PSYCHO-ACOUSTIC NOISE SUPPRESSION
A method for perceptual enhancement of a received remote talker's voice, in the presence of local ambient noise, in an electronic voice communication system is provided. The method includes generating a pair of binaural voice signals from the remote talker's voice and manipulating the characteristics of the resulting pair of binaural signals. The two ears of the local listener are stimulated binaurally with the pair of binaural voice signals. The stimulating is performed adaptively as the ambient noise in the local listener's environment changes, thereby creating a perception of remote talker reacting actively to the local ambient noise, in a psycho-acoustically pleasing manner to the local listener.
This application claims priority to U.S. Patent Application No. 61/486,088, filed on May 13, 2011, and entitled “PSYCHO-ACOUSTIC NOISE SUPPRESSION,” which is incorporated herein by reference.
BACKGROUNDRecent developments in the art of manufacturing has brought significant reduction in cost and form factor of mobile consumer devices—tablet, blue tooth headset, net book, net TV etc. As a result, there is an explosive growth in consumption of these consumer devices. Besides communication applications such as voice and video telephony, voice driven machine applications are becoming increasing popular as well. Voice based machine applications include voice driven automated attendants, command recognition, speech recognition, voice based search engine, networked games and such. Video conferencing and other display oriented applications require the user to watch the screen from a hand-held distance. In the hand-held mode, the signal to noise ratio of the desired voice signal at the microphone is severely degraded, both due to the exposure to ambient noise and the exposure to loud acoustic echo feedback from the loudspeakers in close proximity. This is further exacerbated by the fact that voice driven applications and improved voice communications require wide band voice.
Binaural headsets, both wired and wireless have been increasing along with the explosive growth of mobile consumer devices. However, the noise environments in which the headsets are used are becoming ever more challenging, especially in the presence of ambient noise in the environment of the listener.
It is within this context that the embodiments arise.
SUMMARYThe embodiments provide take advantage of the observation that the human brain has naturally evolved to perform noise suppression by taking advantage of several cues in the environment. On a lighter note, it is this ability which makes a husband completely miss hearing his wife, while he may be busy watching a TV show.
In the present embodiments, an arbitrary number of microphones are bifurcated into two groups. The microphones in each group are summed together to form two microphone arrays. Due to the computing ease of the processing operation, i.e., summing, these arrays by themselves provide very little improvement of signal to noise ratio in the desired look direction. However, the microphones are arranged such that the characteristics of the ambient noise from other directions orthogonal to the look direction, is substantially different between the outputs of the two microphone arrays. The embodiments employ a source separation adaptive filtering process between these two outputs to generate the desired signal with substantially improved signal to noise ratio. The separation process also provides ambient noise with significantly reduced voice. There are applications where the ambient noise is of use. The outputs of a multiplicity of microphones is reduced or encoded into two signals, i.e., the virtual microphones. With the reduced bandwidth and fixed signal dimension, it is easier to perform the processing through existing hardware and software systems, such that the processing of interest may be performed either on the end hosts or the network cloud.
The above summary does not include all aspects of the present invention. The invention includes all systems and methods disclosed in the Detailed Description below and particularly pointed out in the claims.
The embodiments of the invention are illustrated by way of examples and not be interpreted by way of limitation in the accompanying drawings.
While several details are set forth, it is understood that some embodiments of the invention may be practiced without these details. In some instances, well-known circuits and techniques have not been shown in detail so as not to obscure the understanding of this description.
Active Noise Control has been utilized to generate anti-noise in the ears of the listener. However, active noise control requires a fully-covered headset, making it expensive and inconvenient Implementations which use smaller headsets have not fared well in the quality of enhancement.
Adaptive Volume Control, where the volume of the remote talker's voice is increased in the listener's ears based on the loudness of ambient noise has also been utilized to address this problem. However, this method has a limited useful range in which the volume can be varied without hurting the listener's ears.
The following psycho-acoustic observations of interest provide a basis for the embodiments described below:
-
- a. Human hearing is more sensitized to directional sound as compared to diffused sound coming from all over.
- b. Human hearing can differentiate two sources of sound better if it comes from two different directions as shown in
FIG. 2 , rather than coming from the same direction as shown inFIG. 1 . - c. Human hearing is more sensitized to a whisper in the ear rather than an equally loud sound from a distance.
- d. Human hearing is sensitized to a shout out from a distance. Shouting makes the voice different—it has the so called Lombard's effect.
- e. Human hearing is sensitized to a moving sound source as compared to a diffused source of sound
In the embodiments described above, a plurality of microphones is bifurcated into two groups. As shown in
-
- Playing the remote talker's voice in the two ears with different delays to create a perception of desired directionality.
- Playing the remote talker's voice in the two ears with different attenuation to further support the perception of desired directionality.
- Making the diffused ambient noise seem directional by mixing some of the noise sensed from the environment into one of the ears. It should be appreciated that this makes the listener hear the noise more in one of the ears.
- Playing the remote talker's voice in the two ears with a phase inversion to create the perception of the voice emanating from within the head of the listener.
- Introducing Lombard's effect into the remote talker's voice through signal processing, to create a perception that the remote talker is shouting to keep up with the ambient noise around the listener.
The received remote talker's voice is mono. We make two copies for the left and right channels to be processed and fed to the two speakers of the stereo headset as shown in
With the above embodiments in mind, it should be understood that the embodiments might employ various computer-implemented operations involving data stored in computer systems. These operations are those requiring physical manipulation of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. Further, the manipulations performed are often referred to in terms, such as producing, identifying, determining, or comparing. Any of the operations described herein that form part of the invention are useful machine operations. The embodiments also relates to a device or an apparatus for performing these operations. The apparatus can be specially constructed for the required purpose, or the apparatus can be a general-purpose computer selectively activated or configured by a computer program stored in the computer. In particular, various general-purpose machines can be used with computer programs written in accordance with the teachings herein, or it may be more convenient to construct a more specialized apparatus to perform the required operations
The invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data, which can be thereafter read by a computer system. Examples of the computer readable medium include hard drives, network attached storage (NAS), read-only memory, random-access memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and other optical and non-optical data storage devices. The computer readable medium can also be distributed over a network coupled computer system so that the computer readable code is stored and executed in a distributed fashion. Embodiments of the present invention may be practiced with various computer system configurations including hand-held devices, microprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers and the like. The invention can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a wire-based or wireless network.
Although the method operations were described in a specific order, it should be understood that other operations may be performed in between described operations, described operations may be adjusted so that they occur at slightly different times or the described operations may be distributed in a system which allows the occurrence of the processing operations at various intervals associated with the processing.
Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications can be practiced within the scope of the appended claims. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.
Claims
1. A method for perceptual enhancement of a remote talker's voice, in the presence of local ambient noise, in an electronic voice communication system, comprising:
- generating a pair of binaural voice signals from the remote talker's voice;
- manipulating characteristics of the pair of binaural voice signals; and
- stimulating ears of a listener binaurally with the pair of binaural voice signals, the stimulating performed adaptively as the ambient noise in a listener's environment changes, thereby creating a perception of a remote talker reacting actively to the ambient noise in the listener's environment.
2. The method of claim 1, wherein the perception functions to make the remote talker's voice to virtually emanate from a direction different from that of the local ambient noise source.
3. The method of claim 2, wherein the manipulating introduces a time delay between the signals of the pair of binaural voice signals.
4. The method of claim 2, wherein the manipulating introduces a difference in attenuation between the signals of the pair of binaural signals.
5. The method of claim 1, wherein the perception functions to make the remote talker's voice emanate from within a head of the listener.
6. The method of claim 5, wherein the manipulating inverts a phase of the pair of binaural signals.
7. The method of claim 1, wherein the ambient noise is diffused and wherein the perception functions to make the ambient noise arrive from a direction different from that of a direction of the remote talker's voice.
8. The method of claim 7 wherein the manipulating further comprises:
- sensing the local ambient noise; and
- stimulating one of the ears with a signal having more of the local ambient noise that a signal to another one of the ears.
9. The method of claim 1, wherein the perception functions to make the remote talker to move around.
10. The method of claim 1, wherein the perception functions to make the remote talker shout.
11. The method of claim 10, wherein the manipulating introduces Lombard's effect into the remote talker's voice.
12. The method of claim 1, wherein the stimulating is achieved through a surround sound system.
13. The method of claim 1, wherein the stimulating is achieved using a binaural headset.
14. The method of claim 1, wherein the stimulating is achieved using a stereo sound system.
Type: Application
Filed: May 14, 2012
Publication Date: Jul 6, 2017
Patent Grant number: 9794678
Inventor: Shridhar K. Mukund (San Jose, CA)
Application Number: 13/471,423