GOLF PRACTICE ARRANGEMENT
A golf practice arrangement that is used to develop a golfer's swing. The practice arrangement has a club with a head that has a hosel extending from the head for connection to a shaft. The shaft at one end has a grip attached to it and is connected to the hosel at the opposite end. The head has a striking face that is adapted for striking a fastener and a body that is aligned behind the striking face. The fastener is driven into a block that is held in a holder affixed to the mat. The mat is built for a user of the club to stand upon when striking the fastener into the block with the club. The fastener may be a nail that is driven into a wood block. The striking face is round having a circular area with which to strike.
Learning to swing a golf club properly can be a challenging endeavor. A golf club usually has a small sweet spot from where the cleanest hit will be made when contacting the ball. When the sweet spot is hit with a proper swing, the ball will travel straight. Missing the sweet spot of a club will waste power, reduce distance the ball will travel, and often result in a slice or hook that will send the ball off its intended course.
A practice golf club would train a golfer to use only the sweet spot of the club. Having a club with a small face and where that small face is almost entirely a sweet spot would be a good way to show the golfer where the sweet spot is and consistently hit the sweet spot. Such a practice club ideally would have its entire small face representative of the sweet spot.
Additionally, another challenge associated with learning to develop a swing is being able to harness a repeatable swing. Getting a repeatable swing is best accomplished by developing muscle memory for that action. The more common that swing action becomes for a golfer, the easier it should become to repeat it.
SUMMARY OF THE INVENTIONThe present golf training system relies on a common action for which many people have developed muscle memory development and translating that action into the ability to have a more repeatable golf swing. That common action is the swinging of a hammer to drive in nails or other similar fasteners. Accordingly, the present golf practice arrangement attempts to replicate the hammering of such fasteners using, in one embodiment, a specially designed club to perform the hammering action and providing a driving block carrying at least one of a drivable fastener or peg element, with the drivable fastener or peg element being driven or otherwise hammered into the block using the training club of the present design.
The present golf practice arrangement is used to develop a golfer's swing. In one embodiment of the system, the practice arrangement has a club with a head that has a hosel extending from the head for connection to a shaft. The shaft at one end has a grip attached to it and is connected to the hosel at the opposite end. The head has a striking face that is adapted for striking a fastener. The fastener is driven into a block that is held in place by a holder. In one variation the holder is in the form of a mat or platform to which the block is affixed. The mat is built for a user of the club to stand upon when striking the fastener into the block with the club. In yet another variation, the block holder is in the form of at least one stake mounted to and/or extending from the block, with a given stake being able to driven into the ground to keep the block in place during driving practice.
The fastener may, in a simple form, be a nail that is driven into a wood block. Other variations of the fastener or drivable peg are possible, as well.
In another aspect of the invention the striking face is round having a circular area with which to strike a nail or another drivable peg element, as carried by the driving block. More particularly, the striking face of the head of the practice club may be configured as a circular hammer face.
The head 14 has a body 18 that, in one embodiment, is generally a rectangular prism in shape, with the body 18 defining a body length BL, a body width BW, and a body height BH, as noted in
The cross section of each striking face 24 may, in one embodiment, be of a uniform diameter for a predetermined distance toward the body 18 until reaching a corresponding reduced portion 34 that is between the body 18 and a given striking face 24, in a manner generally consistent with a common hammer head design. It is important to note that the present practice club 12 differs, in large part, from a standard golf club (not shown) in that the hammer-head striking face 24 serves as the club face, instead of the typical triangular/trapezoidal hitting face associated with standard non-putter clubs. While the striking faces 24 are illustrated to be circular, it is to be understood that a given striking face 24 could take on another shape (e.g., ellipse, square), so long as that shape provides a compact hitting area (e.g,, essentially less than ½ the area of a standard non-putter club face and, more particularly, less than ⅓ the area thereof).
The entire area of each striking face 24, within the circumference/perimeter thereof, is adapted for hitting a given drivable peg 26. That is to say, at least the striking or hammer faces 24 of the head 14 are sufficiently hard and durable enough (e.g., formed of hardened steel (like a hammer) or hard rubber (like a mallet)) to transfer the energy of a swing of the club 12 to a given drivable peg 26 and, concordantly, to withstand repeated performance of that action. For issues such as ease of forming, durability, and/or transfer of energy to a given striking face 24, the entire head 14 may, in one variation, be formed of the same material chosen for the striking face 24.
The body 18, in the illustrated version, is completely within the circumference/perimeter 28 of the striking faces 24, as projected toward the body 18. In this way, the striking faces 24 circumscribe the lengthwise direction of the body 18. Because of this alignment of the striking faces 24 and the body 18, the mass of the head 14 is directly aligned with the faces 24. This arrangement ensures that the linear density and balance of the club 12 are high. Also, if designed in the manner illustrated, the size and shape of the striking faces 24 would establish the clearance needed for a successful swing (i.e., if the striking faces 24 would not “catch” on a nearby surface ground) during a swing, the body 18 would not do so either).
Each striking or hammer face 24 may further be essentially perpendicular to the body axis BA (i.e., established along the body length BL) of the body 18. Aligning each striking face 24 in such a manner ensures that a given drivable peg 26 may be struck square with any portion of the given striking face 24, thus facilitating maximum transfer of energy along the corresponding axis (not labeled) of the drivable peg 26. If, for example, the drivable peg 26 were a nail and the striking face 24 were instead at an angle (other than essentially perpendicular) to the body axis B, hitting the nail with such an angled striking face 24 could actually promote bending of the nail more so than hammering or pounding it, as desired. Thus, aligning the striking face 24 of the practice club 12 perpendicular or nearly so to the body axis BA distinguishes the striking face 24 of the illustrated embodiment from a typically slanted face of a regular non-putter club, as non-putter clubs are angled to varying degrees to facilitate the generation of a certain amount of lift in addition to forward momentum.
The club 12 further has a shaft 38, defining a shaft axis SA (per
The shaft 38 of a driver, fairway, or hybrid club 12 is typically made of strong, flexible material such as a graphite composite, aluminum, fiberglass, or another similar material. Having a shaft 38 be made of such a material allows the club 12 to be relatively light, durable, flexible, and able to transfer torque during a swing. This material choice for the shaft 38, though, is unlike the optimal choice for a putter shaft. For a putter shaft, stiffness and minimal or no torque and twisting during use are desired to promote both accuracy and efficient energy transfer. Thus, putter shafts, unlike a shaft 38 of a non-putter club, are typically made of steel.
The club 12, in one variation, may be used with a mat or platform 50, with the mat 50 defining a flat surface 52 on which the user 44 is able to stand. The mat or platform 50, in the version illustrated in
To use the practice arrangement the user 44 will install the wood block 56 as it is shown in
Other alternatives can be associated with the driving block system 53. First of all, the driving block system 53, in variations thereof, could be used without the mat 50. To do so, it is understood that the block holder 54 would need to include an anchor mechanism (akin to 60 as used in the embodiment of
Additionally, other variants could be used for the drivable peg 26 to be driven into the block 56. One such variant could be a reusable through-peg 26a, as shown in
In yet another variation, the block holder 54 could be provided with a lock-pivot mechanism (not shown), to permit quick reversal of the side of the block 56 to be used for practice driving. Further, as illustrated schematically in
Yet further, the driving block system 53 may be provided with additional sound deadening mechanisms (e.g., within the block 56 via foam or some other known sound-absorbing material; and/or on one or more sides (e.g., sides not receiving the drivable pegs 26) thereof), one variation of which is shown in
The use of the club 12 of this invention teaches a user 44 to hit the sweet spot of a traditional golf club by training the user 44 to hit the small striking face 24 on a nail 26, which is a small target, and teaches the user 44 to hit the target (i.e., the drivable peg 26) square. Feedback is instantly provided every swing by how far the drivable peg (e.g., nail) 26 is driven and by the feel through the swing. The area of the striking face 24 is approximately the size of the sweet spot of an ordinary golf club. Additionally, the alignment of the striking face 24 relative to both the body axis B of the body 18 of the head 14 and relative to the shaft axis A of the club shaft 38 help to ensure that the drivable peg 26 is struck square and true, getting maximum energy transfer to the drivable peg 26, while minimizing the tendency to bend the drivable peg 26. If a sensor-feedback system (such as per
The pivot mount system 160, providing a connection between the head 114 and the hosel 116, includes a mounting pin 162, a mounting nut 164, an inset spring 166, a first pin receiver 168 extending from the hosel 116, and a second pin receiver 170 extending from the head 114. The mounting pin 162 includes a cylindrical pin body 172, a cylindrical head end 174, and threaded end 176 (distal to the cylindrical head end 174). The first pin receiver 168 include a first through hole portion 178 and a second through hole portion 180, the first through hole portion 178 being in communication with and larger in diameter than the second through hole portion 180.
The first through hole portion 178 is configured to rotatably receive and retain therein the cylindrical head end 174. Meanwhile, the second through hole portion 180 is able to receive and thereby pivotably retain the cylindrical pin body 172. Thus, the first pin receiver 168 is configured to rotatably receive yet retain the mounting pin 162. The retention of the first end portion of the mounting pin 162 relative to the first pin receiver 168 is facilitated by the cylindrical head end 174 being too large to fit through the second through hole portion 180 of the first pin receiver 168. It is further to be understood that the cylindrical head end 174 will be provided with an internal hex key end, a Phillips and/or flat screwdriver slotting, and/or another means by which the cylindrical head end may be turned and torqued to facilitate threading with the mounting nut 164 via the threaded end 176 of the mounting pin 162. The attached mounting nut 164 thereby ensures the retention of the second end portion of the mounting pin 162, relative to the second pin receiver 170.
The second pin receiver 170, per the illustrated embodiment, may particularly include a two-portion through hole 182, an inner pin-receiving portion 184 and an outer nut receiving portion 186. The inner pin-receiving portion 184 faces the first pin receiver 168 and is configured to receive a portion of the cylindrical pin body 172 therethrough (i.e., cylindrical to match the portion of the pin body 172 received thereby). Meanwhile, the outer nut receiving portion 186 is sized and configured to receive the mounting nut 164 therein. For example, both may have a standard hex nut shape. By the outer nut receiving portion 186 and the mounting nut 164 fitting together in such a manner, it helps to reduce the chances of the mounting nut 164 from coming unthreaded from the threaded end 176 of the mounting pin 162. That nested configuration also reduces the opportunity for wear of those connected portions. It is to be understood that the inner pin-receiving portion 184 the corresponding portion of the mounting pin 162 received therethrough could be co-sized in a manner to prevent rotation (e.g., polygonal; a shape with a key element; etc.). In essence, an inner pin-receiving portion 184 and the corresponding portion of the mounting pin 162 formed in such a manner would act along with the anti-rotation feature offered by the outer nut receiving portion 186 and the mounting nut 164 to create a redundant locking effect.
The inset spring 166 is carried on the mounting pin 162 with one end of the inset spring 166 being inset in the second through hole portion 178 of the first pin receiver 168 and the other end thereof being inset in the inner pin-receiving portion 184 of the second pin receiver 178. The inset spring 166, by being so mounted, biases against the first pin receiver 168 and the second pin receiver 170. Such biasing, in turn, acts on the opposed ends of the mounting pin 162 in mariner that resists rotation/pivoting of the pivot mount system 160.
Accordingly, between tightening action offered by the mounting nut 164 and spring force generated by the inset spring 166, the head 114 can be set a particular angle relative to the hose 116 and expect to be retained in the desired angular position over the course of number of practice swings and/or until expressly reset by the user. Such resetting may be achieved by loosening the mounting pin 162 relative to the mounting nut 164, repositioning the head 114 to a desired angle, and then retightening that connection. Alternatively, depending on how tight that connection was originally, it may be possible merely to apply enough force to the head 114 to cause it to pivot relative to the hosel 116 via the mounting pin 162.
Although not shown, it is to be understood that the pivot mount system 160 involve indicia thereon in order to signify particular club settings, lift angles, etc. Further, the pivot mount system 160 could be provided with preferred pivot locations (e.g., click-in locations, not shown) corresponding to those particular club settings or club angles. The user could then further benefit by knowing exactly which type of club the practice club 112 would be set to mimic at a given time.
The invention is not limited to the details given above, but may be modified within the scope of the following claims. It is further understood that any of the various features described above are not necessarily limited to use with a particular embodiment and may, instead, be used in conjunction with any of the other variations contemplated (i.e., features provided herein may be “mixed and matched” and be within the scope of the present system).
Claims
1. A golf practice arrangement comprising:
- a club having a head connected to a hosel, said head including a body and a striking face connected to said body, said striking face having an area for striking a fastener;
- a shaft being connected to said hosel at one end and said other end of said shaft adapted for being gripped by a user;
- a mat on which said user may stand;
- a holder affixed to said mat for holding a block, said block adapted for having said fastener driven into it by striking said fastener with said head of said club.
2. The golf practice arrangement of claim 1, wherein said holder includes a clamp adapted for reasonably securing said block whereby said block may be changed.
3. The golf practice arrangement of claim 2, wherein said area of said striking face circumscribes said body so that no portion of said body extends beyond said area.
4. The golf practice arrangement of claim 3, wherein said body is a rectangular prism.
5. The golf practice arrangement of claim 4, wherein said striking face is connected to a reduced portion spanning between said striking face and said body, said reduced portion being circumscribed by said striking face and said body, said reduced portion having a cross sectional area smaller than said area of said striking face and smaller than the cross sectional area of said body.
6. The golf practice arrangement of claim 5, wherein said striking face is circular, said reduced portion is circular in its cross section, the diameter of said reduced portion being less than a distance between opposing sides of said body and less than the diameter of said striking face.
7. The golf practice arrangement of claim 6, wherein said body of said head has a substantially square cross section.
8. The golf practice arrangement of claim 7, wherein said fastener is a nail.
9. The golf practice arrangement of claim 8, wherein said hosel is centrally aligned with respect to said body.
10. The golf practice arrangement of claim 9, wherein said hose) extends perpendicularly with respect to a side of said body to which said hosel is affixed.
11. The golf practice arrangement of claim 8, wherein a side of said hosel is aligned with a side of said body.
12. The golf practice arrangement of claim 11, wherein said hosel is bent at an oblique angle with respect to a face of said body to which said hosel is affixed.
Type: Application
Filed: Sep 18, 2015
Publication Date: Jul 6, 2017
Inventor: Richard Gillas Jones (Leesburg, IN)
Application Number: 15/318,861