Refrigerator Appliance

A refrigerator appliance includes a sealed system having an evaporator. A heater is positioned adjacent the evaporator within a cabinet of the refrigerator appliance. The heater includes a sheath and a spine fin assembly. The spine fin assembly is wrapped around the sheath and includes a plurality of spine fins that extend away from the sheath.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The present subject matter relates generally to refrigerator appliances and defrost heaters for the same.

BACKGROUND OF THE INVENTION

Refrigerators generally include a cabinet that defines a chilled chamber. The chilled chamber is commonly cooled with a sealed system having an evaporator. One problem frequently encountered with modern refrigerators is inefficient defrosting of the evaporator. For example, when the evaporator is active, frost can accumulate on the evaporator and thereby reduce efficiency of the evaporator. One effort to reduce or eliminate frost from the evaporator has been to utilize a heater, such as an electric heater, to heat the evaporator when the evaporator is not operating.

Utilizing a heater to defrost an evaporator can pose challenges. For example, certain refrigerators utilize a flammable refrigerant within the sealed system. In such systems, a surface temperature of the heater is generally limited to a temperature well below the auto-ignition temperature of the flammable refrigerant. However, the evaporator generally requires a certain power output from the heater to suitably defrost. To provide such power output while also operating well below the auto-ignition temperature of the flammable refrigerant, the heater is generally elongated such that heat is distributed over the substantial length of the heater. However, a large, elongated heater occupies valuable space within the refrigerator, increases cost and decreases efficiency because increased thermal mass adds to the required heat load.

Accordingly, a refrigerator appliance with features for defrosting an evaporator of the refrigerator appliance would be useful. In particular, a refrigerator appliance with a compact heater for defrosting an evaporator of the refrigerator appliance while also operating well below an auto-ignition temperature of a flammable refrigerant within the evaporator would be useful.

BRIEF DESCRIPTION OF THE INVENTION

The present subject matter provides a refrigerator appliance. The refrigerator appliance includes a sealed system having an evaporator. A heater is positioned adjacent the evaporator. The heater includes a sheath and a spine fin assembly. The spine fin assembly is wrapped around the sheath and includes a plurality of spine fins that extend away from the sheath. Additional aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.

In a first exemplary embodiment, a refrigerator appliance includes a cabinet that defines a chilled chamber. A sealed system includes an evaporator. The evaporator is disposed at the chilled chamber. A heater is positioned adjacent the evaporator. The heater includes a sheath and a spine fin assembly wrapped around the sheath. The spine fin assembly includes a base and a plurality of spine fins mounted to the base. The base of the spine fin assembly is positioned on the sheath. The spine fins of the plurality of spine fins extend away from the sheath.

In a second exemplary embodiment, a refrigerator appliance is provided. The refrigerator appliance includes a cabinet that defines a chilled chamber. A sealed system includes an evaporator. The evaporator is disposed at the chilled chamber. A heater positioned is adjacent the evaporator. The heater includes a sheath and a spine fin assembly. The spine fin assembly includes a base and a plurality of spine fins. The base of the spine fin assembly is wrapped helically onto the sheath. The spine fins of the plurality of spine fins are mounted to the base such that the spine fins of the plurality of spine fins extending radially away from the sheath.

These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.

FIG. 1 provides a front view of a refrigerator appliance according to an exemplary embodiment of the present subject matter.

FIG. 2 provides a schematic view of a refrigeration system of the exemplary refrigerator appliance of FIG. 1.

FIG. 3 provides a schematic view of a heater according to an exemplary embodiment of the present subject matter.

FIG. 4 provides a section view of the exemplary heater of FIG. 3.

DETAILED DESCRIPTION

Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.

FIG. 1 provides a front view of a representative refrigerator appliance 10 according to an exemplary embodiment of the present invention. More specifically, for illustrative purposes, the present invention is described with a refrigerator appliance 10 having a construction as shown and described further below. As used herein, a refrigerator appliance includes appliances such as a refrigerator/freezer combination, side-by-side, bottom mount, compact, and any other style or model of refrigerator appliance. Accordingly, other configurations including multiple and different styled compartments could be used with refrigerator appliance 10, it being understood that the configuration shown in FIG. 1 is by way of example only.

Refrigerator appliance 10 includes a fresh food storage compartment 12 and a freezer storage compartment 14. Freezer compartment 14 and fresh food compartment 12 are arranged side-by-side within an outer case 16 and defined by inner liners 18 and 20 therein. A space between case 16 and liners 18, 20 and between liners 18, 20 is filled with foamed-in-place insulation. Outer case 16 normally is formed by folding a sheet of a suitable material, such as pre-painted steel, into an inverted U-shape to form the top and side walls of case 16. A bottom wall of case 16 normally is formed separately and attached to the case side walls and to a bottom frame that provides support for refrigerator appliance 10. Inner liners 18 and 20 are molded from a suitable plastic material to form freezer compartment 14 and fresh food compartment 12, respectively. Alternatively, liners 18, 20 may be formed by bending and welding a sheet of a suitable metal, such as steel.

A breaker strip 22 extends between a case front flange and outer front edges of liners 18, 20. Breaker strip 22 is formed from a suitable resilient material, such as an extruded acrylo-butadiene-styrene based material (commonly referred to as ABS). The insulation in the space between liners 18, 20 is covered by another strip of suitable resilient material, which also commonly is referred to as a mullion 24. In one embodiment, mullion 24 is formed of an extruded ABS material. Breaker strip 22 and mullion 24 form a front face, and extend completely around inner peripheral edges of case 16 and vertically between liners 18, 20. Mullion 24, insulation between compartments, and a spaced wall of liners separating compartments, sometimes are collectively referred to herein as a center mullion wall 26. In addition, refrigerator appliance 10 includes shelves 28 and slide-out storage drawers 30, sometimes referred to as storage pans, which normally are provided in fresh food compartment 12 to support items being stored therein.

Refrigerator appliance 10 can be operated by one or more controllers 11 or other processing devices according to programming and/or user preference via manipulation of a control interface 32 mounted, e.g., in an upper region of fresh food storage compartment 12 and connected with controller 11. Controller 11 may include one or more memory devices and one or more microprocessors, such as a general or special purpose microprocessor operable to execute programming instructions or micro-control code associated with the operation of the refrigerator appliance. The memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor. Controller 11 may include one or more proportional-integral (“PI”) controllers programmed, equipped, or configured to operate the refrigerator appliance according to exemplary aspects of the control methods set forth herein. Accordingly, as used herein, “controller” includes the singular and plural forms.

Controller 11 may be positioned in a variety of locations throughout refrigerator appliance 10. In the illustrated embodiment, controller 11 may be located e.g., behind an interface panel 32 or doors 42 or 44. Input/output (“I/O”) signals may be routed between the control system and various operational components of refrigerator appliance 10 along wiring harnesses that may be routed through e.g., the back, sides, or mullion 26. Typically, through user interface panel 32, a user may select various operational features and modes and monitor the operation of refrigerator appliance 10. In one embodiment, the user interface panel may represent a general purpose I/O (“GPIO”) device or functional block. In one embodiment, the user interface panel 32 may include input components, such as one or more of a variety of electrical, mechanical or electro-mechanical input devices including rotary dials, push buttons, and touch pads. The user interface panel 32 may include a display component, such as a digital or analog display device designed to provide operational feedback to a user. User interface panel 32 may be in communication with controller 11 via one or more signal lines or shared communication busses.

In one exemplary embodiment of the present invention, one or more temperature sensors are provided to measure the temperature in the fresh food compartment 12 and the temperature in the freezer compartment 14. For example, first temperature sensor 52 may be disposed in the fresh food compartment 12 and may measure the temperature in the fresh food compartment 12. Second temperature sensor 54 may be disposed in the freezer compartment 14 and may measure the temperature in the freezer compartment 14. This temperature information can be provided, e.g., to controller 11 for use in operating refrigerator 10 as will be more fully discussed below. These temperature measurements may be taken intermittently or continuously during operation of the appliance and/or execution of a control system as further described below.

A shelf 34 and wire baskets 36 are also provided in freezer compartment 14. In addition, an ice maker 38 may be provided in freezer compartment 14. A freezer door 42 and a fresh food door 44 close access openings to freezer and fresh food compartments 14, 12, respectively. Each door 42, 44 is mounted to rotate about its outer vertical edge between an open position, as shown in FIG. 1, and a closed position (not shown) closing the associated storage compartment. In alternative embodiments, one or both doors 42, 44 may be slidable or otherwise movable between open and closed positions. Freezer door 42 includes a plurality of storage shelves 46, and fresh food door 44 includes a plurality of storage shelves 48.

Referring now to FIG. 2, refrigerator appliance 10 may include a refrigeration system 200. In general, refrigeration system 200 is charged with a refrigerant that is flowed through various components and facilitates cooling of the fresh food compartment 12 and the freezer compartment 14. Refrigeration system 200 may be charged or filled with any suitable refrigerant. For example, refrigeration system 200 may be charged with a flammable refrigerant, such as R441A, R600a, isobutene, isobutane, etc.

Refrigeration system 200 includes a compressor 202 for compressing the refrigerant, thus raising the temperature and pressure of the refrigerant. Compressor 202 may for example be a variable speed compressor, such that the speed of the compressor 202 can be varied between zero (0) and one hundred (100) percent by controller 11. Refrigeration system 200 may further include a condenser 204, which may be disposed downstream of compressor 202, e.g., in the direction of flow of the refrigerant. Thus, condenser 204 may receive refrigerant from the compressor 202, and may condense the refrigerant by lowering the temperature of the refrigerant flowing therethrough due to, e.g., heat exchange with ambient air. A condenser fan 206 may be used to force air over condenser 204 as illustrated to facilitate heat exchange between the refrigerant and the surrounding air. Condenser fan 206 can be a variable speed fan—meaning the speed of condenser fan 206 may be controlled or set anywhere between and including, e.g., zero (0) and one hundred (100) percent. The speed of condenser fan 206 can be determined by, and communicated to, fan 206 by controller 11.

Refrigeration system 200 further includes an evaporator 210 disposed downstream of the condenser 204. Additionally, an expansion device 208 may be utilized to expand the refrigerant, thus further reduce the pressure of the refrigerant, leaving condenser 204 before being flowed to evaporator 210. Evaporator 210 generally is a heat exchanger that transfers heat from air passing over the evaporator 210 to refrigerant flowing through evaporator 210, thereby cooling the air and causing the refrigerant to vaporize. An evaporator fan 212 may be used to force air over evaporator 210 as illustrated. As such, cooled air is produced and supplied to refrigerated compartments 12, 14 of refrigerator appliance 10. In one exemplary embodiment of the present invention, evaporator fan 212 can be a variable speed evaporator fan—meaning the speed of fan 212 may be controlled or set anywhere between and including, e.g., zero (0) and one hundred (100) percent. The speed of evaporator fan 212 can be determined by, and communicated to, evaporator fan 212 by controller 11.

Evaporator 210 may be in communication with fresh food compartment 12 and freezer compartment 14 to provide cooled air to compartments 12, 14. Alternatively, refrigeration system 200 may include more two or more evaporators, such that at least one evaporator provides cooled air to fresh food compartment 12 and at least one evaporator provides cooled air to freezer compartment 14. In other embodiments, evaporator 210 may be in communication with any suitable component of the refrigerator appliance 10. For example, in some embodiments, evaporator 210 may be in communication with ice maker 38, such as with an ice compartment of the ice maker 38. From evaporator 210, refrigerant may flow back to and through compressor 202, which may be downstream of evaporator 210, thus completing a closed refrigeration loop or cycle.

As shown in FIG. 2, a defrost heater 214 may be utilized to defrost evaporator 210, i.e., to melt ice that accumulates on evaporator 210. Heater 214 may be positioned adjacent (e.g., below) evaporator 210 within fresh food compartment 12 and/or freezer compartment 14. Heater 214 may be activated periodically; that is, a period of time tice elapses between when heater 214 is deactivated and when heater 214 is reactivated to melt a new accumulation of ice on evaporator 210. The period of time tice may be a preprogrammed period such that time tice is the same between each period of activation of heater 214, or the period of time may vary. Alternatively, heater 214 may be activated based on some other condition, such as the temperature of evaporator 210 or any other appropriate condition.

Additionally, a defrost termination thermostat 216 may be used to monitor the temperature of evaporator 210 such that defrost heater 214 is deactivated when thermostat 216 measures that the temperature of evaporator 210 is above freezing, i.e., greater than thirty-two degrees Fahrenheit (32° F.). In some embodiments, thermostat 216 may send a signal to controller 11 or other suitable device to deactivate heater 214 when evaporator 210 is above freezing. In other embodiments, defrost termination thermostat 216 may comprise a switch such that heater 214 is switched off when thermostat 216 measures that the temperature of evaporator 210 is above freezing.

FIG. 3 provides a schematic view of a heater 300 according to an exemplary embodiment of the present subject matter. FIG. 4 provides a section view of heater 300. Heater 300 may be used in or with any suitable refrigerator appliance as a defrost heater. For example, heater 300 may be used as defrost heater 214 in refrigeration system 200 to defrost evaporator 210. Thus, heater 300 is discussed in greater detail below in the context of refrigerator appliance 10. As discussed in greater detail below, heater 300 includes features for defrosting evaporator 210 while operating such that a surface temperature of heater 300 is well below a maximum temperature, e.g., an auto-ignition temperature of a flammable refrigerant within evaporator 210. As used herein, the term “well below” means no less than seventy-five degrees Celsius (75° C.) when used in the context of temperatures. Thus, e.g., the surface temperature of heater 300 may be no less than one-hundred degrees Celsius (100° C.) below the auto-ignition temperature of the flammable refrigerant within evaporator 210 during operation of heater 300 in certain exemplary embodiments.

As shown in FIG. 3, heater 300 includes a sheath 310 and a spine fin assembly 320. Spine fin assembly 320 is wrapped around sheath 310, e.g., on an outer surface 312 of sheath 310. In particular, spine fin assembly 320 may be helically wound onto sheath 310 at outer surface 312 of sheath 310. Sheath 310 may have any suitable shape. For example, as shown in FIG. 3, sheath 310 may be U-shaped in certain exemplary embodiments. In alternative exemplary embodiments, sheath 310 may be straight, circular, arcuate, have multiple coils, etc. Sheath 310 may also be constructed of or with any suitable material. For example, sheath 310 may be constructed of or with aluminum or steel alloy.

As shown in FIG. 3, heater 300 extends between a first end portion 302 and a second end portion 304. Thus, e.g., first end portion 302 and second end portion 304 of heater 300 may each be disposed at or adjacent a respective terminal end of sheath 310. Electrical connections or terminals 306 may be positioned at each of first end portion 302 and second end portion 304 of heater 300. Thus, heater 300 may be coupled to an electrical power supply (not shown) at terminals 306.

Heater 300 defines a length (shown with dashed line L in FIG. 3) between the first and second end portions 302, 304 of heater 300. The length L of heater 300 may be any suitable length. For example, the length L of heater 300 may be no greater than two (2) feet. Thus, as discussed in greater detail below, spine fin assembly 320 may assist with allowing heater 300 to be compact or short while also operating such that a surface temperature of heater 300 is well below the maximum temperature.

Turning now to FIG. 4, sheath 310 has an inner surface 314 that defines an interior volume 316. Various components of heater 300 are disposed within interior volume 316 of sheath 310. In particular, heater 300 includes a resistive element 318 disposed within interior volume 316 of sheath 310. Resistive element 318 may be any suitable resistive heating element, such as a nickel chromium alloy wire. Sheath 310 is also packed with a thermally conductive electrical insulation 319, such as magnesium dioxide or vitrified magnesite. Resistive element 318 may be coupled to terminals 306 at opposite ends of resistive element 318. Thus, a voltage applied across terminals 306 may induce a current within resistive element 318 that in turn causes resistive element 318 to increase in temperature. Heat transfer between resistive element 318 and sheath 310 via thermally conductive electrical insulation 319 may heat sheath 310 during operation of heater 300. Thus, sheath 310, resistive element 318 and thermally conductive electrical insulation 319 may collectively form a Calrod® heating resistance element, in certain exemplary embodiments.

As shown in FIG. 4, spine fin assembly 320 includes a base 322 and a plurality of spine fins 324 mounted to base 322. Base 322 of spine fin assembly 320 is positioned on sheath 310, and spine fins 324 of spine fin assembly 320 extend away from sheath 310. In particular, base 322 of spine fin assembly 320 may be wrapped helically onto sheath 310, and spine fins 324 of spine fin assembly 320 may be mounted to base 322 such that spine fins 324 extend radially away from sheath 310.

Spine fin assembly 320 may be formed in any suitable manner. For example, a sheet of material may be provided. The sheet of material may be any suitable material. For example, sheet of material may be a metal, such as copper or aluminum alloy. The sheet of material is then cut. In particular, the sheet of material is cut to form spine fins 324 extending from base 322. The sheet of material is folded, e.g., such that spine fins 324 extend radially away from base 322. Spine fin assembly 320 is thus formed and may be wrapped about sheath 310 to assemble heater 300. For example, turning back to FIG. 3, the spine fin assembly 320 may be wrapped onto outer surface 312 of sheath 310 in order to form heater 300.

Wrapping spine fin assembly 320 onto sheath 310 may advantageously improve performance of heater 300. For example, with spine fin assembly 320 wrapped onto sheath 310, a maximum surface temperature of heater 300 may be no greater than three hundred and sixty degrees Celsius (360° C.) during operation of heater 300, e.g., while the length L of heater 300 is also no greater than two feet. Further, a power output density of heater 300 may be no greater than two hundred watts per foot along the length L of heater 300 with spine fin assembly 320 wrapped onto sheath 310. In such a manner, heater 300 may be compact or short while also providing sufficient power output to defrost evaporator 210 while further maintaining the surface temperature of heater 300 is well below maximum temperature, e.g., an auto-ignition temperature of a flammable refrigerant within evaporator 210. For example, during testing of heater 300 with spine fin assembly 320 relative to a heater without spine fin assembly 320 (where the heaters has common Calrod® heating resistance elements), the maximum surface temperature of heater 300 with spine fin assembly 320 was two hundred degrees Fahrenheit (200° F.) less than the maximum surface temperature of the heater without spine fin assembly 320 at a common power output. Thus, heater 300 may be manufactured efficiently and operate at a lower temperature, e.g., such that refrigerator 10 requires less protective shielding of adjacent plastic parts and/or such that likelihood of heat distortion of adjacent parts is decreased.

This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims

1. A refrigerator appliance, comprising:

a cabinet defining a chilled chamber;
a sealed system comprising an evaporator, the evaporator disposed at the chilled chamber;
a heater positioned adjacent the evaporator, the heater comprising a sheath and a spine fin assembly wrapped around the sheath, the spine fin assembly comprising a base and a plurality of spine fins mounted to the base, the base of the spine fin assembly positioned on the sheath, the spine fins of the plurality of spine fins extending away from the sheath.

2. The refrigerator appliance of claim 1, wherein the heater is positioned below the evaporator within the cabinet.

3. The refrigerator appliance of claim 1, wherein the heater extends between a first end portion and a second end portion, the heater defining a length between the first and second end portions of the heater, the length of the heater being no greater than two feet.

4. The refrigerator appliance of claim 1, wherein the base and the spine fins of the spine fin assembly are integrally formed from a common piece of material.

5. The refrigerator appliance of claim 4, wherein the common piece of material comprises aluminum.

6. The refrigerator appliance of claim 5, wherein the sheath of the heater comprises aluminum or steel alloy.

7. The refrigerator appliance of claim 1, wherein the sealed system is charged with a flammable refrigerant.

8. The refrigerator appliance of claim 7, wherein a maximum surface temperature of the heater is no greater than three hundred and sixty degrees Celsius during operation of the heater.

9. The refrigerator appliance of claim 8, wherein the heater extends between a first end portion and a second end portion, the heater defining a length between the first and second end portions of the heater, a power output density of the heater being no greater than two hundred watts per foot along the length of the heater.

10. A refrigerator appliance, comprising:

a cabinet defining a chilled chamber;
a sealed system comprising an evaporator, the evaporator disposed at the chilled chamber;
a heater positioned adjacent the evaporator, the heater comprising a sheath and a spine fin assembly, the spine fin assembly comprising a base and a plurality of spine fins, the base of the spine fin assembly wrapped helically onto the sheath, the spine fins of the plurality of spine fins mounted to the base such that the spine fins of the plurality of spine fins extending radially away from the sheath.

11. The refrigerator appliance of claim 10, wherein the heater is positioned below the evaporator within the cabinet.

12. The refrigerator appliance of claim 10, wherein the heater extends between a first end portion and a second end portion, the heater defining a length between the first and second end portions of the heater, the length of the heater being no greater than two feet.

13. The refrigerator appliance of claim 10, wherein the base and the spine fins of the spine fin assembly are integrally formed from a common piece of material.

14. The refrigerator appliance of claim 13, wherein the common piece of material comprises aluminum.

15. The refrigerator appliance of claim 14, wherein the sheath of the heater comprises aluminum or steel alloy.

16. The refrigerator appliance of claim 10, wherein the sealed system is charged with a flammable refrigerant.

17. The refrigerator appliance of claim 16, wherein a maximum surface temperature of the heater is no greater than three hundred and sixty degrees Celsius during operation of the heater.

18. The refrigerator appliance of claim 17, wherein the heater extends between a first end portion and a second end portion, the heater defining a length between the first and second end portions of the heater, a power output density of the heater being no greater than two hundred watts per foot along the length of the heater.

Patent History
Publication number: 20170131019
Type: Application
Filed: Nov 5, 2015
Publication Date: May 11, 2017
Inventors: Brent Alden Junge (Evansville, IN), Manish Talati (Louisville, KY)
Application Number: 14/933,136
Classifications
International Classification: F25D 21/08 (20060101); F28D 1/00 (20060101); F25D 11/02 (20060101);