MULTIPLE LAYER FILAMENYARY DEVICES FOR TREATMENT OF VASCULAR DEFECTS

Braid-balls suitable for aneurysm occlusion and/or parent vessel occlusion/sacrifice (e.g., in treating neurovascular defects) are disclosed. Especially for aneurysm treatment, but also for either one of the aforementioned treatments, the form of the ball is very important. In particular, the density of the device is paramount in applications where braid itself is intended to moderate or stop blood flow—allowing thrombosis within a volume formed by the ball.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This filing is a continuation of U.S. patent application Ser. No. 12/911,034, filed Oct. 25, 2010, which is a continuation of U.S. patent application Ser. No. 12/427,620 filed Apr. 21, 2009 which claims the benefit of each of: U.S. Patent Application Ser. Nos. 61/046,594 and 61/046,670, both filed Apr. 21, 2008; U.S. Patent Application Ser. Nos. 61/083,957 and 61/083,961, both filed Jul. 28, 2008; and U.S. Patent Application Ser. No. 61/145,097, filed Jan. 15, 2009. Each of the foregoing applications is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The present invention is directed to braid-balls suitable for aneurysm occlusion and/or parent vessel occlusion/sacrifice (e.g., in treating neurovascular defects).

BACKGROUND

Especially for aneurysm treatment, but also for either one of the aforementioned treatments, the form of the ball is very important. In particular, the density of the device is paramount in applications where braid itself is intended to moderate or stop blood flow—allowing thrombosis within a volume formed by the ball.

According to the present invention, braid-ball type implants are provided in braid of sufficient density is provided to moderate blood flow within the volume of the implant. Upon thrombosis, flow thereto is stopped. Alternatively, a blood-barrier covering can be applied to the filamentary structure to immediately stop blood flow into the vascular site, in which the implant volume is set.

In either case, to form thrombosis within the volume of the ball, the filaments of the braid matrix permit filling of the implant with blood when emplaced at a vascular treatment site. This blood then thromboses due to the flow-disruption effect(s).

Unlike Nitinol tube-cut cages that may be suitable for (or assist) in coil retention, the ball devices are adapted to work alone—or in combination with each other to effect a complete treatment. As such, high density braid/mesh is typically required. Namely, braid having at least about 48 ends, typically set at about 90 degrees or greater, in diameters from about 4 to about 8 mm may be employed. At larger diameters (e.g., about 6 to 12 or more), more wire ends (e.g., 64, 72 and upwards) may be employed in forming the balls.

Suitable braid for constructing the balls may be obtained from Secant Medical, Inc. Wire diameters may be in the range of about 0.001 to about 0.003 inches, depending on desired delivery profile (which is typically less than about 0.050 inches). The braid forming the balls may incorporate only one size wire, or may be formed with multiple sizes.

The wire is preferably superelastic NiTi alloy. The metal may be a binary alloy or a ternary alloy to provide additional radiopacity. Alternatively, radiopaque platinum fibers may be included in the braid, or the wire may comprise platinum or gold cord Nitinol DFT. Otherwise, wraps or bands (preferably Pt) used to secure the braid wire may serve as the sole radiopaque feature(s).

In any case, the construction approaches described herein enable producing these useful devices. Whether comprising braid alone, or incorporating some further blood-barrier covering (such as a thin urethane film as may be applied by Hantel, Inc. or others) the use of braid presents numerous challenges in managing the termination of multiple wires and in forming the desired structures.

Also included in the invention are detachable implant pushers that utilize a resistance wire heater to thermally sever a suture associated with the implant to effect release. As distinguished from known approaches where an implant is retained by a loop connected back to a delivery system pusher that is withdrawn with the devilry system, the present invention contemplates a leave-behind tether.

Further details, variations, modification and optional features of the invention may be appreciated by review of any of the incorporated patent applications. However, the priority date and subject matter included in the appended claims rely solely on the subject matter filed in U.S. Provisional Patent Application Nos. 61/046670 and 61/046594, the earliest patent applications (each filed Apr. 21, 2008) one which U.S. patent application Ser. No. 12/427,620 relies. Selected figures from the '670 and '594 application and all of text from the '594 application—all—incorporated by reference in the parent application hereto is reproduced herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a photograph taken from U.S. Provisional Patent Appl. No. 61/046,670 (incorporated herein by reference) demonstrating actual reduction to practice of a single-layer braid ball device made according to the present invention;

FIGS. 2A and 2B are side-sectional views of the braid ball in isolation and in use, respectively;

FIG. 3 illustrates a suture-melt resistance heater pusher for implant delivery; and

FIGS. 4A-4F illustrate a production path of one implant embodiment encompassed by the current invention.

DETAILED DESCRIPTION OF THE INVENTION

Implants

Referring to the figures, a filamentary implant 2 is formed out of braid to treat vascular sites. Interwoven filaments 4 form a braid matrix 6 that define a self-expandable occlusion device.

As single layer of the braid is provided in which ends of the braid are secured and managed to provide an atraumatic interface. Specifically, ties 10 (as illustrated in FIG. 1) or bands 12 (as illustrated in FIG. 2A and 2B) secure filament the ends 14 of the braid from which the implant is constructed.

In the implant variation pictured, the expanded configuration defines an ovoid or roughly spherical shell 18 that is permeable to blood. The braid defining the proximal and distal ends of the implant turns or curves inward to a point where it is secured within the periphery of the shell.

The inversion of the braid provides recessed securement of the braid resulting in atraumatic ends of the implant. The braid filaments optionally extend beyond the securing/securement features in order to define wire filament “tufts” 20 that will further promote thrombosis of blood that enters the ball upon deployment within a patient's vasculature. However configured in regard to braid filament end securement and termination, inset ends of the braid (proximal and distal insets 22/24, respectively) are demonstrated when the implant is in an expanded state to fill an aneurysm 26 off of a vessel 28.

Delivery Systems

FIG. 3 illustrates a detachable catheter/pusher 30, optionally, for use in the present invention. Generally, it includes a resistance wire bridge 32 across insulated conductors 34 (a typical construction). What is unique is that the conductor wires are twinned/twisted along a length of the delivery pusher shaft 38 as shown. This configuration alleviates bending bias/preference. Upon application of voltage, the tip thermally severs the polymer filament (e.g., suture 40) in contact therewith. At least the suture portion is received within the implant 2 (e.g., passing through a braid-securing band 12). The suture is retained in/with the implant upon actuation to release the implant by cutting through the suture with heat. A ball stop 42 that is tied to the suture retains the filament in/with the implant is also illustrated. Finally, pusher 30 is shown received within a typical microcatheter 44 for vascular access, after passage therethough. Note also, other advantageous delivery system are referenced and described in the incorporated patent application.

Methods of Manufacture

Included in the intention is a method of manufacture including tying-off or otherwise securing a second end of a braid within an interior volume of a ball where other approaches would be impracticable. The technique may be employed in creating the balls (be they spherical or ovaloid in cross-section, etc.) out of one continuous section of braid. In so doing, joints and other delivery profile-increasing features are avoided—as well as potential areas for failure. Accordingly, the subject implants are extremely robust and fully recoverable to their aneurysmal shape as is required when they are delivered through a catheter in low profile. Robust shape recovery is required in treatments targeting distal vasculature, especially the tortuous neurovasculature encountered in human brains.

A detailed example of one process path for implant formation is illustrated in FIGS. 4A-4F. As shown in FIG. 4F an final implant 2 may begin as a section 50 of braided material. The tubular braid stock is secured. As shown, it is tied-off with a wire wrap 10. Such action develops an inset region 24 for the implant body. An opposite end of the braid is then captured in a transfer tube 52. The tube is passed through the volume of the implant and secured with a second tie 10 at the other side.

Additional refinement to the shape over that shown in FIG. 4E may be imparted within a shape-setting form 54. Mandrels 56 including stops 58 received through the securement features may be employed to force apposition of the ball to the shape of the form when pulled apart as indicated by arrows. After shape-setting in the form (as appropriate to the selected material—e.g., as in heat setting superelastic Nitinol) the mandrels are removed and the implant shaping is complete as shown in FIG. 4F. However, these additional forming steps are not necessary given that (in point of fact) the implant in FIG. 1 was produced without employing the same.

Methods of Use

Any one of the subject implants is delivered to a target site employing known percutaneous catheter access techniques. The implant may be secured to a pusher (e.g., pusher 30) used to advance it through the access catheter (e.g., microcatheter 44). Upon emplacement at the treatment site (e.g., cerebral aneurysm 26 as illustrated in FIG. 2A), the implant can be detached. With the exemplary system shown in FIG. 3, the suture 40 passing through the proximal end of the implant 2 is severed by melting it using a resistance heater. This retention/release fiber remains in and with the implant.

Claims

1-79. (canceled)

80. An embolic device comprising:

a braid forming inner and outer layers and configured to compress for delivery through a catheter and expand upon release from the constraint of the catheter to define an open volume, wherein the inner and outer layers meet at a folded section that is closed to define a distal end of the device, and wherein the inner and outer layers further meet at a hub that closes and holds at least the outer braid layer at the proximal end of the device.

81. The device of claim 80 wherein portions of the device adjacent to the hub and to the folded section are rounded when fully expanded.

82. The device of claim 80 wherein the braid has a flared profile when expanded.

83. The device of claim 80 wherein the braid is ball-shaped when expanded.

84. The device of claim 80 wherein the inner and outer layers at the folded section together define a dome-shaped atraumatic surface when expanded.

85. The device of claim 80 wherein the inner braid layer is not held in the hub.

86. The device of claim 80 wherein both the inner and outer braid layers are held in the hub.

87. The device of claim 80 wherein the hub comprises an outer band and an inner band, wherein the braid is between the outer band and the inner band and the inner band defines a hub port configured to receive an elongated delivery member.

88. The device of claim 80 wherein the hub is radiopaque.

89. The device of claim 80 wherein the braid is one of a 64-wire braid, a 72-wire braid, a 96-wire braid, a 128-wire braid, or a 144-wire braid.

90. The device of claim 80 wherein the braid comprises a plurality of wires, and wherein at least some of the wires are platinum core Nitinol DFT or gold core Nitinol DFT.

91. The device of claim 80 wherein the braid comprises a plurality of wires, and wherein at least some of the wires are a superelastic alloy.

92. An embolic device comprising:

a mesh formed of an inverted tubular braid that has been heat set to form a predetermined, three-dimensional shape in an expanded configuration, the braid comprising a plurality of wires having first and second ends, wherein a distal end of the mesh has a folded section and defines a dome-shaped atraumatic surface when the mesh is expanded, and wherein the first and second ends of the braid are held together by a hub at a proximal end of the device.

93. The device of claim 92 wherein the three-dimensional shape is generally spherical.

94. The device of claim 92 wherein the hub comprises an outer band and an inner band, wherein the braid is between the outer band and the inner band and the inner band defines a hub port configured to receive an elongated delivery member.

95. The device of claim 92 wherein the hub is radiopaque.

96. The device of claim 92 wherein the braid is one of a 64-wire braid, a 72-wire braid, a 96-wire braid, a 128-wire braid, or a 144-wire braid.

97. The device of claim 92 wherein at least some of the wires of the braid are platinum core Nitinol DFT or gold core Nitinol DFT.

98. The device of claim 92 wherein at least some of the wires of the braid are a superelastic alloy.

99. The device of claim 92 wherein the mesh includes an inner braid layer and an outer braid layer, and wherein the inner braid layer and the outer braid layer are continuous at the folded section.

Patent History
Publication number: 20170156733
Type: Application
Filed: Jan 25, 2017
Publication Date: Jun 8, 2017
Inventors: Frank P. Becking (Palo Alto, CA), Arturo S. Rosqueta (San Jose, CA), Siddharth Loganathan (Santa Clara, CA)
Application Number: 15/415,669
Classifications
International Classification: A61B 17/12 (20060101);