increased localized tensile strength for the concrete around a crack. The higher ductility of steel as compared to concrete does not prevent the movement of the concrete beyond a failure threshold and therefore cannot prevent further cracking in the localized region and Contrastro '557 fails to provide the ability to pre-tension the structure or provide post-tensioning to the concrete structure.
Some solutions aim to address failed concrete by placing devices across cracks due to mechanical failure in efforts to provide post-tensioning by preloading metal members spanning across the crack. These metal members comprise plates with a post at either distal end affixed to one side that are inserted into pre-drilled apertures for anchoring. The metal members are then tensioned using wedge or cam based mechanisms to tension the metal member after the posts have been inserted into the concrete. These tensioning mechanisms, however, are limited in travel. If the apertures created for the posts are spaced too far apart, the user may not be able to install the metal member. If the apertures created for the posts are too close together, the user may not be able to tension the metal member as prescribed.
The present invention relates to a post-tensioning apparatus and system providing functionality of post-tensioning to existing structures. The present disclosure relates to the repair of concrete structures but is not limited to such application. Embodiments of the invention permit the application and adjustment of a modular post-tensioning apparatus including at least two attachment features interconnected by at least one tensioning mechanism. The modularity of the apparatus surrounds the ability to select and use different attachment features based upon the location, substrate, desired tensioning properties and other relevant variables in the tensioning of a structure.
In certain embodiments of the present invention, a modular apparatus and system provides tension to existing structures, such as an existing concrete installation, where it is desired to provide post structural reinforcement.
Embodiments of the apparatus provide tensile strength across a mechanical failure zone without further tensioning of the apparatus. However, tensioning the apparatus preloads the apparatus to resolve tolerances or gaps between the apparatus and the points of application within a structure to which it is applied. Tensioning the apparatus also places the apparatus in tension and compresses the structure between attachment features applied to the structure. This also mitigates tensile forces bearing on the concrete, as concrete is typically weaker in tension than in compression.
Certain embodiments of the present invention comprise at least two tension application components interconnected by one tensioning mechanism. Once the tension application components are applied to the structure, the tensioning mechanism is actuated to apply a tensile load to the tension application components, placing the apparatus in a tensile state.
Tension application components translate forces from the tensioning mechanism to the structure by attaching to the structure, such as a concrete installation. Each tension application component may also be attached to one or more application points. These application points may be on a singular structure or spanning two separate structures. It will be appreciated that the tension application components may comprise a variety of forms including, but not limited to, a post-like device, hook, loop and/or plate with attachment features for attachment to a structure. In certain embodiments, the apparatus permits modular use of a variety of tension application components where the apparatus may be used with two tension application devices of similar or dissimilar size, shape or form. It will be further appreciated that application points may comprise apertures in the structure, other features within the concrete or hardware pre-affixed to the concrete.
In certain embodiments, a tensioning mechanism comprising two axially aligned threaded female features, one having standard clockwise threading and the opposing exhibiting counter-clockwise threading, is referred to as a turnbuckle. In such an embodiment, the tension application components have a cylindrical cross-section with a length of screw threading at a proximal end to engage with the threaded female features of the tensioning mechanism. Furthermore, the distal section of the tension application component has as bend, which provides a post-like form to allow the application of force upon an existing structure. A structure may also be prepared by creating an aperture in the structure where one can place the tension application component to apply force on the structure.
It will be appreciated that a tensioning mechanism may comprise a turnbuckle. The tensioning mechanism may also comprise a rotational device with a set of indexed features radially around the rotational device in which a pawl, cog, or tooth engages to allow motion in one direction only, such as a ratchet, or a geared mechanism such as a rack-and-pinion or worm gear.
Certain embodiments of the present invention are directed to the repair of a concrete structure where a fissure or crack has occurred. The surface is prepared by creating plurality of apertures with at least one aperture being on a first side of a fissure or crack, and at least one aperture being on a second side of a fissure or crack. The apertures are positioned at a distance that generally corresponds to the length of the apparatus prior to actuation of the tensioning mechanism which shortens the apparatus. The distal ends of first and second tension application components are then inserted into the corresponding apertures of the prepared surface. Tension can then be applied by actuating the tensioning mechanism, creating post-tensioning in the area surrounding the crack or fissure.
In certain embodiments, a tension application component is used to apply a tensile load across a portion of a structure. The tension application component comprises an attachment end configured to engage with a tensioning mechanism. The attachment end engages the tensioning mechanism at a proximal end of the tensioning application component. The distal end of the tension application component has a feature such as an aperture or hook-form configured to engage with features installed in the structure. Such features which include, but are not limited to a post or rebar affixed to the structure.
Certain embodiments of the present invention comprise a tensioning application component that engages with the tensioning mechanism. The proximal end of the tension application component has an attachment feature configured to engage with the tensioning mechanism. The distal end of the tension application component is configured to engage the apertures within a prepared surface or extents of an existing structure with a plurality of post-like features. Having a plurality of post-like features distributes the load of the tensioning apparatus across a larger area. The distribution of forces allows the installation of a post-tensioning apparatus with structures having limited structural stability rather than an apparatus with a more concentrated loading which may risk further damage to the structure to be repaired. A scenario in which a user may want to use more than one post-tensioning apparatus, the plurality of post-like features allows the use of fewer post-tensioning apparatuses over a given length of a fissure or crack to achieve stronger structural stability.
Certain embodiments have a tension application component. In certain embodiments, the tension application component comprises a plate-form. The plate-form affixes to a structure to apply tensile load to the structure at the desired location. The plate-form can be affixed by welding or using at least one threaded fastener, masonry anchor or other methods known to those skilled in the art. The plate-form may further comprise a fixation point such as a loop or hook to allow the engagement of a tension application component. It may be desired to affix the plate-form to the structure using a plurality of fasteners or anchors to distribute tensile loading across a larger area of concentration on the structure. This distributed loading can also provide tensile strength between independent structures where other types of tension application components cannot. In contrast, post-like forms create a higher localized concentration of stress. Furthermore, the use of plate-forms may allow the post-tensioning between adjacent structures that are not coplanar such as adjacent planar structures disposed at not offer the necessary structural stability to provide tension between independent structures.
In certain embodiments, a tension application component has a plate-form having at least one aperture. The tension application component includes an engagement feature extending outward from the surface of the plate-form. The engagement features can engage with a tensioning mechanism, including through the use of a threaded male component, the threaded male component typically being axially parallel to the bore of the aperture in the plate-form. In such an embodiment, a tension application component can be attached to a first surface at an angle, typically orthogonal, and attached to a second surface. This allows post-tensioning across a crack or fissured that has occurred proximal to a corner where two sections of a structure meet at an angle.
Certain embodiments of the present invention comprise a tension application component having at least two parallel post structures. The two parallel post structures are disposed at an angle from a connecting body. The tension application component has an aperture, located medial to the post structures. The aperture is also typically axially parallel to the post structures. The tension application component distributes the load applied to the structure and provides a post-tensioning effect to a larger area. In certain embodiments, the tension application component has a post feature attached to a tensioning mechanism, where the post feature is disposed through the medially located aperture.
In certain embodiments of the invention, the apparatus comprises a tensioning mechanism having a consistent cross-sectional profile. The tensioning mechanism can have female threaded features at its distal ends. The threaded receptacles have opposing threading direction. Thus, when engaged with rotationally constrained male threaded features, the opposite threading direction allows both male threaded features to be drawn toward the center of the tensioning mechanism when rotated in a first direction and forces the male threaded features away from center when rotated a second direction, opposite the first direction. Alternatively, it will be appreciated that the tensioning mechanism may have male threaded features and the tension application components have female threaded features.
In certain embodiments, the tensioning mechanism has a torque application feature. The torque application feature actuates the tensioning mechanism by applying rotational forces to tension application components. The torque application feature may have different individual forms or a combination of forms as known to those skilled in the art. The profile of the tensioning mechanism may have forms including but not limited to elliptical, circular, hexagonal, octagonal or square.
In certain embodiments, the external profile of the tensioning device has a form with parallel exterior surfaces, such as a square, hexagonal or octagonal form. The external profile may be used for the application of torque with a tool such as a wrench or other standard torque applying tool.
In certain embodiments, the tensioning mechanism has at least one aperture. The aperture passes through the tensioning mechanism perpendicular to central axis of the mechanism typically intersecting the central axis. The aperture allows for torque application through the use of a rod or other shaft-like object inserted into the aperture. After torque application it may be desired to dispose a rod in the aperture to prevent counter-rotation by engaging the rod with the structure, such as concrete, to which an apparatus comprising a tensioning mechanism is applied. It will be appreciated by those skilled in the art that such apertures are typically in a medial section of the tensioning mechanism. Furthermore, it may be desired to have a plurality of apertures. The additional apertures can be angularly displaced from other apertures such as on 45-degree or 90-degree increments that allow for easier adjustment of the tensioning mechanism in tighter locations. The apertures may be coplanar to the axis of the central axis. In certain embodiments, the apertures may be located on offset yet parallel planes that are perpendicular to the central axis of the tensioning mechanism.
Embodiments of the present disclosure may be used in a system comprising at least one tensioning mechanism and at least two tension application components. Furthermore, different tensioning components may be used interchangeably with a tensioning mechanism to allow system customization for each application.
In certain embodiments of the present invention, a modular apparatus and system provides tension to existing structures, such as an existing concrete installation, wherein it is desired to provide structural reinforcement. Tensioning may be desired in many scenarios such as the cross-linking of independently poured concrete installations or providing tension in “post-tensioning” to repair a concrete installation using tensile strengthening features. The application of metal structure for the tensile reinforcement is typically placed across a mechanical failure zone such as a fissure or crack where the concrete installation has mechanically failed.
An apparatus 100, as shown in
The tension application component 101 translates forces from the tensioning mechanism 102 to the structure by attaching to a structure, such as a concrete installation. The tension application component 101 may also be attached to two or more independent elements or structures. It will be appreciated that the tension application components 101 may comprise a variety of forms including, but not limited to, a post-like device, hook, loop and/or plate with attachment features for attachment to a structure. In certain embodiments the apparatus 100 permits modular use of a variety of tension application components wherein the apparatus may be used with two tension application devices of similar or dissimilar size, shape or form.
In certain embodiments of the apparatus, as shown in
It will be appreciated by those skilled in the art that a post-tensioning device may be made of a steel alloy designated as a hot rolled and proof stressed alloy steel conforming to ASTM A722 CAN/CSA (G279-M1982). It will be further appreciated that certain embodiments may be made of a steel allow such as AISI 1144, sometimes referred to by an associated trade name of Stressproof®. AISI 1144 steel is appreciated to those skilled in the art as a is a carbon-manganese grade steel which is severely cold worked to produce high tensile properties.
Certain embodiments such as those shown in
In certain embodiments of the apparatus as shown in
Certain embodiments of the invention, as shown in
Certain embodiments have a tension application component. Such as those shown in
Certain embodiments of the invention, as shown in
Certain embodiments have a tension application component. In certain embodiments of, as shown in
In certain embodiments of the invention such as that shown in
In certain embodiments, the tensioning mechanism has a torque application feature. The torque application feature actuates the tensioning mechanism by to applying rotational forces to tension application components. The torque application feature may have different individual forms or a combination of forms as known to those skilled in the art. The profile of the tensioning mechanism may have forms including but not limited to elliptical, circular, hexagonal, octagonal or square.
In certain embodiments the tensioning mechanism 102, such as that shown in
In certain embodiments, the external profile of a tensioning device comprises a form with parallel exterior surfaces, such as a square, hexagonal or octagonal form, wherein the external profile may be used for the application of torque with a tool such as a wrench or other standard torque tool.
Embodiments of the invention disclosed herein may be used in a system comprising at least one tensioning mechanism and at least two tension application components wherein the tensioning components are interchangeably with a tensioning mechanism to allow system customization for each application. In such an embodiment of a system the tension application components may have a threading to match the tensioning mechanism with right-hand or left-hand threads alternatively. It will be appreciated that a system comprising at least one tensioning mechanism and at least two tension application components may comprise a first tension application component of a first type and a second tension application component of a second type.
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Claims
1. An apparatus for applying tension to cracked concrete surfaces comprising:
- a tensioning mechanism comprising a constant cross-sectional profile, a first female threaded feature at a first distal end of said tensioning mechanism, a second female threaded feature at a second distal end of said tensioning mechanism, and a torque application feature located medially between said first and second female threaded features;
- a first tension application component, with a proximal end aligned with and proximate to said first distal end of said tensioning mechanism, said first tension application component having a male threaded feature at said proximal end of said first tension application component, said first tension application component having at least one structure engaging feature located at a distal end of said first tension application component;
- a second tension application component, with a proximal end aligned with and proximate to said second distal end of said tensioning mechanism, said second tension application component having a male threaded feature at said proximal end of said second tension application component; said second tension application component having at least one structure engaging feature located at a distal end of said second tension application component;
- said male threaded features of said first tension application component and said second tension application component configured to engage with said female threaded features of said tensioning mechanism wherein the rotation of the tensioning mechanism in a first direction causes said first tension application component and said second tension application components to retract toward a center of said tensioning mechanism and rotation in a second direction causes the first and second components to protract from the center of the tensioning mechanism;
- wherein actuation of said tensioning mechanism by rotation allows post-tensioning of a structure when said first tension application component and said second tension application component are engaged with said structure.
2. The apparatus of claim 1, wherein said structure engaging feature of said first tension application component and said second tension application component are selected from the group consisting of: post-form, plate-form, loop, hook-form fixation point or aperture.
3. The apparatus of claim 1, wherein the threading of said male threaded features and said female threaded features are of ANSI thread designation 3/8-16.
4. The apparatus of claim 1 wherein said apparatus comprises a material composition comprising a steel alloy designated as a hot rolled and proof stressed alloy steel conforming to ASTM A722 CAN/CSA (G279-M1982).
5. The apparatus of claim 1 wherein said apparatus comprises a material composition comprising a steel allow designated as AISI 1144 compliant.
6. The apparatus of claim 1 wherein said torque application feature comprises a torque application aperture.
Type: Application
Filed: Nov 11, 2016
Publication Date: May 11, 2017
Inventor: Gary Weise (San Juan Capistrano, CA)
Application Number: 15/349,790