MODULATING DISEASE THROUGH GENETIC ENGINEERING OF PLANTS

In certain embodiments transgenic plants (e.g., transgenic tomatoes) are provided that comprise cells that express a peptide one or more domains of which comprise the amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide where the peptide has biological activity (e.g., lowers SAA, and/or increases paroxonase activity, and/or improves HDL inflammatory index, etc.) when the plant and/or the peptide is fed to a mammal.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Divisional of U.S. Ser. No. 13/789,513, filed Mar. 7, 2013, which claims benefit of and priority to U.S. Ser. No. 61/618,753, filed on Mar. 31, 2012 and to U.S. Ser. No. 61/716,322, filed on Oct. 19, 2012, all of which are incorporated herein by reference in their entirety for all purposes.

STATEMENT OF GOVERNMENTAL SUPPORT

This invention was made with Government support under Grant Nos. HL030568, HL034343 awarded by the National Institutes of Health. The Government has certain rights in this invention.

BACKGROUND

High density lipoprotein (HDL), its main protein, apolipoprotein A-I (apoA-I), and mimetics of apoA-I have been shown in a number of laboratories to reduce inflammation in animal models of disease (Getz and Reardon (2011) J. Inflamm. Res. 4: 83-92; Navab et al. (2012) Arterioscler. Thromb. Vasc. Biol. 32: 2553-2560; Degoma and Rader (2011) Nat. Rev. Cardiol. 8: 266-277; Yao et al. (2012) Front. Pharmacol., 3: 37; Navab et al. (2010) Arterioscler. Thromb. Vasc. Biol. 30: 164-168).

In particular, the use of such ApoA-I mimetic peptides such as 4F to modulate diseases has been demonstrated in a wide variety of contexts including, but not limited to animal models of arthritis (Charles-Schoeman (2008) Clin. Immunol. 127: 234-244) asthma (Nandedkar et al. (2011) J. Lipid Res., 52: 499-508) atherosclerosis (Navab et al. (2011) J. Lipid Res. 52: 1200-1210), Alzheimer's disease (Handattu et al. (2009) Neurobiol. Dis. 34: 525-534), cancer (Su et al. (2010) Proc. Natl. Acad. Sci. USA, 107: 19997-20002; Gao et al. (2011) Integr. Biol. (Camb). 3: 479-489; Ganapathy et al. (2012) Int. J. Cancer, 130: 1071-1081), diabetes (Morgantini et al. (2010) Diabetes. 59: 3223-3228), hepatic fibrosis (DeLeve et al. (2008) Am. J. Pathol. 173: 993-1001), kidney disease (Vaziri et al. (2009) Kidney Int. 76: 437-444; Vaziri et al. (2010) Nephrol. Dial. Transplant. 25: 3525-3534), obesity (Peterson et al. (2009) J. Lipid Res. 50: 1293-1304), osteoporosis (Sage et al. (2011) J. Bone Miner. Res. 26: 1197-1206), scleroderma (Weihrauch et al. (2007) Am. J Physiol. Heart Circ. Physiol. 293: H1432-H1441), systemic lupus erythematosus (Woo et al. (2010) Arthritis Res. Ther., 12: R93), transplant vasculopathy (Hsieh et al. (2007) Transplantation 27: 84: 238-243), and vascular dementia (Buga et al. (2006) J. Lipid Res. 47: 2148-2160). Thus, the potential benefit of such peptides is great.

The apoA-I mimetic peptide 4F showed great promise in a variety of mouse models of disease (Navab et al. (2010) Arterioscler. Thromb. Vasc. Biol. 30: 164-168) leading to a phase I/II study in humans with high risk cardiovascular disease (Bloedon et al. (2008) J. Lipid Res. 49: 1344-1352). In this study the 4F peptide synthesized from all D-amino acids (D-4F) was administered orally at doses that ranged from 0.43-7.14 mg/kg. The resulting plasma peptide levels were low (Cmax 15.9±6.5 ng/mL). Despite these very low plasma levels, doses of 4.3 and 7.14 mg/kg significantly improved the HDL inflammatory index (HII), which is a measure of the ability of a test HDL to inhibit LDL-induced monocyte chemoattractant protein-1 (MCP-1) production by cultured human artery wall cells; doses of 0.43 and 1.43 mg/kg were not effective (Id.). A second clinical trial focused on achieving high plasma peptide levels using low doses (0.042-1.43 mg/kg) of the 4F peptide synthesized from all L-amino acids (L-4F) delivered by intravenous (IV) or subcutaneous (SQ) administration (Watson et al. (2011) J. Lipid Res. 52: 361-373). Very high plasma levels were in fact achieved (e.g., Cmax 3,255±630 ng/mL in the IV study), but there was no improvement in HII (Id.).

To resolve this paradox, new studies were conducted in mice that led to the surprising discovery that the major site of action for the peptide may be in the intestine, even when the peptide is administered SQ (Navab et al. (2011) J. Lipid Res. 52: 1200-1210). Moreover, the dose administered, not the plasma level, was the major determinant of efficacy (Id.). Efficacy was the same at the same dose when the peptide was administered orally or SQ suggesting that in the compartment controlling peptide efficacy, peptide concentrations should be similar; the peptide concentration was similar only in the feces (Id.). In a subsequent study, this compartment was further identified as the small intestine (Navab et al. (2012) J. Lipid Res. 53: 437-445). Additionally, metabolites of arachidonic and linoleic acids in the enterocytes of the small intestine were found to be ˜10-fold higher than in the liver, but the percent reduction in these metabolites after oral 4F peptide administration was significantly greater in the liver compared to the small intestine strongly suggesting that the small intestine is a major site for peptide action (Id.). As a result of these studies (Navab et al. (2011) J. Lipid Res. 52: 1200-1210; Navab et al. (2012) J. Lipid Res. 53: 437-445), it was concluded that doses of peptide ranging between 40-100 mg/kg/day would be required instead of doses of 0.42-1.43 mg/kg/day as was used in the studies of Watson et al. (Watson et al. (2011) J. Lipid Res. 52: 361-373).

The 4F peptide (Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2, (SEQ ID NO:1)) has end blocking groups (Ac- and —NH2) that stabilize the class A amphipathic helix and dramatically increase efficacy (Venkatachalapathi et al. (1993) Proteins Structure Function Genet. 15: 349-359; Yancey et al. (1995) Biochemistry. 34: 7955-7965; Datta et al. (2001) J. Lipid Res. 42: 1096-1104; Anantharamaiah et al. (2007) J. Lipid Res., 48: 1915-1923). In unpublished studies in mice, it was found that in the absence of these end groups the 4F peptide is 25,000-fold less effective in vivo. The required end (protecting) groups for 4F and for a number of other apoA-I mimetic peptides (Navab et al. (2010) Arterioscler. Thromb. Vasc. Biol. 30: 164-168) can only be added by chemical synthesis; living organisms cannot be engineered to make a molecule containing these end groups. Thus, the production of peptide for clinical use at these doses would not be practical because of the cost of producing this amount of peptide by solid phase synthesis.

SUMMARY

In certain embodiments a transgenic plant is provided that comprises cells that express a peptide one or more domains of which comprise or consist of the amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide (e.g., a peptide that comprises or consists of one or more copies of an amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide, e.g., as described herein). In certain embodiments the transgenic plant or a portion thereof and/or the peptide has biological activity (e.g., lowers plasma SAA levels, and/or increases paraoxonase activity, and/or reduces levels of lysophosphatidic acid, and/or reduces levels of metabolites of arachidonic and linoleic acids, and/or improves HDL inflammatory index, and/or inhibits LDL-induced monocyte chemotaxis in culture, etc.). In certain embodiments peptide expressed in the transgenic plant comprises one domain that comprises the amino acid sequence of the apolipoprotein or apolipoprotein mimetic peptide). In certain embodiments peptide expressed in the transgenic plant comprises at least two domains that comprise the amino acid sequence of the apolipoprotein or apolipoprotein mimetic peptide. In certain embodiments the amino acid sequence comprises an ApoA-I mimetic amino acid sequence and/or a G* peptide amino acid sequence, and/or an ApoE peptide sequence. In certain embodiments the amino acid sequence comprises an amino acid sequence selected from Table 1 Table 2, or Table 3. In certain embodiments the amino acid sequence comprises an amino acid sequence selected from the group consisting of DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17), FFEKFKEFFKDYFAKLWD (rev6F, SEQ ID NO: 25), DWFKAFYDKVAEKFKEAF (4F, SEQ ID NO:15), FAEKFKEAVKDYFAKFWD (rev4F, SEQ ID NO: 23), LLEQLNEQFNWVSRLANL (SEQ ID NO:609), and LVGRQLEEFL (SEQ ID NO:612). In certain embodiments the amino acid sequence comprises the amino sequence DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17) or the reverse thereof. In certain embodiments the peptide is effective to decrease plasma levels of lyophosphatidic acid (LPA) in a mammal, and/or to decrease SAA levels in the mammal, and/or to increase plasma paraoxonase activity in the mammal when fed to the mammal without substantial purification from the transgenic plant. In certain embodiments the peptide is effective to decrease plasma levels of lyophosphatidic acid (LPA) in a mammal when at least a portion of the plant is fed to the mammal (e.g., alone or as a component of a food, food supplement, and/or diet). In certain embodiments the peptide is effective to significantly decrease SAA levels in a in a mouse model of atherosclerosis when at least a portion of the plant is fed to the mouse. In certain embodiments the peptide is effective to increase plasma paraoxonase activity in a mammal, when at least a portion of the plant is fed to the mammal. In certain embodiments the peptide is expressed by a nucleic acid construct stably integrated into the plant genome. In certain embodiments the plant is transformed by an agrobacterium comprising a construct encoding the peptide. In certain embodiments at least a portion of the plant is edible. In certain embodiments at least a portion of the plant, when processed is edible. In certain embodiments the plant is selected from the group consisting of tomato, rice, tobacco, turnip, maize, corn, soybean, grape, apple, pear, plum, peach, orange, kiwi, payaya, pineapple, guava, lilikoi, starfruit, lychee, mango, pomegranate, fig, plum, potato, carrot, mustard greens, chard, kale, lettuce, broccoli, and safflower seeds. In certain embodiments at least a portion of the plant is dried or lyophilized, and/or ground. In certain embodiments all of the plant is dried or lyophilized, and/or ground.

In various embodiments a seed of a transgenic plant (e.g., a plant that expresses a peptide comprising or consisting of an apolipoprotein domain as described herein) is provided (e.g., a seed that expresses/contains a recombinantly expressed peptide that comprises or consists of one or more copies of an amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide, e.g., as described herein). In certain embodiments the seed capable of generating a transgenic plant as described herein when grown. In certain embodiments the seed when fed to a mammal in an effective amount is effective to decrease plasma levels of lyophosphatidic acid (LPA) in a mammal, and/or to decrease SAA levels in the mammal, and/or to increase plasma paraoxonase activity in the mammal.

In various embodiments a fruit of a transgenic plant (e.g., a plant that expresses a peptide comprising or consisting of an apolipoprotein domain as described herein) is provided (e.g., a fruit that expresses/contains a recombinantly expressed peptide that comprises or consists of one or more copies of an amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide, e.g., as described herein). In certain embodiments the fruit is a fresh fruit, while in other embodiments, the fruit is a dried and/or processed fruit. In certain embodiments the fruit is a tomato, an apple, a peach, a pear, or a plum. In certain embodiments the fruit when fed to a mammal in an effective amount is effective to decrease plasma levels of lyophosphatidic acid (LPA) in a mammal, and/or to decrease SAA levels in the mammal, and/or to increase plasma paraoxonase activity in the mammal, and/or to improve HDL inflammatory index of HDL in the mammal.

In various embodiments a leaf of a transgenic plant (e.g., a plant that expresses a peptide comprising or consisting of an apolipoprotein domain as described herein) is provided (e.g., a leaf that expresses/contains a recombinantly expressed peptide that comprises or consists of one or more copies of an amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide, e.g., as described herein). In certain embodiments the leaf when fed to a mammal in an effective amount is effective to decrease plasma levels of lyophosphatidic acid (LPA) in a mammal, and/or to decrease SAA levels is the mammal, and/or to increase plasma paraoxonase activity in the mammal.

In various embodiments a root or tuber of a transgenic plant (e.g., a plant that expresses a peptide comprising or consisting of an apolipoprotein domain as described herein) is provided (e.g., a root or tuber that expresses/contains a recombinantly expressed peptide that comprises or consists of one or more copies of an amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide, e.g., as described herein). In certain embodiments the root or tuber when fed to a mammal in an effective amount is effective to decrease plasma levels of lyophosphatidic acid (LPA) in a mammal, and/or to decrease SAA levels is the mammal, and/or to increase plasma paraoxonase activity in the mammal.

In various embodiments a cutting of a transgenic plant (e.g., a plant that expresses a peptide comprising or consisting of an apolipoprotein domain as described herein) is provided (e.g., a cutting that expresses/contains a recombinantly expressed peptide that comprises or consists of one or more copies of an amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide, e.g., as described herein). In certain embodiments the cutting is capable of generating a transgenic plant as described herein when propagated or generating at least a portion of a plant that is transgenic when grafted onto a host plant. In certain embodiments tissue generated from the cutting, when fed to a mammal in an effective amount, is effective to decrease plasma levels of lyophosphatidic acid (LPA) in a mammal, and/or to decrease SAA levels is the mammal, and/or to increase plasma paraoxonase activity in the mammal.

In various embodiments a clone of a transgenic plant (e.g., a plant that expresses a peptide comprising or consisting of an apolipoprotein domain as described herein) is provided (e.g., a clone that expresses/contains a recombinantly expressed peptide that comprises or consists of one or more copies of an amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide, e.g., as described herein).

In various embodiments the transgenic plant, seed, fruit, root and/or tuber, cutting, clone, or other components and/or cells, and/or tissues of the plant do not express ApoA-I and/or do not express ApoA-I Milano, and/or do not express a protein comprising ApoA-I, and/or ApoA-I Milano.

In various embodiments a peptide is provided where the peptide is expressed in a plant where at least one domain of the peptide comprises an apolipoprotein mimetic and where the neither the peptide nor a domain thereof comprises or consists of the amino acid sequence of ApoA-I or apoA-I milano. In certain embodiments the peptide comprises one domain that comprises the amino acid sequence of the apolipoprotein mimetic peptide. In certain embodiments the peptide comprises at least two domains that comprise the amino acid sequence of the apolipoprotein mimetic peptide. In certain embodiments the amino acid sequence of the peptide (or domain thereof) comprises an amino acid sequence selected from Table 1 Table 2, or Table 3. In certain embodiments the amino acid sequence comprises an amino acid sequence selected from the group consisting of DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17), FFEKFKEFFKDYFAKLWD (rev6F, SEQ ID NO: 25), DWFKAFYDKVAEKFKEAF (4F, SEQ ID NO:15), FAEKFKEAVKDYFAKFWD (rev4F, SEQ ID NO: 23), LLEQLNEQFNWVSRLANL (SEQ ID NO:609), and LVGRQLEEFL (SEQ ID NO:612). In certain embodiments the amino acid sequence comprises the amino sequence DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17) or the reverse thereof. In certain embodiments the peptide is effective to decrease plasma levels of lyophosphatidic acid (LPA) in a mammal, and/or to decrease SAA levels in the mammal, and/or to increase plasma paraoxonase activity in the mammal when fed to the mammal. In certain embodiments the peptide is present in a tissue of the plant. In certain embodiments the peptide is effective to decrease plasma levels of lyophosphatidic acid (LPA) in a mammal when fed to the mammal without substantial isolation from the tissues of the plant. In certain embodiments the peptide is effective to significantly decrease SAA levels in a mouse model of atherosclerosis when fed to the mouse without substantial isolation from tissues of the plant. In certain embodiments the peptide is effective to increase plasma paraoxonase activity in a mammal, when fed to the mammal without substantial isolation from tissues of the plant. In certain embodiments the peptide is expressed by a nucleic acid construct stably integrated into the genome of the plant. In certain embodiments at least a portion of the plant is edible. In certain embodiments at least a portion of the plant, when processed is edible. In certain embodiments the plant is selected from the group consisting of tomato, rice, tobacco, turnip, maize, corn, soybean, grape, fig, plum, potato, carrot, apple, pear, plum, peach, orange, kiwi, payaya, pineapple, guava, lilikoi, starfruit, lychee, mango, pomegranate, mustard greens, chard, kale, lettuce, broccoli, and safflower seeds. In certain embodiments the peptide is expressed in a tomato. In certain embodiments the peptide is contained in a tissue of a dried and/or lyophilized plant and/or a ground plant. In certain embodiments the peptide is stored in a seed or fruit of the plant. In certain embodiments the peptide is purified.

In various embodiments a food is provided where the food is comprised of at least a portion of a transgenic plant (e.g., a plant that expresses a peptide comprising or consisting of an apolipoprotein domain as described herein) capable of being ingested for its nutritional value. In certain embodiments the food is a component of a diet optimized for a mammal for the treatment and/or prophylaxis of atherosclerosis. In certain embodiments the food is a component of a diet optimized for a mammal for the treatment and/or prophylaxis of a pathology characterized by an inflammatory response. In certain embodiments the food is a component of a diet optimized for a mammal for the treatment and/or prophylaxis of a cancer. In certain embodiments the diet provides the nutritional requirements of a human. In certain embodiments the diet is a prepared fixed diet for a human. In certain embodiments the diet provides the nutritional requirements of a non-human mammal. In certain embodiments the diet provides nutritional requirements of a non-human mammal selected from the group consisting of a canine, a feline, an equine, a porcine, a bovine, and a lagomorph. In certain embodiments the diet provides the nutritional requirements of a canine. In certain embodiments the diet is a prepackaged animal food, or a prepackaged human food or meal. In certain embodiments diet is a prepared fixed diet for the non-human mammal. In certain embodiments the plant portion of the food includes a portion of the plant selected from the group consisting of the fruit, leaves, stems, roots, and seeds.

In various embodiments a protein powder is provided where at least a portion of the protein powder comprises an apolipoprotein or apolipoprotein mimetic peptide or a peptide comprising an apolipoprotein or apolipoprotein mimetic domain as described herein. In certain embodiments the remainder of the protein powder comprises a plant derived protein. In certain embodiments the plant derived protein comprises a protein derived from a plant selected from the group consisting of soy, and hemp. In certain embodiments the remainder of the protein powder comprises an animal-derived protein powder (e.g., a protein powder derived from milk or eggs).

In various embodiments a nutritional supplement is provided. The nutritional supplement typically comprises a transgenic plant (e.g., a plant that expresses a peptide comprising or consisting of an apolipoprotein domain, an apolipoprotein mimetic domain, an apolipoprotein, or an apolipoprotein mimetic, e.g., as described herein), and/or a portion of the plant; and/or an apolipoprotein or apolipoprotein mimetic peptide according to any one of as described herein. In certain embodiments the nutritional supplement further comprises one or more vitamin supplements (e.g., one or omega 3 fatty acid supplements, and/or one or more dietary antioxidants, and/or one or more vitamins (e.g., B vitamins, vitamin C, vitamin D, vitamin E, and the like).

Also provided are methods for the treatment or prophylaxis of a pathology characterized by an inflammatory response. The methods typically involve administering to a mammal in need thereof an effective amount of at least a portion of a transgenic plant as described herein; and/or an apolipoprotein or apolipoprotein mimetic peptide as described herein; and/or a food as described herein; and/or a protein powder as described herein; and/or a nutritional supplement and/or protein bar/power bar as described herein. In certain embodiments the mammal is administered at least a portion of a transgenic plant as described herein. In certain embodiments the transgenic plant expresses a 6F peptide or a peptide comprising a 6F domain. In certain embodiments the pathology is atherosclerosis. In certain embodiments the mammal is diagnosed with atherosclerosis and the administering comprises administering a sufficient amount of the plant, and/or peptide, and/or food, and/or protein powder, and/or nutritional supplement to ameliorate one or more symptoms of atherosclerosis and/or to reduce one or more markers of an atherosclerotic pathology. In certain embodiments the mammal is at risk for atherosclerosis and the administering comprises administering a sufficient amount of the plant, and/or peptide, and/or food, and/or protein powder, and/or nutritional supplement to reduce the risk for atherosclerosis, and/or to improve a risk marker for atherosclerosis, and/or to slow the progression of atherosclerosis. In certain embodiments the risk marker is HDL/LDL, CRP, triglycerides, SAA, paraoxonase activity, Lp(a), oxidized LDL or antibodies to oxidized LDL, or sPLA2. In certain embodiments the pathology is macular degeneration. In certain embodiments the pathology is cancer (e.g., ovarian cancer, breast cancer, colon cancer, prostate cancer, brain cancer, and the like). In certain embodiments the plant, a portion of the plant and/or an extract of the plant and/or the peptide described herein is applied topically to a skin cancer (e.g., a melanoma, a carcinoma, etc.). In certain embodiments the plant, plant portion, and/or extract thereof is administered alone, in combination with an excipient, or in combination with another topical anticancer agent (e.g., 5FU, imiquimod). In certain embodiments the plant or plant portion, and/or peptide, and/or food, and/or protein powder, and/or nutritional supplement is administered in an amount sufficient to reduce lyophosphatidic acid (LPA) levels in the mammal. In certain embodiments the mammal is a human. In certain embodiments the mammal is a non-human mammal (e.g., a canine, a feline, an equine, a porcine, a bovine, a largomorph, and the like). In certain embodiments the mammal is administered at least a portion of a transgenic plant that expresses a peptide comprising or consisting of an amino acid sequence selected from Table 1 Table 2, or Table 3. In certain embodiments the amino acid sequence comprises an amino acid sequence selected from the group consisting of DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17), FFEKFKEFFKDYFAKLWD (rev6F, SEQ ID NO: 25), DWFKAFYDKVAEKFKEAF (4F, SEQ ID NO:15), FAEKFKEAVKDYFAKFWD (rev4F, SEQ ID NO: 23), LLEQLNEQFNWVSRLANL (SEQ ID NO:609), and LVGRQLEEFL (SEQ ID NO:612). In certain embodiments the amino acid sequence comprises the amino sequence DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17) or the reverse thereof. In certain embodiments the mammal is administered at least a portion of a transgenic tomato that comprising cells that express a peptide comprising the amino acid sequence DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17) or the reverse thereof. In certain embodiments the peptide is not substantially purified from tissue of the tomato. In certain embodiments the plant (e.g., the tomato) is dried and/or lyophilized.

In certain embodiments a method of preventing or reducing the uptake of one or more dietary pro-inflammatory micro-lipid components in a mammal is provided where the method comprises administering to the mammal an effective amount of at least a portion of a transgenic plant as described and/or claimed herein; and/or an apolipoprotein or apolipoprotein mimetic peptide according as described and/or claimed herein; and/or a food or food ingredient as described and/or claimed herein; and/or a protein powder as described and/or claimed herein; and/or a nutritional supplement as described and/or claimed herein. In certain embodiments the mammal is administered at least a portion of a transgenic plant as described and/or claimed herein. In certain embodiments the mammal is administered a fruit or part of a fruit of the transgenic plant. In certain embodiments the fruit is selected from the group consisting of a tomato, an apple, a pear, a plum, a peach, an orange, a kiwi, a payaya, a pineapple, a guava, a lilikoi, a starfruit, a lychee, a mango, a pomegranate, and a plum. In certain embodiments the fruit is a tomato. In certain embodiments the mammal is administered a peptide as described and/or claimed herein. In certain embodiments the mammal is administered a food as described and/or claimed herein. In certain embodiments the mammal has or is at risk for atherosclerosis. In certain embodiments the mammal is diagnosed with atherosclerosis. In certain embodiments the mammal is determined to be at risk for atherosclerosis. In certain embodiments the mammal is determined to be at risk by measurement of a marker selected from the group consisting of HDL/LDL, CRP, triglycerides, SAA, paraoxonase activity, Lp(a), oxidized LDL or antibodies to oxidized LDL, or sPLA2. In certain embodiments the plant or plant portion, and/or peptide, and/or food, and/or protein powder, and/or nutritional supplement is administered in an amount sufficient to reduce lyophosphatidic acid (LPA) levels in the mammal. In certain embodiments the plant or plant portion, and/or peptide, and/or food, and/or protein powder, and/or nutritional supplement is administered in an amount sufficient to reduce lyophosphatidic acid (LPA) levels in the intestine (e.g., in the small intestine) of the mammal. In certain embodiments the mammal is a human. In certain embodiments the mammal is a non-human mammal (e.g., a canine, a feline, an equine, a porcine, a bovine, a largomorph, etc. In certain embodiments the mammal is administered at least a portion of a transgenic plant that expresses a peptide comprising or consisting of an amino acid sequence selected from Table 1 Table 2, or Table 3. In certain embodiments the amino acid sequence comprises an amino acid sequence selected from the group consisting of DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17), FFEKFKEFFKDYFAKLWD (rev6F, SEQ ID NO: 25), DWFKAFYDKVAEKFKEAF (4F, SEQ ID NO:15), FAEKFKEAVKDYFAKFWD (rev4F, SEQ ID NO: 23), LLEQLNEQFNWVSRLANL (SEQ ID NO:609), and LVGRQLEEFL (SEQ ID NO:612). In certain embodiments the amino acid sequence comprises the amino sequence DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17) or the reverse thereof. In certain embodiments the mammal is administered at least a portion of a transgenic tomato that comprising cells that express a peptide comprising the amino acid sequence DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17) or the reverse thereof. In certain embodiments the peptide is not substantially purified from tissue of the tomato. In certain embodiments the plant (e.g., the tomato) is dried and/or lyophilized.

In various embodiments an isolated nucleic acid that encodes a peptide one or more domains of which comprise the amino acid sequence of an apolipoprotein mimetic peptide, where the codons of the nucleic acid are optimized for expression in a plant. In certain embodiments the nucleic acid does not encode the amino acid sequence of ApoA-I and/or ApoA-I Milano. In certain embodiments the peptide comprises one domain that comprises the amino acid sequence of the apolipoprotein mimetic peptide. In certain embodiments the peptide comprises at least two domains that comprise the amino acid sequence of the apolipoprotein mimetic peptide. In certain embodiments the amino acid sequence comprises an amino acid sequence selected from Table 1 Table 2, or Table 3. In certain embodiments the amino acid sequence comprises an amino acid sequence selected from the group consisting of DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17), FFEKFKEFFKDYFAKLWD (rev6F, SEQ ID NO: 25), DWFKAFYDKVAEKFKEAF (4F, SEQ ID NO:15), FAEKFKEAVKDYFAKFWD (rev4F, SEQ ID NO: 23), LLEQLNEQFNWVSRLANL (SEQ ID NO:609), and LVGRQLEEFL (SEQ ID NO:612). In certain embodiments the amino acid sequence comprises the amino sequence DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17) or the reverse thereof. In certain embodiments the codons are optimized for expression in a plant a least a portion of which is edible. In certain embodiments at least a portion of the plant, when processed is edible. In certain embodiments the codons are optimized for expression in a plant is selected from the group consisting of tomato, rice, tobacco, turnip, maize, corn, soybean, grape, fig, plum, apple, pear, peach, orange, kiwi, payaya, pineapple, guava, lilikoi, starfruit, lychee, mango, pomegranate, potato, carrot, pomegranate, mustard greens, chard, kale, lettuce, broccoli, and safflower seeds. In certain embodiments the codons are optimized for expression in a tomato.

Also provided is a vector that expresses an apolipoprotein mimetic peptide at an effective concentration/amount when transfected into a plant, the vector comprising a nucleic acid according encoding an apolipoprotein (or mimetic) or an apoprotein (or mimetic) domain as described herein. In certain embodiments the vector does not encode an ApoA-I peptide or an ApoA-I Milano peptide. In certain embodiments the vector when transfected into a plant expresses the peptide at levels sufficient so that the plant or a portion thereof has biological activity (e.g., as described herein) when fed to a mammal. In certain embodiments the vector further comprises a promoter effective in a plant cell. In certain embodiments the vector comprises a CaMV 35S promoter. In certain embodiments the vector further comprises a terminator. In certain embodiments the vector comprises a Nopaline synthase terminator (NOS term). In certain embodiments the vector further encodes a plant derived signal peptide. In certain embodiments the signal peptide comprises the amino acid sequence M-I-M-A-S-S-K-L-L-S-L-A-L-F-L-A-L-L-S-H-A-N-S (SEQ ID NO:2). In certain embodiments the vector is a plasmid vector. In certain embodiments the vector is a binary vector. In certain embodiments the vector is an integrative vector. In certain embodiments the vector is in an Agrobacterium tumefaciens.

Also provided is a plant cell transfected with a nucleic acid as described herein where the plant cell expresses the peptide one or more domains of which comprise the amino acid sequence of an apolipoprotein mimetic peptide as described herein. In certain embodiments the plant cell does not express an ApoA-I or an ApoA-I Milano peptide. In certain embodiments the plant cell is a cell of a plant at least a portion of which is edible. In certain embodiments the plant cell is a cell of a plant at least a portion of which, when processed, is edible. In certain embodiments the cell is a cell of a plant selected from the group consisting of tomato, rice, tobacco, turnip, maize, corn, soybean, grape, fig, plum, apple, pear, plum, peach, orange, kiwi, payaya, pineapple, guava, lilikoi, starfruit, lychee, mango, pomegranate, potato, carrot, pomegranate, mustard greens, chard, kale, lettuce, broccoli, and safflower seeds. In certain embodiments the cell is a cell of a plant protoplast.

Also provided are methods for producing a transgenic plant that expresses a peptide comprising at least one domain that encodes an apolipoprotein mimetic as described herein. The method typically involves providing a vector or a nucleic acid as described herein; transforming a plant cell with the vector or DNA fragment; and propagating a plant from the cell. In certain embodiments the method further comprises recovering all or a portion of the plant for use in a therapeutic or prophylactic method. In certain embodiments the recovering comprises harvesting at least a portion of the plant. In certain embodiments the recovering comprises obtaining an extract of a plant cell or tissue. In certain embodiments the recovering comprises drying and/or lyophilizing at least a portion of the plant. In certain embodiments the plant cell is transformed utilizing an Agrobacterium system. In certain embodiments the plant cell is transformed using a method selected from the group consisting of microparticle bombardment, polyethylene glycol mediated uptake, and electroporation. In certain embodiments the plant cell is a cell of a dicotyledon. In certain embodiments the cell is a cell of a monocotyledon. In certain embodiments the cell is a cell of a food plant, e.g., a plant a least a portion of which is edible. In certain embodiments the cell is a cell of a plant that at least a portion of which, when processed is edible. In certain embodiments the cell is a cell of a plant selected from the group consisting of tomato, rice, tobacco, turnip, maize, corn, soybean, grape, fig, plum, apple, pear, peach, orange, kiwi, payaya, pineapple, guava, lilikoi, starfruit, lychee, mango, pomegranate, potato, carrot, pomegranate, mustard greens, chard, kale, lettuce, broccoli, and safflower seeds. In certain embodiments the cell is a cell of a tomato.

In certain embodiments a food or food ingredient is provided comprising at least a portion of a transgenic plant capable of being ingested for its nutritional value and/or taste, where a tissue of the plant comprising the food or food ingredient comprises a peptide recombinantly expressed in cells comprising the tissue where the peptide comprises or consists of one or more copies of the amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide (e.g., a peptide as shown in Table 1 Table 2, or Table 3) where the transgenic plant or a portion thereof when fed to a mammal has biological activity (e.g., decreases plasma levels of lyophosphatidic acid (LPA), and/or decreases SAA levels, and/or increases plasma paraoxonase activity, and/or reduces atherosclerotic lesion(s)). In certain embodiments the peptide comprises or consists of one domain (e.g., one copy of) the amino acid sequence of the apolipoprotein or apolipoprotein mimetic peptide. In certain embodiments the peptide comprises at least two domains that each comprise or consist of the amino acid sequence of the apolipoprotein or apolipoprotein mimetic peptide (e.g., the peptide comprises or consists of at least two copies of the amino acid sequence of the apolipoprotein or apolipoprotein mimetic). In certain embodiments the peptide comprises or consists of an ApoA-I mimetic amino acid sequence and/or a G* peptide amino acid sequence, and/or an ApoE peptide sequence. In certain embodiments the peptide comprises or consists of the amino acid sequence DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17). In certain embodiments the peptide comprises or consists of an amino acid sequence comprises an amino acid sequence selected from the group consisting of DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO: 17), FFEKFKEFFKDYFAKLWD (rev6F, SEQ ID NO:25), DWFKAFYDKVAEKFKEAF (4F, SEQ ID NO:15), FAEKFKEAVKDYFAKFWD (rev4F, SEQ ID NO:23), LLEQLNEQFNWVSRLANL (SEQ ID NO:609), and LVGRQLEEFL (SEQ ID NO:612). In certain embodiments the peptide comprises or consists of an amino acid sequence selected from the group consisting of DWLKAFYDKVAEKLKEAF (SEQ ID NO:11), DWLKAFYDKVAEKLKEAF (SEQ ID NO:12), DWFKAFYDKVAEKLKEAF (SEQ ID NO:13), DWLKAFYDKVAEKFKEAF (SEQ ID NO:14), DWFKAFYDKVAEKFKEAF (SEQ ID NO:15), DWLKAFYDKVFEKFKEFF (SEQ ID NO:16), DWLKAFYDKFFEKFKEFF (SEQ ID NO:17), DWFKAFYDKFFEKFKEFF (SEQ ID NO:18), DWLKAFYDKVAEKLKEFF (SEQ ID NO:19), FAEKLKEAVKDYFAKLWD (SEQ ID NO:20), FAEKLKEAVKDYFAKLWD (SEQ ID NO:21), FAEKLKEAVKDYFAKFWD (SEQ ID NO:22), FAEKFKEAVKDYFAKFWD (SEQ ID NO:23), FFEKFKEFVKDYFAKLWD (SEQ ID NO:24), FFEKFKEFFKDYFAKLWD (SEQ ID NO:25), FFEKFKEFFKDYFAKFWD (SEQ ID NO:26), DWLKAFYDKVFEKFKEAF (SEQ ID NO:27), DWLKAFYDKVFEKLKEFF (SEQ ID NO:28), DWLKAFYDKVAEKFKEFF (SEQ ID NO:29), DWLKAFYDKVFEKFKEFF (SEQ ID NO:30), EWLKLFYEKVLEKFKEAF (SEQ ID NO:31), EWLKAFYDKVAEKFKEAF (SEQ ID NO:32), EWLKAFYDKVAEKLKEFF (SEQ ID NO:33), EWLKAFYDKVFEKFKEAF (SEQ ID NO:34), EWLKAFYDKVFEKLKEFF (SEQ ID NO:35), EWLKAFYDKVAEKFKEFF (SEQ ID NO:36), EWLKAFYDKVFEKFKEFF (SEQ ID NO:37), AFYDKVAEKLKEAF (SEQ ID NO:38), AFYDKVAEKFKEAF (SEQ ID NO:39), AFYDKVAEKFKEAF (SEQ ID NO:40), AFYDKFFEKFKEFF (SEQ ID NO:41), AFYDKFFEKFKEFF (SEQ ID NO:42), AFYDKVAEKFKEAF (SEQ ID NO:43), AFYDKVAEKLKEFF (SEQ ID NO:44), AFYDKVFEKFKEAF (SEQ ID NO:45), AFYDKVFEKLKEFF (SEQ ID NO:46), AFYDKVAEKFKEFF (SEQ ID NO:47), KAFYDKVFEKFKEF (SEQ ID NO:48), LFYEKVLEKFKEAF (SEQ ID NO:49), AFYDKVAEKFKEAF (SEQ ID NO:50), AFYDKVAEKLKEFF (SEQ ID NO:51), AFYDKVFEKFKEAF (SEQ ID NO:52), AFYDKVFEKLKEFF (SEQ ID NO:53), AFYDKVAEKFKEFF (SEQ ID NO:54), AFYDKVFEKFKEFF (SEQ ID NO:55), DWLKALYDKVAEKLKEAL (SEQ ID NO:56), DWFKAFYEKVAEKLKEFF (SEQ ID NO:57), DWFKAFYEKFFEKFKEFF (SEQ ID NO:58), EWLKALYEKVAEKLKEAL (SEQ ID NO:59), EWLKAFYEKVAEKLKEAF (SEQ ID NO:60), EWFKAFYEKVAEKLKEFF (SEQ ID NO:61), EWLKAFYEKVFEKFKEFF (SEQ ID NO:62), EWLKAFYEKFFEKFKEFF (SEQ ID NO:63), EWFKAFYEKFFEKFKEFF (SEQ ID NO:64), DFLKAWYDKVAEKLKEAW (SEQ ID NO:65), EFLKAWYEKVAEKLKEAW (SEQ ID NO:66), DFWKAWYDKVAEKLKEWW (SEQ ID NO:67), EFWKAWYEKVAEKLKEWW (SEQ ID NO:68), DKLKAFYDKVFEWAKEAF (SEQ ID NO:69), DKWKAVYDKFAEAFKEFL (SEQ ID NO:70), EKLKAFYEKVFEWAKEAF (SEQ ID NO:71), EKWKAVYEKFAEAFKEFL (SEQ ID NO:72), DWLKAFVDKFAEKFKEAY (SEQ ID NO:73), EKWKAVYEKFAEAFKEFL (SEQ ID NO:74), DWLKAFVYDKVFKLKEFF (SEQ ID NO:75), EWLKAFVYEKVFKLKEFF (SEQ ID NO:76), DWLRAFYDKVAEKLKEAF (SEQ ID NO:77), EWLRAFYEKVAEKLKEAF (SEQ ID NO:78), DWLKAFYDRVAEKLKEAF (SEQ ID NO:79), EWLKAFYERVAEKLKEAF (SEQ ID NO:80), DWLKAFYDKVAERLKEAF (SEQ ID NO:81), EWLKAFYEKVAERLKEAF (SEQ ID NO:82), DWLKAFYDKVAEKLREAF (SEQ ID NO:83), EWLKAFYEKVAEKLREAF (SEQ ID NO:84), DWLKAFYDRVAERLKEAF (SEQ ID NO:85), EWLKAFYERVAERLKEAF (SEQ ID NO:86), DWLRAFYDKVAEKLREAF (SEQ ID NO:87), EWLRAFYEKVAEKLREAF (SEQ ID NO:88), DWLRAFYDRVAEKLKEAF (SEQ ID NO:89), EWLRAFYERVAEKLKEAF (SEQ ID NO:90), DWLKAFYDKVAERLREAF (SEQ ID NO:91), EWLKAFYEKVAERLREAF (SEQ ID NO:92), DWLRAFYDKVAERLKEAF (SEQ ID NO:93), EWLRAFYEKVAERLKEAF (SEQ ID NO:94), DWLKAFYDKVAEKLKEAFPDWLKAFYDKVAEKLKEAF (SEQ ID NO:95), DWLKAFYDKVAEKLKEFFPDWLKAFYDKVAEKLKEFF (SEQ ID NO:96), DWFKAFYDKVAEKLKEAFPDWFKAFYDKVAEKLKEAF (SEQ ID NO:97), DKLKAFYDKVFEWAKEAFPDKLKAFYDKVFEWLKEAF (SEQ ID NO:98), DKWKAVYDKFAEAFKEFLPDKWKAVYDKFAEAFKEFL (SEQ ID NO:99), DWFKAFYDKVAEKFKEAFPDWFKAFYDKVAEKFKEAF (SEQ ID NO:100), DWLKAFVYDKVFKLKEFFPDWLKAFVYDKVFKLKEFF (SEQ ID NO:101), DWLKAFYDKFAEKFKEFFPDWLKAFYDKFAEKFKEFF (SEQ ID NO:102), EWFKAFYEKVAEKFKEAF (SEQ ID NO:103), DWFKAFYDKVAEKF (SEQ ID NO:104), FKAFYDKVAEKFKE (SEQ ID NO:105), FKAFYEKVAEKFKE (SEQ ID NO:106), FKAFYDKVAEKFKE (SEQ ID NO:107), FKAFYEKVAEKFKE (SEQ ID NO:108), DWFKAFYDKVAEKFKEAF (SEQ ID NO:109), EWFKAFYEKVAEKFKEAF (SEQ ID NO:110), AFYDKVAEKFKEAF (SEQ ID NO:111), DWFKAFYDKVAEKF (SEQ ID NO:112), DWLKAFYDKVFEKFKEFF (SEQ ID NO:113), EWLKAFYEKVFEKFKEFF (SEQ ID NO:114), AFYDKVFEKFKEFF (SEQ ID NO:115), AFYEKVFEKFKEFF (SEQ ID NO:116), DWLKAFYDKVFEKF (SEQ ID NO:117), EWLKAFYEKVFEKF (SEQ ID NO:118), LKAFYDKVFEKFKE (SEQ ID NO:119), LKAFYEKVFEKFKE (SEQ ID NO:120), EWFKAFYEKVADKFKDAF (SEQ ID NO:121), EWFKAFYDKVADKFKEAF (SEQ ID NO:122), DWFKAFYEKVADKFKEAF (SEQ ID NO:123), DWFKAFYEKVAEKFKDAF (SEQ ID NO:124), DFWKAFYDKVAEKFKEAF (SEQ ID NO:125), EFWKAFYEKVADKFKDAF (SEQ ID NO:126), EFWKAFYDKVADKFKEAF (SEQ ID NO:127), DFWKAFYEKVADKFKEAF (SEQ ID NO:128), DFWKAFYEKVAEKFKDAF (SEQ ID NO:129), DWFKAYFDKVAEKFKEAF (SEQ ID NO:130), EWFKAYFEKVADKFKDAF (SEQ ID NO:131), EWFKAYFDKVADKFKEAF (SEQ ID NO:132), DWFKAYFEKVADKFKEAF (SEQ ID NO:133), DWFKAYFEKVAEKFKDAF (SEQ ID NO:134), DWFKAFVDKYAEKFKEAF (SEQ ID NO:135), EWFKAFVEKYADKFKDAF (SEQ ID NO:136), EWFKAFVDKYADKFKEAF (SEQ ID NO:137), DWFKAFVEKYADKFKEAF (SEQ ID NO:138), DWFKAFVEKYAEKFKDAF (SEQ ID NO:139), DWFKAFYDKAVEKFKEAF (SEQ ID NO:140), EWFKAFYEKAVDKFKDAF (SEQ ID NO:141), EWFKAFYDKAVDKFKEAF (SEQ ID NO:142), DWFKAFYEKAVDKFKEAF (SEQ ID NO:143), DWFKAFYEKAVEKFKDAF (SEQ ID NO:144), DWFKAFYDKVFEKAKEAF (SEQ ID NO:145), EWFKAFYEKVFDKAKDAF (SEQ ID NO:146), EWFKAFYDKVFDKAKEAF (SEQ ID NO:147), DWFKAFYEKVFDKAKEAF (SEQ ID NO:148), DWFKAFYEKVFEKAKDAF (SEQ ID NO:149), DWFKAFYDKVAEKAKEFF (SEQ ID NO:150), EWFKAFYEKVADKAKDFF (SEQ ID NO:151), EWFKAFYDKVADKAKEFF (SEQ ID NO:152), DWFKAFYEKVADKAKEFF (SEQ ID NO:153), DWFKAFYEKVAEKAKDFF (SEQ ID NO:154), DWFKAFYDKVAEKFKEFA (SEQ ID NO:155), EWFKAFYEKVADKFKDFA (SEQ ID NO:156), EWFKAFYDKVADKFKEFA (SEQ ID NO:157), DWFKAFYEKVADKFKEFA (SEQ ID NO:158), DWFKAFYEKVAEKFKDFA (SEQ ID NO:159), DAFKAFYDKVAEKFKEWF (SEQ ID NO:160), EAFKAFYEKVADKFKDWF (SEQ ID NO:161), EAFKAFYDKVADKFKEWF (SEQ ID NO:162), DAFKAFYEKVADKFKEWF (SEQ ID NO:163), DAFKAFYEKVAEKFKDWF (SEQ ID NO:164), DAFKAFYDKVWEKFKEAF (SEQ ID NO:165), EAFKAFYEKVWDKFKDAF (SEQ ID NO:166), EAFKAFYDKVWDKFKEAF (SEQ ID NO:167), DAFKAFYEKVWDKFKEAF (SEQ ID NO:168), DAFKAFYEKVWEKFKDAF (SEQ ID NO:169), DYFKAFWDKVAEKFKEAF (SEQ ID NO:170), EYFKAFWEKVADKFKDAF (SEQ ID NO:171), EYFKAFWDKVADKFKEAF (SEQ ID NO:172), DYFKAFWEKVADKFKEAF (SEQ ID NO:173), DYFKAFWEKVAEKFKDAF (SEQ ID NO:174), DWAKAFYDKVAEKFKEFF (SEQ ID NO:175), EWAKAFYEKVADKFKDFF (SEQ ID NO:176), EWAKAFYDKVADKFKEFF (SEQ ID NO:177), DWAKAFYEKVADKFKEFF (SEQ ID NO:178), DWAKAFYEKVAEKFKDFF (SEQ ID NO:179), DWFKAAYDKVAEKFKEFF (SEQ ID NO:180), EWFKAAYEKVADKFKDFF (SEQ ID NO:181), EWFKAAYDKVADKFKEFF (SEQ ID NO:182), DWFKAAYEKVADKFKEFF (SEQ ID NO:183), DWFKAAYEKVAEKFKDFF (SEQ ID NO:184), DWFKAFADKVAEKFKEYF (SEQ ID NO:185), EWFKAFAEKVADKFKDYF (SEQ ID NO:186), EWFKAFADKVADKFKEYF (SEQ ID NO:187), DWFKAFAEKVADKFKEYF (SEQ ID NO:188), DWFKAFAEKVAEKFKDYF (SEQ ID NO:189), DWFKAFYDKAAEKFKEVF (SEQ ID NO:190), EWFKAFYEKAADKFKDVF (SEQ ID NO:191), EWFKAFYDKAADKFKEVF (SEQ ID NO:192), DWFKAFYEKAADKFKEVF (SEQ ID NO:193), DWFKAFYEKAAEKFKDVF (SEQ ID NO:194), DWYKAFFDKVAEKFKEAF (SEQ ID NO:195), EWYKAFFEKVADKFKDAF (SEQ ID NO:196), EWYKAFFDKVADKFKEAF (SEQ ID NO:197), DWYKAFFEKVADKFKEAF (SEQ ID NO:198), DWYKAFFEKVAEKFKDAF (SEQ ID NO:199), DWVKAFYDKFAEKFKEAF (SEQ ID NO:200), EWVKAFYEKFADKFKDAF (SEQ ID NO:201), EWVKAFYDKFADKFKEAF (SEQ ID NO:202), DWVKAFYEKFADKFKEAF (SEQ ID NO:203), DWVKAFYEKFAEKFKDAF (SEQ ID NO:204), DWFKAFFDKVAEKYKEAF (SEQ ID NO:205), EWFKAFFEKVADKYKDAF (SEQ ID NO:206), EWFKAFFDKVADKYKEAF (SEQ ID NO:207), DWFKAFFEKVADKYKEAF (SEQ ID NO:208), DWFKAFFEKVADKYKEAF (SEQ ID NO:209), DWFKAFFDKVAEKFKEAY (SEQ ID NO:210), EWFKAFFEKVADKFKDAY (SEQ ID NO:211), EWFKAFFDKVADKFKEAY (SEQ ID NO:212), DWFKAFFEKVADKFKEAY (SEQ ID NO:213), DWFKAFFEKVAEKFKDAY (SEQ ID NO:214), DWFKAFYDKFAEKFKEAV (SEQ ID NO:215), EWFKAFYEKFADKFKDAV (SEQ ID NO:216), EWFKAFYDKFADKFKEAV (SEQ ID NO:217), DWFKAFYEKFADKFKEAV (SEQ ID NO:218), DWFKAFYEKFAEKFKDAV (SEQ ID NO:219), DKFKAFYDKVAEKFWEAF (SEQ ID NO:220), EKFKAFYEKVADKFWDAF (SEQ ID NO:221), EKFKAFYDKVADKFWEAF (SEQ ID NO:222), DKFKAFYEKVADKFWEAF (SEQ ID NO:223), DKFKAFYEKVAEKFWDAF (SEQ ID NO:224), DKWKAFYDKVAEKFFEAF (SEQ ID NO:225), EKWKAFYEKVADKFFDAF (SEQ ID NO:226), EKWKAFYDKVADKFFEAF (SEQ ID NO:227), DKWKAFYEKVADKFFEAF (SEQ ID NO:228), DKWKAFYEKVAEKFFDAF (SEQ ID NO:229), DKFKAFYDKWAEVFKEAF (SEQ ID NO:230), EKFKAFYEKWADVFKDAF (SEQ ID NO:231), EKFKAFYDKWADVFKEAF (SEQ ID NO:232), DKFKAFYEKWADVFKEAF (SEQ ID NO:233), DKFKAFYEKWAEVFKDAF (SEQ ID NO:234), DKFKAFYDKVAEFWKEAF (SEQ ID NO:235), EKFKAFYEKVADFWKDAF (SEQ ID NO:236), EKFKAFYDKVADFWKEAF (SEQ ID NO:237), DKFKAFYEKVADFWKEAF (SEQ ID NO:238), DKFKAFYEKVAEFWKDAF (SEQ ID NO:239), FAEKFKEAVKDYFAKFWD (SEQ ID NO:240), FADKFKDAVKEYFAKFWE (SEQ ID NO:241), FADKFKEAVKDYFAKFWE (SEQ ID NO:242), FAEKFKDAVKEYFAKFWD (SEQ ID NO:243), FAEKFKDAVKDYFAKFWE (SEQ ID NO:244), FWEKFKEAVKDYFAKFAD (SEQ ID NO:245), FWDKFKDAVKEYFAKFAE (SEQ ID NO:246), FADKFKEAVKDYFAKFWE (SEQ ID NO:247), FAEKFKDAVKEYFAKFWD (SEQ ID NO:248), FAEKFKDAVKDYFAKFWE (SEQ ID NO:249), FFEKFKEAVKDYFAKAWD (SEQ ID NO:250), FFDKFKDAVKEYFAKAWE (SEQ ID NO:251), FFDKFKEAVKDYFAKAWE (SEQ ID NO:252), FFEKFKDAVKEYFAKAWD (SEQ ID NO:253), FFEKFKDAVKDYFAKAWE (SEQ ID NO:254), FAEKAKEFVKDYFAKFWD (SEQ ID NO:255), FADKAKDFVKEYFAKFWE (SEQ ID NO:256), FADKAKEFVKDYFAKFWE (SEQ ID NO:257), FAEKAKDFVKEYFAKFWD (SEQ ID NO:258), FAEKAKDFVKDYFAKFWE (SEQ ID NO:259), FAEKFKEVAKDYFAKFWD (SEQ ID NO:260), FADKFKDVAKEYFAKFWE (SEQ ID NO:261), FADKFKEVAKDYFAKFWE (SEQ ID NO:262), FAEKFKDVAKEYFAKFWD (SEQ ID NO:263), FAEKFKDVAKDYFAKFWE (SEQ ID NO:264), FAEKFKEAYKDVFAKFWD (SEQ ID NO:265), FADKFKDAYKEVFAKFWE (SEQ ID NO:266), FADKFKEAYKDVFAKFWE (SEQ ID NO:267), FAEKFKDAYKEVFAKFWD (SEQ ID NO:268), FAEKFKDAYKDVFAKFWE (SEQ ID NO:269), FAEKFKEAVKDFYAKFWD (SEQ ID NO:270), FADKFKDAVKEFYAKFWE (SEQ ID NO:271), FADKFKEAVKDFYAKFWE (SEQ ID NO:272), FAEKFKDAVKEFYAKFWD (SEQ ID NO:273), FAEKFKDAVKDFYAKFWE (SEQ ID NO:274), FAEKFWEAVKDYFAKFKD (SEQ ID NO:275), FADKFWDAVKEYFAKFKE (SEQ ID NO:276), FADKFWEAVKDYFAKFKE (SEQ ID NO:277), FAEKFWDAVKEYFAKFKD (SEQ ID NO:278), FAEKFWDAVKDYFAKFKE (SEQ ID NO:279), AFEKFKEAVKDYFAKFWD (SEQ ID NO:280), AFDKFKDAVKEYFAKFWE (SEQ ID NO:281), AFDKFKEAVKDYFAKFWE (SEQ ID NO:282), AFEKFKDAVKEYFAKFWD (SEQ ID NO:283), AFEKFKDAVKDYFAKFWE (SEQ ID NO:284), VAEKFKEAFKDYFAKFWD (SEQ ID NO:285), VADKFKDAFKEYFAKFWE (SEQ ID NO:286), VADKFKEAFKDYFAKFWE (SEQ ID NO:287), VAEKFKDAFKEYFAKFWD (SEQ ID NO:288), VAEKFKDAFKDYFAKFWE (SEQ ID NO:289), YAEKFKEAVKDFFAKFWD (SEQ ID NO:290), YADKFKDAVKEFFAKFWE (SEQ ID NO:291), YADKFKEAVKDFFAKFWE (SEQ ID NO:292), YAEKFKDAVKEFFAKFWD (SEQ ID NO:293), YAEKFKDAVKDFFAKFWE (SEQ ID NO:294), AAEKFKEFVKDYFAKFWD (SEQ ID NO:295), AADKFKDFVKEYFAKFWE (SEQ ID NO:296), AADKFKEFVKDYFAKFWE (SEQ ID NO:297), AAEKFKDFVKEYFAKFWD (SEQ ID NO:298), AAEKFKDFVKDYFAKFWE (SEQ ID NO:299), FFEKAKEAVKDYFAKFWD (SEQ ID NO:300), FFDKAKDAVKEYFAKFWE (SEQ ID NO:301), FFDKAKEAVKDYFAKFWE (SEQ ID NO:302), FFEKAKDAVKEYFAKFWD (SEQ ID NO:303), FFEKAKDAVKDYFAKFWE (SEQ ID NO:304), FYEKFKEAVKDAFAKFWD (SEQ ID NO:305), FYDKFKDAVKEAFAKFWE (SEQ ID NO:306), FYDKFKEAVKDAFAKFWE (SEQ ID NO:307), FYEKFKDAVKEAFAKFWD (SEQ ID NO:308), FYEKFKDAVKDAFAKFWE (SEQ ID NO:309), FVEKFKEAAKDYFAKFWD (SEQ ID NO:310), FVDKFKDAAKEYFAKFWE (SEQ ID NO:311), FVDKFKEAAKDYFAKFWE (SEQ ID NO:312), FVEKFKDAAKEYFAKFWD (SEQ ID NO:313), FVEKFKDAAKDYFAKFWE (SEQ ID NO:314), FAEKYKEAVKDFFAKFWD (SEQ ID NO:315), FADKYKDAVKEFFAKFWE (SEQ ID NO:316), FADKYKEAVKDFFAKFWE (SEQ ID NO:317), FAEKYKDAVKEFFAKFWD (SEQ ID NO:318), FAEKYKDAVKDFFAKFWE (SEQ ID NO:319), FAEKVKEAFKDYFAKFWD (SEQ ID NO:320), FADKVKDAFKEYFAKFWE (SEQ ID NO:321), FADKVKEAFKDYFAKFWE (SEQ ID NO:322), FAEKVKDAFKEYFAKFWD (SEQ ID NO:323), FAEKVKDAFKDYFAKFWE (SEQ ID NO:324), FAEKFKEYVKDAFAKFWD (SEQ ID NO:325), FADKFKDYVKEAFAKFWE (SEQ ID NO:326), FADKFKEYVKDAFAKFWE (SEQ ID NO:327), FAEKFKDYVKEAFAKFWD (SEQ ID NO:328), FAEKFKDYVKDAFAKFWE (SEQ ID NO:329), FAEKFKEAFKDYVAKFWD (SEQ ID NO:330), FADKFKDAFKEYVAKFWE (SEQ ID NO:331), FADKFKEAFKDYVAKFWE (SEQ ID NO:332), FAEKFKDAFKEYVAKFWD (SEQ ID NO:333), FAEKFKDAFKDYVAKFWE (SEQ ID NO:334), FAEKFKEAFKDYFAKVWD (SEQ ID NO:335), FADKFKDAFKEYFAKVWE (SEQ ID NO:336), FADKFKEAFKDYFAKVWE (SEQ ID NO:337), FAEKFKDAFKEYFAKVWD (SEQ ID NO:338), FAEKFKDAFKDYFAKVWE (SEQ ID NO:339), FAEKFKEAVKDFFAKYWD (SEQ ID NO:340), FADKFKDAVKEFFAKYWE (SEQ ID NO:341), FADKFKEAVKDFFAKYWE (SEQ ID NO:342), FAEKFKDAVKEFFAKYWD (SEQ ID NO:343), FAEKFKDAVKDFFAKYWE (SEQ ID NO:344), WAEKFFEAVKDYFAKFKD (SEQ ID NO:345), WADKFFDAVKEYFAKFKE (SEQ ID NO:346), WADKFFEAVKDYFAKFKE (SEQ ID NO:347), WAEKFFDAVKEYFAKFKD (SEQ ID NO:348), WAEKFFDAVKDYFAKFKE (SEQ ID NO:349), FAEKWFEAVKDYFAKFKD (SEQ ID NO:350), FADKWFDAVKEYFAKFKE (SEQ ID NO:351), FADKWFEAVKDYFAKFKE (SEQ ID NO:352), FAEKWFDAVKEYFAKFKD (SEQ ID NO:353), FAEKWFDAVKDYFAKFKE (SEQ ID NO:354), FAEKFVEAWKDYFAKFKD (SEQ ID NO:355), FADKFVDAWKEYFAKFKE (SEQ ID NO:356), FADKFVEAWKDYFAKFKE (SEQ ID NO:357), FAEKFVDAWKEYFAKFKD (SEQ ID NO:358), FAEKFVDAWKDYFAKFKE (SEQ ID NO:359), FYEKFAEAVKDWFAKFKD (SEQ ID NO:360), FYDKFADAVKEWFAKFKE (SEQ ID NO:361), FYDKFAEAVKDWFAKFKE (SEQ ID NO:362), FYEKFADAVKEWFAKFKD (SEQ ID NO:363), FYEKFADAVKDWFAKFKE (SEQ ID NO:364), DWFKHFYDKVAEKFKEAF (SEQ ID NO:365), EWFKHFYEKVADKFKDAF (SEQ ID NO:366), EWFKHFYDKVAEKFKEAF (SEQ ID NO:367), DWFKHFYEKVAEKFKEAF (SEQ ID NO:368), DWFKHFYDKVADKFKEAF (SEQ ID NO:369), DWFKHFYDKVAEKFKDAF (SEQ ID NO:370), DWHKFFYDKVAEKFKEAF (SEQ ID NO:371), EWHKFFYEKVADKFKDAF (SEQ ID NO:372), EWHKFFYDKVAEKFKEAF (SEQ ID NO:373), DWHKFFYEKVAEKFKEAF (SEQ ID NO:374), DWHKFFYDKVADKFKEAF (SEQ ID NO:375), DWHKFFYDKVAEKFKDAF (SEQ ID NO:376), DWFKFHYDKVAEKFKEAF (SEQ ID NO:377), EWFKFHYEKVADKFKDAF (SEQ ID NO:378), EWFKFHYDKVAEKFKEAF (SEQ ID NO:379), DWFKFHYEKVAEKFKEAF (SEQ ID NO:380), DWFKFHYDKVADKFKEAF (SEQ ID NO:381), DWFKFHYDKVAEKFKDAF (SEQ ID NO:382), DWFKVFYDKHAEKFKEAF (SEQ ID NO:383), EWFKVFYEKHADKFKDAF (SEQ ID NO:384), EWFKVFYDKHAEKFKEAF (SEQ ID NO:385), DWFKVFYEKHAEKFKEAF (SEQ ID NO:386), DWFKVFYDKHADKFKEAF (SEQ ID NO:387), DWFKVFYDKHAEKFKDAF (SEQ ID NO:388), DWFKAFYDKVAEKFKEHF (SEQ ID NO:389), EWFKAFYEKVADKFKDHF (SEQ ID NO:390), EWFKAFYDKVAEKFKEHF (SEQ ID NO:391), DWFKAFYEKVAEKFKEHF (SEQ ID NO:392), DWFKAFYDKVADKFKEHF (SEQ ID NO:393), DWFKAFYDKVAEKFKDHF (SEQ ID NO:394), DWFKAFYDKVAEKFKEFH (SEQ ID NO:395), EWFKAFYEKVADKFKDFH (SEQ ID NO:396), EWFKAFYDKVAEKFKEFH (SEQ ID NO:397), DWFKAFYDKVAEKFKEFH (SEQ ID NO:398), DWFKAFYEKVAEKFKEFH (SEQ ID NO:399), DWFKAFYDKVAEKFKEFH (SEQ ID NO:400), DWFKAFYDKVAEKFKDFH (SEQ ID NO:401), FAEKFKEAVKDYFAKFWD (SEQ ID NO:402), FHEKFKEAVKDYFAKFWD (SEQ ID NO:403), FHEKFKEAVKEYFAKFWE (SEQ ID NO:404), FHDKFKDAVKDYFAKFWD (SEQ ID NO:405), FHDKFKDAVKEYFAKFWE (SEQ ID NO:406), FHDKFKEAVKDYFAKFWD (SEQ ID NO:407), FHEKFKDAVKDYFAKFWD (SEQ ID NO:408), FHEKFKEAVKEYFAKFWD (SEQ ID NO:409), FHEKFKEAVKDYFAKFWE (SEQ ID NO:410), HFEKFKEAVKDYFAKFWD (SEQ ID NO:411), HFDKFKDAVKEYFAKFWE (SEQ ID NO:412), HFEKFKEAVKEYFAKFWE (SEQ ID NO:413), HFDKFKEAVKDYFAKFWD (SEQ ID NO:414), HFEKFKDAVKDYFAKFWD (SEQ ID NO:415), HFEKFKEAVKEYFAKFWD (SEQ ID NO:416), HFEKFKEAVKDYFAKFWE (SEQ ID NO:417), FFEKHKEAVKDYFAKFWD (SEQ ID NO:418), FFDKHKDAVKEYFAKFWE (SEQ ID NO:419), FFEKHKEAVKEYFAKFWE (SEQ ID NO:420), FFDKHKDAVKDYFAKFWD (SEQ ID NO:421), FFDKHKEAVKDYFAKFWD (SEQ ID NO:422), FFEKHKEAVKEYFAKFWD (SEQ ID NO:423), FFEKHKEAVKDYFAKFWE (SEQ ID NO:424), FVEKFKEAHKDYFAKFWD (SEQ ID NO:425), FVDKFKDAHKEYFAKFWE (SEQ ID NO:426), FVEKFKEAHKEYFAKFWE (SEQ ID NO:427), FVDKFKDAHKDYFAKFWD (SEQ ID NO:428), FVDKFKEAHKDYFAKFWD (SEQ ID NO:429), FVEKFKDAHKDYFAKFWD (SEQ ID NO:430), FVEKFKEAHKEYFAKFWD (SEQ ID NO:431), FVEKFKEAHKDYFAKFWE (SEQ ID NO:432), FAEKFKEHVKDYFAKFWD (SEQ ID NO:433), FADKFKDHVKEYFAKFWE (SEQ ID NO:434), FAEKFKEHVKEYFAKFWE (SEQ ID NO:435), FADKFKDHVKDYFAKFWD (SEQ ID NO:436), FADKFKEHVKDYFAKFWD (SEQ ID NO:437), FAEKFKDHVKDYFAKFWD (SEQ ID NO:438), FAEKFKEHVKEYFAKFWD (SEQ ID NO:439), FAEKFKEHVKDYFAKFWE (SEQ ID NO:440), FAEKFKEFVKDYHAKFWD (SEQ ID NO:441), FADKFKDFVKEYHAKFWE (SEQ ID NO:442), FADKFKEFVKDYHAKFWD (SEQ ID NO:443), FAEKFKDFVKDYHAKFWD (SEQ ID NO:444), FADKFKDFVKDYHAKFWD (SEQ ID NO:445), FAEKFKEFVKEYHAKFWE (SEQ ID NO:446), FAEKFKEFVKEYHAKFWD (SEQ ID NO:447), FAEKFKEFVKDYHAKFWE (SEQ ID NO:448), FAEKFKEFVKDYFAKHWD (SEQ ID NO:449), FADKFKDFVKEYFAKHWE (SEQ ID NO:450), FAEKFKEFVKEYFAKHWE (SEQ ID NO:451), FADKFKDFVKDYFAKHWD (SEQ ID NO:452), FADKFKEFVKDYFAKHWD (SEQ ID NO:453), FAEKFKDFVKDYFAKHWD (SEQ ID NO:454), FAEKFKEFVKEYFAKHWD (SEQ ID NO:455), FAEKFKEFVKDYFAKHWE (SEQ ID NO:456), FAEKFKEAVKEYFAKFWE (SEQ ID NO:457), FADKFKDAVKDYFAKFWD (SEQ ID NO:458), FAERFREAVKDYFAKFWD (SEQ ID NO:459), FAEKFREAVKDYFAKFWD (SEQ ID NO:460), FAEKFKEAVRDYFAKFWD (SEQ ID NO:461), FAEKFKEAVKDYFARFWD (SEQ ID NO:462), FAEKFKEAVKEYFAKFWE (SEQ ID NO:463), FADKFKDAVKDYFAKFWD (SEQ ID NO:464), FAERFREAVKDYFAKFWD (SEQ ID NO:465), FAEKFREAVKDYFAKFWD (SEQ ID NO:466), FAEKFKEAVRDYFAKFWD (SEQ ID NO:467), FAEKFKEAVKDYFARFWD (SEQ ID NO:468), FAEKFKEAVKEYFAKFWE (SEQ ID NO:469), FADKFKDAVKDYFAKFWD (SEQ ID NO:470), FAERFREAVKDYFAKFWD (SEQ ID NO:471), FAEKFREAVKDYFAKFWD (SEQ ID NO:472), FAEKFKEAVRDYFAKFWD (SEQ ID NO:473), FAEKFKEAVKDYFARFWD (SEQ ID NO:474), FAERFREAVKDYFAKFWD (SEQ ID NO:475), FAEKFREAVKDYFAKFWD (SEQ ID NO:476), FAEKFKEAVRDYFAKFWD (SEQ ID NO:477), FAEKFKEAVKDYFARFWD (SEQ ID NO:478), FAEKFKEAVKEYFAKFWE (SEQ ID NO:479), FADKFKDAVKDYFAKFWD (SEQ ID NO:480), FAERFREAVKDYFAKFWD (SEQ ID NO:481), FAEKFREAVKDYFAKFWD (SEQ ID NO:482), FAEKFKEAVRDYFAKFWD (SEQ ID NO:483), FAEKFKEAVKDYFARFWD (SEQ ID NO:484), LFEKFAEAFKDYVAKWKD (SEQ ID NO:485), LFERFAEAFKDYVAKWKD (SEQ ID NO:486), LFEKFAEAFRDYVAKWKD (SEQ ID NO:487), LFEKFAEAFKDYVARWKD (SEQ ID NO:488), LFEKFAEAFKDYVAKWRD (SEQ ID NO:489), LFEKFAEAFKEYVAKWKE (SEQ ID NO:490), LFDKFADAFKDYVAKWKD (SEQ ID NO:491), LFDKFAEAFKDYVAKWKD (SEQ ID NO:492), LFEKFADAFKDYVAKWKD (SEQ ID NO:493), LFEKFAEAFKEYVAKWKD (SEQ ID NO:494), LFEKFAEAFKDYVAKWKE (SEQ ID NO:495), FAEKAWEFVKDYFAKLKD (SEQ ID NO:496), FAERAWEFVKDYFAKLKD (SEQ ID NO:497), FAEKAWEFVKDYFAKLKD (SEQ ID NO:498), FAEKAWEFVKDYFAKLKD (SEQ ID NO:499), FAEKAWEFVKDYFAKLRD (SEQ ID NO:500), FAEKAWEFVKEYFAKLKE (SEQ ID NO:501), FADKAWDFVKDYFAKLKD (SEQ ID NO:502), FADKAWEFVKDYFAKLKD (SEQ ID NO:503), FAEKAWDFVKDYFAKLKD (SEQ ID NO:504), FAEKAWEFVKEYFAKLKD (SEQ ID NO:505), FAEKAWEFVKDYFAKLKE (SEQ ID NO:506), FFEKFKEFVKDYFAKLWD (SEQ ID NO:507), FFEKFKEFVKEYFAKLWE (SEQ ID NO:508), FFDKFKDFVKDYFAKLWD (SEQ ID NO:509), FFERFKEFVKDYFAKLWD (SEQ ID NO:510), FFEKFREFVKDYFAKLWD (SEQ ID NO:511), FFEKFKEFVRDYFAKLWD (SEQ ID NO:512), FFEKFKEFVKDYFARLWD (SEQ ID NO:513), FFDKFKEFVKDYFAKLWD (SEQ ID NO:514), FFEKFKDFVKDYFAKLWD (SEQ ID NO:515), FFEKFKEFVKEYFAKLWD (SEQ ID NO:516), FFEKFKEFVKDYFAKLWE (SEQ ID NO:517), FLEKFKEFVKDYFAKFWD (SEQ ID NO:518), FLEKFKEFVKEYFAKFWE (SEQ ID NO:519), FLDKFKEFVKDYFAKFWD (SEQ ID NO:520), FLDKFKEFVKDYFAKFWD (SEQ ID NO:521), FLEKFKDFVKDYFAKFWD (SEQ ID NO:522), FLEKFKEFVKEYFAKFWD (SEQ ID NO:523), FLEKFKEFVKDYFAKFWE (SEQ ID NO:524), FLERFKEFVKDYFAKFWD (SEQ ID NO:525), FLEKFREFVKDYFAKFWD (SEQ ID NO:526), FLEKFKEFVRDYFAKFWD (SEQ ID NO:527), FLEKFKEFVKDYFARFWD (SEQ ID NO:528), FFEKFKEFFKDYFAKLWD (SEQ ID NO:529), FFEKFKEFFKEYFAKLWE (SEQ ID NO:530), FFDKFKDFFKDYFAKLWD (SEQ ID NO:531), FFERFKEFFKDYFAKLWD (SEQ ID NO:532), FFEKFREFFKDYFAKLWD (SEQ ID NO:533), FFEKFKEFFRDYFAKLWD (SEQ ID NO:534), FFERFKEFFKDYFARLWD (SEQ ID NO:535), FFDKFKEFFKDYFAKLWD (SEQ ID NO:536), FFEKFKDFFKDYFAKLWD (SEQ ID NO:537), FFEKFKEFFKEYFAKLWD (SEQ ID NO:538), FFEKFKEFFKDYFAKLWE (SEQ ID NO:539), FAEKFKEAVKDYFAKFWD (SEQ ID NO:540), FAEKFKEAVKEYFAKFWE (SEQ ID NO:541), FADKFKDAVKDYFAKFWD (SEQ ID NO:542), FAERFREAVKDYFAKFWD (SEQ ID NO:543), FAEKFREAVKDYFAKFWD (SEQ ID NO:544), FAEKFKEAVRDYFAKFWD (SEQ ID NO:545), FAEKFKEAVKDYFARFWD (SEQ ID NO:546), DKWKAVYDKFAEAFKEFF (SEQ ID NO:547), EKWKAVYEKFAEAFKEFF (SEQ ID NO:548), DKWKAVYDKFADAFKDFF (SEQ ID NO:549), DRWKAVYDKFAEAFKEFF (SEQ ID NO:550), DKWRAVYDKFAEAFKEFF (SEQ ID NO:551), DKWKAVYDRFAEAFKEFF (SEQ ID NO:552), DKWKAVYDKFAEAFREFF (SEQ ID NO:553), FFEKFAEAFKDYVAKWKD (SEQ ID NO:554), FFEKFAEAFKEYVAKWKE (SEQ ID NO:555), FFDKFADAFKDYVAKWKD (SEQ ID NO:556), FFERFAEAFKDYVAKWKD (SEQ ID NO:557), FFERFAEAFRDYVAKWKD (SEQ ID NO:558), FFEKFAEAFKDYVARWKD (SEQ ID NO:559), FFERFAEAFKDYVAKWRD (SEQ ID NO:560), FFDKFAEAFKDYVAKWKD (SEQ ID NO:561), FFEKFADAFKDYVAKWKD (SEQ ID NO:562), FFERFAEAFKEYVAKWKD (SEQ ID NO:563), FFERFAEAFKDYVAKWKE (SEQ ID NO:564), FFEKFKEFFKDYFAKFWD (SEQ ID NO:565), FFDKFKDFFKDYFAKFWD (SEQ ID NO:566), FFEKFKEFFKEYFAKFWE (SEQ ID NO:567), FFERFKEFFKDYFAKFWD (SEQ ID NO:568), FFEKFREFFKDYFAKFWD (SEQ ID NO:569), FFEKFKEFFRDYFAKFWD (SEQ ID NO:570), FFEKFKEFFKDYFARFWD (SEQ ID NO:571), FFDKFKEFFKDYFAKFWD (SEQ ID NO:572), FFEKFKDFFKDYFAKFWD (SEQ ID NO:573), FFEKFKEFFKEYFAKFWD (SEQ ID NO:574), FFEKFKEFFKDYFAKFWE (SEQ ID NO:575), EVRAKLEEQAQQIRLQAEAFQARLKSWFEPLVE (SEQ ID NO:576), EVRAKLEEQAQQIRLQAEAFQARLKSWFE (SEQ ID NO:577), EVRSKLEEWFAAFREFAEEFLARLKS (SEQ ID NO:578), PVLDLFRELLNELLEALKQKLK (SEQ ID NO:579), DWLKAFYDKVAEKLKEAF-P-DWAKAAYDKAAEKAKEAA (SEQ ID NO:580), EELKEKLEELKEKLEEKL-P-EELKEKLEELKEKLEEKL (SEQ ID NO:581), EELKAKLEELKAKLEEKL-P-EELKAKLEELKAKLEEKL (SEQ ID NO:582), EKLKALLEKLLAKLKELL P-EKLKALLEKLLAKLKELL (SEQ ID NO:583), EWLKELLEKLLEKLKELL-P-EWLKELLEKLLEKLKELL (SEQ ID NO:584), EKFKELLEKFLEKFKELL-P-EKFKELLEKFLEKFKELL (SEQ ID NO:585), EKLKELLEKLLELLKKLL-P-EKLKELLEKLLELLKKLL (SEQ ID NO:586), EKLKELLEKLKAKLEELL-P-EKLKELLEKLKAKLEELL (SEQ ID NO:587), EKLKELLEKLLAKLKELL-P-EKLKELLEKLLAKLKELL (SEQ ID NO:588), EKFKELLEKLLEKLKELL-P-EKFKELLEKLLEKLKELL (SEQ ID NO:589), EKLKAKLEELKAKLEELL-P-EKLKAKLEELKAKLEELL (SEQ ID NO:590), EELKELLKELLKKLEKLL-P-ELKELLKELLKKLEKLL (SEQ ID NO:591), EELKKLLEELLKKLKELL-P-EELKKLLEELLKKLKELL (SEQ ID NO:592), EKLKELLEKLLEKLKELL-A-EKLKELLEKLLEKLKELL (SEQ ID NO:593), EKLKELLEKLLEKLKELL-AA-EKLKELLEKLLEKLKELL (SEQ ID NO:594), EKLKAKLEELKAKLEELL-P-EKAKAALEEAKAKAEELA (SEQ ID NO:595), EKLKAKLEELKAKLEELL-P-EHAKAALEEAKCKAEELA (SEQ ID NO:596), DHLKAFYDKVACKLKEAF-P-DWAKAAYDKAAEKAKEAA (SEQ ID NO:597), DWLKAFYDKVAEKLKEAF-P-DHAKAAYDKAACKAKEAA (SEQ ID NO:598), DWLKAFYDKVACKLKEAF-P-DWAKAAYNKAAEKAKEAA (SEQ ID NO:599), DHLKAFYDKVAEKLKEAF-P-DWAKAAYDKAAEKAKEAA (SEQ ID NO:600), VLESFKVSFLSALEEYTKKLNTQ (SEQ ID NO:601), DKWKAVYDKFAEAFKEFL (SEQ ID NO:602), DKLKAFYDKVFEWAKEAF (SEQ ID NO:603), DQYYLRVTTVA (SEQ ID NO:605), ECKPCLKQTCMKFYARVCR (SEQ ID NO:606), FSRASSIIDELFQD (SEQ ID NO:607), IQNAVNGVKQIKTLIEKTNEE (SEQ ID NO:608), LLEQLNEQFNWVSRLANL (SEQ ID NO:609), LLEQLNEQFNWVSRLANLTEGE (SEQ ID NO:610), LLEQLNEQFNWVSRLANLTQGE (SEQ ID NO:611), LVGRQLEEFL (SEQ ID NO:612), MNGDRIDSLLEN (SEQ ID NO:613), NELQEMSNQGSKYVNKEIQNAVNGV (SEQ ID NO:614), PCLKQTCMKFYARVCR (SEQ ID NO:615), PFLEMIHEAQQAMDI (SEQ ID NO:616), PGVCNETMMALWEECK (SEQ ID NO:617), PKFMETVAEKALQEYRKKHRE (SEQ ID NO:618), PSGVTEVVVKLFDS (SEQ ID NO:619), PSQAKLRRELDESLQVAERLTRKYNELLKSYQ (SEQ ID NO:620), PTEFIREGDDD (SEQ ID NO:621), QQTHMLDVMQD (SEQ ID NO:622), RKTLLSNLEEAKKKKEDALNETRESETKLKEL (SEQ ID NO:623), RMKDQCDKCREILSV (SEQ ID NO:624), GIKKFLGSIWKFIKAFVG (SEQ ID NO:626), GFKKFLGSWAKIYKAFVG (SEQ ID NO:627), GFRRFLGSWARIYRAFVG (SEQ ID NO:628), TEELRVRLASHLRKLRKRLL (SEQ ID NO:629), TEELRVRLASHLRKLRK (SEQ ID NO:630), LRVRLASHLRKLRKRLL (SEQ ID NO:631), RLASHLRKLRKRLL (SEQ ID NO:632), SHLRKLRKRLL (SEQ ID NO:633), LRKLRKRLL (SEQ ID NO:634), LRKLRKRLLLRKLRKRLL (SEQ ID NO:635), LRKLRKRLLLRKLRKRLLLRKLRKRLL (SEQ ID NO:636), RQIKIWFQNRRMKWKKCLRVRLASHLRKLRKRLL (SEQ ID NO:637), LRVRLASHLRKLRKRLL (SEQ ID NO:638), EELRVRLASHLRKLRKRLLRDADDLQKRLAVYEEQAQQIRLQAEAFQARLKSWFE PLVEDM (SEQ ID NO:639), CEELRVRLASHLRKLRKRLLRDADDLQKRLAVY (SEQ ID NO:640), LRKLRKRLLRDADDLLRKLRKRLLRDADDL (SEQ ID NO:641), TEELRVRLASHLRKLRKRLL (SEQ ID NO:642), TEELRVRLASHLEKLRKRLL (SEQ ID NO:643), TEELRVRLASHLRELRKRLL (SEQ ID NO:644), LREKKLRVSALRTHRLELRL (SEQ ID NO:645), LRKLRKRLLRDWLKAFYDKVAEKLKEAF (SEQ ID NO:646), LRRLRRRLLRDWLKAFYDKVAEKLKEAF (SEQ ID NO:647), and RRRRRRRRRRDWLKAFYDKVAEKLKEAF (SEQ ID NO:648). In certain embodiments the food or food ingredient is effective to decrease plasma levels of lyophosphatidic acid (LPA) in a mammal, and/or to decrease SAA levels in said mammal, and/or to increase plasma paraoxonase activity in said mammal when said food or food ingredient is fed to said mammal. In certain embodiments the food or food ingredient is effective to decrease plasma levels of lyophosphatidic acid (LPA) in a mammal when said food or food ingredient is fed to said mammal. In certain embodiments the food or food ingredient is effective to significantly decrease SAA levels in a in a mouse model of atherosclerosis when said food or food ingredient is fed to said mouse. In certain embodiments the food or food ingredient is effective to increase plasma paraoxonase activity in a mammal, when said food or food ingredient is fed to said mammal. In certain embodiments the peptide in the transgenic plant comprising the food or food ingredient is expressed by a nucleic acid construct stably integrated into the genome of said plant. In certain embodiments the plant is a plant transformed by an agrobacterium comprising a construct encoding the peptide. In certain embodiments at least a portion of the plant is edible without processing. In certain embodiments at least a portion of the plant, when processed, is edible. In certain embodiments the plant comprising the food or food ingredient is a tomato. In certain embodiments the plant comprising the food or food ingredient is selected from the group consisting of tomatoes, carrots, potatoes, apples, pears, plums, peaches, oranges, kiwis, papayas, pineapples, guava, lilikoi, starfruit, lychee, mango, grape, pomegranate, mustard greens, kale, chard, lettuce, soybean, rice, corn and other grains (e.g., wheat, rice, barley, bulgur, faro, kamut, kaniwa, millet, oats, quinoa, rice, rye, sorghum, spelt, teff, triticale, and the like), berries such as strawberries, blueberries, blackberries, goji berries, and raspberries, banana, rice, turnip, maize, grape, fig, plum, potato, safflower seeds, nuts (e.g., almond, walnut, pecan, peanut, cashew, macademia, hazelnut, etc.), legumes (e.g., alfalfa, clover, peas, beans (including black beans), lentils, lupins, mesquite, carob, soybeans, and the like). In certain embodiments the plant comprising the food or food ingredient is selected from the group consisting of tomato, rice, tobacco, turnip, maize, corn, soybean, grape, fig, plum, potato, carrot, pomegranate, mustard greens, chard, kale, lettuce, broccoli, and safflower seeds. In certain embodiments the portion of a transgenic plant comprising the food or food ingredient comprises one or more plant parts selected from the group consisting of a fruit, a seed, a nut, a leafy green, a tuber, a stem, a flower, and a root. In certain embodiments the peptide expressed in the plant is expressed under the control of a CaMV promoter or an E8 promoter, or a hybrid E4/E8 promoter. In certain embodiments at least a portion of the plant comprising the food or food ingredient is dried and/or lyophilized, and/or ground. In certain embodiments all of the plant comprising the food or food ingredient is dried and/or lyophilized, and/or ground. In certain embodiments the food or food ingredient is a component of a diet optimized for a mammal for the treatment and/or prophylaxis of atherosclerosis. In certain embodiments the food or food ingredient is a component of a diet optimized for a mammal for the treatment and/or prophylaxis of a pathology characterized by an inflammatory response. In certain embodiments the food or food ingredient is a component of a diet optimized for a mammal for the treatment and/or prophylaxis of a cancer. In certain embodiments the diet provides the nutritional requirements of a human. In certain embodiments the diet is a prepared fixed diet for a human. In certain embodiments the diet provides the nutritional requirements of a non-human mammal. In certain embodiments the diet provides the nutritional requirements of a non-human mammal selected from the group consisting of a canine, a feline, an equine, a porcine, a bovine, and a lagomorph. In certain embodiments the diet is a prepared fixed diet for the non-human mammal. In certain embodiments the food or food ingredient is formulated as a nutritional supplement. In certain embodiments the food or food ingredient comprises a dried fruit. In certain embodiments the food or food ingredient comprises a dried or lyophilized and powdered fruit. In certain embodiments the food or food ingredient comprises a tomato. In certain embodiments the food or food ingredient comprises a fruit selected from the group consisting of an apple, a pear, a peach, and a plum.

In certain embodiments the constructs described herein expressly exclude ApoA-IMilano. In certain embodiments the constructs described herein expressly exclude safflower seeds.

DEFINITIONS

The HDL inflammatory index refers to the ability of HDL to inhibit LDL-induced monocyte chemotactic activity. In certain embodiments the HDL-inflammatory index is calculated by comparing the monocyte chemotactic activity generated by a standard control LDL in the absence and presence of the test HDL. In the absence of the test HDL the monocyte chemotactic activity is normalized to 1.0. If the monocyte chemotactic activity increases upon addition of the test HDL the HDL-inflammatory index is >1.0 and the test HDL is classified as pro-inflammatory. If the monocyte chemotactic activity decreases upon addition of the test HDL the HDL-inflammatory index is <1.0 and the HDL is classified as anti-inflammatory. A reduction in HDL inflammatory index is considered an improvement in HDL inflammatory index.

The terms “polypeptide”, “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers, however a recombinantly expressed peptide typically consists of amino acids that are all found in the host organism (e.g., naturally occurring amino acids).

The term “an amphipathic helical peptide” refers to a peptide comprising at least one amphipathic helix (amphipathic helical domain). Certain amphipathic helical peptides contemplated herein can comprise two or more (e.g., 3, 4, 5, etc.) amphipathic helices.

The term “class A amphipathic helix” refers to a protein structure that forms an α-helix producing a segregation of a polar and nonpolar faces with the positively charged residues residing at the polar-nonpolar interface and the negatively charged residues residing at the center of the polar face (see, e.g., Segrest et al. (1990) Proteins: Structure, Function, and Genetics 8: 103-117).

“Apolipoprotein J” (apo J) is known by a variety of names including clusterin, TRPM2, GP80, and SP 40 (see, e.g., Fritz (1995) Pp 112 In: Clusterin: Role in Vertebrate Development, Function, and Adaptation (Harmony JAK Ed.), R. G. Landes, Georgetown, Tex.). It was first described as a heterodimeric glycoprotein and a component of the secreted proteins of cultured rat Sertoli cells (see, e.g., Kissinger et al. (1982) Biol. Reprod.; 27: 233240). The translated product is a single-chain precursor protein that undergoes intracellular cleavage into a disulfide-linked 34 kDa a subunit and a 47 kDa β subunit (see, e.g., Collard and Griswold (1987) Biochem., 26: 3297-3303). It has been associated with cellular injury, lipid transport, apoptosis and it may be involved in clearance of cellular debris caused by cell injury or death. Clusterin has been shown to bind to a variety of molecules with high affinity including lipids, peptides, and proteins and the hydrophobic probe 1-anilino-8-naphthalenesulfonate (Bailey et al. (2001) Biochem., 40: 11828-11840).

The class G amphipathic helix is found in globular proteins, and thus, the name class G. The feature of this class of amphipathic helix is that it possesses a random distribution of positively charged and negatively charged residues on the polar face with a narrow nonpolar face. Because of the narrow nonpolar face this class does not readily associate with phospholipid (see, e.g., Segrest et al. (1990) Proteins: Structure, Function, and Genetics. 8: 103-117; Erratum (1991) Proteins: Structure, Function and Genetics, 9: 79). Several exchangeable apolipoproteins possess similar but not identical characteristics to the G amphipathic helix. Similar to the class G amphipathic helix, this other class possesses a random distribution of positively and negatively charged residues on the polar face. However, in contrast to the class G amphipathic helix which has a narrow nonpolar face, this class has a wide nonpolar face that allows this class to readily bind phospholipid and the class is termed G* to differentiate it from the G class of amphipathic helix (see, e.g., Segrest et al. (1992) J. Lipid Res., 33: 141-166; Anantharamaiah et al. (1993) Pp. 109-142 In: The Amphipathic Helix, Epand, R. M. Ed CRC Press, Boca Raton, Fla.). Computer programs to identify and classify amphipathic helical domains have been described by Jones et al. (1992) J. Lipid Res. 33: 287-296) and include, but are not limited to the helical wheel program (WHEEL or WHEEL/SNORKEL), helical net program (HELNET, HELNET/SNORKEL, HELNET/Angle), program for addition of helical wheels (COMBO or COMBO/SNORKEL), program for addition of helical nets (COMNET, COMNET/SNORKEL, COMBO/SELECT, COMBO/NET), consensus wheel program (CONSENSUS, CONSENSUS/SNORKEL), and the like.

The term “treat” when used with reference to treating, e.g. a pathology or disease refers to the mitigation and/or elimination of one or more symptoms of that pathology or disease, and/or a reduction in the rate of onset or severity of one or more symptoms of that pathology or disease, and/or the prevention of that pathology or disease.

The term “ameliorating” when used with respect to “ameliorating one or more symptoms of atherosclerosis” refers to a reduction, prevention, or elimination of one or more symptoms characteristic of atherosclerosis and/or associated pathologies. Such a reduction includes, but is not limited to a reduction or elimination of oxidized phospholipids, a reduction in atherosclerotic plaque formation and rupture, a reduction in clinical events such as heart attack, angina, or stroke, a decrease in hypertension, a decrease in inflammatory protein biosynthesis, reduction in plasma cholesterol, and the like.

A “transgenic plant” is a plant that expresses in at least some of the cells of the plant a heterologous peptide. In certain embodiments the heterologous peptide consists of, or comprises the amino acid sequence of one or more apolipoprotein(s) or apolipoprotein mimetics, e.g., an apoA-I mimetic, and/or a G* peptide, and/or an apoE peptide, e.g., as described herein. In certain embodiments the transgenic plant is a plant that at least a portion of which is edible by a human and/or by a non-human mammal.

The term “biological activity” when used with respect to an apolipoprotein peptide, an apolipoprotein peptide mimetic, a peptide/protein comprising one or more apolipoprotein and/or apolipoprotein mimetic domains indicates that the peptide, when fed to a mammal lowers plasma SAA levels, and/or increases paraoxonase activity, and/or reduces levels of lysophosphatidic acid, and/or reduces levels of metabolites of arachidonic and linoleic acids. A transgenic plant or portion thereof having biological activity indicates that the plant or portion thereof when fed to a mammal lowers plasma SAA levels, and/or increases paraoxonase activity, and/or reduces levels of lysophosphatidic acid, and/or reduces levels of metabolites of arachidonic and linoleic acids.

The term, “recombinant nucleic acid” as used herein refers to nucleic acid, originally formed in vitro, in general, in a form not normally found in nature.

A “heterologous” DNA coding sequence is a structural coding sequence that is not native to the plant being transformed, or a coding sequence that has been engineered for improved characteristics of its protein product. Heterologous, with respect to the promoter, refers to a coding sequence that does not exist in nature in the same gene with the promoter to which it is currently attached.

A “heterologous promoter” is a promoter manipulated so that it controls the transcription of a nucleic acid that is not a nucleic acid typically under regulation of that promoter.

A “regulatable promoter” is any promoter whose activity is affected by a cis or trans acting factor (e.g., an ethylene-inducible promoter such as the tomato E8 promoter).

A “constitutive promoter” is any promoter that directs RNA transcription in many or all tissues of a plant transformant at most times.

A “tissue-specific promoter” is any promoter that directs RNA transcription at higher levels in particular types of cells and tissues (e.g., a fruit specific promoter).

By “promoter” or “promoter segment” (e.g., a tomato E8 promoter or E4 promoter or hybrid E4/E8 promoter) is meant a sequence of DNA that functions alone as a promoter or as a component of a promoter herein to direct transcription of a downstream gene, and can include promoter or promoter segments derived by means of ligation with operator regions, random or controlled mutagenesis, addition or duplication of enhancer sequences, addition or modification with synthetic linkers, and the like.

By an E8 or an E4 gene promoter is meant a promoter obtained from an E8 or E4 gene considered to share sequence identity with the tomato E8 or E4 gene sequences (e.g., as described in U.S. Pat. No. 6,118,049), or a particular region or regions thereof, or from a gene having at least about 70%, preferably at least about 80%, more preferably at least about 85%, even more preferably at least about 90% sequence identify, or at least about 95% sequence identity, or at least about 98% sequence identity over a length of polynucleotide sequence corresponding to the tomato E8 or tomato E4 gene sequences.

The term “conservative substitution” is used in reference to proteins or peptides to reflect amino acid substitutions that do not substantially alter the activity (e.g., ability to reduce SAA, and/or ability to increase paroxonase in a mammal. Typically conservative amino acid substitutions involve substitution one amino acid for another amino acid with similar chemical properties (e.g. charge or hydrophobicity). The following six groups each contain amino acids that are typical conservative substitutions for one another: 1) Alanine (A), Serine (S), Threonine (T); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).

A “macro-lipid component of the diet” refers to a lipid component of a mammal's diet that is typically present in milligram amounts per gram of diet. In a Western diet such macro-lipid components typically include, but are not limited to phospholipids such as phosphatidylcholine and sterols such as cholesterol. Even lysophosphatidylcholine is likely to be present in milligram quantities after phosphatidylcholine is acted upon in the Duodenum by PLA2 and hence, in various embodiments, can be regarded as a macro-lipid component.

A “micro-lipid component of the diet” refers to a lipid component of a mammal's diet that is typically present in microgram (or lower) amounts per gram of diet. Illustrative microlipid components typically include, but are not limited to lysophosphatidic acid, phosphatidic acid, and the like.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the activity of various peptides in inhibition of monocyte chemotactic activity, a measure of peptide activity. This figure has been adapted from FIG. 5 in Datta et al. (2001) J. Lipid Res. 42: 1096-1104, and it demonstrates the equivalent efficacy of the peptides 4F, 5F and 6F in an in vitro assay.

FIG. 2 shows helical wheel diagrams of the α-helical peptides 4F (SEQ ID NO:15), 5F (SEQ ID NO:3), and 6F (SEQ ID NO:17).

FIG. 3 shows that dietary L-6F (without blocking groups) reduces SAA in ApoE deficient mice. Groups of female apoE null mice (n=20) 16 to 18 months of age, were maintained on rodent chow that did not contain peptide (Chow) or contained 1.2 mg L-6F without blocked end groups per 4 grams of chow (Chow+L-6F) providing a dose ˜60 mg/kg/day of L-6F without blocked end groups. The mice in both groups consumed approximately 4 grams of the chow per day. Thus, L-6F only constituted ˜0.03% of the diet by weight. On day 10 blood was removed, plasma was separated and serum amyloid A (SAA) was determined by ELISA.

FIG. 4 illustrates plant expression of the 6F peptide. Basically a nucleic acid (SEQ ID NO:4) is produced that encodes the 6F peptide (SEQ ID NO:17) attached to a signal peptide (SEQ ID NO:2). The nucleic acid is codon optimized for expression in a tomato plant.

FIG. 5. Agrobacterium tumefaciens LBA4404 was transformed with the vector shown in FIG. 15 with or without the sequence for 6F shown in FIG. 4. Plasmid p6F was electroporated into Agrobacterium tumefaciens strain LBA4404, and four colonies harboring the binary vector were sequence verified (UCLA GeneSeq Core) and further used for plant transformation.

FIG. 6 shows NPT II which confers resistance to kanamycin and which was included in the vector described in FIG. 15 and was expressed in some of the transformed plants (+) but not all (−).

FIG. 7 shows selection and analysis of transgenic plants. The top panel shows pictures of example plants being selected in kanamycin. The bottom panel shows examples of PCR positive plants from the 33 positive plants listed at the bottom of the bottom panel. Approximately 120 plants were ultimately tested.

FIG. 8 shows that the transgenic expression of 6F dramatically increases with the oxidation associated with ripening (i.e. as the green tomatoes turn red). SDS gels were run after loading 2 μg of synthetic L-6F without blocking groups, or 100 μg of protein extract from a control wild type tomato (Wt Tomato) or 100 μg of protein extract from transgenic 17A tomatoes that were harvested Green (G) or Red (R). The arrow points to the area of the gel where the L-6F peptide ran. The circles indicate the bands in each lane containing either the authentic synthetic L-6F peptide (first lane on the left at the bottom of the gel) or the putative 6F peptide which was only seen in the protein extracts of the ripened red (R) tomatoes.

FIG. 9 shows lyophilized tomatoes from the 6F transgenic line 17a-4 and the control wild-type tomatoes.

FIG. 10 shows different portions of the lyophilized tomatoes shown in FIG. 9.

FIG. 11. Five grams (5 gr) of lyophilized material was thoroughly mixed with 14 grams (14 gr) of powdered Western Diet to give the material shown in the top panel. The scale on the bottom indicates the total weight was 19 grams.

FIG. 12. The lyophilized material shown in FIG. 11 was mixed into a much larger quantity of powdered Western Diet which is shown in the mixing bowl. After mixing, the diet contained 2.2% of lyophilized ripened tomatoes. As shown in FIG. 13 below there was no difference in the appearance of the diet prepared from wild-type control (WT) or transgenic 6F tomatoes (17a-4).

FIG. 13 shows the appearance of Western Diet containing lyophilized material from ripened wild-type or 6F transgenic tomatoes.

FIG. 14. Ripened lyophilized tomatoes expressing 6F peptide (Transgenic Tomato, 17A) significantly decreased serum amyloid A (SAA) levels in LDLR null mice on a Western Diet. Sixteen grams of compacted Western Diet containing no lyophilized tomatoes (n=20), or containing lyophilized control (Wild Type) tomatoes (n=8), or containing lyophilized transgenic 6F tomatoes from line 17A (n=8) were provided for each cage of 4 female LDLR null mice (10 weeks of age) each night for 2 weeks. The lyophilized tomato added to the Western Diet amounted to 2.2% of the total diet by weight for both the control and transgenic 6F tomatoes. The mice in all cages ate all of the diet each night. The mice receiving the transgenic 6F tomatoes received 800 μg of 6F per mouse per day (40 mg/kg/mouse/day) as determined by LC-ESI-MS/MS analysis. After two weeks the mice were bled and plasma serum amyloid A (SAA) levels were determined by ELISA.

FIG. 15 provides a schematic diagram of the full length pBI121-p6F cassette. The top panel depicts the pBI121 vector, which is referred to in the examples as the empty vector (EV). The bottom panel shows the vector for expressing the 6F peptide in which the GUS gene has been replaced at the XbaI/SacI site by the plant-derived signal peptide (SP) and the gene encoding 6F under the CaMV35S promoter and nopaline synthase terminator (NOS term) as described in the Example 3.

FIGS. 16A-16C show that the 6F peptide synthesized from all L-amino acids without end blocking groups when fed to apoE−/− mice significantly reduced plasma serum amyloid A (SAA) levels and decreased the percent of the aorta with atherosclerotic lesions. FIG. 16A: Groups of female apoE−/− mice (n=20) 16-18 months of age were maintained on rodent chow that did not contain peptide (Chow) or contained 1.2 mg of the 6F peptide without ending blocking groups per 4 grams of chow (Chow+L-6F) providing a dose of ˜60 mg/kg/day peptide. The mice in both groups consumed approximately 4 grams of the chow per mouse per day. The peptide constituted ˜0.03% of the diet by weight. After 10 days the mice were bled and SAA levels were determined by ELISA as described in the Materials and Methods in Example 3. FIG. 16B: Groups of female apoE−/− mice 4-6 months of age were fed a western diet (WD) that did not contain or which contained L-6F without end blocking groups (WD+6F) at a dose of 60 mg/kg/day of peptide. After 6 weeks the mice were bled and plasma SAA levels were determined by ELISA as described in Materials and Methods in Example 3. FIG. 16C: Groups of female apoE−/− mice 6-8 months of age (n=30 per group) were fed WD that did not contain peptide (No Peptide) or contained L-6F without end blocking groups (L-6F) at a dose of 60 mg/kg/day of peptide. After 7 weeks the percent of the aorta with atherosclerotic lesions was determined by en face analysis as described in Materials and Methods in Example 3.

FIG. 17 shows that SDS PAGE gels from most (but not all) tomato lines that were positive for the 6F gene contained a band that migrated with authentic chemically synthesized 6F without end blocking groups. Proteins were extracted from the tomatoes derived from plant lines shown in the Figure. All except wild-type (WT) were PCR positive for the 6F gene. 100 μg of protein from each tomato line was added to each lane and run on SDS PAGE gels using the protocol described in the Materials and Methods in Example 3. Line 95 was positive for the 6F gene but did not express the peptide suggesting that the gene was inserted into the genome in a location that did not allow expression at the protein level.

FIGS. 18A and 18B show that regions of SDS PAGE gels containing a band migrating with authentic 6F demonstrated the LC-ESI-MS signature of 6F (FIG. 18A) while the same region on gels without a band did not (FIG. 18B). Following HPLC and SDS PAGE, the region on each lane corresponding to 6F in the inset was excised and in-gel trypsin digested and subjected to LCESI-MS analysis using an LCQAdvantage Max ion trap mass spectrometer (ThermoElectron, Inc.) equipped with electrospray ionization source as described in Materials and Methods in Example 3. FIG. 18A demonstrates that the bands migrating similarly to authentic 6F (arrow in the inset) exhibited the ESI-MS signature for 6F while the same region from those lanes without bands in this region of the gel (arrow in the inset) did not (FIG. 18B). In the inset EV=an empty vector tomato line (the control tomato); 1A=a tomato line transgenic for 6F; M=molecular markers.

FIGS. 19A-19K show that feeding transgenic 6F tomatoes to LDLR−/− mice for two weeks improved a number of plasma biomarkers. Female LDLR−/− mice 10 weeks of age were housed four in each cage and each cage was given each night compacted WD containing no lyophilized tomatoes (n=20), or compacted WD containing 2.2% by weight of ground lyophilized wild-type (WT) tomato (n=8), or compacted WD containing 2.2% by weight of ground lyophilized transgenic 6F (Tg6F) tomato. The mice in all cages ate all of the diet each night. The mice receiving the Tg6F tomatoes received 800 μg of 6F per mouse per day (40 mg/kg/day). After two weeks the mice were bled and the following plasma biomarkers were measured: FIG. 19A: Serum Amyloid A (SAA); FIG. 19B: paraoxonase-1 activity (PON); FIG. 19C: lysophosphatidic acid 16:0 (LPA 16:0); FIG. 19D: lysophosphatidic acid 18:0 (LPA 18:0); FIG. 19E: lysophosphatidic acid 18:1 (LPA 18:1); FIG. 19F: lysophosphatidic acid 20:4 (LPA 20:4); FIG. 19G: free 5-HETE levels; FIG. 19H: free 15-HETE levels; FIG. 19I: Free PGD2 levels; FIG. 19J: Free PGE2 levels; FIG. 19K: HDL-cholesterol. Measurements were made as described in Materials and Methods in Example 3 (LPA levels were determined by LC-ESI-MS/MS).

FIG. 20 shows that lycopene content of transgenic 6F tomatoes is slightly but significantly less than that of wild-type or empty vector tomatoes. The lycopene content of ripened tomatoes that were wild-type (WT), transgenic for 6F (1A; 17A), or empty vector (108; 110) was determined as described in Materials and Methods in Example 3.

FIGS. 21A-21I show that feeding transgenic 6F tomatoes to LDLR−/− mice for 13 weeks improved a number of plasma biomarkers. Female LDLR−/− mice age 7-9 months of age were housed four in each cage and each cage was given each night compacted WD containing no lyophilized tomatoes (n=28), or compacted WD containing 2.2% by weight of ground lyophilized empty vector (EV) tomato (from line 110) (n=20), or compacted WD containing 2.2% by weight of ground lyophilized transgenic 6F (Tg6F) tomato (from line 17A) to provide 900 μg of 6F per mouse per day (45 mg/kg/day). The mice in all cages ate all of the diet each night. After 13 weeks the mice were bled and the following measurements were made as described in Materials and Methods in Example 3. FIG. 21A: Serum Amyloid A (SAA); FIG. 21B: Total Cholesterol; FIG. 21C: Triglycerides; FIG. 21D: Paraoxonase-1 activity (PON); FIG. 21E: HDL-cholesterol; FIG. 21F: Lysophosphatidic acid (LPA) 18:1; FIG. 21G. LPA 18:2; FIG. 21H. LPA 20:4; FIG. 21I: Body Weight.

FIGS. 22A-22E show that feeding empty vector (EV) and transgenic 6F tomatoes decreased some biomarkers and increased others. The plasma from the mice described in FIG. 21 was analyzed as described in Materials and Methods for FIG. 22A: Free arachidonic acid; FIG. 22B: Free 5-HETE; FIG. 22C: Free 15-HETE; FIG. 22D: Free DHA; FIG. 22E: Free EPA.

FIG. 23 shows that feeding transgenic 6F tomatoes but not EV tomatoes significantly decreased the percent of aorta with atherosclerotic lesions. The aorta from the mice described in FIG. 21 were harvested and analyzed to determine the percent of the aorta with atherosclerotic lesions as described in Materials and Methods in Example 3. The aorta from one of the mice fed transgenic 6F was severely damaged during the harvest and was not processed. The aortas from all other mice were successfully harvested, processed and analyzed.

FIGS. 24A-24E show that the percent of aorta with atherosclerotic lesions in mice receiving WD and transgenic 6F tomatoes was positively and significantly correlated with plasma total cholesterol, and triglycerides and was significantly and inversely correlated with PON activity and HDL-cholesterol. There was no correlation with body weight. Linear regression of data from individual mice described in FIGS. 21-23 that received WD and transgenic 6F tomatoes is shown for the percent aorta with atherosclerotic lesions and FIG. 24A: Plasma Total Cholesterol; FIG. 24B: Plasma Triglycerides; FIG. 24C: Plasma HDL cholesterol levels; FIG. 24D: Plasma PON activity; FIG. 24E: Body Weight.

FIGS. 25A-25F show that addition of transgenic 6F tomatoes (Tg6F) to the Western Diet (WD) significantly reduced the levels of lysophosphatidic acid (LPA) in the small intestine, while addition of the empty vector (EV) tomatoes did not. The levels of LPA 18:2 and LPA 20:4 were determined by LC-ESI-MS/MS in a random subset of the mice described in FIGS. 21-23 as described in Materials and Methods in Example 3. FIG. 25A: LPA 18:2 in the duodenum. FIG. 25B: LPA 20:4 in the duodenum. FIG. 25C: LPA 18:2 in the jejunum. FIG. 25D: LPA 20:4 in the jejunum. FIG. 25E: LPA 18:2 in the ileum. FIG. 25F: LPA 20:4 in the ileum.

FIGS. 26A-26F show that the levels of LPA in the small intestine significantly correlated with the percent aorta with atherosclerotic lesions. The levels of LPA in the small intestine of the mice described in FIGS. 25A-25F were plotted against the percent aorta with lesions for each mouse, and linear regression was performed as described in Materials and Methods in Example 3. FIG. 26A: LPA 18:2 duodenum. FIG. 26B: LPA 20:4 duodenum. FIG. 26C: LPA 18:2 jejunum. FIG. 26D: LPA 20:4 jejunum. FIG. 26E: LPA 18:2 ileum. FIG. 26F: LPA 20:4 ileum.

FIG. 27. Compacted Western Diet (WD) containing no lyophilized tomatoes, or containing ground lyophilized control tomatoes or containing ground lyophilized transgenic 6F tomatoes were provided for each cage of 4 female LDLR−/− mice each night. The example shown is from mice receiving transgenic 6F tomato at 2.2% by weight of WD.

FIG. 28A. Female apoE−/− mice 6-7 months of age (n=19 per group) were placed on WD for one week. Subsequently, they were continued on WD and received no peptide or WD plus L-6F without end blocking groups at a dose of 60 mg/kg/day or they received the same dose of peptide, but which was first added to homogenized ripened tomato and then mixed into WD so that the homogenized tomato constituted 20% by weight of the diet. After one week the mice were bled and plasma SAA levels were determined as described in Materials and Methods in Example 3. FIG. 28B. Groups of female apoE−/− (ApoE Null) mice 12 months of age were fed WD containing 10% homogenized ripened tomato for 3 weeks without or with L-6F without end blocking groups at a dose of 60 mg/kg/day (n=14 per group). Female LDLR−/− (LDLR Null) mice 7-8 months of age were treated similarly (n=14). After 3 weeks the mice were bled and plasma lysophosphatidic acid levels were determined by ELISA as described in Materials and Methods in Example 3.

FIG. 29 shows an SDS gels from a control homozygous line and from two homozygous lines (1A and 17A) expressing 6F. Proteins were extracted from a control homozygous tomato line and two homozygous lines identified as expressing the 6F peptide (1A and 17A) and the proteins were subjected to SDS PAGE as described in Materials and Methods of Example 3. The lane containing authentic chemically synthesized 6F is not shown in the figure.

FIG. 30A: Female LDLR−/− mice 4-5 months of age were housed four in each cage and each cage was given each night compacted WD containing no lyophilized tomatoes (n=20), or compacted WD containing 2.2% by weight of ground lyophilized empty vector (EV) tomato (n=8), or compacted WD containing 2.2% by weight of ground lyophilized transgenic 6F (Tg6F) tomato. The mice in all cages ate all of the diet each night. The mice receiving the Tg6F tomatoes received 800 μg of 6F per mouse per day (40 mg/kg/day). After two weeks the mice were bled and plasma Serum Amyloid A (SAA) was determined by ELISA as described in Materials and Methods of Example 3. FIG. 30B: Paraoxonase-1 (PON) activity was determined in the plasma of the mice described in FIG. 30A as described in Materials and Methods of Example 3. FIG. 30C: 5-HETE levels were determined in the plasma of the mice described in FIG. 30A as described in Materials and Methods of Example 3. FIG. 30D: 15-HETE levels were determined in the plasma of the mice described in FIG. 30A as described in Materials and Methods of Example 3. FIG. 30E: PGD2 levels were determined in the plasma of the mice described in FIG. 30A as described in Materials and Methods of Example 3. FIG. 30F: PGE2 levels were determined in the plasma of the mice described in FIG. 30A as described in Materials and Methods of Example 3. FIG. 30G: HDL-cholesterol levels were determined in the plasma of the mice described in FIG. 30A as described in Materials and Methods of Example 3.

FIG. 31A: Linear regression of data from individual mice described in FIGS. 21-23 is shown for the percent aorta with atherosclerotic lesions and plasma levels of lysophosphatidic acid (LPA) 16:0. FIG. 31B: Linear regression of data from individual mice described in FIGS. 21-23 is shown for the percent aorta with atherosclerotic lesions and plasma levels of LPA 18:0. FIG. 31C: Linear regression of data from individual mice described in FIGS. 21-23 is shown for the percent aorta with atherosclerotic lesions and plasma levels of LPA 18:1. FIG. 31D: Linear regression of data from individual mice described in FIGS. 21-23 is shown for the percent aorta with atherosclerotic lesions and plasma levels of LPA 18:2. FIG. 31E: Linear regression of data from individual mice described in FIGS. 21-23 is shown for the percent aorta with atherosclerotic lesions and plasma levels of LPA 20:4.

FIG. 32A: The cholesterol content of the duodenum was measured in a random subset of the mice in FIGS. 21-23 as described in Materials and Methods of Example 3. FIG. 32B: The cholesterol content of the jejunum was measured in the mice described in FIG. 32A as described in Materials and Methods of Example 3. FIG. 32C: The cholesterol content of the Ileum was measured in the mice shown in FIG. 32A as described in Materials and Methods of Example 3. FIG. 32D: The duodenum cholesterol content of the mice described in FIG. 32A was plotted against the percent aorta with lesions for each mouse and linear regression was performed as described in Materials and Methods of Example 3. FIG. 32E: The jejunum cholesterol content of the mice described in FIG. 32B was plotted against the percent aorta with lesions for each mouse and linear regression was performed as described in Materials and Methods of Example 3. FIG. 32F: The ileum cholesterol content of the mice described in FIG. 32C was plotted against the percent aorta with lesions for each mouse and linear regression was performed as described in Materials and Methods of Example 3.

FIG. 33 shows that intact 6F peptide is identified in the small intestine but not in the plasma. Female LDLR−/− mice 8-9 months of age (n=6) were fasted overnight and fed WD with transgenic 6F lyophilized tomato powder added to WD to provide 900 μg of 6F in 2 grams of diet. Over a period of 30-90 minutes, each mouse ate all of the 2 grams of diet. Approximately 2 hours after finishing the food the mice were bled and the small intestine was obtained (including contents), homogenized in acetonitrile: water (1:1), chromatographed by HPLC and subjected to SDS PAGE as described in Materials and Methods of Example 3. Plasma was lyophilized and resuspended in acetonitrile: water (1:1), chromatographed by HPLC and subjected to SDS PAGE as described in Materials and Methods of Example 3. 12.5, 25 and 37.5 μg, of chemically synthesized 6F without end blocking groups were applied to lanes 1, 2 and 3, respectively. Plasma following HPLC from 4 of the 6 mice was applied to lanes 5, 6, 7 and 8. Small intestine following HPLC from the four mice shown in lanes 5, 6, 7 and 8 was applied to lanes 10, 11, 12 and 13, respectively. The far right lane contains molecular weight markers. The lanes were scanned for quantification as described in Materials and Methods of Example 3.

FIG. 34 illustrates the structure of the plasmid pBI121 vector.

FIG. 35 shows the nucleic acid sequence of the E8 promoter and 5′UTR partial sequence (2191 bp DNA, SEQ ID NO:5) from Lycopersicon esculentum ethylene-responsive fruit ripening gene.

FIG. 36 shows a SDS PAGE gel illustrating isolation of the pBI121 vector back bone after digestion at HindIII/BamHI.

FIG. 37 illustrates PCR amplification of the E8 promoter fragment.

FIG. 38 illustrates PCR confirmation of +ve colonies.

FIG. 39 shows the results of a HinD III/BamH I digestion.

DETAILED DESCRIPTION

It was a surprising discovery that the small intestine is an important site of action for various apoA-I mimetic peptides such as 4F, 6F, and the like. It was also determined that high dosages of such peptides are desirable to achieve optimum efficacy. However, because these peptides are typically administered daily and the daily cost of producing them would cost thousands of dollars per day per person, prior to the discoveries described herein, these peptides are not likely to find therapeutic use.

It was a surprising discovery that it was possible to produce stable transgenic plant lines that express therapeutic peptides (e.g., apolipoprotein peptides and apolipoprotein mimetic peptides), especially ApoA-I mimetic peptides, and related peptides described herein, that have desired biological activities (e.g., a reduction in SAA, an increase in plasma paraoxonase activity, and the like). It was also a surprising discovery that successfully transfected plants (or portions thereof) can simply be incorporated into the diet of the subject to be “treated” and the expressed peptide(s), when consumed as a food additive, show therapeutic and/or prophylactic activity in the subject (e.g., as evidenced using appropriate biomarkers, e.g., decrease in SAA levels, and/or increase in plasma paraoxonase activity, etc.). It is believed that such a discovery is contrary to the prevailing dogma that therapeutic peptides expressed in plants must be purified (e.g., isolated from the plant tissue) to be utilized as a relevant therapeutic and/or prophylactic agent.

In particular, it was demonstrated that mice fed lyophilized tissue of a transgenic tomato expressing the 6F peptide showed a decrease in SAA levels and an increases in plasma paraoxonase activity. Also, it was demonstrated that about 2 hours after the mice finished eating a high-fat high-cholesterol Western diet supplemented with the 6F expressing transgenic plant, intact 6F peptide was detected in the small intestine of the mice, but was not found in their blood. This strongly suggests that the peptide acts in the small intestine and is then degraded before it is absorbed as component amino acids. This indicates that the peptides act in the intestine and should not have direct effects in organs other than the intestine and suggests that administration of the transgenic plants described herein (or parts/tissues thereof) has a high degree of safety. It was also observed that the tissue content of lysophosphatidic acid (18:2 and 20:4) significantly decreased in the small intestine after feeding the transgenic 6F tomatoes but not after feeding control tomatoes. The tissue levels of lysophosphatidic acid in the small intestine (but not the cholesterol levels in the small intestine) significantly correlated with the percent of aorta with atherosclerotic lesions suggesting that a major beneficial effect of the transgenic 6F tomatoes is mediated by decreasing the levels of lysophosphatidic acid in the small intestine. Again it is a surprising discovery that consumption of the transgenic plant (or part/tissue(s) thereof) could produce such effects as the prevailing approach is to purify (e.g., isolate from the plant tissue) the desired peptide(s) to be utilized as a relevant therapeutic and/or prophylactic agents.

Accordingly, in various embodiments, transgenic plants are provided comprising cells that express a peptide that consists of or that comprises, one or more domains of comprising the amino acid sequence of an apolipoprotein or apolipoprotein mimetic, e.g., an ApoA-I mimetic peptide and/or a G* peptide, and/or an apoE peptide, and/or any other therapeutic peptide described herein. In various embodiments the peptide is expressed in levels sufficient to decrease SAA levels in a mammal and/or to decrease the tissue content of lysophosphatidic acid (18:2 and 20:4) in the small intestine, when the plant or a portion/part thereof is fed to the mammal (e.g., to a mouse model of atherosclerosis), and/or to increase plasma paroxonase activity when the plant, or a portion thereof, is fed to the mammal. Illustrative transgenic plants include, but are not limited to transgenic tomatoes, transgenic carrot, transgenic potato, transgenic apple, transgenic pear, transgenic plum, transgenic peach, transgenic orange, transgenic kiwi, transgenic payaya, transgenic pineapple, transgenic guava, transgenic lilikoi, transgenic starfruit, transgenic lychee, transgenic mango, transgenic grape, transgenic pomegranate, transgenic mustard greens, transgenic kale, transgenic chard, transgenic lettuce, transgenic soybean, transgenic rice, transgenic corn and other grains (e.g., wheat, rice, barley, bulgur, faro, kamut, kaniwa, millet, oats, quinoa, rice, rye, sorghum, spelt, teff, triticale, and the like), transgenic berries such as strawberries, blueberries, blackberries, goji berries, and raspberries, transgenic banana, transgenic rice, transgenic turnip, transgenic maize, transgenic grape, transgenic fig, transgenic plum, transgenic potato, transgenic safflower seeds, transgenic nuts (e.g., almond, walnut, pecan, peanut, cashew, macademia, hazelnut, etc.), transgenic legumes (e.g., alfalfa, clover, peas, beans (including black beans), lentils, lupins, mesquite, carob, soybeans, and the like), and transgenic tobacco.

In certain embodiments the peptide that is expressed comprises a single apolipoprotein sequence or apolipoprotein mimetic sequence, e.g., an ApoA-I mimetic peptide amino acid sequence (see, e.g., Table 1), or a single G* peptide amino acid sequence (see, e.g., Table 2), and/or a single ApoE peptide amino acid sequence (see, e.g., Table 3), or a single other therapeutic peptide described herein. In various embodiments the peptide comprises two or more domains each of which comprises or consists of an apolipoprotein or apolipoprotein mimetic sequence, e.g., an ApoA-I mimetic peptide amino acid sequence (see, e.g., Table 1), and/or a G* peptide amino acid sequence (see, e.g., Table 2), and/or an apoE peptide amino acid sequence (see, e.g., Table 3), and/or another therapeutic peptide described herein. In certain embodiments the peptide that is expressed comprise at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at 10, at least 15, at least 20, at least 25, such domains. The domains can be the same of different or any combination of an ApoA-I mimetic peptide amino acid sequence (see, e.g., Table 1), and/or a G* peptide amino acid sequence (see, e.g., Table 2), and/or an apoE peptide amino acid sequence (see, e.g., Table 3), and/or another therapeutic peptide described herein. The various domains can be directly linked to each other or they can be separated by one or more amino acids. In certain embodiments the domains are separated by a single proline (P), or by two prolines (PP), or by three prolines (PPP), or by a single alanine (A) or by two alanines (AA), or by three alanines (AAA). In certain embodiments the domains are separated by a KVEPLRA (SEQ ID NO:6) linker region, GGG linker region, or by a GGGG (SEQ ID NO:7) linker region, or by a GGGGS (SEQ ID NO:8) linker region or a (GGGGS)2 (SEQ ID NO:9) linker region, or by a (GGGGS)3 (SEQ ID NO:10) linker region. In certain embodiments the domains are separated from each other by 1 amino acid, or by 2 amino acids, or by 3 amino acids, or by 4 amino acids, or by 5 amino acids, or by 6 amino acids, or by 7 amino acids, or by 8 amino acids, or by 9 amino acids, or by 10 or more amino acids, or by 15 or more amino acids, or by 20 or more amino acids, or by 25 or more amino acids, or by 30 or more amino acids, or by 35 or more amino acids, or by 40 or more amino acids, or by 45 or more amino acids, or by 55 or more amino acids. In certain embodiments the expressed peptide ranges in length from about 5 amino acids, or about 6 amino acids, or about 7 amino acids, or about 8 amino acids, or about 9 amino acids, or about 10 amino acids, or about 12 amino acids, up to a length of about 15 amino acids, or up to a length of about 18, or up to a length of about 20 amino acids, or up to a length of about 30 amino acids, or up to a length of about 36 amino acids, or up to a length of about 37 amino acids, or up to a length of about 40 amino acids, or up to a length of about 50 amino acids, or up to a length of about 60 amino acids, or up to a length of about 70 amino acids, or up to a length of about 80 amino acids, or up to a length of about 90 amino acids, or up to a length of about 100 amino acids, or up to a length of about 110 amino acids, or up to a length of about 120 amino acids, or up to a length of about 130 amino acids, or up to a length of about 140 amino acids, or up to a length of about 150 amino acids, or up to a length of about 160 amino acids, or up to a length of about 170 amino acids, or up to a length of about 180 amino acids, or up to a length of about 190 amino acids, or up to a length of about 200 amino acids. In any case the peptide composition is selected such that when fed to an animal (as an isolated peptide, or more preferably when the plant tissue is fed to a mammal) SAA levels in the mammal decrease and/or plasma paroxonase activity increases.

In addition to such transgenic plants, in various embodiments, parts of such plants are also provided. Illustrative parts of such transgenic plants include seeds of such plants, fruits of such plants, leaves of such plants, roots of such plants, cuttings of such plants. In addition cuttings, grafts, and clones of such plants are also contemplated. With respect to grafts, it is contemplated that a wild-type (or other plant) can be grafted with elements of a transgenic plant so that a portion of the plant comprises cells of the transgenic plant as described above.

In certain embodiments, a food and/or food product is provided that comprise at least a portion of a transgenic plant (as described herein) capable of being ingested for its taste and/or nutritional value. The transgenic plant expresses a peptide comprising an amino acid sequence comprises an ApoA-I mimetic peptide amino acid sequence, and/or a G* peptide amino acid sequence, and/or another therapeutic as described herein, and in certain embodiments, the food and/or food product comprises sufficient amount of the plant (and the plant comprises a sufficient amount of the active peptide) that ingestion of the food provides a desirable prophylactic and/or therapeutic activity (e.g., lowering of SAA, and/or increasing plasma paraoxonase activity, etc.) as described herein.

The transgenic plants described herein and/or peptides isolated therefrom, also find use in the manufacture of protein powders and other nutritional supplements. For example, in certain embodiments, a protein powder is contemplated where at least a portion of the protein powder comprises a peptide as described herein (e.g., an ApoA-I mimetic peptide, and/or a G* peptide, and/or an apoE peptide, and or another therapeutic peptide as described herein) and/or a transgenic plant or part thereof comprising such a peptide. Similarly, in certain embodiments, nutritional supplements are contemplated. Illustrative supplements include, but are not limited to vitamin supplements comprising a peptide as described herein (e.g., an ApoA-I mimetic peptide, and/or a G* peptide, and/or an apoE peptide, and/or another therapeutic peptide as described herein) and/or a transgenic plant or part thereof comprising such a peptide.

Also contemplated are “power bars” or other food products comprising a peptide as described herein (e.g., an ApoA-I mimetic peptide, and/or a G* peptide, and/or an apoE peptide, and/or another therapeutic peptide as described herein) and/or a transgenic plant or part (e.g., tissue) thereof comprising such a peptide. Such power bars include for example, dietary supplement bars, protein bars, energy bars, and other sports and/or nutrition bars.

In various embodiments methods of prophylaxis and/or treatment are also provided. Such methods include a method for the treatment or prophylaxis of a pathology characterized by an inflammatory response (e.g., atherosclerosis). The methods typically involve administering (or causing to be administered) to a mammal in need thereof an effective amount of at least a portion of a transgenic plant (e.g., transgenic plant tissue) as described herein, and/or a peptide derived from such a plant, and/or a food comprising at least a portion of such a plant; and/or a protein powder nutritional supplement, or power bar (or other food product) as described herein. Illustrative pathologies include, but are not limited to Alzheimer's disease, atherosclerosis, arthritis, cancer, diabetes, hepatic fibrosis, macular degeneration, kidney disease, metabolic syndrome, obesity, osteoporosis, scleroderma, systemic lupus erythematosus, transplant vasculopathy, and vascular dementia.

ApoA-I Mimetic Peptides, G* Peptides, apoE Peptides, and Other Therapeutic Peptides.

Activity of ApoA-I Mimetic Peptides.

To determine if the dose of peptide administered or the plasma level was more important, doses of 0.15, 0.45, 4.5, or 45 mg/kg/day of the synthetic peptide D-4F were administered orally or subcutaneously (SQ) to apolipoprotein (apo)E null mice. Plasma levels of peptide were ˜1,000-fold higher when administered SQ compared with orally. Regardless of the route of administration, doses of 4.5 and 45 mg/kg significantly reduced plasma serum amyloid A (SAA) levels and the HDL inflammatory index (P<0.0001), while doses of 0.15 or 0.45 mg/kg did not. A dose of 45 mg/kg/day administered to apoE null mice on a Western diet reduced aortic atherosclerosis by ˜50% (P<0.0009) whether administered orally or SQ and also significantly reduced plasma levels of SAA (P<0.002) and lysophosphatidic acid (P<0.0009).

The data showed that the dose of the apoA-I mimetic peptide 4F administered to apoE null (apoE−/−) mice determined efficacy, but plasma and hepatic levels of peptide did not (see, e.g., Navab et al. (2011) J. Lipid Res. 52: 1200-1210). Since efficacy was similar at the same doses, but plasma and hepatic levels were dramatically higher when the peptide was administered by subcutaneous injection (SQ) compared to oral administration, it was suspected that there might be a compartment outside of the liver or plasma where peptide concentration would be similar. It was found that the concentration of D-4F in the feces was the same regardless of whether the peptide was administered SQ or orally suggesting that the intestine maybe a major site of action for the peptide regardless of the route of administration (Id.).

The concentration of free 15-HETE and 13-HODE in the plasma of apoE−/− mice was significantly higher than that of wild-type mice (Imaizumi et al. (2010) Drug Metab. Lett. 4: 139-148). After administration of the 4F peptide, plasma levels of free oxidized fatty acids that bound with higher affinity to the mimetic peptide compared to apoA-I (e.g. 5-HETE, 15-HETE, 9-HODE, 13-HODE) significantly decreased but the levels of 20-HETE which bound with equal low affinity to apoA-I and 4F did not decrease (see, e.g., Imaizumi et al. supra.). These studies focused on the plasma levels of free oxidized fatty acids, which are only a small fraction (<10%) of the total plasma oxidized fatty acids. Interestingly, only the free oxidized fatty acid plasma levels decreased after the administration of the apoA-I mimetic peptide; esterified oxidized fatty acid levels were unchanged (Id.).

In other studies, apoE−/− mice were made diabetic, resulting in a significant increase in the hepatic content of free arachidonic acid and free 12-HETE, 15-HETE, 13-HODE, PGD2 and PGE2. This was associated with a significant increase in aortic atherosclerosis. Oral administration of D-4F significantly decreased the hepatic content of free arachidonic acid and free oxidized fatty acids derived from arachidonic and linoleic acids, and significantly decreased aortic atherosclerosis, without affecting other plasma lipid or lipoprotein levels (Morgantini et al. (2010) Diabetes. 59: 3223-3228).

It was also determined that HDL from type 2 diabetics contained significantly more free 5-HETE, 12-HETE, 15-HETE, 9-HODE and 13-HODE than HDL from healthy volunteers. The type 2 diabetic HDL was also pro-inflammatory in a cell-based assay and was abnormal in a cell-free assay. The HDL content of free 5-HETE, 12-HETE, 15-HETE, 9-HODE and 13-HODE significantly correlated with the values obtained in the cell-free assay (Morgantini et al. (2011) Diabetes; 60: 2617-2623).

To test the hypothesis that intestine is a major site of action for D-4F, LDLR−/− mice were fed a Western Diet (WD) and administered the peptide subcutaneously (SQ) or orally at 900 μg peptide/mouse/day (˜45 mg/kg/day). Plasma and liver D-4F levels were 298-fold and 96-fold higher, respectively, after SQ administration, while peptide levels in small intestine only varied by 1.66±0.33-fold. Levels of free metabolites of arachidonic and linoleic acids known to bind with high affinity to D-4F were significantly reduced in intestine, liver and hepatic bile to a similar degree whether administered SQ or orally. However, levels of 20-HETE, which is known to bind with low affinity, were unchanged. D-4F treatment reduced plasma SAA and triglyceride levels (p<0.03) and increased HDL-cholesterol (p<0.04) similarly after SQ or oral administration. Plasma levels of metabolites of arachidonic and linoleic acids significantly correlated with SAA levels (p<0.0001). Feeding 15-HETE in chow (without WD) significantly increased plasma SAA and triglyceride levels and decreased HDL-cholesterol and paroxonase activity (p<0.05), all of which were significantly ameliorated by SQ D-4F (p<0.05).

Without being bound to a particular theory, it is believed that the 4F peptide, 6F peptide, (and other ApoA-I mimetic peptides, and/or other peptides described herein) reduce levels of metabolites of arachidonic and linoleic acids in the small intestine and this is associated with decreased inflammation in LDLR−/− mice (Navab et al. (2012) J. Lipid Res. 53: 437-445). Moreover, as indicated above it is believed that such peptides find use in the treatment and/or prophylaxis of atherosclerosis. Such peptides are also believed to be useful in the treatment and/or prevention of cancer, and or in the treatment and/or prevention of a number of other pathologies, e.g., arthritis, atherosclerosis, cancer, diabetes, hepatic fibrosis, macular degeneration, kidney disease, obesity, osteoporosis, scleroderma, systemic lupus erythematosus, transplant vasculopathy, vascular dementia, and the like. Other pathologies include, but are not limited to any of the pathologies disclosed in PCT/US2006/014839 (WO/2006/118805) which is incorporated herein by reference for the pathologies and peptides disclosed therein. Illustrative conditions are shown in Table 5 below.

While the foregoing discussion focuses on ApoA-I mimetic peptides, it is noted that similar activities have been demonstrated for G* (ApoJ peptides), ApoE, peptides, combined ApoA-ApoE peptides, and the like (see, e.g., U.S. Pat. Nos. 6,930,085, and 7,638,494, PCT Publication PCT/US03/09988 (WO 2003/086326), U.S. Pat. No. 7,148,197, Publication PCT/US2004/026288 (WO/2005/016280), U.S. Pat. Nos. 6,933,279, 7,144,862, 7,166,578, 7,199,102, 7,531,514, 7,820,784, and 7,994,132, and PCT Publications PCT/US2001/026497 (WO 02/15923), PCT/US03/32442 (WO 2004/034977), and PCT/US2006/014839 (WO/2006/118805).

In view of the showing herein that transgenic plants that express the 6F peptide can provide a desirable (therapeutic or prophylactic) physiological effect, e.g., to decrease SAA levels and/or to increase plasma paroxonase activity when the plant, or a portion thereof, is fed to a mammal, and the demonstration of the similar activity profiles of other peptides described herein, it is believed that transgenic plants expressing a peptide consisting of or comprising one or more domains the amino acid sequence of which is an ApoA-I peptide (or mimetic), and/or an ApoJ peptide (or mimetic) and/or an ApoE peptide (or mimetic thereof), or combined ApoA-ApoE peptides and various concatamers thereof are contemplated.

ApoA-I Mimetics and Other Peptides for Expression in Plants.

As indicated above, having demonstrated that the 6F peptide when expressed in a plant (e.g., a tomato) shows significant biological activity when the plant or plant part is fed to a mammal without purification of the peptide away from the plant tissue, it is believed that a similar result can be obtained with any of a number of other therapeutic peptides or peptides/proteins comprising domains that are therapeutic peptide sequences and these results can be obtained by expression of the peptide(s) in other plants, e.g., as described herein.

In certain embodiments these peptides include, but are not limited to class A amphipathic helical peptides, class A amphipathic helical peptide mimetics of apoA-I having aromatic or aliphatic residues in the non-polar face, Apo-J (G* peptides), apoE peptides, and the like, and peptide mimetics, e.g., as described below.

ApoA-I Mimetic Peptides.

In certain embodiments the peptides expressed in a transgenic plant comprise or consist of apoA-I mimetic peptides. In certain embodiments such peptides include, but are not limited to, class A amphipathic helical peptides, e.g. as described in U.S. Pat. No. 6,664,230, and PCT Publications WO 02/15923 and WO 2004/034977, which are incorporated herein by reference for the peptide sequences disclosed therein. It was discovered that peptides comprising a class A amphipathic helix (“class A peptides”), in addition to being capable of mitigating one or more symptoms of atherosclerosis are also useful in the treatment of one or more of the other indications described herein.

Class A peptides are characterized by formation of an α-helix that produces a segregation of polar and non-polar residues thereby forming a polar and a nonpolar face with the positively charged residues residing at the polar-nonpolar interface and the negatively charged residues residing at the center of the polar face (see, e.g., Anantharamaiah (1986) Meth. Enzymol, 128: 626-668). It is noted that the fourth exon of apo A-I, when folded into 3.667 residues/turn produces a class A amphipathic helical structure.

Significant biological activity has been demonstrated for various apoA-I mimetic peptides including, but not limited to the peptides designated 4F, retro (reverse 4F), 5F, 6F, and the like. Various class A peptides inhibited lesion development in atherosclerosis-susceptible mice. In addition, the peptides show varying, but significant degrees of efficacy in mitigating one or more symptoms of the various pathologies described herein. A number of such peptides described in PCT patent application Nos: PCT/US2001/026497 (WO 02/15923), PCT/US03/32442 (WO 2004/034977), PCT/US2008/085409, and in Bielicki et al. (2010) J. Lipid Res. 51: 1496-1503, Zheng et al. (2011) Biochemistry 50: 4068-4076, Di Bartolo et al. (2011) Lipids in Health and Disease 10: 224. In certain embodiments the peptides expressed in the transgenic plants comprise one or more domains that have an amino acid sequence shown in Table 1 or the reverse sequence.

TABLE 1 Certain ApoA-I mimetic peptides that can be  expressed in transgenic plants, e.g., as described herein. The table includes various class A and/or class Y peptide analogs. For each sequence listed in this table, the  retro form of the sequence is also contem- plated. Thus, for example where the 6F pep- tide sequence DWLKAFYDKFFEKFKEFF (SEQ ID NO: 17) is shown, the retro amino acid sequence FFEKFKEFFKDYFAKLWD (SEQ ID NO: 25) is also  contemplated. SEQ Peptide ID Name Amino Acid Sequence NO. 18A DWLKAFYDKVAEKLKEAF  11 2F DWLKAFYDKVAEKLKEAF  12 3F DWFKAFYDKVAEKLKEAF  13 3F14 DWLKAFYDKVAEKFKEAF  14 4F DWFKAFYDKVAEKFKEAF  15 5F DWLKAFYDKVFEKFKEFF  16 6F DWLKAFYDKFFEKFKEFF  17 7F DWFKAFYDKFFEKFKEFF  18 DWLKAFYDKVAEKLKEFF  19 Rev18A FAEKLKEAVKDYFAKLWD  20 Rev2F FAEKLKEAVKDYFAKLWD  21 Ref3F FAEKLKEAVKDYFAKFWD  22 Rev4F FAEKFKEAVKDYFAKFWD  23 Rev5F FFEKFKEFVKDYFAKLWD  24 Rev6F FFEKFKEFFKDYFAKLWD  25 Rev7F FFEKFKEFFKDYFAKFWD  26 DWLKAFYDKVFEKFKEAF  27 DWLKAFYDKVFEKLKEFF  28 DWLKAFYDKVAEKFKEFF  29 DWLKAFYDKVFEKFKEFF  30 EWLKLFYEKVLEKFKEAF  31 EWLKAFYDKVAEKFKEAF  32 EWLKAFYDKVAEKLKEFF  33 EWLKAFYDKVFEKFKEAF  34 EWLKAFYDKVFEKLKEFF  35 EWLKAFYDKVAEKFKEFF  36 EWLKAFYDKVFEKFKEFF  37 AFYDKVAEKLKEAF  38 AFYDKVAEKFKEAF  39 AFYDKVAEKFKEAF  40 AFYDKFFEKFKEFF  41 AFYDKFFEKFKEFF  42 AFYDKVAEKFKEAF  43 AFYDKVAEKLKEFF  44 AFYDKVFEKFKEAF  45 AFYDKVFEKLKEFF  46 AFYDKVAEKFKEFF  47 KAFYDKVFEKFKEF  48 LFYEKVLEKFKEAF  49 AFYDKVAEKFKEAF  50 AFYDKVAEKLKEFF  51 AFYDKVFEKFKEAF  52 AFYDKVFEKLKEFF  53 AFYDKVAEKFKEFF  54 AFYDKVFEKFKEFF  55 DWLKALYDKVAEKLKEAL  56 DWFKAFYEKVAEKLKEFF  57 DWFKAFYEKFFEKFKEFF  58 EWLKALYEKVAEKLKEAL  59 EWLKAFYEKVAEKLKEAF  60 EWFKAFYEKVAEKLKEFF  61 EWLKAFYEKVFEKFKEFF  62 EWLKAFYEKFFEKFKEFF  63 EWFKAFYEKFFEKFKEFF  64 DFLKAWYDKVAEKLKEAW  65 EFLKAWYEKVAEKLKEAW  66 DFWKAWYDKVAEKLKEWW  67 EFWKAWYEKVAEKLKEWW  68 DKLKAFYDKVFEWAKEAF  69 DKWKAVYDKFAEAFKEFL  70 EKLKAFYEKVFEWAKEAF  71 EKWKAVYEKFAEAFKEFL  72 DWLKAFVDKFAEKFKEAY  73 EKWKAVYEKFAEAFKEFL  74 DWLKAFVYDKVFKLKEFF  75 EWLKAFVYEKVFKLKEFF  76 DWLRAFYDKVAEKLKEAF  77 EWLRAFYEKVAEKLKEAF  78 DWLKAFYDRVAEKLKEAF  79 EWLKAFYERVAEKLKEAF  80 DWLKAFYDKVAERLKEAF  81 EWLKAFYEKVAERLKEAF  82 DWLKAFYDKVAEKLREAF  83 EWLKAFYEKVAEKLREAF  84 DWLKAFYDRVAERLKEAF  85 EWLKAFYERVAERLKEAF  86 DWLRAFYDKVAEKLREAF  87 EWLRAFYEKVAEKLREAF  88 DWLRAFYDRVAEKLKEAF  89 EWLRAFYERVAEKLKEAF  90 DWLKAFYDKVAERLREAF  91 EWLKAFYEKVAERLREAF  92 DWLRAFYDKVAERLKEAF  93 EWLRAFYEKVAERLKEAF  94 DWLKAFYDKVAEKLKEAF  95 PDWLKAFYDKVAEKLKEAF DWLKAFYDKVAEKLKEFF  96 PDWLKAFYDKVAEKLKEFF DWFKAFYDKVAEKLKEAF  97 PDWFKAFYDKVAEKLKEAF DKLKAFYDKVFEWAKEAF  98 PDKLKAFYDKVFEWLKEAF DKWKAVYDKFAEAFKEFL  99 PDKWKAVYDKFAEAFKEFL DWFKAFYDKVAEKFKEAF 100 PDWFKAFYDKVAEKFKEAF DWLKAFVYDKVFKLKEFF 101 PDWLKAFVYDKVFKLKEFF DWLKAFYDKFAEKFKEFF 102 PDWLKAFYDKFAEKFKEFF EWFKAFYEKVAEKFKEAF 103 DWFKAFYDKVAEKF 104 FKAFYDKVAEKFKE 105 FKAFYEKVAEKFKE 106 FKAFYDKVAEKFKE 107 FKAFYEKVAEKFKE 108 DWFKAFYDKVAEKFKEAF 109 EWFKAFYEKVAEKFKEAF 110 AFYDKVAEKFKEAF 111 DWFKAFYDKVAEKF 112 DWLKAFYDKVFEKFKEFF 113 EWLKAFYEKVFEKFKEFF 114 AFYDKVFEKFKEFF 115 AFYEKVFEKFKEFF 116 DWLKAFYDKVFEKF 117 EWLKAFYEKVFEKF 118 LKAFYDKVFEKFKE 119 LKAFYEKVFEKFKE 120 [Switch D-E]-1-4F EWFKAFYEKVADKFKDAF 121 [Switch D-E]-2-4F EWFKAFYDKVADKFKEAF 122 [Switch D-E]-3-4F DWFKAFYEKVADKFKEAF 123 [Switch D-E]-4-4F DWFKAFYEKVAEKFKDAF 124 4F-2 DFWKAFYDKVAEKFKEAF 125 [Switch D-E]-1-4F-2 EFWKAFYEKVADKFKDAF 126 [Switch D-E]-2-4F-2 EFWKAFYDKVADKFKEAF 127 [Switch D-E]-3-4F-2 DFWKAFYEKVADKFKEAF 128 [Switch D-E]-4-4F-2 DFWKAFYEKVAEKFKDAF 129 4F-3 DWFKAYFDKVAEKFKEAF 130 [Switch D-E]-1-4F-5 EWFKAYFEKVADKFKDAF 131 [Switch D-E]-2-4F-5 EWFKAYFDKVADKFKEAF 132 [Switch D-E]-3-4F-5 DWFKAYFEKVADKFKEAF 133 [Switch D-E]-4-4F-5 DWFKAYFEKVAEKFKDAF 134 4F-4 DWFKAFVDKYAEKFKEAF 135 [Switch D-E]-1-4F-4 EWFKAFVEKYADKFKDAF 136 [Switch D-E]-2-4F-4 EWFKAFVDKYADKFKEAF 137 [Switch D-E]-3-4F-4 DWFKAFVEKYADKFKEAF 138 [Switch D-E]-4-4F DWFKAFVEKYAEKFKDAF 139 4-F-5 DWFKAFYDKAVEKFKEAF 140 [Switch D-E]-1-4F-5 EWFKAFYEKAVDKFKDAF 141 [Switch D-E]-2-4F-5 EWFKAFYDKAVDKFKEAF 142 [Switch D-E]-3-4F-5 DWFKAFYEKAVDKFKEAF 143 [Switch D-E]-4-4F-5 DWFKAFYEKAVEKFKDAF 144 4F-6 DWFKAFYDKVFEKAKEAF 145 [Switch D-E]-1-4F-6 EWFKAFYEKVFDKAKDAF 146 [Switch D-E]-2-4F-6 EWFKAFYDKVFDKAKEAF 147 [Switch D-E]-3-4F-6 DWFKAFYEKVFDKAKEAF 148 [Switch D-E]-4-4F-6 DWFKAFYEKVFEKAKDAF 149 4F-7 DWFKAFYDKVAEKAKEFF 150 [Switch D-E]-1-4F-7 EWFKAFYEKVADKAKDFF 151 [Switch D-E]-2-4F-7 EWFKAFYDKVADKAKEFF 152 [Switch D-E]-3-4F-7 DWFKAFYEKVADKAKEFF 153 [Switch D-E]-4-4F-7 DWFKAFYEKVAEKAKDFF 154 4F-8 DWFKAFYDKVAEKFKEFA 155 [Switch D-E]-1-4F-8 EWFKAFYEKVADKFKDFA 156 [Switch D-E]-2-4F-8 EWFKAFYDKVADKFKEFA 157 [Switch D-E]-3-4F-8 DWFKAFYEKVADKFKEFA 158 [Switch D-E]-4-4F-8 DWFKAFYEKVAEKFKDFA 159 4F-9 DAFKAFYDKVAEKFKEWF 160 [Switch D-E]-1-4F-9 EAFKAFYEKVADKFKDWF 161 [Switch D-E]-2-4F-9 EAFKAFYDKVADKFKEWF 162 [Switch D-E]-3-4F-9 DAFKAFYEKVADKFKEWF 163 [Switch D-E]-4-4F-9 DAFKAFYEKVAEKFKDWF 164 4F-10 DAFKAFYDKVWEKFKEAF 165 [Switch D-E]-1-4F-10 EAFKAFYEKVWDKFKDAF 166 [Switch D-E]-2-4F-10 EAFKAFYDKVWDKFKEAF 167 [Switch D-E]-3-4F-10 DAFKAFYEKVWDKFKEAF 168 [Switch D-E]-4-4F-10 DAFKAFYEKVWEKFKDAF 169 4F-11 DYFKAFWDKVAEKFKEAF 170 [Switch D-E]-1-4F-11 EYFKAFWEKVADKFKDAF 171 [Switch D-E]-2-4F-11 EYFKAFWDKVADKFKEAF 172 [Switch D-E]-3-4F-11 DYFKAFWEKVADKFKEAF 173 [Switch D-E]-4-4F-11 DYFKAFWEKVAEKFKDAF 174 4F-12 DWAKAFYDKVAEKFKEFF 175 [Switch D-E]-1-4F-12 EWAKAFYEKVADKFKDFF 176 [Switch D-E]-2-4F-12 EWAKAFYDKVADKFKEFF 177 [Switch D-E]-3-4F-12 DWAKAFYEKVADKFKEFF 178 [Switch D-E]-4-4F-12 DWAKAFYEKVAEKFKDFF 179 4F-13 DWFKAAYDKVAEKFKEFF 180 [Switch D-E]-1-4F-13 EWFKAAYEKVADKFKDFF 181 [Switch D-E]-2-4F-13 EWFKAAYDKVADKFKEFF 182 [Switch D-E]-3-4F-13 DWFKAAYEKVADKFKEFF 183 [Switch D-E]-4-4F-13 DWFKAAYEKVAEKFKDFF 184 4F-14 DWFKAFADKVAEKFKEYF 185 [Switch D-E]-1-4F-14 EWFKAFAEKVADKFKDYF 186 [Switch D-E]-2-4F-14 EWFKAFADKVADKFKEYF 187 [Switch D-E]-3-4F-14 DWFKAFAEKVADKFKEYF 188 [Switch D-E]-4-4F DWFKAFAEKVAEKFKDYF 189 4F-15 DWFKAFYDKAAEKFKEVF 190 [Switch D-E]-1-4F-15 EWFKAFYEKAADKFKDVF 191 [Switch D-E]-2-4F-15 EWFKAFYDKAADKFKEVF 192 [Switch D-E]-3-4F-15 DWFKAFYEKAADKFKEVF 193 [Switch D-E]-4-4F-15 DWFKAFYEKAAEKFKDVF 194 4F-16 DWYKAFFDKVAEKFKEAF 195 [Switch D-E]-1-4F-16 EWYKAFFEKVADKFKDAF 196 [Switch D-E]-2-4F-16 EWYKAFFDKVADKFKEAF 197 [Switch D-E]-3-4F-16 DWYKAFFEKVADKFKEAF 198 [Switch D-E]-4-4F-16 DWYKAFFEKVAEKFKDAF 199 4F-17 DWVKAFYDKFAEKFKEAF 200 [Switch D-E]-1-4F-17 EWVKAFYEKFADKFKDAF 201 [Switch D-E]-2-4F-17 EWVKAFYDKFADKFKEAF 202 [Switch D-E]-3-4F-17 DWVKAFYEKFADKFKEAF 203 [Switch D-E]-4-4F-17 DWVKAFYEKFAEKFKDAF 204 4F-18 DWFKAFFDKVAEKYKEAF 205 [Switch D-E]-1-4F-18 EWFKAFFEKVADKYKDAF 206 [Switch D-E]-2-4F-18 EWFKAFFDKVADKYKEAF 207 [Switch D-E]-3-4F-18 DWFKAFFEKVADKYKEAF 208 [Switch D-E]-3-4F-18 DWFKAFFEKVADKYKEAF 209 4F-19 DWFKAFFDKVAEKFKEAY 210 [Switch D-E]-1-4F-19 EWFKAFFEKVADKFKDAY 211 [Switch D-E]-2-4F-19 EWFKAFFDKVADKFKEAY 212 [Switch D-E]-3-4F-19 DWFKAFFEKVADKFKEAY 213 [Switch D-E]-4-4F-19 DWFKAFFEKVAEKFKDAY 214 4F-20 DWFKAFYDKFAEKFKEAV 215 [Switch D-E]-1-4F-20 EWFKAFYEKFADKFKDAV 216 [Switch D-E]-2-4F-20 EWFKAFYDKFADKFKEAV 217 [Switch D-E]-3-4F-20 DWFKAFYEKFADKFKEAV 218 [Switch D-E]-4-4F-20 DWFKAFYEKFAEKFKDAV 219 4F-21 DKFKAFYDKVAEKFWEAF 220 [Switch D-E]-1-4F-21 EKFKAFYEKVADKFWDAF 221 [Switch D-E]-2-4F-21 EKFKAFYDKVADKFWEAF 222 [Switch D-E]-3-4F-21 DKFKAFYEKVADKFWEAF 223 [Switch D-E]-4-4F-21 DKFKAFYEKVAEKFWDAF 224 4F-22 DKWKAFYDKVAEKFFEAF 225 [Switch D-E]-1-4F-22 EKWKAFYEKVADKFFDAF 226 [Switch D-E]-2-4F-22 EKWKAFYDKVADKFFEAF 227 [Switch D-E]-3-4F-22 DKWKAFYEKVADKFFEAF 228 [Switch D-E]-4-4F-22 DKWKAFYEKVAEKFFDAF 229 4F-23 DKFKAFYDKWAEVFKEAF 230 [Switch D-E]-1-4F-23 EKFKAFYEKWADVFKDAF 231 [Switch D-E]-2-4F-23 EKFKAFYDKWADVFKEAF 232 [Switch D-E]-3-4F-23 DKFKAFYEKWADVFKEAF 233 [Switch D-E]-4-4F-23 DKFKAFYEKWAEVFKDAF 234 4F-24 DKFKAFYDKVAEFWKEAF 235 [Switch D-E]-1-4F-24 EKFKAFYEKVADFWKDAF 236 [Switch D-E]-2-4F-24 EKFKAFYDKVADFWKEAF 237 [Switch D-E]-3-4F-24 DKFKAFYEKVADFWKEAF 238 [Switch D-E]-4-4F-24 DKFKAFYEKVAEFWKDAF 239 Rev-4F FAEKFKEAVKDYFAKFWD 240 [Switch D-E]-1-Rev-4F FADKFKDAVKEYFAKFWE 241 [Switch D-E]-2-Rev-4F FADKFKEAVKDYFAKFWE 242 [Switch D-E]-3-Rev-4F FAEKFKDAVKEYFAKFWD 243 [Switch D-E]-4-Rev-4F FAEKFKDAVKDYFAKFWE 244 Rev-4F-1 FWEKFKEAVKDYFAKFAD 245 [Switch D-E]-1-Rev-4F-1 FWDKFKDAVKEYFAKFAE 246 [Switch D-E]-2-Rev-4F-1 FADKFKEAVKDYFAKFWE 247 [Switch D-E]-3-Rev-4F-1 FAEKFKDAVKEYFAKFWD 248 [Switch D-E]-4-Rev-4F-1 FAEKFKDAVKDYFAKFWE 249 Rev-4F-2 FFEKFKEAVKDYFAKAWD 250 [Switch D-E]-1-Rev-4F-2 FFDKFKDAVKEYFAKAWE 251 [Switch D-E]-2-Rev-4F-2 FFDKFKEAVKDYFAKAWE 252 [Switch D-E]-3-Rev-4F-2 FFEKFKDAVKEYFAKAWD 253 [Switch D-E]-4-Rev-4F-2 FFEKFKDAVKDYFAKAWE 254 Rev-4F-3 FAEKAKEFVKDYFAKFWD 255 [Switch D-E]-1-Rev-4F-3 FADKAKDFVKEYFAKFWE 256 [Switch D-E]-2-Rev-4F-3 FADKAKEFVKDYFAKFWE 257 [Switch D-E]-3-Rev-4F-3 FAEKAKDFVKEYFAKFWD 258 [Switch D-E]-4-Rev-4F-3 FAEKAKDFVKDYFAKFWE 259 Rev-4F-4 FAEKFKEVAKDYFAKFWD 260 [Switch D-E]-1-Rev-4F-4 FADKFKDVAKEYFAKFWE 261 [Switch D-E]-2-Rev-4F-4 FADKFKEVAKDYFAKFWE 262 [Switch D-E]-3-Rev-4F-4 FAEKFKDVAKEYFAKFWD 263 [Switch D-E]-4-Rev-4F-4 FAEKFKDVAKDYFAKFWE 264 Rev-4F-5 FAEKFKEAYKDVFAKFWD 265 [Switch D-E]-1-Rev-4F-5 FADKFKDAYKEVFAKFWE 266 [Switch D-E]-2-Rev-4F-5 FADKFKEAYKDVFAKFWE 267 [Switch D-E]-3-Rev-4F-5 FAEKFKDAYKEVFAKFWD 268 [Switch D-E]-4-Rev-4F-5 FAEKFKDAYKDVFAKFWE 269 Rev-4F-6 FAEKFKEAVKDFYAKFWD 270 [Switch D-E]-1-Rev-4F-6 FADKFKDAVKEFYAKFWE 271 [Switch D-E]-2-Rev-4F-6 FADKFKEAVKDFYAKFWE 272 [Switch D-E]-3-Rev-4F-6 FAEKFKDAVKEFYAKFWD 273 [Switch D-E]-4-Rev-4F-6 FAEKFKDAVKDFYAKFWE 274 Rev-4F-7 FAEKFWEAVKDYFAKFKD 275 [Switch D-E]-1-Rev-4F-7 FADKFWDAVKEYFAKFKE 276 [Switch D-E]-2-Rev-4F-7 FADKFWEAVKDYFAKFKE 277 [Switch D-E]-3-Rev-4F-7 FAEKFWDAVKEYFAKFKD 278 [Switch D-E]-4-Rev-4F-7 FAEKFWDAVKDYFAKFKE 279 Rev-4F-8 AFEKFKEAVKDYFAKFWD 280 [Switch D-E]-1-Rev-4F-8 AFDKFKDAVKEYFAKFWE 281 [Switch D-E]-2-Rev-4F-8 AFDKFKEAVKDYFAKFWE 282 [Switch D-E]-3-Rev-4F-8 AFEKFKDAVKEYFAKFWD 283 [Switch D-E]-4-Rev-4F-8 AFEKFKDAVKDYFAKFWE 284 Rev-F-9 VAEKFKEAFKDYFAKFWD 285 [Switch D-E]-1-Rev-4F-9 VADKFKDAFKEYFAKFWE 286 [Switch D-E]-2-Rev-4F-9 VADKFKEAFKDYFAKFWE 287 [Switch D-E]-3-Rev-4F-9 VAEKFKDAFKEYFAKFWD 288 [Switch D-E]-4-Rev-4F-9 VAEKFKDAFKDYFAKFWE 289 Rev-4F-10 YAEKFKEAVKDFFAKFWD 290 [Switch D-E]-1-Rev-4F-10 YADKFKDAVKEFFAKFWE 291 [Switch D-E]-2-Rev-4F-10 YADKFKEAVKDFFAKFWE 292 [Switch D-E]-3-Rev-4F-10 YAEKFKDAVKEFFAKFWD 293 [Switch D-E]-4-Rev-4F-10 YAEKFKDAVKDFFAKFWE 294 Rev-4F-11 AAEKFKEFVKDYFAKFWD 295 [Switch D-E]-1-Rev-4F-11 AADKFKDFVKEYFAKFWE 296 [Switch D-E]-2-Rev-4F-11 AADKFKEFVKDYFAKFWE 297 [Switch D-E]-3-Rev-4F-11 AAEKFKDFVKEYFAKFWD 298 Switch D-E]-4-Rev-4F-11 AAEKFKDFVKDYFAKFWE 299 Rev-4F-12 FFEKAKEAVKDYFAKFWD 300 [Switch D-E]-1-Rev-4F-12 FFDKAKDAVKEYFAKFWE 301 [Switch D-E]-2-Rev-4F-12 FFDKAKEAVKDYFAKFWE 302 [Switch D-E]-3-Rev-4F-12 FFEKAKDAVKEYFAKFWD 303 [Switch D-E]-4-Rev-4F-12 FFEKAKDAVKDYFAKFWE 304 Rev-4F-13 FYEKFKEAVKDAFAKFWD 305 [Switch D-E]-1-Rev-4F-13 FYDKFKDAVKEAFAKFWE 306 [Switch D-E]-2-Rev-4F-13 FYDKFKEAVKDAFAKFWE 307 [Switch D-E]-3-Rev-4F-13 FYEKFKDAVKEAFAKFWD 308 [Switch D-E]-4-Rev-4F-13 FYEKFKDAVKDAFAKFWE 309 Rev-4F-14 FVEKFKEAAKDYFAKFWD 310 [Switch D-E]-1-Rev-4F-14 FVDKFKDAAKEYFAKFWE 311 [Switch D-E]-2-Rev-4F-14 FVDKFKEAAKDYFAKFWE 312 [Switch D-E]-3-Rev-4F-14 FVEKFKDAAKEYFAKFWD 313 [Switch D-E]-4-Rev-4F-14 FVEKFKDAAKDYFAKFWE 314 Rev-4F-15 FAEKYKEAVKDFFAKFWD 315 [Switch D-E]-1-Rev-4F-15 FADKYKDAVKEFFAKFWE 316 [Switch D-E]-2-Rev-4F-15 FADKYKEAVKDFFAKFWE 317 [Switch D-E]-3-Rev-4F-15 FAEKYKDAVKEFFAKFWD 318 [Switch D-E]-4-Rev-4F-15 FAEKYKDAVKDFFAKFWE 319 Rev-4F-16 FAEKVKEAFKDYFAKFWD 320 [Switch D-E]-1-Rev-4F-16 FADKVKDAFKEYFAKFWE 321 [Switch D-E]-2-Rev-4F-16 FADKVKEAFKDYFAKFWE 322 [Switch D-E]-3-Rev-4F-16 FAEKVKDAFKEYFAKFWD 323 [Switch D-E]-4-Rev-4F-16 FAEKVKDAFKDYFAKFWE 324 Rev-4F-17 FAEKFKEYVKDAFAKFWD 325 [Switch D-E]-1-Rev-4F-17 FADKFKDYVKEAFAKFWE 326 [Switch D-E]-2-Rev-4F-17 FADKFKEYVKDAFAKFWE 327 [Switch D-E]-3-Rev-4F-17 FAEKFKDYVKEAFAKFWD 328 [Switch D-E]-4-Rev-4F-17 FAEKFKDYVKDAFAKFWE 329 Rev-4F-18 FAEKFKEAFKDYVAKFWD 330 [Switch D-E]-1-Rev-4F-18 FADKFKDAFKEYVAKFWE 331 [Switch D-E]-2-Rev-4F-18 FADKFKEAFKDYVAKFWE 332 [Switch D-E]-3-Rev-4F-18 FAEKFKDAFKEYVAKFWD 333 [Switch D-E]-4-Rev-4F-18 FAEKFKDAFKDYVAKFWE 334 Rev-4F-19 FAEKFKEAFKDYFAKVWD 335 [Switch D-E]-1-Rev-4F-19 FADKFKDAFKEYFAKVWE 336 [Switch D-E]-2-Rev-4F-19 FADKFKEAFKDYFAKVWE 337 [Switch D-E]-3-Rev-4F-19 FAEKFKDAFKEYFAKVWD 338 Switch D-E]-4-Rev-4F-19 FAEKFKDAFKDYFAKVWE 339 Rev-4F-20 FAEKFKEAVKDFFAKYWD 340 [Switch D-E]-1-Rev-4F-20 FADKFKDAVKEFFAKYWE 341 [Switch D-E]-2-Rev-4F-20 FADKFKEAVKDFFAKYWE 342 [Switch D-E]-3-Rev-4F-20 FAEKFKDAVKEFFAKYWD 343 [Switch D-E]-4-Rev-4F-20 FAEKFKDAVKDFFAKYWE 344 Rev-4F-21 WAEKFFEAVKDYFAKFKD 345 [Switch D-E]-1-Rev-4F-7 WADKFFDAVKEYFAKFKE 346 [Switch D-E]-2-Rev-4F-7 WADKFFEAVKDYFAKFKE 347 [Switch D-E]-3-Rev-4F-7 WAEKFFDAVKEYFAKFKD 348 Switch D-E]-4-Rev-4F-7 WAEKFFDAVKDYFAKFKE 349 Rev-4F-22 FAEKWFEAVKDYFAKFKD 350 [Switch D-E]-1-Rev-4F-22 FADKWFDAVKEYFAKFKE 351 [Switch D-E]-2-Rev-4F-22 FADKWFEAVKDYFAKFKE 352 [Switch D-E]-3-Rev-4F-22 FAEKWFDAVKEYFAKFKD 353 [Switch D-E]-4-Rev-4F-22 FAEKWFDAVKDYFAKFKE 354 Rev-4F-23 FAEKFVEAWKDYFAKFKD 355 [Switch D-E]-1-Rev-4F-23 FADKFVDAWKEYFAKFKE 356 [Switch D-E]-2-Rev-4F-23 FADKFVEAWKDYFAKFKE 357 [Switch D-E]-3-Rev-4F-23 FAEKFVDAWKEYFAKFKD 358 [Switch D-E]-4-Rev-4F-23 FAEKFVDAWKDYFAKFKE 359 Rev-4F-24 FYEKFAEAVKDWFAKFKD 360 [Switch D-E]-1-Rev-4F-24 FYDKFADAVKEWFAKFKE 361 [Switch D-E]-2-Rev-4F-24 FYDKFAEAVKDWFAKFKE 362 [Switch D-E]-3-Rev-4F-24 FYEKFADAVKEWFAKFKD 363 [Switch D-E]-4-Rev-4F-24 FYEKFADAVKDWFAKFKE 364 [A-5 > H]4F DWFKHFYDKVAEKFKEAF 365 [A-5 > H, D-E switched] EWFKHFYEKVADKFKDAF 366 4F [A-5 > H, D-1 > E]4F EWFKHFYDKVAEKFKEAF 367 [A-5 > H, D-8 > E]4-F DWFKHFYEKVAEKFKEAF 368 [A-5 > H, E-12 > D]4F DWFKHFYDKVADKFKEAF 369 [A-5 > H, E-16 > D]4F DWFKHFYDKVAEKFKDAF 370 [F-3 > H, A-5 > F]-4F DWHKFFYDKVAEKFKEAF 371 [F-3 > H, A-5 > F, D-E EWHKFFYEKVADKFKDAF 372 switched]-4F [F-3 > H, A-5 > F, EWHKFFYDKVAEKFKEAF 373 D-1 > E]-4F [F-3 > H, A-5 > F, DWHKFFYEKVAEKFKEAF 374 D-8 > E]-4F [F-3 > H, A-5 > F,  DWHKFFYDKVADKFKEAF 375 E-12 > D]-4F [F-3 > H, A-5 > F,  DWHKFFYDKVAEKFKDAF 376 E-16 > D]-4F [A-5 > F, F-6 > H]4F DWFKFHYDKVAEKFKEAF 377 [A-5 > F, F-6 > H, D-E EWFKFHYEKVADKFKDAF 378 switched]4F [[A-5 > F, F-6 > H,  EWFKFHYDKVAEKFKEAF 379 D-1 > E]4F [A-5 > F, F-6 > H,  DWFKFHYEKVAEKFKEAF 380 D-8 > E]4F [A-5 > F, F-6 > H,  DWFKFHYDKVADKFKEAF 381 E-12 > D]4F [A-5 > F, F-6 > H,  DWFKFHYDKVAEKFKDAF 382 E-16 > D]4F [A-5 > V, V-10 > H]4F DWFKVFYDKHAEKFKEAF 383 [A-5 > V, V-10 > H, D-E EWFKVFYEKHADKFKDAF 384 switched]4F [A-5 > V, V-10 > H,  EWFKVFYDKHAEKFKEAF 385 D-1 > E]4F [A-5 > V, V-10 > H,  DWFKVFYEKHAEKFKEAF 386 D-8 > E]4F [A-5 > V, V-10 > H,  DWFKVFYDKHADKFKEAF 387 E-12 > D]4F [A-5 > V, V-10 > H,  DWFKVFYDKHAEKFKDAF 388 E16 > D]4F [[A-17 > H]4F DWFKAFYDKVAEKFKEHF 389 [A-17 > H,  EWFKAFYEKVADKFKDHF 390 D-E switched]4F [[A-17 > H, D-1 > E]4F EWFKAFYDKVAEKFKEHF 391 [[A-17 > H, D-8 > E]4F DWFKAFYEKVAEKFKEHF 392 [[A-17 > H, E-12 > D]4F DWFKAFYDKVADKFKEHF 393 [[A-17 > H, E16 > D]4F DWFKAFYDKVAEKFKDHF 394 [A-17 > F, F-18 > H]4F DWFKAFYDKVAEKFKEFH 395 [A-17 > F, F-18 > H,  EWFKAFYEKVADKFKDFH 396 D-E switched]4F [A-17 > F, F-18 > H,  EWFKAFYDKVAEKFKEFH 397 D-1 > E]-4F [A-17 > F, F-18 > H]4F DWFKAFYDKVAEKFKEFH 398 [A-17 > F, F-18 > H,  DWFKAFYEKVAEKFKEFH 399 D-8 > E]-4F [A-17 > F, F-18 > H,  DWFKAFYDKVAEKFKEFH 400 E-12 > D]4F [A-17 > F, F-18 > H,  DWFKAFYDKVAEKFKDFH 401 E-16 > D]-4F Rev-4F FAEKFKEAVKDYFAKFWD 402 [A-2 > H]Rev4F FHEKFKEAVKDYFAKFWD 403 Rev-[A-2 > H, D > E]-4F FHEKFKEAVKEYFAKFWE 404 Rev-[A-2 > H, E > D]4F FHDKFKDAVKDYFAKFWD 405 [A-2 > H, D-E switched] FHDKFKDAVKEYFAKFWE 406 Rev-4F [A-2 > H, E-3 > D]Rev-4F FHDKFKEAVKDYFAKFWD 407 [A-2 > H, E-7 > D]Rev-4F FHEKFKDAVKDYFAKFWD 408 [A-2 > H, D-11 > E]Rev- FHEKFKEAVKEYFAKFWD 409 4F [A-2 > H, D-18 > E]Rev- FHEKFKEAVKDYFAKFWE 410 4F [F-1 > H, A-2 > F]Rev-4F HFEKFKEAVKDYFAKFWD 411 [F-1 > H, A-2 > F, D-E HFDKFKDAVKEYFAKFWE 412 switched]Rev-4F [F-1 > H, A-2 > F,  HFEKFKEAVKEYFAKFWE 413 D > E]Rev-4F [F-1 > H, A-2 > F,  HFDKFKEAVKDYFAKFWD 414 E-3 > D]Rev-4F [F-1 > H, A-2 > F,  HFEKFKDAVKDYFAKFWD 415 E-7 > D]Rev-4F [F-1 > H, A-2 > F,  HFEKFKEAVKEYFAKFWD 416 D-11 > E]Rev-4F [F-1 > H, A-2 > F,  HFEKFKEAVKDYFAKFWE 417 D-18 > E]Rev-4F [A-2 > F, F-5 > H]Rev  FFEKHKEAVKDYFAKFWD 418 D-4F [A-2 > F, F-5 > H,  FFDKHKDAVKEYFAKFWE 419 D-E switched]Rev D-4F [A-2 > F, F-5 > H,  FFEKHKEAVKEYFAKFWE 420 D > E]Rev D-4F [A-2 > F, F-5 > H,  FFDKHKDAVKDYFAKFWD 421 E > D]Rev D-4F [A-2 > F, F-5 > H,  FFDKHKEAVKDYFAKFWD 422 E-3 > D]Rev D-4F [A-2 > F, F-5 > H,  FFEKHKEAVKEYFAKFWD 423 D-11 > E]Rev D-4F [A-2 > F, F-5 > H,  FFEKHKEAVKDYFAKFWE 424 D-18 > E]Rev D-4F [A-2 > V, V-9 > H]Rev  FVEKFKEAHKDYFAKFWD 425 D-4F [A-2 > V, V-9 > H, D-E FVDKFKDAHKEYFAKFWE 426 switched]Rev D-4F [A-2 > V, V-9 > H,  FVEKFKEAHKEYFAKFWE 427 D > E]Rev D-4F [A-2 > V, V-9 > H,  FVDKFKDAHKDYFAKFWD 428 E > D]Rev D-4F [A-2 > V, V-9 > H,  FVDKFKEAHKDYFAKFWD 429 E-3 > D]Rev D-4F [A-2 > V, V-9 > H,  FVEKFKDAHKDYFAKFWD 430 E-7 > D]Rev D-4F [A-2 > V, V-9 > H,  FVEKFKEAHKEYFAKFWD 431 D-11 > E]Rev D-4F [A-2 > V, V-9 > H,  FVEKFKEAHKDYFAKFWE 432 D-18 > E]Rev D-4F [A-8 > H]Rev-4F FAEKFKEHVKDYFAKFWD 433 [A-8 > H, D-E  FADKFKDHVKEYFAKFWE 434 switched]Rev-4F [A-8 > H, D > E]Rev-4F FAEKFKEHVKEYFAKFWE 435 [A-8 > H, E > D]Rev-4F FADKFKDHVKDYFAKFWD 436 [A-8 > H, E-3 > D]Rev- FADKFKEHVKDYFAKFWD 437 4F [A-8 > H, E-7 > D]Rev- FAEKFKDHVKDYFAKFWD 438 4F [A-8 > H, D-11 > E] FAEKFKEHVKEYFAKFWD 439 Rev-4F [A-8 > H, D-18 > E] FAEKFKEHVKDYFAKFWE 440 Rev-4F [A-8 > F, F-13 > H] FAEKFKEFVKDYHAKFWD 441 Rev-4F [A-8 > F, F-13 > H, D-E FADKFKDFVKEYHAKFWE 442 switched]Rev-4F [A-8 > F, F-13 > H,  FADKFKEFVKDYHAKFWD 443 E-3 > D]Rev-4F [A-8 > F, F-13 > H,  FAEKFKDFVKDYHAKFWD 444 E-7 > D]Rev-4F [A-8 > F, F-13 > H,  FADKFKDFVKDYHAKFWD 445 E > D]Rev-4F [A-8 > F, F-13 > H,  FAEKFKEFVKEYHAKFWE 446 D > E]Rev-4F [A-8 > F, F-13 > H, FAEKFKEFVKEYHAKFWD 447 D-11 > E]Rev-4F [A-8 > F, F-13 > H,  FAEKFKEFVKDYHAKFWE 448 D-18 > E]Rev-4F [A-8 > F, F16 > H] FAEKFKEFVKDYFAKHWD 449 Rev.-4F [A-8 > F, F16 > H,  FADKFKDFVKEYFAKHWE 450 D-E switched]Rev.-4F [A-8 > F, F16 > H,  FAEKFKEFVKEYFAKHWE 451 D > E]Rev.-4F [A-8 > F, F16 > H,  FADKFKDFVKDYFAKHWD 452 E > D]Rev.-4F [A-8 > F, F16 > H,  FADKFKEFVKDYFAKHWD 453 E-3 > D]Rev.-4F [A-8 > F, F16 > H,  FAEKFKDFVKDYFAKHWD 454 E-7 > D]Rev.-4F [A-8 > F, F16 > H,  FAEKFKEFVKEYFAKHWD 455 D-11 > E]Rev.-4F [A-8 > F, F16 > H,  FAEKFKEFVKDYFAKHWE 456 D-18 > E]Rev.-4F Rev-[D > E]-4F FAEKFKEAVKEYFAKFWE 457 Rev-[E > D]4F FADKFKDAVKDYFAKFWD 458 Rev-R4-4F FAERFREAVKDYFAKFWD 459 Rev-R6-4F FAEKFREAVKDYFAKFWD 460 Rev-R10-4F FAEKFKEAVRDYFAKFWD 461 Rev-R14-4F FAEKFKEAVKDYFARFWD 462 Rev-[D > E]-4F FAEKFKEAVKEYFAKFWE 463 Rev-[E > D]4F FADKFKDAVKDYFAKFWD 464 Rev-R4-4F FAERFREAVKDYFAKFWD 465 Rev-R6-4F FAEKFREAVKDYFAKFWD 466 Rev-R10-4F FAEKFKEAVRDYFAKFWD 467 Rev-R14-4F FAEKFKEAVKDYFARFWD 468 Rev-[D > E]-4F FAEKFKEAVKEYFAKFWE 469 Rev-[E > D]4F FADKFKDAVKDYFAKFWD 470 Rev-R4-4F FAERFREAVKDYFAKFWD 471 Rev-R6-4F FAEKFREAVKDYFAKFWD 472 Rev-R10-4F FAEKFKEAVRDYFAKFWD 473 Rev-R14-4F FAEKFKEAVKDYFARFWD 474 Rev-R4-4F FAERFREAVKDYFAKFWD 475 Rev-R6-4F FAEKFREAVKDYFAKFWD 476 Rev-R10-4F FAEKFKEAVRDYFAKFWD 477 Rev-R14-4F FAEKFKEAVKDYFARFWD 478 Rev-[D > E]-4F FAEKFKEAVKEYFAKFWE 479 Rev-[E > D]4F FADKFKDAVKDYFAKFWD 480 Rev-R4-4F FAERFREAVKDYFAKFWD 481 Rev-R6-4F FAEKFREAVKDYFAKFWD 482 Rev-R10-4F FAEKFKEAVRDYFAKFWD 483 Rev-R14-4F FAEKFKEAVKDYFARFWD 484 Rev3F-2 LFEKFAEAFKDYVAKWKD 485 RevR4-3F-2 LFERFAEAFKDYVAKWKD 486 RevR10-3F2 LFEKFAEAFRDYVAKWKD 487 RevR15-3F-2 LFEKFAEAFKDYVARWKD 488 Rev R17-3F-2 LFEKFAEAFKDYVAKWRD 489 Rev[D > E]3F2 LFEKFAEAFKEYVAKWKE 490 Rev[E > D]3F-2 LFDKFADAFKDYVAKWKD 491 Rev-[E3 > D]-3F-2 LFDKFAEAFKDYVAKWKD 492 Rev-[E7 > D]-3F-2 LFEKFADAFKDYVAKWKD 493 Rev[D11 > E]3F-2 LFEKFAEAFKEYVAKWKD 494 Rev[D18 > E]3F-2 LFEKFAEAFKDYVAKWKE 495 Rev3F-1 FAEKAWEFVKDYFAKLKD 496 RevR4-3F-1 FAERAWEFVKDYFAKLKD 497 RevR10-3F-1 FAEKAWEFVKDYFAKLKD 498 RevR15-3F-1 FAEKAWEFVKDYFAKLKD 499 RevR17-3F-1 FAEKAWEFVKDYFAKLRD 500 Rev[D > E]3F-1 FAEKAWEFVKEYFAKLKE 501 Rev[E > D}3F-1 FADKAWDFVKDYFAKLKD 502 Rev[E3 > D]-3F-1 FADKAWEFVKDYFAKLKD 503 Rev[E7 > D]3F-1 FAEKAWDFVKDYFAKLKD 504 Rev-[D11 > E]3F-1 FAEKAWEFVKEYFAKLKD 505 Rev-[D18 > E]3F-1 FAEKAWEFVKDYFAKLKE 506 Rev-5F FFEKFKEFVKDYFAKLWD 507 Rev-[D > E]5F FFEKFKEFVKEYFAKLWE 508 Rev-[E > D]5F FFDKFKDFVKDYFAKLWD 509 Rev-R4-5F FFERFKEFVKDYFAKLWD 510 Rev-R6-5F FFEKFREFVKDYFAKLWD 511 Rev-R10-5F FFEKFKEFVRDYFAKLWD 512 Rev-R15-5F FFEKFKEFVKDYFARLWD 513 Rev-[E3 > D]-5F FFDKFKEFVKDYFAKLWD 514 Rev-[E7 > D]5F FFEKFKDFVKDYFAKLWD 515 Rev-[D11 > E]-5F FFEKFKEFVKEYFAKLWD 516 Rev-[D18 > E]-5F FFEKFKEFVKDYFAKLWE 517 Rev-5F-2 FLEKFKEFVKDYFAKFWD 518 Rev-[D > E]-5F-2 FLEKFKEFVKEYFAKFWE 519 Rev-[E > D]-5F-2 FLDKFKEFVKDYFAKFWD 520 Rev-[E3 > D]-5F-2 FLDKFKEFVKDYFAKFWD 521 Rev-[E7 > D]-5F-2 FLEKFKDFVKDYFAKFWD 522 Rev-[D11 > E]-5F-2 FLEKFKEFVKEYFAKFWD 523 Rev-[D18 > E]-5F-2 FLEKFKEFVKDYFAKFWE 524 Rev-R4-5F-2 FLERFKEFVKDYFAKFWD 525 Rev-R6-5F-2 FLEKFREFVKDYFAKFWD 526 RevR10-5F-2 FLEKFKEFVRDYFAKFWD 527 Rev-R16-5F-2 FLEKFKEFVKDYFARFWD 528 Rev-6F FFEKFKEFFKDYFAKLWD 529 Rev-[D > E]-6F FFEKFKEFFKEYFAKLWE 530 Rev-[E > D]-6F FFDKFKDFFKDYFAKLWD 531 Rev-R4-6F FFERFKEFFKDYFAKLWD 532 Rev-R6-6F FFEKFREFFKDYFAKLWD 533 Rev-R10-6F FFEKFKEFFRDYFAKLWD 534 Rev-R14-6F FFERFKEFFKDYFARLWD 535 Rev-[E3 > D]-6F FFDKFKEFFKDYFAKLWD 536 Rev-[E7 > D]-6F FFEKFKDFFKDYFAKLWD 537 Rev-[D11 > E]-6F FFEKFKEFFKEYFAKLWD 538 Rev-[D18 > E]-6F FFEKFKEFFKDYFAKLWE 539 Rev-4F FAEKFKEAVKDYFAKFWD 540 Rev-[D > E]-4F FAEKFKEAVKEYFAKFWE 541 Rev-[E > D]4F FADKFKDAVKDYFAKFWD 542 Rev-R4-4F FAERFREAVKDYFAKFWD 543 Rev-R6-4F FAEKFREAVKDYFAKFWD 544 Rev-R10-4F FAEKFKEAVRDYFAKFWD 545 Rev-R14-4F FAEKFKEAVKDYFARFWD 546 4F-2 DKWKAVYDKFAEAFKEFF 547 [D > E]-4F-2 EKWKAVYEKFAEAFKEFF 548 [E > D]-4F-2 DKWKAVYDKFADAFKDFF 549 R2-4F-2 DRWKAVYDKFAEAFKEFF 550 R4-4F-2 DKWRAVYDKFAEAFKEFF 551 R9-4F-2 DKWKAVYDRFAEAFKEFF 552 R14-4F-2 DKWKAVYDKFAEAFREFF 553 Rev4F-2 FFEKFAEAFKDYVAKWKD 554 Rev-[D > E]-4F-2 FFEKFAEAFKEYVAKWKE 555 Rev-[E > D]-3F-2 FFDKFADAFKDYVAKWKD 556 Rev-R4-4F-2 FFERFAEAFKDYVAKWKD 557 Rev-R10-4F-2 FFERFAEAFRDYVAKWKD 558 Rev-R15-4F-2 FFEKFAEAFKDYVARWKD 559 Rev-R17-4F-2 FFERFAEAFKDYVAKWRD 560 Rev-[E3 > D]-4F-2 FFDKFAEAFKDYVAKWKD 561 Rev-[E7 > D]-4F-2 FFEKFADAFKDYVAKWKD 562 Rev-[D11 > E]-4F-2 FFERFAEAFKEYVAKWKD 563 Rev-[D18 > E]-4F-2 FFERFAEAFKDYVAKWKE 564 Rev-7F FFEKFKEFFKDYFAKFWD 565 Rev-[E > D]-7F FFDKFKDFFKDYFAKFWD 566 Rev-[D > E]-7F FFEKFKEFFKEYFAKFWE 567 Rev-R4-7F FFERFKEFFKDYFAKFWD 568 Rev-R6-7F FFEKFREFFKDYFAKFWD 569 Rev-R10-7F FFEKFKEFFRDYFAKFWD 570 Rev-R14-7F FFEKFKEFFKDYFARFWD 571 Rev-[E3 > D]-7F FFDKFKEFFKDYFAKFWD 572 Rev-[E7 > D]7F FFEKFKDFFKDYFAKFWD 573 Rev-[D11 > E]-7F FFEKFKEFFKEYFAKFWD 574 Rev-[D18 > E]-7F FFEKFKEFFKDYFAKFWE 575 EVRAKLEEQAQQIRLQAEA 576 FQARLKSWFEPLVE EVRAKLEEQAQQIRLQAEA 577 FQARLKSWFE EVRSKLEEWFAAFREFAEE 578 FLARLKS PVLDLFRELLNELLEALKQKLK 579 DWLKAFYDKVAEKLKEAF-P- 580 DWAKAAYDKAAEKAKEAA EELKEKLEELKEKLEEKL-P- 581 EELKEKLEELKEKLEEKL EELKAKLEELKAKLEEKL-P- 582 EELKAKLEELKAKLEEKL EKLKALLEKLLAKLKELL P- 583 EKLKALLEKLLAKLKELL EWLKELLEKLLEKLKELL-P- 584 EWLKELLEKLLEKLKELL EKFKELLEKFLEKFKELL-P- 585 EKFKELLEKFLEKFKELL EKLKELLEKLLELLKKLL-P- 586 EKLKELLEKLLELLKKLL EKLKELLEKLKAKLEELL-P- 587 EKLKELLEKLKAKLEELL EKLKELLEKLLAKLKELL-P- 588 EKLKELLEKLLAKLKELL EKFKELLEKLLEKLKELL-P- 589 EKFKELLEKLLEKLKELL EKLKAKLEELKAKLEELL-P- 590 EKLKAKLEELKAKLEELL EELKELLKELLKKLEKLL-P- 591 ELKELLKELLKKLEKLL EELKKLLEELLKKLKELL-P- 592 EELKKLLEELLKKLKELL EKLKELLEKLLEKLKELL-A- 593 EKLKELLEKLLEKLKELL EKLKELLEKLLEKLKELL-AA- 594 EKLKELLEKLLEKLKELL EKLKAKLEELKAKLEELL-P- 595 EKAKAALEEAKAKAEELA EKLKAKLEELKAKLEELL-P- 596 EHAKAALEEAKCKAEELA DHLKAFYDKVACKLKEAF-P- 597 DWAKAAYDKAAEKAKEAA DWLKAFYDKVAEKLKEAF-P- 598 DHAKAAYDKAACKAKEAA DWLKAFYDKVACKLKEAF-P- 599 DWAKAAYNKAAEKAKEAA DHLKAFYDKVAEKLKEAF-P- 600 DWAKAAYDKAAEKAKEAA VLESFKVSFLSALEEYTKKLNTQ 601 (3F) DKWKAVYDKFAEAFKEFL 602 (3F) DKLKAFYDKVFEWAKEAF 603

Apo-J (G* Peptides).

It was also discovered that peptides that mimic the amphipathic helical domains of apoJ are also capable of mitigating one or more symptoms of atherosclerosis and/or other pathologies described herein. Apolipoprotein J possesses a wide nonpolar face termed globular protein-like, or G* amphipathic helical domains. The class G amphipathic helix is found in globular proteins, and thus, the name class G. This class of amphipathic helix is characterized by a random distribution of positively charged and negatively charged residues on the polar face with a narrow nonpolar face. Because of the narrow nonpolar face this class does not readily associate with phospholipids. The G* of amphipathic helix possesses similar, but not identical, characteristics to the G amphipathic helix. Similar to the class G amphipathic helix, the G* class peptides possesses a random distribution of positively and negatively charged residues on the polar face. However, in contrast to the class G amphipathic helix which has a narrow nonpolar face, this class has a wide nonpolar face that allows this class to readily bind phospholipid and the class is termed G* to differentiate it from the G class of amphipathic helix.

A number of suitable G* amphipathic peptides are described U.S. Pat. Nos. 6,930,085, and 7,638,494, and in PCT Publication No: PCT/US03/09988 (WO 2003/086326) which are incorporated herein by reference for the peptides described therein. In certain embodiments the G* (apoJ) peptides expressed in the transgenic plants comprise one or more domains that have an amino acid sequence shown in Table 2 or the reverse sequence.

TABLE 2 Certain peptides related to G* amphipathic heli- cal domains of apo J that can be expressed in transgenic plants, e.g., as described herein. For each sequence listed in this table, the retro form of the sequence is also contemplated. Thus, for example where the sequence DQYYLRVTTVA (SEQ ID NO: 605) is shown, the amino acid se- quence AVTTVRLYYQD (SEQ ID NO: 604) is also contemplated. SEQ ID Amino Acid Sequence NO DQYYLRVITVA 605 ECKPCLKQTCMKFYARVCR 606 FSRASSIIDELFQD 607 IQNAVNGVKQIKTLIEKTNEE 608 LLEQLNEQFNWVSRLANL 609 LLEQLNEQFNWVSRLANLTEGE 610 LLEQLNEQFNWVSRLANLTQGE 611 LVGRQLEEFL 612 MNGDRIDSLLEN 613 NELQEMSNQGSKYVNKEIQNAVNGV 614 PCLKQTCMKFYARVCR 615 PFLEMIHEAQQAMDI 616 PGVCNETMMALWEECK 617 PKFMETVAEKALQEYRKKHRE 618 PSGVTEVVVKLFDS 619 PSQAKLRRELDESLQVAERLTRKYNELLKSYQ 620 PTEFIREGDDD 621 QQTHMLDVMQD 622 RKTLLSNLEEAKKKKEDALNETRESETKLKEL 623 RMKDQCDKCREILSV 624

ApoE Mimetic Peptides

ApoE mimetic peptides have also been demonstrated to have activities similar to those described above for ApoA-I mimetic peptides, particularly with respect to neurological and/or ocular dysfunction (see, e.g., Handattu et al. (2010) J. Lipid Res. 51: 3491-3499; Laskowitz et al. (2001) Experimental Neurology 167: 74-85; Minami et al. (2010) Molecular Neurodegeneration, 5:16; Bhattacharjee et al. (2008) Invest Ophthalmol Vis Sci. 49: 4263-4268; Li et al. 92010) J. Pharmacol. and Experimental Therapeutics 334: 106-115; Klein and Yakel (2004) Neurosci., 127: 563-567; Laskowitz et al. (2007) J. of Neurotrauma 24: 1093-1107; Christensen et al. (2011) J. Immunol., 186: 2535-2542; Croy et al. 92004) Biochemistry 43: 7328-7335). In certain embodiments the peptides expressed in the transgenic plants comprise one or more domains that have an apoE amino acid sequence or a dual ApoE/ApoA-I sequence shown in Table 3 or the reverse sequence.

TABLE 3 Certain ApoE peptides that can be expressed in transgenic plants, e.g., as described herein. For each sequence listed in this table, the retro form of the sequence is also contemplated. Thus, for example where the sequence GIKKFLGSIWKFIKAFVG (SEQ ID NO: 626) is shown, the amino acid sequence GVFAKIFKWISGLFKKIG (SEQ ID NO: 625) is also contemplated. SEQ ID Amino Acid Sequence NO ApoE peptides: GIKKFLGSIWKFIKAFVG 626 GFKKFLGSWAKIYKAFVG 627 GFRRFLGSWARIYRAFVG 628 TEELRVRLASHLRKLRKRLL 629 TEELRVRLASHLRKLRK 630 LRVRLASHLRKLRKRLL 631 RLASHLRKLRKRLL 632 SHLRKLRKRLL 633 LRKLRKRLL 634 LRKLRKRLLLRKLRKRLL 635 LRKLRKRLLLRKLRKRLLLRKLRKRLL 636 RQIKIWFQNRRMKWKKCLRVRLASHLRKLRKRLL 637 LRVRLASHLRKLRKRLL 638 EELRVRLASHLRKLRKRLLRDADDLQKRLAVYEEQAQQI 639 RLQAEAFQARLKSWFEPLVEDM CEELRVRLASHLRKLRKRLLRDADDLQKRLAVY 640 LRKLRKRLLRDADDLLRKLRKRLLRDADDL 641 TEELRVRLASHLRKLRKRLL 642 TEELRVRLASHLEKLRKRLL 643 TEELRVRLASHLRELRKRLL 644 LREKKLRVSALRTHRLELRL 645 Dual ApoE and ApoA-I mimetic peptides: LRKLRKRLLRDWLKAFYDKVAEKLKEAF 646 LRRLRRRLLRDWLKAFYDKVAEKLKEAF 647 RRRRRRRRRRDWLKAFYDKVAEKLKEAF 648

It has been demonstrated that in certain embodiments, linking the receptor binding domain of apolipoprotein E (apoE) to a class A amphipathic helix can enhance internalization and degradation of LDL by fibroblasts and can lower plasma cholesterol and restore endothelial function (see, e.g., Datta et al. (2000) Biochemistry 39: 213-220; Gupta et al. (2005) Circulation 111: 3112-3118).

Accordingly in certain embodiments, any of the peptides described herein, when expressed in a transgenic plant, can be expressed as a peptide also comprising an apoE receptor binding domain (see, e.g., SEQ ID NOs:646-648 for illustrative examples).

In various embodiments, peptides comprising an oxpholipin domain such as Arg-Glu-Dpa-Thr-Gly-Leu-Ala-Trp-Glu-Trp-Trp-Arg-Thr-Val (SEQ ID NO:649), where Dpa (3,3′-diphenyl alanine) is substituted with Trp, Phe, or Ala) are also contemplated. Oxpholipin peptides are described by Ruchala et al. (2010) PLoS ONE 5(4): e10181) and in PCT Publication No: PCT/US2010/046534 (WO/2011/031460), which are incorporated herein by reference for the peptides described therein and where such peptides incorporate 3,3′-diphenylalanine, this residue is substituted with Trp, Phe, or Ala.

In addition to the sequences listed in Tables 1, 2, and 3 amino acid sequences comprising 1 conservative substitution, 2 conservative substitutions, 3 conservative substitutions, 4 conservative substitutions, 5 conservative substitutions, 6 conservative substitutions, 7 conservative substitutions, 8 conservative substitutions, 9 conservative substitutions, or 10 conservative substitutions are contemplated.

The foregoing peptides are intended to be illustrative and not limiting. In view of the surprising discovery that ApoA-I mimetic peptides and other related peptides can be expressed in a transgenic plant and can be effective when plant parts are administered to a mammal, one of skill in the art will recognized that numerous other such peptides can also be expressed in such plants and fed to a mammal to afford a similar utility.

Construction and Propagation of Transgenic Plants.

Nucleic Acids and Vectors Expressing the Peptide(s) of Interest.

In various embodiments methods for constructing transgenic plant cells are provided. The methods typically involve constructing a vector (e.g., a plasmid vector) or a DNA fragment by operably linking a DNA sequence encoding the peptide(s) of interest (e.g., peptides comprising ApoA-I, and/or G*, and/or ApoE domain(s)) to a plant-functional promoter capable of directing the expression of the peptide in the plant and then transforming a plant cell with the plasmid vector or DNA fragment. Where preferred, the method may be extended to produce transgenic plants from the transformed cells by including a step of regenerating a transgenic plant from the transgenic plant cell.

Typically, the codon usage of the nucleic acid that is to express the desired amino acid sequence(s) is selected to reflect the optimal codon usage in that plant. Methods of optimizing codon usage for expression of a nucleic acid in a particular host organism are known to those of skill in the art, and numerous software tools are available for such optimization. For example, codon tables are available from the Codon Usage Database, maintained by the Department of Plant Gene Research in Kazusa, Japan (see, e.g., www.kazusa.or.jp/codon/).

In certain embodiments the codon optimized nucleic acid sequence is incorporated into an expression vector (e.g., a plasmid). Typically the nucleic acid sequence is operably linked (put under control of) a promoter capable of directing expression of the nucleic acid sequence in the host plant.

Promoters

Promoters that are known or found to cause transcription of a foreign gene in plant cells are well known to those of skill in the art. Such promoters include, for example, promoters of viral origin and promoters of plant origin. The promoters can be constitutive or inducible, and in various embodiments, are tissue-specific promoters. In various embodiments any of these promoters are contemplated for the expression of a peptide described herein in a plant/plant tissue.

The most common promoters used for constitutive overexpression in plants are derived from plant virus sources, such as the cauliflower mosaic (CaMV) 35S promoter (Odell et al. (1985) Nature, 313: 810-812). This promoter, like similar virally derived promoters used in plant systems, is harvested from double-stranded DNA viral genomes, which use host nuclear RNA polymerase and do not appear to depend on any trans-acting viral gene products. The CaMV 35S promoter delivers high expression in virtually all regions of the transgenic plant, is readily obtainable in research and academic settings, and available in plant transformation vector cassettes that allow for easy subcloning of the transgene of interest. The CaMV 35S promoter can drive high levels of transgene expression in both dicots and monocots (Battraw and Hall (1990) Plant Mol. Biol. 15: 527-538; Benfey et al. (1990) EMBO J. 9: 1677-1684). In various embodiments the full-sized 35S promoter (−941 to +9 bp) (Odell et al. (1985) Nature, 313: 810-812) or various fragments such as a 2343 bp fragment can be used. Other viral promoters are also well known to those of skill in the art. These include, but are not limited to the cassava vein mosaic virus (CsVMV) promoter (see, e.g., Verdaguer et al. (1996) Plant Mol. Biol. 31: 1129-1139; Verdaguer et al. (1998) Plant Mol. Biol. 37: 1055-1067; Li et al. (2001) Plant Sci. 160: 877-887), Australian banana streak virus (BSV) promoters (see, e.g., Schenk et al. (2001) Plant Mol. Biol. 47: 399-412), mirabilis mosaic virus (MMV) promoter (see, e.g., Dey and Maiti (1999) Plant Mol. Biol. 40: 771-782), the figwort mosaic virus (FMV) promoter (see, e.g., Sanger et al. (1990) Plant Mol. Biol. 14: 433-443; Maiti et al. (1997) Transgenic Res. 6: 143-156) and the like.

Endogenous plant promoters are also used regularly to drive high constitutive levels of transgene expression (Gupta et al. (2001) Plant Biotechnol. 18: 275-282; Dhankher et al. (2002) Nature Biotechnol. 20: 1-6). A number of these strong constitutive promoters are derived from actin and ubiquitin genes. For example, the Act2 promoter was developed from the actin gene family in Arabidopsis (An et al. (1996) Plant J. 10: 107-121). The rice actin 1 gene promoter has also been developed for use in cereal systems (McElroy et al. (1991; Zhang et al. (1991) Plant Cell 3: 1155-1165) and drives expression in virtually all tissues except xylem when transformed back into rice. Ubiquitin promoters, for example the maize ubiquitin 1 promoter (pUbi) has provided high expression in of heterologous genes in maize protoplasts. The maize Ubil promoter: GUS fusion has been used in rice (Cornejo et al. (1993) Plant Mol. Biol. 23: 567-581). The Ubi.U4 gene promoter has also been shown to drive high expression activity (Garbarino et al. (1995) Plant Physiol. 109: 1371-1378).

A number of tissue-specific (e.g., specific to fruit, seed/grain, tubers/root storage systems, florets/flowers, Leaves/green tissue, anthers/pollen, and the like) are known. Illustrative, but non-limiting fruit-specific promoters include, for example promoters from the 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene, the E8 gene, and polygalacturonase (PG) genes have been characterized in apple (Atkinson et al. (1998) Plant Mol. Biol. 38: 449-460) and tomato (Montgomery et al. (1993) Plant Cell 5: 1049-1062; Nicholass et al. (1995) Plant Mol. Biol. 28: 423-435; Deikman and Fischer (1988) EMBO J. 7: 3315-3320). The promoter of the tomato E8 gene has been used successfully in a number of instances to target transgene expression to fruit. The promoter of the tomato polygalacturonase gene (PG gene product accumulates during ripening and is associated with fruit softening) has been used to drive expression of heterologous genes (Fraser et al. (2002) Eur. J. Biochem. 270: 1365-1380). In tomato, a single gene encodes PG, and analysis of a 1.4 kb promoter fragment shows that it also directs ripening-specific expression (Montgomery et al. (1993) Plant Cell 5: 1049-1062). Phytoene desaturase (Pds) is the second dedicated enzyme in carotenoid biosynthesis and is also encoded by a single gene in tomato (Giuliano et al. (1993) Plant Cell 5: 379-387). Because carotenoids accumulate in the chloroplasts and chromoplasts, the tomato Pds promoter (2.0 kb from start of translation) drives high levels of expression in organs and developing tissues where chromoplasts are found (fruits, petals, anthers) (Corona et al. (1996) Plant J. 9: 505-512).

Seed-specific transgene expression has been used for a number of genetic engineering applications. Illustrative seed specific promoters include, but are not limited to the promoters of various seed storage proteins. Other seed specific promoters include for example, those from the soybean β-conglycinin (Chen et al. (1989) Dev. Genet. 10: 112-122; Chamberland et al. (1992) Plant Mol. Biol. 19: 937-949; Lessard et al. (1993) Plant Mol. Biol. 5: 873-885), the sunflower helianthinin genes (Nunberg et al. (1994) Plant Cell 6: 473-486), and the like. One of the best-characterized and most commonly used seed-specific promoters is the French bean β-phaseolin gene (see, e.g., Bustos et al. (1989) Plant Cell 1: 839-853; van der Geest and Hall (1997) Plant J. 6: 413-423). Another useful seed specific promoter is the cotton α-globulin promoter (Sunilkumar et al. (2002) Transgenic Res. 11: 347-359) and has been characterized in cotton, Arabidopsis, and tobacco. In monocots, several promoters of storage proteins include, but are not limited to the endosperm-specific hordein promoters in barley (Forde et al. (1985) Nucleic Acids Res. 13: 7327-7339), glutenin promoters from wheat (Lamacchia et al. (2001) J. Exp. Bot. 52: 243-250), the zein promoters in maize (Marzabal et al. (1998) Plant J. 16: 41-52), and the granule-bound starch synthase 1 (gbss1) gene in wheat (Kluth et al. (2002) Plant Mol. Biol. 49: 669-682).

Tubers/root storage specific promoters include, but are not limited to the potato class I patatin family members, B33 and PAT 21 (Jefferson et al. (1990; Liu et al. (1991), the potato granule-bound starch synthase (GBSS) promoter, sweet potato, sporamin and β-amylase promoters (Maeo et al. (2001) Plant Mol. Biol. 46: 627-637), e.g., the gSPO-A1 promoter (Ohta et al. (1991) Mol. Gen. Genet. 225: 369-378).

Promoters specific to legume-rhizobium-associated root nodules include promoters of genes expressed early in nodule organogenesis (ENOD genes) (see, e.g., Lauridsen et al. (1993) Plant J. 3: 484-492; Vijn et al. (1995) Plant Mol. Biol. 28: 1103-1110; Fang and Hirsch (1998) Plant Physiol. 116: 53-68; Hohnjec et al. (2000) Mol. Gen. Genet. 264: 241-250), late nodulin promoters (see, e.g., Sandal et al. (1987) Nucleic Acids Res. 15: 1507-1519; Stougaard et al. (1987) EMBO J. 6: 3565-3569), leghemoglobin promoters, the Sesbania rostrata leghemoglobin glb3 promoter (see, e.g., Szabados et al. (1990) Plant Cell 2: 973-986; Szczyglowski et al. (1996) Plant Mol. Biol. 31: 931-935), and the like.

Root specific promoters are described, for example, by Yamamoto et al. (1991) Plant Cell 3: 371-382. Non-plant root-specific promoters include the promoters of the rooting loci (rol) genes found in the Ri (root-inducing) plasmid of A. rhizogenes (e.g., the rolD promoter), Domain A of the CaMV 35S promoter (Benfey and Chua (1989) Plant Cell 2: 849-856), the TobRB7 promoter from tobacco (Yamamoto et al. (1991) Plant Cell 3: 371-382), and the like.

Promoters specific to leaves/green tissues include, but are not limited to, promoters from the rbcS multigene family encoding the small subunit of ribulose-1,5-bisphosphate carboxylase such as the pea rbcS-3A promoter the alfalfa rbcS promoter the Rubisco promoter, promoters from the chlorophyll a/b-binding (Cab) protein genes (e.g., CAB2 promoter) (Piechulla et al. (1998) Plant Mol. Biol. 38: 655-662), the alfalfa 1532 bp RAc promoter, and the like.

Illustrative, but non-limiting examples of tissue specific promoters are shown in Table 4.

Tissue Illustrative Promoters Fruit specific Apple ACC oxidase Tomato polygalactouronidase Tomato E8 Tomato PDS Green tissue specific Pea rbcs-3A Arabidopsis CAB2 Alfalfa RAc Nodule specific Vicia faba VfEnod12 Bean NVP30 S. rostrata leghemoglobin Root specific A. rhizogenes rolD Domain A, CaMV 35S Tobacco TobRB7 Tuber/storage organ specific Potato patatin B33 Potato patatin PAT21 Potato GBSS Seed specific Bean beta-phaseolin Cotton alpha-globulin Wheat gbssl Zma10 Kz or Zmag12 (maize zein gene) Zmag12 (maize glutelin gene) Seed coat specific Pea GsGNS2 Floral specific Chrysanthemum UEP1 Bean CHS15 Petunia EPSPS Pollen specific Maize ZMC5 Tomato lat52 Pistil specific Pear PsTL1 Potato SK2

In certain embodiments, the peptide(s) described herein are expressed under the control of the CaMV promoter. As used herein, the phrase “CaMV 35S” promoter includes variations of CaMV 35S promoter, e.g. promoters derived by means of ligations with operator regions, random or controlled mutagenesis, etc.). In certain embodiments, the peptide(s) described herein are expressed under the control of the E8 promoter. In certain embodiments, the peptide(s) described herein are expressed under the control of the hybrid tomato E4/E8 plant promoter (see, e.g., U.S. Pat. No. 6,118,049).

Vectors

As indicated above, the nucleic acid encoding the peptide(s) described herein is placed in a vector (e.g., a plasmid vector) under control of the desired promoter. In certain embodiments the vector (e.g., plasmid vector) can further encode one or more selectable markers (e.g., an antibiotic resistance marker such as the npt II gene for kanamycin resistance) and markers that confer selection by hygromycin, streptomycin, spectinomycin, or phosphinotricin. Illustrative selectable markers for use in plants include, but are not limited to neomycin phosphotransferase, hygromycin phosphotransferase, dihydrofolate reductase, chloramphenicol acetyl transferase, gentamycin acetyl transferase, nopaline synthase, octopine synthase, p-galactosidase, p-glucuronidase, streptomycin phosphotransferase, bleomycin resistance, firefly luciferase, bacterial luciferase, threonine dehydratase, metallothionein i1, epsp synthase, phosphinothricin acetyl transferase, acetolactate synthase, bromoxynil nitrilase, and the like.

In certain embodiments the vector can encode a signal peptide (e.g., ALPAH-Al1-Phaseolus vulgaris). Sequences that can be provided include, for example, a leader sequence (e.g., to allow secretion or vacuolar targeting), and translation termination signals.

More generally a number of vectors for plant cell transformation and heterologous gene expression are known to those of skill in the art. For example, the structures of a wide array of plasmids that have proven effective in (a) plant transformation and expression of heterologous genes including constructs that confer resistance to kanamycin, hygromycin, streptomycin, spectinomycin and phosphinotricin, or that confer β-glucuronidase (GUS) gene expression are described by Jones et al. (1992) Transgenic Res., 1: 285-297. Binary vector constructs that carry polylinkers of the pUC and Bluescript types, plasmids that permit the expression of any heterologous reading frame from either nopaline synthase (nos) or octopine synthase (ocs) promoters, as well as the cauliflower mosaic virus 35S promoter, using either the nopaline synthase or octopine synthase 3′ polyadenylation sequences, are also presented in this reference. These constructs permit a choice of orientation of the resulting transgene of interest, relative to the orientation of the selection marker gene. Most of the plasmids described by Jones et al. (supra.) are publicly/commercially available.

Illustrative and non-limiting examples of vectors include the pRL200 vector that has been used to stably transform lettuce (see, e.g., Kanamoto et al. (2006) Transgenic Res., 15: 205-217), the pCAMBI1381-GUS plasmid has been used to target specific tissues in tomatoes (see, e.g., Lim et al. (2012) Molecules and Cells 34: 53-59), the pSBS4642 vector, the chloroplast transformation vector pLD, and the like.

Means of constructing the heterologous “gene” and incorporating it into a plasmid are well known to those of skill in the art. For example the heterologous “gene” can be chemically synthesized using a DNA synthesizer. Commercial services can also provide nucleic acid sequences synthesized to order. The construct can then be cloned into the vector using, for example, PCR cloning procedures. Methods of making the nucleic acid constructs described herein are well known to those of skill in the art, and specific methods are illustrated in the examples. Cloning and transformation methods, DNA vectors and the use of regulatory sequences are well known to the skilled artisan and may for instance be found in Current Protocols in Molecular Biology, F. M. Ausubel et al, Wiley Interscience, 2004, incorporated herein by reference.

In certain embodiments the marker genes (e.g., selectable markers) are removed from the transgenic plant. Methods of removing selectable markers are well known to those of skill in the art. In one illustrative, but non-limiting approach the marker genes are eliminated using MAT vector systems. MAT (Multi-Auto-Transformation) vectors are designed to use the oncogenes (ipt, iaaM/H, rol) of Agrobacterium, which control the endogenous levels of plant hormones and the cell responses to plant growth regulators, to differentiate transgenic cells, and to select marker-free transgenic plants. The oncogenes are combined with the site-specific recombination system (R/RS). At transformation, the oncogenes regenerate transgenic plants and then are removed by the R/RS system to generate marker-free transgenic plants. Protocols for the choice of a promoter for the oncogenes and the recombinase (R) gene, the state of plant materials and the tissue culture conditions are described, for example, by Ebinuman et al. (2005) Meth. Mol. Biol., 286: 237-254.

Host Plant Selection

A wide variety of plant species have been genetically transformed with foreign DNA, using several different techniques to insert genes (see, e.g., Wu (1989) Pp. 35-15 In: Plant Biotechnology, Kung, S. and Arntzen, eds., Butterworth Publishers, Boston, Mass.; Deak et al. (1986) Plant Cell Rep. 5, 97-100; McCormick et al. (1986) Plant Cell Rep., 5: 81-84; Shahin and Simpson (1986) Hort. Sci. 21: 1199-1201; Umbeck et al. (1987) Bio/Technology 5: 263-266; Christon et al. (1990) Trends Biotechnol. 8: 145-151; Datta et al. (1990) Bio/Technology 8: 736-740; Hinchee et al. (1988) Bio/Technology 6: 915-922; Raineri et al. (1990) Bio/Technology, 8: 33-38; Fromm et al. (1990) Bio/Technology 8: 833-839; and the like). Since many edible plants used by humans for food or as components of animal feed are dicotyledenous plants, in certain embodiments, it is preferred to employ dicotyledons for expression of the peptide(s) described herein, although monocotyledon transformation is also applicable especially in the production of certain grains useful for animal feed.

In certain embodiments the host plant selected for genetic transformation has edible tissue in which the peptide(s) of interest can be expressed. Thus, in various embodiments, the peptide(s) can be expressed in a part of the plant, such as the fruit, leaves, stems, seeds, or roots, which may be consumed by a human or an animal for which the peptide(s) are intended.

Various other considerations can inform selection of the host plant. It is sometimes preferred that the edible tissue of the host plant not require heating prior to consumption since the heating may reduce the effectiveness of apolipoprotein or mimetic for animal or human use. Also, it is sometimes preferred that the host plant express the peptide(s) in the form of a drinkable liquid.

In certain embodiments plants that are suitable for expression of the peptide(s) described herein include any dicotyledon or monocotyledon that is edible in part or in whole by a human or an animal. Illustrative plants include, for example, tomatoes, carrots, potatoes, apples, pears, plums, peaches, oranges, kiwis, papayas, pineapples, guava, lilikoi, starfruit, lychee, mango, grape, pomegranate, mustard greens, kale, chard, lettuce, soybean, rice, corn and other grains (e.g., wheat, rice, barley, bulgur, faro, kamut, millet, oats, quinoa, rice, rye, sorghum, spelt, teff, triticale, and the like), berries such as strawberries, blueberries, blackberries, goji berries, and raspberries, banana, rice, turnip, maize, grape, fig, plum, potato, safflower seeds, nuts (e.g., almond, walnut, pecan, peanut, cashew, macademia, hazelnut, etc.), legumes (e.g., alfalfa, clover, peas, beans (including black beans), lentils, lupins, mesquite, carob, soybeans, and the like), and the like. In certain embodiments expression in plants such as tobacco and the like, is also contemplated.

Methods of Gene Transfer into Plants

Any of a number of transformation protocols can be used to transform the plant cells and plants described herein. While certain preferred embodiments described below utilize particular transformation protocols, it will be understood by those of skill in the art that any transformation method may be utilized within the definitions and scope of the invention.

There are a number of methods for introducing foreign genes into both monocotyledenous and dicotyledenous plants (see, e.g., Potrykus (1991) Annu. Rev. Plant Physiol, Plant Mol. Biol. 42: 205-225; Shimamoto et al. (1989) Nature 338: 274-27, and the like. Methods for stable integration of exogenous DNA into plant genomic DNA include for example agrobacterium-mediated gene transfer, direct DNA uptake including methods for direct uptake DNA into protoplasts, DNA uptake induced by brief electric shock of plant cells, DNA injection into plant cells or tissues by particle bombardment, or by the use of micropipette systems, or by the direct incubation of DNA with germinating pollen; and the use of plant virus as gene vectors.

Plant transformation and regeneration in dicotyledons by Agrobacterium tumefaciens (A. tumefaciens) is well documented. The application of the Agrobacterium tumefaciens system with, for example, the leaf disc transformation method (see, e.g., Horsch et al. (1988) Pp. 1-9 In: Plant Molecular Biology Manual AS, Kluwer Academic Publishers, Dordrecht) permits efficient gene transfer, selection and regeneration.

Monocotyledons have also been found to be capable of genetic transformation by Agrobacterium tumefaciens as well as by other methods such as direct DNA uptake mediated by PEG (polyethylene glycol), or electroporation. Successful transfer of foreign genes into corn (see, e.g., Rhodes et al. (1989) Science 240: 204-207) and rice (see, e.g., Toriyama et al. (1988) Bio/Technology 6: 1072-1074; Zhang and Wu (1988) Theor. Appl. Genet. 76: 835-840), tomato (see, e.g., Frary and Earl (1996) Plant Cell Rept. 15: 235-240), as well as wheat and sorghum protoplasts, and numerous other species has been demonstrated.

The Agrobacterium system includes the use of plasmid vectors that contain defined DNA segments that integrate into the plant genomic DNA. Methods of inoculation of the plant tissue vary depending upon the plant species and the Agrobacterium delivery system. One illustrative approach is the leaf disc procedure which can be performed with any tissue explant that provides a good source for initiation of whole plant differentiation. The Agrobacterium system is especially viable in the creation of transgenic dicotyledenous plants.

As indicated above there are various methods of direct DNA transfer into plant cells. In electroporation, the protoplasts are briefly exposed to a strong electric field. In microinjection, the DNA is mechanically injected directly into the cells using very small micropipettes. In microparticle bombardment, the DNA is adsorbed on microprojectiles such as magnesium sulfate crystals or tungsten particles, and the microprojectiles are physically accelerated into cells or plant tissues.

Another method of vector transfer is the transmission of genetic material using modified plant viruses. DNA of interest is integrated into DNA viruses, and these viruses are used to infect plants at wound sites.

One method of transfection utilizing Agrobacterium tumafaciens is illustrated herein in the Examples. Using these teachings, numerous other plants can be similarly transformed. Those skilled in the art should recognize that there are multiple choices of Agrobacterium strains and plasmid construction strategies that can be used to optimize genetic transformation of plants. They will also recognize that A. tumefaciens may not be the only Agrobacterium strain used. Other Agrobacterium strains such as A. rhizogenes might be more suitable in some applications.

Methods of inoculation of the plant tissue vary depending upon the plant species and the Agrobacterium delivery system. A very convenient approach is the leaf disc procedure which can be performed with any tissue explant that provides a good source for initiation of whole plant differentiation. The addition of nurse tissue may be desirable under certain conditions. Other procedures such as the in vitro transformation of regenerating protoplasts with A. tumefaciens may be followed to obtain transformed plant cells as well.

It is noted that heterologous genes have been expressed in a wide variety of plants, particular edible plants. Thus, for example, a minimal peach chlorophyll a/b-binding protein gene (Lhcb2*Pp/) promoter (Cab19) and an enhanced mas35S CaMV promoter has been used to express heterologous genes in tomatoes (see, e.g., Bassett et al. (2007) BMC Biotechnology 7: 47). A 35S::PtFT1 promoter (35S CaMV promoter) has been used successfully in plums (see, e.g., Srinivasan PLoS ONE 7(7):e40715) and in apples (see, e.g., Trankener et al. (2010) Planta 232: 1309-1324). Suc2 promoter sequence of the A. Thaliana SUC2 gene (sucrose-H+symporter) has also been used (Id.). Another promoter used in apples was the Pgst1 promoter from potato (see, e.g., Malnoy et al. (2006) Transgenic Res., 15: 83-93). The 35S CaMV promoter has been used in apples for many years (see, e.g., Gleave (1992) Plant Mol Biol. 20: 1203-1207). Other promoters that are derivatives of the 35S CaMV promoter have been used in apples such as the potato proteinase inhibitor II (Pin2) promoter (see, e.g., Ko et al. (2002) J. Amer. Soc. Hort. Sci. 127: 515-519). Butelli et al. used a binary vector (pDEL.ROS) containing both Delila and Rosea1 cDNAs from snapdragon under the control of the E8 promoter from tomato to produce tomatoes enriched in anthocyanins (see e.g., Butelli et al. (2008) Nature Biotechnology 26: 1301-1308). Kesanakurti et al. (2012) Physiologia Plantarum 146: 136-148) used the E8 promoter to produce tomato plants to transgenically produce tomato anionic peroxidase (tap1). Yang et al. (2012) Transgenic Res. 21: 1043-1056) demonstrated that the Gentiana lutea zeaxanthin epoxidase (GlZEP) promoter was highly expressed in transgenic tomato plants.

In view of the foregoing, one of skill will recognize that using the teachings and examples provided herein, any of peptides (e.g., apoA-I mimetic peptides) described herein can be expressed in an effective amount in a plant tissue with at most routine experimentation.

Method of Administering Transgenic Plants and Plant Products for Therapeutic and/or Prophylactic Use.

In various embodiments methods for the prophylaxis and/or treatment of various pathologies, especially pathologies characterized by an inflammatory response (see, e.g., Table 5) are provided. In certain embodiments the methods involve administering to a mammal in need thereof (e.g., a human, a non-human mammal) at least a portion of a transgenic plant as described herein, and/or an apolipoprotein or apolipoprotein mimetic peptide derived from such a transgenic plant. In certain embodiments all or a portion of the plant is administered to the mammal. In certain embodiments the mammal is administered the peptide in the form of a food, and/or a protein powder, and/or a nutritional supplement, and/or a “power bar”, and/or a “defined diet”.

In various embodiments the methods are used in the prophylaxis and/or treatment of pathologies that include, but are not limited to atherosclerosis, arthritis, cancer, diabetes, hepatic fibrosis, macular degeneration, kidney disease, obesity, osteoporosis, scleroderma, systemic lupus erythematosus, transplant vasculopathy, and vascular dementia.

In certain embodiments the pathology is atherosclerosis and the administration is for the treatment of disease or is a prophylactic administration. In certain embodiments, the prophylactic administration is to a subject (e.g., a human or non-human mammal) showing one or more risk factors for atherosclerosis (e.g., obesity, family history, elevated cholesterol, hypertension, diabetes, metabolic syndrome, low levels of HDL-cholesterol, elevated levels of triglycerides, or levels of high sensitivity CRP that are in the upper half of normal or are frankly elevated, and the like).

In certain embodiments the pathology is a cancer and the administration is as a therapeutic method in its own right and/or to augment therapeutic methods and/or to reduce adverse side effects to therapeutic methods (e.g., chemotherapy, radiotherapy, etc.). Various cancers for which the administration is believed to be suitable include, but are not limited to ovarian cancer, colon cancer, myeloma or multiple myeloma, breast cancer, bone cancer, cervical cancer, brain cancer, lung cancer, skin cancer including malignant melanoma, and prostate cancer.

In certain embodiments the administration is to prevent the onset, slow the onset and/or slow the progression of Alzheimer's disease and/or other dementia.

Administration of Transgenic Plant or Plant Part.

In certain embodiments the mammal is administered the transgenic plant expressing a peptide comprising or consisting of one or more apolipoprotein domains (e.g., 6F domains, 4F domains, etc.). In certain embodiments the mammal is fed all of the plant, or certain parts of the plant. Such parts include for example, fruit, leaves, seed, root, stem, flower, and the like. In certain embodiments, the plant or portion thereof is provided in the form of a juice, pulp, or ground portion(s) of the plant.

In certain embodiments the plant, or portion thereof, is provided in a lyophilized form or in a dried form (e.g., as a dried fruit, dried tomato, etc.). In certain embodiments the plant or portion thereof is lyophilized and/or dried and then ground into a powder that can be administered in that form to the subject and/or combined with other dietary components (e.g., as a food ingredient) for administration to the subject.

Protein Powder

In certain embodiments the mammal is administered a protein powder comprising a peptide comprising or consisting of one or more apolipoprotein domains (e.g., 6F domains, 4F domains, etc.) isolated from the transgenic plant(s) described herein, and/or the transgenic plant or at least a portion thereof. In certain embodiments the protein powder further comprise an additional protein. Illustrative proteins include, but are not limited to whey protein (e.g., whey concentrate, whey isolate, and whey hydrolysate), casein protein (or milk protein), soy protein, egg-white protein, hemp seed protein, rice protein, pea protein, and the like.

In certain embodiments a peptide comprising or consisting of one or more apolipoprotein domains (or apolipoprotein mimetics) is isolated from the transgenic plant and simply combined/mixed with the protein powder. In certain embodiments the plant, or a portion thereof, is dried and ground up into a plant powder that can be combined/mixed with the protein powder.

Methods of isolating/producing protein powder are well known to those of skill in the art. Typical methods involve a crude isolation step (e.g., filtering processes to separate lactose from milk in the preparation of whey protein) followed by a concentration step, e.g., an ion exchange purification to purify the protein without denaturing it. In certain embodiments the isolated recombinant protein, or powdered plant/plant component is simply added to a commercially available protein powder.

Food or Food Ingredient Comprising a Plant or Plant Part.

In certain embodiments the mammal is administered a food or a food ingredient that comprises at least a portion of the transgenic plant expressing a peptide comprising or consisting of one or more apolipoproteins or mimetics thereof (e.g., 6F domains, 4F domains, etc.). Typically the portion is at least a portion of the transgenic plant capable of being ingested for its nutritional value and/or taste where the consumed portion comprises the recombinant peptide comprising or consisting of the peptide(s). For these purposes a plant or portion thereof is considered to have nutritional value when it provides a source of metabolizable energy, supplementary or necessary vitamins or co-factors, roughage or otherwise beneficial effect upon ingestion by the subject mammal.

Thus, where the mammal to be treated with the food, or food ingredient, is an herbivore capable of bacterial-aided digestion of cellulose, such a food might be represented by a transgenic monocot grass. Similarly, although transgenic lettuce plants do not substantially contribute energy sources, building block molecules such as proteins, carbohydrates or fats, or other necessary or supplemental vitamins or cofactors, a lettuce plant transgenic for the apolipoprotein(s) described herein used as a food for that mammal would fall under the definition of a food as used herein if the ingestion of the lettuce contributed roughage to the benefit of the mammal, even if the mammal could not digest the cellulosic component of lettuce.

It is noted, that in various embodiments, dried plant parts, in particular dried fruits can readily be used as foods (e.g., dried pears, dried apples, dried tomatoes, dried plums, etc.). Similarly these dried plant parts (e.g., dried fruits) can readily be incorporated into foods and thereby form components of that food. Thus, for example dried tomatoes are widely used in foods such as bruschetta, pizza, tomato sauce, and the like. Where the plant part is provided as a powder it can readily be incorporated as an ingredient in a number of different foods (e.g., energy-, or protein-bars, smoothies, and the like).

Nutritional Supplement.

In certain embodiments a peptide comprising or consisting of one or more apolipoprotein domains (e.g., domains comprising a 6F sequence, a 4F sequence, etc.) isolated from the transgenic plant(s) described herein, and/or the transgenic plant or at least a portion thereof is provided as a component of a nutritional supplement (e.g., a vitamin supplement, a protein supplement, etc.). Illustrative vitamin supplements include, for example, vitamin A supplements, vitamin B supplements, vitamin D supplements, vitamin C supplements, fatty acid supplements (e.g., omega 3 fatty acids), mineral supplements such as calcium, zinc, and iron, and various combinations thereof.

In certain embodiments a peptide comprising or consisting of one or more apolipoprotein domains (e.g., domains comprising a 6F sequence, a 4F sequence, etc.) isolated from the transgenic plant(s) described herein, and/or the transgenic plant or at least a portion thereof is provided as a component of a multivitamin formulation or combined in a multi-component package with other vitamin/FA/mineral supplements. In certain embodiments where the plant or portion thereof is used in such a supplement the plant or portion thereof is dried and ground, e.g., to a fine powder and then incorporated into a multivitamin, or tableted or encapsulated by itself. In certain embodiments the vitamin supplement comprises vitamin A, and/or vitamin B1, and/or B2, and/or B6 and/or B12, and/or vitamin C, and/or vitamin E, and/or a fatty acid.

Defined Diet/Meal Replacement Product.

In certain embodiments a peptide comprising or consisting of one or more apolipoprotein domains (e.g., domains comprising a 6F sequence, a 4F sequence, etc.) isolated from the transgenic plant(s) described herein, and/or the transgenic plant or at least a portion thereof is provided as a component of a “defined diet” and/or meal replacement products (MRPs). A defined diet is a diet, optionally pre-packaged, that is intended to meet all the dietary requirements of a particular subject. For example, for humans a defined diet can be a pre-determined diet designed to facilitate a particular dietary goal (e.g., weight reduction, reduction of allergens, lactose, weight gain, protein elevation, etc.). In the case of non-human mammals (e.g., canines, felines, porcines, equines, bovines, etc.) the “defined diet” can be provided in the form an animal food product. The animal food product can be designed to meet particular dietary goals, e.g., as described above for a human.

In certain embodiments, the animal food product can be provided as the component of a treatment regimen (e.g., for a farm animal, pet, etc.) afflicted with, or at risk for, a particular pathology, e.g., cancer, atherosclerosis, kidney disease, etc.

Meal replacement products are a form of defined diet, either pre-packaged powdered drink mixes or edible bars designed to replace prepared meals. MRPs are generally high in protein, low in fat, have a low to moderate amount of carbohydrates, and contain a wide array of vitamins and minerals. The majority of MRPs use whey protein, casein (often listed as calcium caseinate or micellar casein), soy protein, and/or egg albumin as protein sources. Carbohydrates are typically derived from maltodextrin, oat fiber, brown rice, and/or wheat flour. Some MRPs also contain flax oil powder as a source of essential fatty acids. MRPs can also contain other ingredients. These can include, but are not limited to creatine monohydrate, glutamine peptides, L-glutamine, calcium alpha-ketoglutarate, additional amino acids, lactoferrin, conjugated linoleic acid, and medium chain triglycerides.

In certain embodiments the “defined diet” comprises one or more food items. Each food item may be individually prepackaged. In addition, one or more of the food items may be nutritionally enhanced by fortification of vitamins and minerals and/or by incorporation of the peptide or transgenic plant or portion thereof.

The individual food items may be prepared by processing, e.g., mixing, precooking, cooking, freezing, dehydrating or freeze-drying, such that the meal may be maintained in a frozen or dry condition for an extended period. Additionally, an individual food item may be packaged in such a way that, before consumption, the food item must be mixed by hand or blender, cooked by placing the food component on a stove top, in an oven or microwave, or prepared by adding cool, hot or boiling water or by submerging the food item into boiling water. One or more of the food items may be shelf-stable. Preferably, a food item has a sufficiently long storage or shelf-life such that defined diet may be stored in advance of consumption. In certain embodiments a storage or shelf-life under retail conditions in a range of about six to twelve months is desirable.

In certain embodiments individual food items may be in the form of solids, semi-solids or liquids and may include, but are not limited to, soup products, protein supplements, grain foods, starch foods, fruit or vegetables foods, nutritional drinks and beverages.

In various embodiments, the peptide comprising or consisting of one or more apolipoprotein domains (e.g., domains comprising a 6F sequence, a 4F sequence, etc.) isolated from the transgenic plant(s) described herein, and/or the transgenic plant or at least a portion thereof is simply combined with/incorporated into the defined diet and/or meal replacement product (MRP). In certain embodiments the plant is dried and ground to a powder that can be added to one or more of the food components comprising the defined diet or MRP. In certain embodiments, the plant or a portion thereof can itself serve as a food comprising the defined diet/MRP. For example, where the transgenic plant is a transgenic tomato plant, the plant can be provided as a dried tomato (e.g., in a salad or pizza), as a tomato paste, tomato juice, or whole tomato in the meal as provided.

Power Bars.

In certain embodiments a peptide comprising or consisting of one or more apolipoprotein domains (e.g., domains comprising a 6F sequence, a 4F sequence, etc.) isolated from the transgenic plant(s) described herein, and/or the transgenic plant or at least a portion thereof is provided as a component of a “power bar”/energy bar. Energy bars are supplemental bars that typically contain cereals and/or dried fruit(s), and/or other high energy foods and/or fiber targeted at people that require quick energy or that are on certain weight loss regimens, but do not have time for a meal. They are different from energy drinks, which contain caffeine, whereas bars provide food energy.

Numerous power bar formulations are known to those of skill in the art. In certain embodiments the peptide comprising or consisting of one or more apolipoprotein domains is incorporated into the power bar as a protein (amino acid) component. In certain embodiments the transgenic plant or at least a portion thereof is provided as a component of the power bar. In various embodiments the plant can be provided as all or a portion of a fruit and/or fiber component of the power bar formulation.

Use of “Non-Transgenic” Tomato

It was also a surprises discovery that non-transgenic tomatoes, while lacking the activity demonstrated by the transgenic plants described herein can increase PON activity and/or decrease inflammation. Accordingly in certain embodiments the use of a tomato concentrate to increase PON activity and/or to decrease inflammation (e.g. as measured by SAA levels) is contemplated.

Animal Uses.

As indicated above, in various embodiments, a peptide comprising or consisting of one or more apolipoprotein domains (e.g., domains comprising a 6F sequence, a 4F sequence, etc.) isolated from the transgenic plant(s) described herein, and/or the transgenic plant or at least a portion thereof is provided as a component of an animal diet. The diet can be provided to simply maintain a healthy animal or in certain embodiments, the diet is optimized to facilitate a prophylactic or therapeutic effect.

Illustrative animal diets include, but are not limited to diets for juvenile animals, diets for normal adult animals, diets for old animals, weight loss diets, dental health diets, thyroid health diets, gastrointestinal health diets, hypoallergenic diets, kidney health diets, bladder health diets, aging diets, and the like. In certain embodiments the diet is a diet optimized for treatment of an animal with kidney disease and/or with cancer. In certain embodiments the diet is designed for administration to an animal receiving chemotherapy and/or radiotherapy.

In certain embodiments the peptide comprising one or more apolipoprotein domain is simply added to the diet as an additional protein (amino acid) source. In certain embodiments the plant or a portion thereof is incorporated into the diet. In certain embodiments the plant or portion thereof is dried and ground up into a powder for incorporation into the diet. The plan or portion thereof can be incorporated into a wet animal food or a dried (e.g., pellet) animal food. In certain embodiments the plant or portion thereof additional provides a fiber component of the diet.

Other Therapeutic Peptides.

While the constructs, plants, and methods described above are described with respect to apoproteins, it is believed the same delivery methods (e.g., consumption of a plant, plant part, or plant product) can be used to deliver other therapeutic peptides.

A wide variety of other therapeutic peptides are known to those of skill in the art and it is believed they can be expressed in plants in therapeutically effective amounts as described herein. Such peptides include, but are not limited to, growth hormone (e.g., isolated and/or human, porcine, or bovine growth hormones), natural, synthetic, or recombinant growth hormone releasing hormones (GHRH), interferons (e.g., alpha, beta, and gamma interferon), interleukins (e.g., interleukin-1, interleukin, 2, etc.), natural, synthetic or recombinant insulin (e.g., porcine, bovine, human insulins), insulin-like growth factor-1 (IGF-1), insulin-like growth factor-2 (IGF2, somatostatin), heparin, heparinoids, dermatans, chondroitins, calcitonin (e.g., natural, synthetic, or recombinant salmon, porcine, eel, chicken, and human calcitonin), antigens (e.g., influenza antigen, hepatitis A, B, C antigen, HPV antigen, etc.), antibodies (polyclonal and monoclonal) (e.g., HERCEPTIN®, RITUXAN®, AVASTIN®, ERBITUX®, etc.), oxytocin, leutinizing-hormone-releasing hormone (LHRH), follicle stimulating hormone (FSH); glucocerebrosidase, thrombopoietin; filgrastim; prostaglandins; vasopressin; cromolyn sodium (e.g., sodium or disodium chromoglycate), vancomycin, desferrioxamine (DFO); parathyroid hormone (PTH) including its fragments, antimicrobials (e.g., anti-bacterial agents, including anti-fungal agents, etc.), and the like. In addition, the therapeutic peptides include analogs, fragments, mimetics or modified derivatives of these compounds (e.g., polyethylene glycol (PEG)-modified derivatives, glycosylated derivatives, etc.), or any combination thereof.

Therapeutic/Prophylactic Applications of Apoproteins.

It has been demonstrated that the peptides described herein (e.g., the peptides listed in Tables 1, 2, and/or 3) are therapeutically and/or prophylactically effective in a number of indications characterized by an inflammatory response. Such indications include, for example atherosclerosis as described for example, in U.S. Pat. Nos. 6,664,230, 6,933,279, 7,144,862, 7,166,578, 7,199,102 and PCT Publication Nos: PCT/US2001/026497 (WO 2002/015923), and PCT/US2008/085409, which are incorporated herein by reference for the peptides and indications described herein.

Accordingly, it is believed that transgenic plants as described herein expressing the peptides or portions thereof are similarly effective in such indications. Thus, in certain embodiments, methods for the treatment or prophylaxis of a pathology characterized by an inflammatory response are provided where the method comprises administering to a mammal in need thereof an effective amount of: at least a portion of a transgenic plant expressing one or more peptides from Tables 1, 2, and/or 3; and/or an apolipoprotein or apolipoprotein mimetic peptide expressed in a plant as described herein, and/or a food comprising at least a portion of a transgenic plant capable of being ingested for its nutritional value, where the plant expresses a peptide comprising an amino acid sequence that is an apolipoprotein or apolipoprotein mimetic as described herein, and/or a protein powder, wherein at least a portion of the protein powder comprises an apolipoprotein or apolipoprotein mimetic peptide expressed in a plant as described herein, and/or a comprising a transgenic plant (or portion thereof) and/or an apolipoprotein or apolipoprotein mimetic peptide as described herein.

In certain embodiments the apolipoprotein peptide is comprises an amino acid sequence selected from the group consisting of DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17), FFEKFKEFFKDYFAKLWD (rev6F, SEQ ID NO: 25), DWFKAFYDKVAEKFKEAF (4F, SEQ ID NO:15), FAEKFKEAVKDYFAKFWD (rev4F, SEQ ID NO: 23), LLEQLNEQFNWVSRLANL (SEQ ID NO:609), and LVGRQLEEFL (SEQ ID NO:612).

An illustrative, but non-limiting list of indications/conditions for which the peptides described herein have been shown to be effective and/or are believed to be effective is shown in Table 5.

TABLE 5 Illustrative conditions in which the peptides described herein (e.g., 4F, 6F, etc.) have been shown to be or are believed to be effective. atherosclerosis/symptoms/consequences thereof   plaque formation   lesion formation   myocardial infarction   stroke congestive heart failure vascular function:   arteriole function   arteriolar disease     associated with aging     associated with Alzheimer's disease     associated with chronic kidney disease     associated with hypertension     associated with multi-infarct dementia     associated with subarachnoid hemorrhage   peripheral vascular disease pulmonary disease:   chronic obstructive pulmonary disease (COPD),   emphysema   asthma   idiopathic pulmonary fibrosis   pulmonary fibrosis   adult respiratory distress syndrome osteoporosis Paget's disease coronary calcification autoimmune:     rheumatoid arthritis     polyarteritis nodosa     polymyalgia rheumatica     lupus erythematosus     multiple sclerosis     Wegener's granulomatosis     central nervous system vasculitis (CNSV)     Sjögren's syndrome     Scleroderma     polymyositis AIDS inflammatory response infections:   bacterial   fungal   viral   parasitic   influenza (including avian flu)   viral pneumonia   endotoxic shock syndrome   sepsis   sepsis syndrome   (clinical syndrome where it appears that the patient is septic   but no organisms are recovered from the blood) trauma/wound:   organ transplant   transplant atherosclerosis   transplant rejection   corneal ulcer   chronic/non-healing wound   ulcerative colitis   reperfusion injury (prevent and/or treat)   ischemic reperfusion injury (prevent and/or treat)   spinal cord injuries (mitigating effects) cancers   myeloma/multiple myeloma   ovarian cancer   breast cancer   colon cancer   bone cancer   cervical cancer   prostate cancer osteoarthritis inflammatory bowel disease allergic rhinitis cachexia diabetes Alzheimer's disease implanted prosthesis biofilm formation Crohns' disease renal failure (acute renal failure, chronic renal failure) sickle cell disease, sickle cell crisis amelioration of adriamycin toxicity amelioration of anthracylin toxicity to improve insulin sensitivity to treat the metabolic syndrome to increase adiponectin to reduce abdominal fat dermatitis, acute and chronic   eczema   psoriasis   contact dermatitis   scleroderma diabetes and related conditions   Type I Diabetes   Type II Diabetes   Juvenile Onset Diabetes   Prevention of the onset of diabetes   Diabetic Nephropathy   Diabetic Neuropathy   Diabetic Retinopathy erectile dysfunction macular degeneration multiple sclerosis nephropathy neuropathy Parkinson's Disease peripheral vascular disease meningitis Specific biological activities:   increase Heme Oxygenase 1   increase extracellular superoxide dismutase   prevent endothelial sloughing   prevent the association of myeloperoxidase with ApoA-I   prevent the nitrosylation of tyrosine in ApoA-I   render HDL anti-inflammatory   improve vasoreactivity   increase the formation of pre-beta HDL   promote reverse cholesterol transport   promote reverse cholesterol transport from macrophages   synergize the action of statins

It is noted that the conditions listed in Table 5 are intended to be illustrative and not limiting.

Methods of Preventing or Reducing the Uptake of Dietary Pro-Inflammatory Micro-Lipid Components.

Without being bound by a particular theory, it is believed that a major action of the transgenic plants described herein that express/contain an apolipoprotein or mimetic thereof (e.g., a plant expressing the 6F peptide) is the reduction in small intestine levels of lysophosphatidic acid (LPA). This could be mediated by several mechanisms. It was previously postulated that the formation of LPA occurs by two pathways (Aoki et al. (2008) Biochimica et Biophysica Acta, 1781: 513-518)). The first involves the action of PLA1 or PLA2 on a phospholipid such as phosphatidylcholine to produce a lysophospholipid (i.e. the removal of a fatty acid from position one or two from the phospholipid). The next step is the action by a Phospholipase D such as autotaxin to remove the choline and yield the lysophosphatidic acid. The second pathway involves phosphatidic acid which is either formed from the action of phospholipase D on a phospholipid such as phosphatidylcholine generating phosphatidic acid or the action of diacyl glycerol kinase (DGK) on diacyglycerol (DAG) which results in the formation of phosphatidic acid. These processes can occur in the enterocyte or in the lumen of the small intestine or prior to ingestion of food.

Another possible mechanism for regulating LPA levels involves three enzymes known as lysophosphatidic acid phosphatase 1, 2 or 3 (LPP1, LPP2, LPP3). These phosphatases rapidly remove the phosphate from LPA and hence contribute to regulation of LPA levels.

To explore the mechanism of action, a microarray experiment to determine gene expression levels in the small intestine from mice fed the Western Diet or a chow diet and given or not given D-4F in their drinking water was performed. It was previously shown that D-4F administration reduces LPA levels similar to transgenic 6F tomatoes. In this experiment, none of the enzymes involved in the formation of LPA changed their expression significantly in the microarray. While this experiment does not completely rule out the effect of the apolipoprotein mimetics on these enzymes, without being bound to a particular theory, it is believed the transgenic plants described herein alter/reduce LPA by another mechanism.

In particular it is believed that the mechanism of action of the transgenic 6F tomatoes described herein is that they block, or at least partially inhibit, the uptake of precursors into the enterocyte such as phosphatidic acid (PA) or they block, or at least partially inhibit, the uptake into the enterocyte of pre-formed LPA which is contained in the diet. Such a mechanism is consistent with the known action of the apoA-I mimetic peptides. In this regard, it is noted that the binding affinity of L-4F for LPA approaches the binding affinity of avidin for biotin, which is the highest binding affinity known.

Without being bound to a particular theory, it is believed that lipid components of the diet can be divided into two classes: macro-lipid components of the diet and micro-lipid components of the diet. The former in a Western diet would include phospholipids such as phosphatidylcholine and sterols such as cholesterol. These are present in milligram amounts per gram of diet. Even lysophosphatidylcholine is likely to be present in milligram quantities after phosphatidylcholine is acted upon in the Duodenum by PLA2. The micro-lipid components are present in microgram amounts per gram of diet. As shown in FIG. 33 the amount of intact 6F peptide found in the small intestine about two hours after the mice consumed the Western diet with transgenic 6F tomatoes was 15.6±7.4 6F per 200 mg small intestine. It is believed to be unlikely that this amount of peptide could bind and prevent the uptake of significant amounts of phospholipids or lysophosphatidylcholine or sterol. However, this amount of peptide could bind and prevent the uptake of microgram quantities of phosphatidic acid (PA) such as is present in foods (see, e.g., Tanaka et al. ((2012) Agric. Food Chem., 60: 4156-4161) or preformed LPA which is present in hen egg yolk at 44.23 nmol/g tissue or in hen egg white (8.81 nmol/g tissue) (Nakane et al. (2001) Lipids, 36: 413-419).

Accordingly, in view of the foregoing, methods of preventing or reducing the uptake of dietary pro-inflammatory micro-lipid components (e.g., lysophosphatidic acid, phosphatidic acid, and the like) are contemplated. In certain embodiments the method comprises administering to the mammal an effective amount of at least a portion of a transgenic plant as described and/or claimed herein; and/or an apolipoprotein or apolipoprotein mimetic peptide according as described and/or claimed herein; and/or a food or food ingredient as described and/or claimed herein; and/or a protein powder as described and/or claimed herein; and/or a nutritional supplement as described and/or claimed herein. In certain embodiments the mammal is administered at least a portion of a transgenic plant as described and/or claimed herein. In certain embodiments the mammal is administered a fruit or part of a fruit of the transgenic plant. In certain embodiments the fruit is selected from the group consisting of a tomato, an apple, a pear, a plum, a peach, an orange, a kiwi, a payaya, a pineapple, a guava, a lilikoi, a starfruit, a lychee, a mango, a pomegranate, and a plum. In certain embodiments the fruit is a tomato.

The foregoing plants, plant components, methods, formulations and modes of administration described above are intended to be illustrative and not limiting. Using the teaching provided herein numerous other plants, plant components, methods, formulations and/or modes of administration will be available to one of skill in the art.

EXAMPLES

The following examples are offered to illustrate, but not to limit the claimed invention.

Example 1 Activity of the 6F Peptide

FIG. 1 compares the efficacy of a variety of apoA-I mimetic peptides in inhibiting monocyte chemotactic activity production by human artery wall cells exposed to human LDL. Peptides 4F, 5F and 6F were found to be indistinguishable in this assay. FIG. 2 shows that the peptides 4F, 5F and 6F differ by the number of phenylalanine residues on the hydrophobic face of the peptide.

The peptide 6F is described in U.S. Pat. No. 7,199,102 B2. Unlike the 4F peptide, which included blocking groups to maximize activity with oral administration, the 6F peptide was shown to be active orally in vivo even without blocking groups, e.g., as shown by the experiment described in FIG. 3 measuring serum amyloid A (SAA) levels. In mice and rabbits SAA levels are highly correlated with the extent of atherosclerosis.

The experiment described in FIG. 3 was performed with all of the mice on a chow diet. The experiment shown in FIG. 16B was performed with all of the mice on a Western Diet. The experiments shown in FIG. 16C demonstrate that adding L-6F peptide without blocking groups to WD resulted in a significant decrease in atherosclerosis.

Having demonstrated that L-6F without blocking groups was efficacious in a mouse model of atherosclerosis, we next asked the following question. If we were successful in expressing L-6F without blocking groups in a lower life form that could be eaten by humans would it still be biologically active? If the answer to the question was no; nothing would have been gained by genetically expressing the peptide. For example, if we expressed L-6F without blocking groups in a tomato it would be entirely possible that during the process of ripening which is a highly oxidative process, the peptide might be destroyed, or the peptide might be saturated with oxidized lipids formed during the ripening process and therefore the peptide might be present but non-functional. To test this question we performed the experiments shown in FIG. 28A. The data in FIG. 28A indicate that L-6F without blocking groups was still biologically active even in the presence of a substantial amount of ripened tomato.

We previously reported that lysophosphatidic acid (LPA) levels were significantly reduced after treatment with L-4F (containing blocking groups) in a mouse model of ovarian cancer. LPA is a known tumor growth factor and is also known to accelerate atherosclerosis in mouse models. The reduction in LPA levels in mice treated with 4F was associated with a significant reduction in tumor volume and a reduction in the number of tumor nodules in the mouse model of ovarian cancer.

As shown below in FIG. 28B, adding L-6F without blocking groups to WD containing 10% ripened tomato homogenate significantly decreased LPA levels in both apoE null and LDLR null mice.

Example 2 Transgenic Plants Expressing the 6F Peptide

This example described the cloning and expression of the 6F peptide in tomato plants. This example further shows that transgenic plants stably expressing the 6F peptide have substantial biological activity.

Cloning of the 6F Gene into the Plant Transformation Vector

The strategy for expressing the 6F peptide in tomato plants is shown in FIG. 4. Basically, a nucleic acid encoding the 6F peptide was constructed in which the codon usage was optimized for expression in tomato plants (see, e.g., www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=4081. The DNA further encoded a signal peptide (M-I-M-A-S-S-K-L-L-S-L-A-L-F-L-A-L-L-S-H-A-N-S, SEQ ID NO:2).

The original gene encoding the apoA-I mimetic peptide 6F is 54-bp long, and encodes a protein of 18 aa (D-L-K-A-F-Y-D-K-F-F-E-K-F-K-E-F-F, SEQ ID NO:17) with a molecular mass of 2435.81 Da. The expression cassette of the 6F protein comprised the plant-derived 23 amino acid M-I-M-A-S-S-K-L-L-S-L-A-L-F-L-A-L-L-S-H-A-N-S(SEQ ID NO:2) signal peptide (SP), 69 bp long (Pogrebnyak et al. (2005) Proc. Natl. Acad. Sci. USA 102: 9062-9067). The Codon usage table (www.kazusa.or.jp/codon) specific for Lycopersicon esculentum was used to design the DNA sequence (TCT AGA ATG ATT ATG GCT TCT TCT AAA CTT CTT TCT CTT GCT CTT TTT CTT GCT CTT CTT TCT CAT GCT AAT TCT GAT TGG CTT AAA GCT TTT TAT GAT AAA TTT TTT GAA AAA TTT AAA GAA TTT TTT TGA GAG CTC, SEQ ID NO:4) and it was synthesized from DNA 2.0 (www.dna20.com). The cassette was cloned into XbaI/SacI site replacing GUS gene of plant binary vector pBI121 and TGA stop codon was introduced before the SacI site (Arabidopsis biological resource centre, ABRC, www.arabidopsis.org) under CaMV S35 promoter. The sequence was verified by DNA sequencing. The vector also contains the npt II gene for kanamycin selection of transgenic plants. A schematic illustration of the vector is shown in FIG. 15.

FIG. 5 shows Agrobacterium tumefaciens LBA4404 that was transformed with and without the sequence for 6F shown in FIG. 4 and above and using the vector illustrated in FIG. 15.

Generation of Transgenic Plants.

Transgenic plants were generated as a work for hire by the St. Louis Donald Danforth Plant Science Centre, Missouri in collaboration with Dr. Kevin Lutke. A total of 1,200 tomato cotyledons (Lycopersicon esculentum) were transformed by 6F (in two experiments) and empty vector (one experiment) containing Agrobacterium using the method described by Frary et al. (1996) Plant Cell Rept., 16: 235-240. Initially, sixty kanamycin-resistant founder plants (44 6F vector and 16 empty vector) were generated and further used for molecular analyses.

FIG. 6 shows expression of the NPT II band from plants that were found to be resistant or not resistant to kanamycin, while FIG. 7 shows examples of the plants being selected in Kanamycin and examples of PCR positive plants.

Analysis of Transgenic Plant Material.

The presence of the 6F gene in transgenic plants was confirmed by PCR using genomic DNA isolated with the genelute Plant Genomic DNA mini prep kit (Sigma) and 6F specific primers (TGATATCTCCACTGACGT (SEQ ID NO:650) and CGAGAAAGGAAGGGAAGAAAG (SEQ ID NO:651)) yielding a product of 712 bp. Independent kanamycin resistant transgenic plants were PCR-confirmed for the presence of p6F transgene and were further analyzed for peptide by mass spectrometric analysis. FIG. 17 shows SDS gels demonstrating positive expression of the 6F peptide at the amino acid level in most plant lines containing the 6F gene.

Protein Extraction and Analysis

A freeze-dry lyophilizer system (VirTis, Gardner, N.Y.) was used to obtain lyophilized tomato fruit tissues. Proteins from the lyophilized fruit pulp were obtained by homogenization in a mortar pestle with liquid nitrogen and homogenized in extraction buffer (50 mM Tris-Cl, 150 mM NaCl, 2% Nonidet P-40, 1% desoxycholic acid, 0.5% SDS) at pH 8.0 with complete protease inhibitor mixture (Roche Applied Science, Indianapolis). The total soluble proteins 100 μg per lane were resolved on 4-20% gradient. Mini Protean TGX gels (Bio-Rad) were stained with Sypro Ruby (Invitrogen) overnight. For MS analysis, the 6F peptide band was in-gel digested as described previously (8). Briefly, the band of interest was excised and in-gel trypsin digested (5-10 ng/μl of Gold trypsin, V5280, Promega) overnight at 37° C., eluted in 50% acetonitrile containing 0.1% trifluroacetic acid followed by zip tip C-18, Tip size P10 (Millipore) and subjected to MS/MS analysis. Table 6 shows an example of the semi-quantitative method used to identify the level of peptide expression in these gels.

TABLE 6 Semi-quantification of peptide expression in SDS gels shown in FIG. 17. The intensity of the signal was graded on a scale of zero (−) to 4 (++++). Line Expression 90 ++ 95 97 ++ 98 ++++ 102 + 106 ++ 118 ++ 119 + 120 128 +++ 131 +++ 103 +++

As noted above, the areas of each lane that was presumed positive for 6F peptide expression in gels such as that shown in FIG. 17 and the same areas of some lanes that were presumed not to express 6F peptide were cut out extracted and analyzed by LC-ESI-MS/MS. FIG. 18A below shows LC-ESI-MS data from control tomato (i.e., tomato plant infected with empty vector) and FIG. 18B shows LC-ESI-MS data from transgenic 6F tomato. The inset in the upper figures shows SDS gels of tomato control (TC) and a transgenic 6F tomato line 1A. The arrow indicates the 6F band from the transgenic 6F tomato line 1A.

Using the techniques shown in the examples above, positive founder lines were selected and grown to collect seeds. The seeds were again germinated and homozygous plants were selected using the selection process described above. An example of two homozygous lines producing tomatoes positive for 6F peptide are shown in FIG. 29.

The bands from 1A and 17A shown in FIG. 29 were confirmed to be 6F by LC-ESI-MS/MS. Remarkably as shown in FIG. 8, the expression of the 6F peptide dramatically increased as the tomatoes underwent the oxidative stress of ripening (i.e. converted from green to red tomatoes).

Ripened control tomatoes (Wild Type) and tomatoes from the homozygous transgenic tomato line 17A (17a-4) (6F-Transgenic) were lyophilized. FIG. 9 shows the appearance of the lyophilized tomatoes. FIG. 10 shows examples of the different portions of the lyophilized tomato. The pulp was readily powdered in a mortar while the skin was tough and needed to be minced prior to being powdered in the mortar.

The lyophilized material was mixed with powdered Western Diet as shown in FIG. 11. The 19 grams of the material shown in FIG. 11 was then mixed with a much larger quantity of powdered Western Diet which is shown in the large mixing bowl in FIG. 12.

The diet stored in tubes as shown in FIG. 13 was kept at −80° C. until use. Tubes containing sufficient diet for each night were removed, thawed and tightly compacted and 16 grams were provided for each cage of four mice (see e.g., FIG. 27) each evening.

After two weeks the mice were fasted and blood was obtained from the retro-orbital sinus and plasma serum amyloid A (SAA) levels were determined by ELISA. The results are shown below in FIG. 14.

The data in FIG. 19B demonstrate that feeding the ripened lyophilized transgenic 17A tomatoes to LDLR null mice also significantly increased the plasma activity of the potent antioxidant enzyme paroxonase (PON).

The importance of the increase in paraoxonase activity shown in FIG. 19 lies in the very strong inverse relationship between paraoxonase activity, oxidative stress and cardiovascular risk in humans (9) (i.e. the higher the paraoxonase activity, the lower the cardiovascular risk).

The data in FIGS. 19C-19F demonstrate that feeding the ripened lyophilized transgenic 17A tomatoes to LDLR null mice also significantly decreased plasma levels of lysophosphatidic acid (LPA).

The data in FIGS. 14 and 19B demonstrate that feeding lyophilized ripened tomatoes expressing the 6F peptide can significantly reduce inflammation in a mouse model of atherosclerosis (decrease SAA levels) and increase the potent plasma antioxidant enzyme paraoxonase. The data in FIGS. 19C-19F demonstrate that one mechanism of action may be through the significant reduction in plasma lysophospatidic acid (LPA) levels. LPA has been shown to be a potent promoter of tumor growth (Su et al. (2010 Proc. Natl. Acad. Sci. USA 107:19997-20002) and a potent promoter of inflammation and atherosclerosis (Zhou et al. (2011) Cell Metab. 13:592-600). Thus, the methods described herein make possible the production of peptides that modulate disease in a form that is economical and easy to provide and that may reduce atherosclerosis, cancer and inflammation among other important diseases.

Example 3 A Novel Approach to Oral ApoA-I Mimetic Therapy ABBREVIATIONS

The following abbreviations are used in this example: ApoE null mice, apoE−/−; docosahexaenoic acid 22:6 (n-3), DHA; eicosapentoaenoic acid 20:5 (n-3), EPA; eicosatrienoic acid, EET; empty vector, EV; the peptide D-W-L-K-A-F-YD-K-F-F-E-K-F-K-E-F-F synthesized from all L-amino acids, 6F; hydroxyeicosatetraenoic acid, HETE; HDL inflammatory index, HII; low density lipoprotein receptor null mice, LDLR−/−; lysophosphatidic acid, LPA; paroxonase-1 activity, PON; prostaglandin, PG; serum amyloid A, SAA; intravenously, IV; subcutaneously, SQ; thromboxane, TX, Western diet, WD.

SUMMARY OF THE EXAMPLE

As described herein, transgenic tomato plants were constructed with an empty vector (EV) or a vector expressing an apoA-I mimetic peptide, 6F. EV or 6F tomatoes were harvested, lyophilized, ground into powder, added to Western Diet (WD) at 2.2% by weight, and fed to LDLR−/− mice at 45 mg/kg/day 6F. After 13 weeks, percent aorta with lesions was 4.1±4, 3.3±2.4, and 1.9±1.4 for WD, WD+EV, and WD+6F, respectively (WD+6F vs. WD, p=0.0134; WD+6F vs. WD+EV, p=0.0386; WD+EV vs. WD, not significant). While body weight did not differ, plasma serum amyloid A (SAA), total cholesterol, triglycerides, and lysophosphatidic acid (LPA) levels were less in WD+6F mice; p<0.0295. HDL-cholesterol and paroxonase-1 activity (PON) were higher in WD+6F mice (p=0.0055, p=0.0254, respectively), but not in WD+EV mice. Plasma SAA, total cholesterol, triglycerides, LPA and 15-HETE levels positively correlated with lesions (p<0.0001); HDL-cholesterol and PON were inversely correlated (p<0.0001). After feeding WD+6F) intact 6F was detected in small intestine (but not in plasma); ii) small intestine LPA was decreased compared to WD+EV (p<0.0469); iii) small intestine LPA 18:2 positively correlated with percent aorta with lesions (p<0.0179). These data suggest that 6F acts in the small intestine and provide a novel approach to oral apoA-I mimetic therapy.

Details

This report describes the results of a search for a peptide that does not require chemically added end groups for efficacy and which can be produced in genetically engineered plants. The search began by reviewing our previously published data in light of our more recent findings. The peptide 4F was similar in efficacy to 6F based on our in vitro assays (Datta et al. (2001) J. Lipid Res. 42: 1096-1104). The 4F peptide was initially chosen due to its increased solubility compared to 6F because we thought that absorption of the peptide was required to achieve some critical plasma peptide level. Since this did not turn out to be the case, we turned our attention to the 6F peptide. Neither the 4F or 6F peptide has any sequence homology to apoA-I. The first apoA-I mimetic peptide with 18 amino acids was known as “18A” (Anantharamaiah (1986)Meth. Enzymol. 128: 627-647). The terminal charges of this peptide were modified by adding end blocking groups, which resulted in increased lipid affinity for non-oxidized lipids (Venkatachalapathi et al. (1993) Proteins Structure Function Genet. 15: 349-359; Yancey et al. (1995) Biochemistry. 34: 7955-7965). The 18A peptide is also known as “2F” because the peptide has two phenylalanine residues on the hydrophobic face at positions 6 and 18. While the 2F peptide bound non-oxidized lipids with affinities similar to apoA-I it was not very effective in preventing LDL-induced MCP-1 production by cultured human artery wall cells and it failed to decrease diet induced atherosclerosis in mice (Datta et al. (2001) J. Lipid Res. 42: 1096-1104). Consequently a number of 18 amino acid peptides were synthesized and tested for their ability to inhibit LDL-induced MCP-1 production by cultured human artery wall cells (Id.). As previously reviewed (Navab et al. (2005) Arterioscler. Thromb. Vasc. Biol. 25: 1325-1331), based on their physical properties these peptides could be separated into 2 groups. Group I consisted of 2F with phenylalanine residues at positions 6 and 18; 3F3 with an additional phenylalanine residue at position 3; 3F14 with an additional phenylalanine residue at position 14; and 4F with two additional phenylalanine residues at positions 3 and 14. Of this first group of peptides, only the 4F peptide was highly effective in preventing LDL-induced MCP-1 production by cultured human artery wall cells (Id.) and was biologically active in mouse models (Navab et al. (2010) Arterioscler. Thromb. Vasc. Biol. 30: 164-168; Handattu et al. (2007) J. Biol. Chem. 282: 1980-1988). Group II consisted of the 5F peptide with 3 additional phenylalanine residues at positions 11, 14, and 17; the 6F peptide with 4 additional phenylalanine residues at positions 10, 11, 14, and 17; and the 7F peptide with 5 additional residues at positions 3, 10, 11, 14 and 17. Of this second group both 5F and 6F were able to efficiently inhibit LDL-induced MCP-1 production by cultured human artery wall cells; 7F did not (Datta et al. (2001) J. Lipid Res. 42: 1096-1104). The 5F peptide was also biologically active in vivo inhibiting atherosclerosis in a mouse model (Garber et al. (2001) J. Lipid Res. 42: 545-552), and inhibiting tumor angiogenesis in mice (Gao et al. (2011) Integr. Biol. (Camb), 3: 479-489).

Comparing circular dichroism data for the peptides in phosphate-buffered saline in the absence or presence of dimyristoyl phosphatidiylcholine (DMPC) showed that the percent helicity of the peptides on interacting with DMPC increased for all of the peptides tested except for 4F and 6F (Datta et al. (2001) J. Lipid Res. 42: 1096-1104). Because of this similarity between 4F and 6F in interacting with DMPC, which we previously demonstrated was highly effective in a mouse model of atherosclerosis when it was administered orally (Navab et al. (2003) Circulation. 108: 1735-1739); we chose to initially focus our attention on the 6F peptide instead of the 5F peptide. As shown by the experiments reported here, the 6F peptide is efficacious without chemically added end groups, it can be expressed in genetically engineered tomatoes, and perhaps most remarkably, the 6F peptide is effective when the tomatoes are fed, even without isolation and purification of the peptide.

Materials and Methods.

Materials

The peptide 6F (D-W-L-K-A-F-Y-D-K-F-F-E-K-F-K-E-F-F, SEQ ID NO: 17) was chemically synthesized from all L-amino acids by solid phase synthesis as described (Datta et al. (2001) J. Lipid Res. 42: 1096-1104) using Wang resin (Advanced Chem Tech, Louisville, Ky.) to obtain C-terminal free acid after the cleavage of the peptide from the resin except that the N-terminal acetylation step was omitted. The vector pBI121 containing a kanamycin resistant gene (NPT II), a cauliflower mosaic virus 35 S promoter (CaMV35S) and a nopaline synthase terminator (NOS) was obtained from “The Arabidopsis Information Resource” (TAIR) (www.arabidopsis.org; stock number CD3-388, vector pBI121). Agrobacterium tumefaciens LBA 4404 was obtained from Invitrogen, Electromax (Catalogue number 18313-015). ELISA Kits for determination of lysophosphatidic acid (LPA) were purchased from Echelon (Catalogue # k-2800s). All other materials were purchased from previously described sources (Navab et al. (2011) J. Lipid Res. 52: 1200-1210; Navab et al. (2012) J. Lipid Res. 53: 437-4458).

Mice

Female wild-type C57BL/6J or female LDLR−/− or apoE−/− mice originally purchased from Jackson laboratories on a C57BL/6J background were obtained from the breeding colony of the Department of Laboratory and Animal Medicine at the David Geffen School of Medicine at UCLA. The mice used in these studies were of different ages, which are stated in each legend. The mice were maintained on a chow diet (Ralston Purina) before being switched to WD (Teklad, Harlan, catalog #TD88137). The addition of chemically synthesized 6F peptide to the diet was accomplished as previously described for the addition of the 4F peptide (Navab et al. (2011) J. Lipid Res. 52: 1200-1210); preparation and addition of tomato with or without transgenic 6F to WD is described below in the section, “Processing and Analysis of Tomatoes”. For experiments in which WD with or without 2.2% by weight of powdered tomato were presented to the mice, the preparations, which were stored at −80° C. until use, were thawed each evening, tightly compacted and presented to each cage of four mice each night. FIG. 27 shows an example of the tightly compacted WD presented to the mice. All experiments involving mice were approved by the UCLA Animal Research Committee.

Determination of Plasma and Intestinal Constituents and Atherosclerotic Lesions

Plasma was collected and analyzed for total cholesterol, triglycerides, serum amyloid A (SAA), HDL-cholesterol, paraoxonase-1 activity (PON) as described previously (Navab et al. (2011) J. Lipid Res. 52: 1200-1210; Navab et al. (2012) J. Lipid Res. 53: 437-445). Perfusion of the mice to remove all blood from tissues prior to harvesting the small intestine and preparation of small intestine samples were performed as previously described (Navab et al. (2012) J. Lipid Res. 53: 437-445). Tissue levels of cholesterol were measured as previously described (Navab et al. (2011) J. Lipid Res. 52: 1200-1210). Levels of arachidonic acid and its metabolites were measured by LC-ESI-MS/MS as described previously (Navab et al. (2012) J. Lipid Res. 53: 437-445). Lysophosphatidic acid was measured either by ELISA according to the manufacturer's instructions or LC-EST/MS/MS as described previously (Navab et al. (2011) J. Lipid Res. 52: 1200-1210). The percent of the aorta with atherosclerosis was determined by en face analysis as previously described (Navab et al. (2011) J. Lipid Res. 52: 1200-1210; Morgantini et al. (2010) Diabetes 59: 3223-3228).

Generation of Transgenic Tomato Plants

The strategy that we chose involves the use of the bacterium Agrobacterium tumefaciens, which carries a Ti plasmid that can be manipulated to insert a gene of interest into plant cells (Frary and Earle (1996) Plant Cell Reports, 16: 235-240). To accomplish this we used the plant binary vector pBI121 that contains a kanamycin resistance gene (NPTII), a cauliflower mosaic virus 35 S promoter (CaMV35S), the GUS gene that encodes for the marker protein β-glucuronidase and a nopaline synthase terminator (NOS term) (FIG. 15). The gene encoding 6F is 54-bp long and encodes the 18 amino acids D-W-L-K-A-F-Y-D-K-F-F-E-K-F-K-E-F-F (SEQ ID NO:17) with a molecular mass of 2435.81 Da. The expression cassette for 6F also contained the plant-derived signal peptide (SP) with 23-amino acids (M-I-M-A-S-S-K-L-L-S-L-A-L-F-L-A-L-L-S-H-A-N-S, SEQ ID NO:2), 69-bp long (Pogrebnyak et al. (2005) Proc. Natl. Acad. Sci. USA, 102: 9062-9067). The codon usage table (www.kazusa.or.jp/codon) specific for Lycopersicon esculentum was used to design the DNA sequence: TCT AGA ATG ATT ATG GCT TCT TCT AAA CTT CTT TCT CTT GCT CTT TTT CTT GCT CTT CTT TCT CAT GCT AAT TCT GAT TGG CTT AAA GCT TTT TAT GAT AAA TTT TTT GAA AAA TTT AAA GAA TTT TTT TGA GAG CTC (SEQ ID NO:4). The DNA was synthesized from DNA 2.0 (www.dna20.com). The cassette was cloned into the XbaI/SacI site replacing the GUS gene of the plant binary vector pBI121 and a TGA stop codon was introduced before the SacI site (Arabidopsis biological resource center, ABRC, www.arabidopsis.org) under a CaMVS35 promoter (FIG. 15). The sequence was verified by DNA sequencing. The vector also contained the npt II gene for kanamycin selection of transgenic plants (FIG. 15). Agrobacterium tumefaciens strain LBA4404 was transformed with and without the cassette containing the sequences for the plant-derived signal peptide and for 6F. Transformations without the cassette containing the sequences for the plant-derived signal peptide and 6F are referred to as empty vector (EV), which still contains the GUS gene in the pBI121 vector that encodes for the marker protein beta-glucuronidase. Copies harboring the binary vector were sequence verified in the UCLA GeneSeq Core and then used for plant transformation using the strategy of Frary and Earle (Frary and Earle (1996) Plant Cell Reports, 16: 235-240).

Transgenic plants were generated through a core service contract with the Saint Louis Donald Danforth Plant Science Centre, Missouri (Dr. Kevin Lutke). Initially, a total of 1,200 tomato cotyledons (Lycopersicon esculentum) were transformed for 6F in two separate experiments and empty vector in one experiment using the procedure described by Frary and Earle (Id.). The presence of the 6F gene in transgenic plants was confirmed by PCR using genomic DNA isolated with the Genelute Plant Genomic DNA Mini Prep kit (Sigma) and primers (TGA TAT CTC CAC TGA CGT (SEQ ID NO:652) and CGA GAA AGG AAG GGA AGA AAG (SEQ ID NO:653)) yielding a product of 712-bp. Thirty-three plants positive for the 6F gene were initially identified from approximately 120 plants that had been selected in kanamycin. Positive founder lines were selected and grown to collect seeds. Subsequently, the seeds were again germinated; homozygous plants were selected, grown and allowed to produce ripened tomatoes from which the seeds were again collected. The process was repeated a minimum of 3 times to ensure that the lines were homozygous.

Identification and Quantification of 6F in Tomatoes

The seeds from homozygous ripened tomatoes were removed and the remaining seedless tomato pulp and skin were rapidly frozen and shipped by overnight courier to UCLA where they were processed in a freeze-dry lyophilizer system (VirTis, Gardner, N.Y.) to obtain lyophilized tomato fruit tissue (pulp plus skin). For SDS-PAGE gel analysis, proteins from the lyophilized fruit were obtained by homogenization with a mortar and pestle in liquid nitrogen and homogenized in extraction buffer (50 mM Tris-Cl, 150 mM NaCl, 2% Nonidet P-40, 1% desoxycholic acid, 0.5% SDS) at pH 8.0 with complete protease inhibitor mixture (Roche Applied Science, Indianapolis). The total soluble proteins, 100 μg per lane were resolved on 4-20% gradient gels; samples of 500 μg per lane were resolved on 20% SDS-PAGE gels. Mini Protean TGX gels (Bio-Rad) were stained with Sypro Ruby (Invitrogen) or silver stain (Invitrogen). For LC-ESI-MS/MS or LC-ESI-MS analyses the 6F peptide band was in-gel digested as previously described (Hellman et al. (1995) Anal Biochem. 224: 451-455). Briefly, the band of interest was excised and in-gel trypsin digested (5-10 ng/mL of Gold trypsin, V5280, Promega) overnight at 37° C., eluted in 50% acetonitrile containing 0.1% trifluroacetic acid followed by Zip-Tip C-18, Tip size P10 (Millipore), and subjected to LC-ESI-MS/MS analysis using a 4000 QTRAP quadruple mass spectrometer (Applied Biosystems) equipped with electrospray ionization source or analysis was performed by LC-ESI-MS on an LCQAdvantage Max ion trap mass spectrometer (ThermoElectron, Inc.) equipped with electrospray ionization source as previously described (Watson et al. (2011) J. Lipid Res. 52: 361-373; Navab et al. (2011) J. Lipid Res. 52: 1200-1210). Quantification of 6F peptide in the lyophilized tomato by LC-ESI-MS/MS or LC-ESI-MS was accomplished by using a 15N-labeled chemically synthesized 6F peptide without end blocking groups. When the 6F fractions from the HPLC prior to injection into the mass spectrometer were subjected to SDS PAGE analysis and the bands migrating with authentic 6F peptide were in-gel trypsin digested, on subsequent examination in the mass spectrometer, only the signature for 6F was seen (i.e. no other protein or peptide could be detected in these bands). Consequently, SDS PAGE analysis of protein extracts of lyophilized tomatoes following LC (but without MS analysis) was used for routine quantification of 6F. For routine quantification, the gels were scanned by densitometry and the results calculated from a standard curve generated by the lanes containing chemically synthesized 6F peptide without end blocking groups.

Identification and Quantification of 6F in Small Intestine and Plasma

For analysis of the small intestine, 200 mg of small intestine (including contents) were homogenized in 10 mL of acetonitrile:water (1:1) and the homogenates were lyophilized and re-suspended in 400 μL of acetonitrile:water (1:1). For analysis of plasma, 100 μl of plasma were lyophilized and brought up in 400 μl of acetonitrile:water (1:1). Samples were run on HPLC using a C-18 Reverse Phase analytical column and a gradient solvent system of acetonitrile: water (30% to 80% in 20 min) in the presence of 0.1% TFA and monitored at 280 nm. Chemically synthesized 6F samples (5 μg in the same solvent as samples) were injected and retention times were obtained. Unknown samples (200 μl out of original 400 μl) were injected and 0.5 mL fractions were collected. Samples corresponding to the retention time of the chemically synthesized 6F were dried and analyzed by SDS gel electrophoresis as described above and the bands migrating with chemically synthesized 6F were quantified by scanning and comparison to known quantities of chemically synthesized 6F (without blocking groups) run on the same gels.

Addition of Tomatoes to WD

For in vivo experiments, the lyophilized tomato fruit tissue was thoroughly ground to a fine powder in liquid nitrogen without the extraction buffer and was then thoroughly mixed with increasing quantities of powdered WD to yield WD containing 2.2% lyophilized tomato powder, which was frozen and stored at −80° C. until use. In some experiments, wild-type tomatoes were used instead of the EV tomatoes as controls. This is explicitly indicated in the figure legends. In these instances, the wild-type tomatoes were grown in Saint Louis and processed identically to the EV and 6F tomatoes.

Determination of Lycopene Content of Tomatoes

Lycopene content in the tomatoes was determined by previously described methods (Lucini et al. (2012) J. Sci. Food Agric. 92: 1297-1303). Briefly, the ground lyophilized tomato powder was suspended in NaCl (3.42 M) and extracted using ethyl acetate and cyclohexane (1:1; v/v) by centrifuging for 5 min at 600×g. The organic layer was carefully removed and the OD was measured at a wavelength 503 nm in triplicates in a spectrophotometer (FLUOstar omega, BMG Labtech) as described (Lavecchia and Zuorro (2008) Eur. Food Res. Technol., 228: 153-158). Lycopene standards from Sigma (Catalog Number L9879) were used for generating the standard curves.

Statistical Analysis

Statistical analyses were performed by ANOVA, unpaired two-tail t test or by linear regression using GraphPad Prism version 5.03 (GraphPad Software, San Diego, Calif.).

Results

Is the 6F Peptide without End Blocking Groups Effective In Vivo?

As shown in FIG. 16A, feeding apoE−/− mice the 6F peptide without end blocking groups by incorporating the peptide into mouse chow significantly decreased plasma SAA levels. Feeding apoE−/− mice the 6F peptide without end blocking groups by incorporating the peptide into WD also decreased plasma SAA levels (FIG. 16B) and decreased the percent of the aorta with atherosclerotic lesions (FIG. 16C).

Would the 6F Peptide without End Blocking Groups be Efficacious in More than One Mouse Model of Atherosclerosis if it was Mixed with Homogenized Tomato Before Incorporation into the Diet?

The efficacy of apoA-I mimetic peptides is thought to be due to their ability to bind oxidized lipids (Van Lenten et al. (2008) J. Lipid Res. 49: 2302-2311). Before proceeding with an attempt to produce the peptide in a genetically engineered plant such as a tomato, we thought it was important to determine if homogenized tomato might saturate the peptide with plant lipids rendering it ineffective. As shown in FIG. 28A this was not the case for plasma SAA levels. As shown in FIG. 28B, incorporating the 6F peptide without end blocking groups into WD containing 10% ripened tomato homogenate resulted in a significant decrease in plasma levels of the potent growth factor lysophosphatidic acid (LPA) in both apoE−/− and LDR−/− mice. Having assured ourselves that the presence of tomato fruit would not alter the efficacy of the 6F peptide we then set out to determine if we could genetically engineer tomatoes to express the 6F peptide.

Can the 6F Peptide be Expressed in the Fruit of Tomato Plants?

As shown in FIG. 17, most of the tomato lines that were PCR positive for 6F expressed a band on SDS PAGE gels that migrated similarly to authentic chemically synthesized 6F without end blocking groups. Other tomato lines in FIG. 17 did not (e.g., line 95 and the wild-type [WT] control). Tomato line 95 did show PCR evidence of gene insertion, but presumably the gene was not expressed at the protein level. Following HPLC and SDS PAGE, the region on each lane corresponding to 6F was excised and in-gel trypsin digested and subjected to LC-ESI-MS/MS or LC-ESI-MS analysis as described in Materials and Methods. FIG. 18A demonstrates that the bands migrating similarly to authentic 6F exhibited the LC-ESI-MS signature for 6F while the same region from those lanes without bands did not (FIG. 18B). The 6F peptide was found to account for between 0.6 and 1.0% of the weight of the lyophilized tomatoes. Founder lines were selected and grown to collect seeds. Homozygous lines were generated as described in Materials and Methods. SDS PAGE gels from a control homozygous line and from two homozygous lines (1A and 17A) expressing 6F are shown in FIG. 29. Having been successful in producing the 6F peptide in homozygous transgenic tomatoes we next set out to determine if feeding these tomatoes compared to control tomatoes would show a beneficial effect on plasma biomarkers in short-term feeding studies.

Would Feeding WD for Two Weeks with Tomatoes Transgenic for 6F Improve Plasma Biomarkers Compared to No Added Tomato or Compared to Feeding Wild-Type Tomatoes?

At the start of these experiments we had a limited supply of homozygous transgenic tomatoes and an even more limited supply of homozygous EV tomatoes. Thus, we designed experiments with relatively few mice measuring biomarkers after short-term feeding. In the first short-term experiment we used wild-type (WT) tomato as the control tomato. These were grown identically to the EV and transgenic 6F tomatoes in the Saint Louis Core facility and were processed identically as stated in Materials and Methods. Feeding ground lyophilized transgenic 6F tomato at 2.2% of the WD to female LDLR−/− mice 10 weeks of age (40 mg/kg/mouse/day of 6F) for two weeks significantly improved many (but not all) of the biomarkers measured (FIGS. 19A-19K). Not shown in FIG. 19 are data indicating no significant improvement in plasma total cholesterol, triglycerides, free arachidonic acid or thromboxane B2 levels after feeding either the WT or transgenic 6F tomatoes.

Would Feeding WD for Two Weeks with Tomatoes Transgenic for 6F Improve Plasma Biomarkers Compared to No Added Tomato or Compared to Feeding Empty Vector Tomatoes?

The second experiment differed from the first experiment in the following details: i) the mice were older (4-5 months of age); ii) the control tomatoes were empty vector (EV) tomatoes instead of wild-type tomatoes; iii) not all of the biomarkers measured in the first experiment were repeated in the second. The results were similar between the two experiments as shown in FIG. 30. Feeding EV tomatoes with WD for two weeks significantly decreased SAA levels; feeding transgenic 6F tomatoes slightly decreased SAA levels beyond that of the EV tomatoes but this difference did not reach statistical significance (FIG. 30A). Feeding WD with transgenic 6F tomatoes significantly increased paraoxonase-1 activity (PON); feeding EV tomatoes did not (FIG. 30B). Feeding WD with EV tomatoes significantly decreased plasma free 5-HETE, 15-HETE, and PGD2, levels; feeding transgenic 6F tomatoes significantly reduced these levels more than feeding WD with EV tomatoes (FIGS. 30C-30E). Feeding WD with transgenic 6F tomatoes significantly reduced plasma PGE2 levels, while feeding EV tomatoes did not (FIG. 30F). Feeding WD with transgenic 6F tomatoes significantly increased plasma HDL-cholesterol levels; feeding EV tomatoes did not (FIG. 30G). Not shown in FIG. 30 are data indicating no significant improvement in plasma total cholesterol, triglycerides, free arachidonic acid or thromboxane B2 levels after feeding either the EV or transgenic 6F tomatoes.

To summarize and contrast these two experiments, in both short-term feeding experiments transgenic 6F tomatoes significantly decreased plasma SAA, free 5-HETE, 15-HETE, PGD2, and PGE2 levels and increased both plasma PON activity and HDL-cholesterol levels. Additionally, in the first experiment in which LPA levels were measured feeding the transgenic 6F tomatoes significantly decreased plasma LPA 16:0, 18:0, 18:1, and 20:4 levels but feeding the WT tomatoes only significantly decreased plasma LPA 20:4 levels, which were significantly decreased even further by the transgenic 6F tomatoes. In the second short-term experiment but not in the first, feeding the control (EV) tomatoes significantly reduced plasma SAA levels. In the first short-term experiment feeding the control (WT) tomatoes significantly increased PON activity, but in the second experiment feeding the control (EV) tomatoes did not. In the first short-term experiment feeding the control (WT) tomatoes did not significantly decrease plasma free 5-HETE, 15-HETE, PGD2, or PGE2 levels, but in the second experiment feeding the control (EV) tomatoes significantly decreased plasma free 5-HETE, 15-HETE, and PGD2 levels and these levels were significantly decreased even further by feeding the transgenic 6F tomatoes. In both short-term experiments feeding the control tomatoes failed to alter HDL-cholesterol levels. In both short-term experiments plasma free arachidonic acid levels, total cholesterol levels, and triglyceride levels were not changed by feeding any of the tomatoes.

Since Control Tomatoes Improved Some of the Biomarkers in these Short-Term Feeding Experiments, could the Superior Performance of the Transgenic 6F Tomatoes be Due to an Induction of Higher Levels of Antioxidants in the Transgenic 6F Tomatoes?

To test this question we measured the content of the major tomato antioxidant, lycopene. As shown in FIG. 20 surprisingly, the homozygous transgenic 6F tomato lines 1A and 17A (the latter was used in the two short-term feeding experiments described above) had slightly but significantly less lycopene content compared to WT tomatoes or compared to EV tomato lines 108 and 110 (the latter was used in the second short-term feeding experiment).

Would Feeding WD for 13 Weeks with Tomatoes Transgenic for 6F Improve Plasma Biomarkers and Aortic Atherosclerosis Compared to No Added Tomato or Compared to Feeding Empty Vector Tomatoes?

As shown in FIGS. 21A-21E after 13 weeks of feeding WD with transgenic 6F tomatoes (but not EV tomatoes) there was a significant reduction in plasma SAA, total cholesterol, and triglycerides and a significant increase in plasma PON activity and HDL-cholesterol levels. There also was a significant decrease in plasma lysophosphatidic acid (LPA) levels for LPA 18:1 (FIG. 21F), LPA 18:2 (FIG. 21G), and LPA 20:4 (FIG. 21H) in the mice fed transgenic 6F tomatoes (but not EV tomatoes). However, there was no significant difference in levels of LPA 16:0 or LPA 18:0 (data not shown). As shown in FIG. 21I there was also no difference in body weight between the three groups. While the EV tomatoes did not affect parameters mentioned above, feeding both the EV and the transgenic 6F tomatoes significantly reduced plasma levels of free arachidonic acid, 5-HETE, 15-HETE and increased plasma levels of free DHA and EPA (FIGS. 22A-22E). Plasma levels of free 12-HETE, 20-HETE, PGD2, PGE2, TXB2, 14,15-EET, and 8-iso PGF2α were not significantly improved by feeding either EV or transgenic 6F tomatoes (data not shown). As shown in FIG. 23, feeding WD with transgenic 6F tomato significantly reduced the percent of aorta with atherosclerosis as determined by en face analysis compared to WD alone or WD+EV tomato; the latter was not significantly different from WD alone.

Which Biomarkers Correlated with the Percent of Aorta with Atherosclerotic Lesions?

Using linear regression of individual data for all mice regardless of treatment revealed a significant positive correlation between the percent of aorta with atherosclerotic lesions and plasma SAA (r2=0.5358, p<0.0001); Total cholesterol (r2=0.5937, p<0.0001); Triglycerides (r2=0.3425, p<0.0001); and free 15-HETE (r2=0.2666, p<0.0001). There was also a very weak but significant positive correlation between lesions and plasma free PGD2 levels (r2=0.06078, p=0.046). There was a significant inverse correlation between the percent of aorta with atherosclerosis and PON activity (r2=0.2585, p<0.0001) and HDL-cholesterol levels (r2=0.5948, p<0.0001). There was a very weak but significant inverse correlation between the percent aorta with atherosclerotic lesions and plasma levels of free EPA (r2=0.09596, p=0.0107). There was no significant correlation between the percent aorta with atherosclerotic lesions and body weight, plasma free arachidonic acid, 5-HETE, 12-HETE, 20-HETE, PGE2, TXB2, 14,15-EET, DHA, or 8-isoPGF2α (data not shown). As shown in FIGS. 31A and 31B there was no correlation between the plasma levels of LPA 16:0 or LPA 18:0 and the percent of aorta with lesions. In contrast as shown in FIGS. 31C-31E there was a significant correlation between the levels of LPA 18:1, LPA 18:2 and LPA 20:4 levels with the percent of the aorta with lesions. These correlations were for all mice with all treatments. The correlation between some of these plasma biomarkers and the percent of aorta with lesions for mice that received WD with transgenic 6F tomatoes is shown in FIGS. 24A-24E.

Were Small Intestine Lipid Levels Altered by the Treatments?

We were able to measure tissue cholesterol and LPA levels in the duodenum, jejunum and ileum in a random subset of the mice described in FIGS. 21-23. As shown in FIGS. 32A-32C, addition of both the empty vector (EV) and the transgenic 6F tomatoes to the WD significantly reduced tissue cholesterol levels in the duodenum and jejunum, but not in the ileum. Addition of EV tomatoes to WD modestly but significantly reduced jejunum cholesterol levels more than did the addition of transgenic 6F tomatoes (FIG. 32B); cholesterol levels in the duodenum were not different between mice fed EV tomatoes or transgenic 6F tomatoes (FIG. 32A). As shown in FIG. 32E, jejunum cholesterol levels were very weakly but significantly correlated with the percent aorta with lesions in these mice, but there was no significant correlation of lesions with tissue cholesterol levels in either the duodenum (FIG. 32D) or ileum (FIG. 32F). In contrast to these results for small intestine cholesterol levels, as shown in FIGS. 25A-25F, adding transgenic 6F tomatoes to WD compared to adding EV tomatoes to WD significantly reduced levels of LPA 18:2 and LPA 20:4 in the duodenum, jejunum and ileum. As shown in FIGS. 26A-26F, except for LPA 20:4 in the duodenum, which approached significance (but did not reach it), the levels of LPA 18:2 and LPA 20:4 in the duodenum, jejunum and ileum significantly correlated with the percent aorta with atherosclerotic lesions in these mice.

Where does the Peptide Act?

The data presented above indicate that the peptide in the transgenic 6F tomatoes is acting in the small intestine. If this were the case, we might expect to find intact peptide in the small intestine of mice eating WD with transgenic 6F tomatoes, but little to no intact peptide in the plasma. The mice described in FIG. 33 were fasted overnight for 20 hours and then fed WD with lyophilized transgenic 6F tomato powder containing 900 of 6F in 2 grams of diet. Over a period of 30-90 minutes each of six mice ate all of the 2 grams of diet. Approximately 2 hours after the mice finished eating they were bled and their small intestines were harvested and analyzed as described in Materials and Methods. Intact 6F peptide was found in the small intestine of each of these six mice in microgram quantities (Mean±SD was 15.6±7.4 μg 6F per 200 mg small intestine). In these studies the lower limit of detection for 6F peptide in the plasma was 100 ng/mL. No 6F peptide was detected in the plasma of any of the six mice. Thus ˜2 hours after eating the transgenic 6F tomatoes, intact 6F peptide was found in the small intestine, but not in the plasma. These data are consistent with the peptide acting in the small intestine.

Discussion

In our original work on apoA-I mimetic therapy, we concluded that D-4F but not L-4F would be effective orally (Navab et al. (2002) Circ. 105: 290-292). This conclusion was based on experiments in which LDLR−/− mice were administered either L-4F or D-4F by stomach tube in a single dose of 5 mg/kg/mouse. Four hours after this single dose, the inflammatory properties of HDL and LDL as determined in a cell-based assay were dramatically and significantly improved in the case of D-4F but not L-4F. Using 125I-peptides, we also found that after oral administration of L-4F there was virtually no intact peptide in plasma, but after administration of D-4F there was intact peptide identified in the plasma. Since L-4F was ineffective and D-4F was effective in this study it was assumed that it was necessary for intact peptide to gain access to the plasma to be effective (Id.). Supporting this assumption was the finding that when given by injection at a dose of 10 mg/kg/day to cholesterol-fed rabbits, the efficacy of L-4F and D-4F was identical (Van Lenten et al. (2007) J. Lipid Res. 48: 2344-2353). A phase I/II study in humans was undertaken in which D-4F was administered orally in doses ranging from 0.43-7.14 mg/kg. Maximum plasma peptide levels were low (Cmax 15.9±6.5 ng/mL) but doses of 4.3 and 7.14 mg/kg significantly improved the HDL inflammatory index (HII), while doses of 0.43 and 1.43 mg/kg were not effective (Bloedon et al. (2008) J. Lipid Res. 49: 1344-1352). Subsequently, in preclinical studies it was found that D-4F had delayed clearance from tissues, particularly liver and kidney making its use in humans problematic; this was not the case for L-4F (Watson et al. (2011) J. Lipid Res. 52: 361-373). Since it was known that L-4F and D-4F were equally efficacious when given by injection (Van Lenten et al. (2007) J. Lipid Res. 48: 2344-2353), and it was thought that plasma levels of the peptide would be the critical success factor for its efficacy, studies in humans were designed to achieve high plasma levels with low doses of L-4F administered IV or SQ (Watson et al. (2011) J. Lipid Res. 52: 361-373). Doses of 0.042-1.43 mg/kg of L-4F produced high plasma levels of peptide (e.g., Cmax 3,255±630 ng/mL in the IV study), but surprisingly there was no improvement in HII (Id.). After this disappointing result, we returned to mouse models to understand this paradox and unexpectedly found that i) plasma levels did not predict efficacy—the dose administered predicted efficacy and ii) while the concentration of peptide differed by orders of magnitude in plasma and liver depending on the route of administration, the concentration of peptide in the feces (Navab et al. (2011) J. Lipid Res. 52: 1200-1210) and small intestine (Navab et al. (2012) J. Lipid Res. 53: 437-445) was similar at similar doses regardless of whether the peptide was administered orally or SQ. To explain equal efficacy at each dose administered regardless of the route of administration there should be equal concentrations of peptide in at least one compartment containing a major site of action. In two separate studies (Navab et al. (2011) J. Lipid Res. 52: 1200-1210; Navab et al. (2012) J. Lipid Res. 53: 437-445) the intestine was found to be that compartment.

Administering L-4F orally (incorporated into mouse chow) at a dose of 10 mg/kg/day to female apoE−/− mice starting at 9.5 months of age and continuing for six months together with adding a low dose of statin in the drinking water did not significantly change aortic atherosclerosis (Navab et al. (2009) J. Lipid Res. 50: 1538-1547). In contrast, if the L-4F were administered with niclosamide which binds to L-4F and protects it against trypsin degradation in the intestine, the peptide not only inhibited lesion progression, it actually induced lesion regression in these old mice (Id.). In a subsequent study, we reasoned that if instead of administering the peptide with niclosamide, we simply increased the dose by 10-fold, enough L-4F might survive degradation after oral administration to be effective. Indeed this was the case. Administering L-4F in mouse chow at a dose of 100 mg/kg/day significantly decreased plasma LPA levels and significantly decreased tumor burden in a mouse model of ovarian cancer (Su et al. (2010) Proc. Natl. Acad. Sci. USA, 107: 19997-20002).

These studies suggested that oral apoA-I mimetic therapy using peptides synthesized from all L-amino acids might be feasible if we used high doses of the peptide. Unfortunately, producing sufficient peptide to make therapy in humans practical was not likely because the 4F peptide requires end blocking groups that can only be added through chemical synthesis. Using mouse models, we explored the possibility of using 4F peptide without end blocking groups but found the activity of the peptide to be dramatically reduced (data not shown). This led us to seek alternative peptides synthesized from all L-amino acids that might be effective without end blocking groups. As described here, 6F was found to be such a peptide.

Based on our previous work (Navab et al. (2011) J. Lipid Res. 52: 1200-1210; Navab et al. (2012) J. Lipid Res. 53: 437-445; Su et al. (2010) Proc. Natl. Acad. Sci. USA, 107: 19997-20002) we chose to test peptide doses of 40-100 mg/kg/day. Adding the 6F peptide synthesized from all L-amino acids without end blocking groups to diets of apoE−/− or LDLR−/− mice (chow or WD) at a dose of 60 mg/kg/day resulted in significantly decreased plasma SAA (FIGS. 16A and 16B). In addition, the percent of aorta with atherosclerosis also significantly decreased (FIG. 16C). We chose to first test transgenic expression of the 6F peptide in tomatoes because we reasoned that the peptide should be expressed in a plant that could be eaten without cooking to avoid denaturing the peptide. Adding the 6F peptide to homogenized tomato did not lead to a loss of efficacy (FIG. 28). The 6F peptide was successfully expressed in tomato plants and was found in ripened tomato fruit (FIGS. 17, 18, and FIG. 29). Feeding ground lyophilized tomatoes containing 6F to LDLR−/− mice on WD for two weeks favorably altered some plasma biomarkers (FIG. 19, and FIG. 30), but did not alter plasma total cholesterol or triglyceride levels. In some of these experiments feeding the ground lyophilized control tomatoes decreased some of the biomarkers raising the possibility that the superior effects of the 6F transgenic tomatoes might be due to increased antioxidant content. This did not turn out to be the case for the major antioxidant in tomatoes, lycopene (FIG. 20). Since the addition to the diet of chemically synthesized L-6F without blocking groups produced biologic results similar to those achieved with the addition of lyophilized transgenic 6F tomatoes, it is likely that at least some of these effects were due to the presence of the peptide in the tomatoes. Based on the data in FIG. 20, it is also likely that the beneficial effects of the transgenic 6F tomatoes were not due to their lycopene content. However, we certainly cannot exclude that a portion (if not all) of the beneficial effects of expressing the 6F peptide in tomatoes is due to an increase in an as yet unidentified non-lycopene, non-6F component of these tomatoes.

Extending the feeding experiments to 13 weeks and using EV tomatoes as the control revealed that only the 6F transgenic tomatoes significantly decreased plasma SAA, total cholesterol, triglycerides, and LPA levels, and increased plasma HDL-cholesterol and PON activity (FIG. 21), and decreased the percent of aorta with lesions (FIG. 23); all without changing body weight (FIG. 21I). However, the EV tomatoes did decrease plasma levels of free arachidonic acid and some of its metabolites and increased DHA and EPA (FIG. 22) suggesting that there was likely a benefit from the antioxidant content of the control tomatoes. The increase in DHA and EPA plasma levels may have been due to decreased oxidation of these highly unsaturated fatty acids on feeding the control tomatoes. The further increase in plasma DHA and EPA levels on feeding the transgenic 6F tomatoes likely represents a further reduction in the WD-induced oxidative stress beyond that achieved by the antioxidants contained in the control tomatoes.

Based on correlations between the percent of atherosclerosis and the various biomarkers measured it seems likely that the mechanism of action of the transgenic 6F tomatoes involves alteration in lipid metabolism in the intestine that favorably alters plasma total cholesterol, triglycerides, LPA levels, HDL-cholesterol, and PON activity, which result in decreased systemic inflammation (SAA levels) and atherosclerosis without changing body weight. It has been reported that LPA can alter the secretion of apoB containing lipoproteins from hepatocytes (Shen et al. (2012) Atherosclerosis, 222: 154-157) and LPA 20:4 promotes atherosclerosis in mouse models (Zhou et al. (2011) Cell Metabolism, 13: 592-600). As shown in FIG. 25, feeding transgenic 6F tomatoes significantly reduced LPA 18:2 and LPA 20:4 levels in the duodenum, jejunum and ileum. The levels of these LPA species were significantly correlated with the percent of the aorta with atherosclerotic lesions as shown in FIG. 26. Thus, one possibility is that the reduction in intestinal and plasma LPA levels accounts in part for the observed decrease in plasma total cholesterol, triglycerides and the percent aorta with atherosclerotic lesions. It is interesting to note that the plasma levels of unsaturated LPA species significantly correlated with the percent of aorta with atherosclerosis while the levels of saturated LPA species did not.

As shown in FIG. 32, feeding both EV and transgenic 6F tomatoes significantly decreased the levels of cholesterol in the duodenum and jejunum, but neither reduced cholesterol levels in the ileum. As shown in FIG. 21B only the transgenic 6F tomatoes significantly decreased plasma cholesterol levels. Additionally and in contrast to the case for plasma cholesterol levels (FIG. 24A), the levels of cholesterol in the small intestine were either very weakly correlated with the percent of aorta with lesions (FIG. 32E) or were not correlated with the percent of aorta with lesions (FIGS. 32D and 32F).

It is possible that the transgenic 6F tomatoes decreased the absorption of cholesterol or triglycerides in the 13 week feeding studies. However if this were the case, it is not clear why plasma total cholesterol and triglycerides were not significantly decreased in the two week feeding studies.

In preliminary unpublished studies in a mouse model of ovarian cancer we found that adding the lyophilized transgenic 6F tomatoes to chow gave results similar to those previously reported for L-4F (Su et al. (2010) Proc. Natl. Acad. Sci. USA, 107: 19997-20002). These studies, taken with the data provided herein, suggest that the efficacy of the transgenic 6F tomatoes does not require either hyperlipidemia or a WD.

This is the first report of transgenically expressing a peptide in a fruit that when fed to mice results in the anti-inflammatory properties described here. The particular mechanisms of action and/or modes of interaction with the intestine are under investigation. In this regard, it is noted that the data in FIG. 33 indicate that ˜2 hours after the mice finished eating 900 μg of 6F contained in transgenic tomatoes, intact 6F peptide was identified in the small intestine in microgram quantities (15.6±7.4 μg 6F per 200 mg small intestine), but no peptide was detected in the plasma with methods that would have detected 100 ng/mL. Without being bound to a particular theory, it is possible that the 6F peptide is protected from trypsin degradation by being expressed in a fruit (e.g., the tomato fruit) similar to the case with niclosamide.

Example 4 Use of the E8 Tomato Promoter to Express Apo-AI Mimetic Peptides in Plants

In various embodiments, use of alternative promoters such as the E8 promoter or the E4/E8 hybrid promoter to express any one or more of the various peptides described herein is contemplated. The E8 promoter is described in detail in Kurokawa et al. (2013) An E8 promoter-HSP terminator cassette promotes the high-level accumulation of recombinant protein predominantly in transgenic tomato fruits: a case study of miraculin, Plant Cell. Rep., January 11 (Epub ahead of print) PMID: 23306632.

Plasmid pBI121 (see, e.g., FIGS. 34 and 35) was grown in bacterial cultures. The plasmid was isolated and digested at Hind III and BamH I sites to remove the CaMV 35S promoter. The pBI121 vector back bone after digestion at HindIII/BamHI was isolated on an SDS PAGE gel (FIG. 36).

Tomato genomic DNA was isolated and primers for the E8 promoter carrying the Hind III and BamH I restriction sites were prepared. The E8 prompter was PCR amplified and the sequence was verified (see FIG. 37).

The pBI121 vector back bone (FIG. 36) and E8 PCR fragment (FIG. 37) carrying the HindIII and BamHI restriction sites were ligated. Bacteria were transformed with the ligated product. Positive Colonies were grown further and PCR was used to confirm +ve colonies (FIG. 38). The presence of the construct was confirmed by HinDIII/BamHI Digestion and an SDS PAGE analysis of the product (FIG. 39).

The protocol resulted in bacteria carrying the modified pBI121 plasmid, which contains the E8-driven GUS gene. The GUS gene can be substituted (e.g., as described above) with a nucleic acid encoding any of the peptides (e.g., 6F) described herein to provide a construct for transfecting a plant to express the peptide under control of the E8 promoter.

It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

Claims

1. A transgenic plant comprising cells that express a peptide one or more domains of which comprise the amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide where said transgenic plant or a portion thereof and/or said peptide has biological activity.

2-5. (canceled)

6. The transgenic plant accord of claim 1, wherein said amino acid sequence comprises an amino acid sequence selected from the group consisting of DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17), FFEKFKEFFKDYFAKLWD (rev6F, SEQ ID NO: 25), DWFKAFYDKVAEKFKEAF (4F, SEQ ID NO:15), FAEKFKEAVKDYFAKFWD (rev4F, SEQ ID NO: 23), LLEQLNEQFNWVSRLANL (SEQ ID NO:609), and LVGRQLEEFL (SEQ ID NO:612).

7-25. (canceled)

26. A seed, a fruit, a leaf, a root or tuber, a cutting, or a clone of a transgenic plant according to claim 1.

27-35. (canceled)

36. A peptide expressed in a plant where at least one domain of said peptide comprises an apolipoprotein mimetic and where said peptide is not ApoA-I or apoA-I milano.

37-53. (canceled)

54. A food comprising at least a portion of a transgenic plant capable of being ingested for its nutritional value, said plant expressing a peptide comprising an amino acid sequence that is an apolipoprotein or apolipoprotein mimetic, wherein said food comprises a transgenic plant according to claim 1.

55-63. (canceled)

64. A protein powder, wherein at least a portion of said protein powder comprises an apolipoprotein or apolipoprotein mimetic peptide according to claim 36.

65-68. (canceled)

69. A nutritional supplement comprising:

a transgenic plant of claim 1 or a portion of said plant; and/or an
apolipoprotein or apolipoprotein mimetic peptide expressed in said transgenic plant.

70-72. (canceled)

73. A method for the treatment or prophylaxis of a pathology characterized by an inflammatory response, said method comprising administering to a mammal in need thereof an effective amount of:

at least a portion of a transgenic plant comprising cells that express a peptide one or more domains of which comprise the amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide where said transgenic plant or a portion thereof and/or said peptide has biological activity; and/or
an apolipoprotein or apolipoprotein mimetic peptide expressed in said transgenic plant; and/or
a food according comprising a portion of said transgenic plant; and/or
a protein powder according comprising a portion of said transgenic plant; and/or
a nutritional supplement comprising a portion of said transgenic plant.

74. The method of claim 73, wherein said transgenic plant expresses a peptide comprising an amino acid sequence selected from the group consisting of DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17), FFEKFKEFFKDYFAKLWD (rev6F, SEQ ID NO: 25), DWFKAFYDKVAEKFKEAF (4F, SEQ ID NO:15), FAEKFKEAVKDYFAKFWD (rev4F, SEQ ID NO: 23), LLEQLNEQFNWVSRLANL (SEQ ID NO:609), and LVGRQLEEFL (SEQ ID NO:612).

75-94. (canceled)

95. A method of preventing or reducing the uptake of one or more dietary pro-inflammatory micro-lipid components in a mammal, said method comprising administering to the mammal an effective amount of:

at least a portion of a transgenic plant comprising cells that express a peptide one or more domains of which comprise the amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide where said transgenic plant or a portion thereof and/or said peptide has biological activity; and/or
an apolipoprotein or apolipoprotein mimetic peptide expressed in said transgenic plant; and/or
a food according comprising a portion of said transgenic plant; and/or
a protein powder according comprising a portion of said transgenic plant; and/or
a nutritional supplement comprising a portion of said transgenic plant.

96. The method of claim 95, wherein said transgenic plant expresses a peptide comprising an amino acid sequence selected from the group consisting of DWLKAFYDKFFEKFKEFF (6F, SEQ ID NO:17), FFEKFKEFFKDYFAKLWD (rev6F, SEQ ID NO: 25), DWFKAFYDKVAEKFKEAF (4F, SEQ ID NO:15), FAEKFKEAVKDYFAKFWD (rev4F, SEQ ID NO: 23), LLEQLNEQFNWVSRLANL (SEQ ID NO:609), and LVGRQLEEFL (SEQ ID NO:612).

97-116. (canceled)

117. An isolated nucleic acid that encodes a peptide one or more domains of which comprise the amino acid sequence of an apolipoprotein mimetic peptide, wherein the codons of said nucleic acid are optimized for expression in a plant.

118-126. (canceled)

127. A vector that expresses an apolipoprotein mimetic peptide at an effective concentration when transfected into a plant, said vector comprising a nucleic acid according to claim 117.

128-140. (canceled)

141. A plant cell transfected with a nucleic acid according to claim 117, wherein said plant cell expresses said peptide one or more domains of which comprise the amino acid sequence of an apolipoprotein mimetic peptide.

142-147. (canceled)

148. A method for producing a transgenic plant that expresses a peptide comprising at least one domain that encodes an apolipoprotein mimetic, said method comprising:

providing a vector according to claim 127;
transforming a plant cell with said vector or DNA fragment;
propagating a plant from said cell.

149-161. (canceled)

162. A food or food ingredient comprising at least a portion of a transgenic plant capable of being ingested for its nutritional value and/or taste, wherein a tissue of the plant comprising said food or food ingredient comprises a peptide recombinantly expressed in cells comprising said tissue where said peptide comprises the amino acid sequence of an apolipoprotein or apolipoprotein mimetic peptide where said food or food ingredient, when fed to a mammal has biological activity.

163-198. (canceled)

Patent History
Publication number: 20170158751
Type: Application
Filed: Nov 30, 2016
Publication Date: Jun 8, 2017
Inventors: ALAN M. FOGELMAN (Los Angeles, CA), SRINIVASA T. REDDY (Cerritos, CA), MOHAMAD NAVAB (Los Angeles, CA)
Application Number: 15/365,788
Classifications
International Classification: C07K 14/775 (20060101); A61K 9/00 (20060101); A61K 36/81 (20060101); A23L 33/185 (20060101); C12N 15/82 (20060101); A23L 19/00 (20060101); A23L 33/105 (20060101); A61K 9/14 (20060101); A61K 38/17 (20060101);