WOUND-TYPE CELL

The present disclosure provides a wound-type cell which comprises: a first electrode plate having a first current collector and a first active material layer coated on a surface of the first current collector; a second electrode plate having a second current collector and a second active material layer coated on a surface of the second current collector, and a second winding start end of the second electrode plate is positioned at an inner side of a first winding start end of the first electrode plate in a thickness direction; a separator; a first electrode tab; and a second electrode tab. A third winding start end of the separator is positioned at an outer side of the second winding start end of the second electrode plate in a length direction, extends along a direction away from a second end of the second winding start end and is not folded back.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
REFERENCE To RELATED APPLICATIONS

The present application claims priority to Chinese patent application No. 201610196793.8, filed on Mar. 31, 2016, which is incorporated herein by reference in its entirety.

FIELD OF THE PRESENT DISCLOSURE

The present disclosure relates to the field of battery, and particularly relates to a wound-type cell.

BACKGROUND OF THE PRESENT DISCLOSURE

With the commercial development of Lithium-ion cell, the requirement of market on energy density and mechanical abuse performance of the Lithium-ion cell is becoming higher and higher. Referring to FIG. 1, at a winding start end of a conventional wound-type cell, a blank positive current collector 111 (Al foil) is shorter than a blank negative current collector 211 (Cu foil) which is positioned at an inner side of the blank positive current collector 111, so the inside of the wound-type cell needs to redundantly wind a part of separator 3 which is positioned between the blank positive current collector 111 and the blank negative current collector 211 and is beyond the blank positive current collector 111 and the blank negative current collector 211, and this will lead to the waste of separator.

SUMMARY OF THE PRESENT DISCLOSURE

In view of the problem existing in the background, an object of the present disclosure is to provide a wound-type cell, which can reduce a usage amount of a separator and a thickness of the wound-type cell, and improve the energy density of the wound-type cell.

In order to achieve the above object, the present disclosure provides a wound-type cell which comprises: a first electrode plate having a first current collector and a first active material layer coated on a surface of the first current collector; a second electrode plate having a second current collector and a second active material layer coated on a surface of the second current collector, and a second winding start end of the second electrode plate is positioned at an inner side of a first winding start end of the first electrode plate in a thickness direction; a separator provided between the first electrode plate and the second electrode plate to separate the first electrode plate from the second electrode plate; a first electrode tab electrically connected to the first current collector; and a second electrode tab electrically connected to the second current collector. A third winding start end of the separator is positioned at an outer side of the second winding start end of the second electrode plate in a length direction, extends along a direction away from a second end of the second winding start end and is not folded back.

The present disclosure has the following beneficial effects: in the wound-type cell according to the present disclosure, because the third winding start end of the separator extends along the direction away from the second end of the second winding start end and is not folded back, there is no need to wind back the separator in large length as in the prior art, thereby reducing a usage amount of the separator and the cost of the separator. In addition, the way that the third winding start end of the separator extends can avoid the third winding start end overlapping with the second winding start end in the thickness direction, thereby reducing a thickness of the wound-type cell and improve the energy density of the wound-type cell. At the same time, it is easy to realize automatic production of the wound-type cell of the present disclosure.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a schematic view of a wound-type cell and a winding mandrel of the prior art.

FIG. 2 is a schematic view of an embodiment of a wound-type cell and a winding mandrel according to the present disclosure, in which a first winding start end, a second winding start end and a third winding start end each are indicated by a dotted line frame.

FIG. 3 is a schematic view of an embodiment of the wound-type cell of FIG. 2.

FIG. 4 is a schematic view of another embodiment of the wound-type cell of FIG. 2.

FIG. 5 is a schematic view of another embodiment of the wound-type cell and the winding mandrel according to the present disclosure, in which a first winding start end, a second winding start end and a third winding start end each are indicated by a dotted line frame.

FIG. 6 is a schematic view of the wound-type cell of FIG. 5.

FIG. 7 is a schematic view of still another embodiment of the wound-type cell according to the present disclosure, in which a first winding start end, a second winding start end and a third winding start end each are indicated by a dotted line frame.

FIG. 8 is a schematic view of an embodiment of a first electrode tab formed in the wound-type cell according to the present disclosure, in which a first active material layer on a first current collector is omitted for the sake of clarity.

FIG. 9 is a schematic view of another embodiment of the first electrode tab formed in the wound-type cell according to the present disclosure, in which the first active material layer on the first current collector is omitted for the sake of clarity.

FIG. 10 is a schematic view of another embodiment of a second electrode tab formed in the wound-type cell according to the present disclosure, in which a second active material layer on a second current collector is omitted for the sake of clarity.

FIG. 11 is a schematic view of another embodiment of the second electrode tab formed in the wound-type cell according to the present disclosure, in which the second active material layer on the second current collector is omitted for the sake of clarity.

Reference numerals are represented as follows:

  • 1 first electrode plate

11 first current collector

    • 111 blank first current collector

12 first active material layer

13 first groove

  • 2 second electrode plate

21 second current collector

    • 211 blank second current collector

22 second active material layer

23 second groove

  • 3 separator
  • 4 first electrode tab
  • 5 second electrode tab
  • E1 first winding start end
    • E11 first end
  • E2 second winding start end

E21 second end

  • E3 third winding start end
  • C arc-shaped portion
  • S1 first winding mandrel

S11 first end surface

S12 first side surface

  • S2 second winding mandrel

S21 second end surface

S22 second side surface

  • G clamping groove
  • L length direction
  • T thickness direction

DETAILED DESCRIPTION

Hereinafter a wound-type cell and a winding mandrel according to the present disclosure will be described in detail in combination with the figures.

Firstly, a wound-type cell according to a first aspect of the present disclosure will be described.

Referring to FIG. 2 through FIG. 11, a wound-type cell according to the present disclosure comprises: a first electrode plate 1 having a first current collector 11 and a first active material layer 12 coated on a surface of the first current collector 11; a second electrode plate 2 having a second current collector 21 and a second active material layer 22 coated on a surface of the second current collector 21, and a second winding start end E2 of the second electrode plate 2 is positioned at an inner side of a first winding start end E1 of the first electrode plate 1 in a thickness direction T; a separator 3 provided between the first electrode plate 1 and the second electrode plate 2 to separate the first electrode plate 1 from the second electrode plate 2; a first electrode tab 4 electrically connected to the first current collector 11; and a second electrode tab 5 electrically connected to the second current collector 21. A third winding start end E3 of the separator 3 is positioned at an outer side of the second winding start end E2 of the second electrode plate 2 in a length direction L, extends along a direction away from a second end E21 of the second winding start end E2 and is not folded back.

In the wound-type cell according to the present disclosure, because the third winding start end E3 of the separator 3 extends along the direction away from the second end E21 of the second winding start end E2 and is not folded back, there is no need to wind back the separator 3 in large length as in the prior art, thereby reducing a usage amount of the separator 3 and the cost of the separator 3. In addition, the way that the third winding start end E3 of the separator 3 extends can avoid the third winding start end E3 overlapping with the second winding start end E2 in the thickness direction T, thereby reducing a thickness of the wound-type cell and improve the energy density of the wound-type cell. At the same time, it is easy to realize automatic production of the wound-type cell of the present disclosure.

In an embodiment of a wound-type cell according to the present disclosure, a length of the third winding start end E3 of the separator 3 is between 1 mm and 10 mm, preferably, the length of the third winding start end E3 of the separator 3 is between 1 mm and 5 mm.

In an embodiment of the wound-type cell according to the present disclosure, referring to FIG. 2 through FIG. 7, a first half-circle of the second electrode plate 2 which is wound around the second winding start end E2 is a first layer of the second electrode plate 2, the first layer of the second electrode plate 2 and the second winding start end E2 face each other and a part of the separator 3 is provided between the first layer of the second electrode plate 2 and the second winding start end E2.

In an embodiment of the wound-type cell according to the present disclosure, referring to FIG. 2 through FIG. 7, the third winding start end E3 of the separator 3 is formed by two layers in the thickness direction T. The third winding start end E3 is a part of one layer and a part of the other layer which are clamped in a clamping groove G of a later mentioned winding mandrel; in the formed wound-type cell, the third winding start end E3 of the separator 3 is two layers, preferably, the two layers are attached together.

In an embodiment of the wound-type cell according to the present disclosure, the first electrode plate 1 may be a positive electrode plate or a negative electrode plate, correspondingly, the second electrode plate 2 may be a negative electrode plate or a positive electrode plate. Preferably, the first electrode plate 1 is a positive electrode plate and the second electrode plate 2 is a negative electrode plate, correspondingly, the first active material layer 12 is a positive active material layer, and specifically, the first active material layer 12 may be selected from at least one of lithium cobalt oxide (LiCoO2), lithium ferric phosphate (LiFePO4) and lithium manganese oxide (LiMn2O4). The second active material layer 22 is a negative active material layer, and specifically, the second active material layer 22 may be selected from at least one of carbon and silicon.

In an embodiment of the wound-type cell according to the present disclosure, the first electrode tab 4 is provided as one or more in number (referring to FIG. 7 through FIG. 9). When the first electrode tab 4 of the wound-type cell is provided as more than one in number, the first electrode tabs 4 are preferably aligned in the thickness direction T, however it allows each first electrode tab 4 to have a certain deviation in aligned position due to machining tolerance of each first electrode tab 4.

In an embodiment of the wound-type cell according to the present disclosure, the second electrode tab 5 is provided as one or more in number (referring to FIG. 7, FIG. 10 and FIG. 11). When the second electrode tab 5 of the wound-type cell is provided as more than one in number, the second electrode tabs 5 are preferably aligned in the thickness direction T, however it allows each second electrode tab 5 to have a certain deviation in aligned position due to machining tolerance of each second electrode tab 5.

In an embodiment of the wound-type cell according to the present disclosure, the first current collector 11 is an aluminum foil, the second current collector 21 is a copper foil.

In an embodiment of the wound-type cell according to the present disclosure, a thickness of the first electrode tab 4 is more than a thickness of the first current collector 11. This can ensure a connection strength and an overcurrent sectional area of the first electrode tab 4.

In an embodiment of the wound-type cell according to the present disclosure, a thickness of second electrode tab 5 is more than a thickness of the second current collector 21. This can ensure a connection strength and an overcurrent sectional area of the second electrode tab 5.

In an embodiment of the wound-type cell according to the present disclosure, referring to FIG. 2 through FIG. 6, the first electrode plate 1 has a blank first current collector 111 which is positioned at the first winding start end E1 and is not coated with the first active material layer 12; correspondingly, the second electrode plate 2 has a blank second current collector 211 which is positioned at the second winding start end E2 and is not coated with the second active material layer 22. When the second electrode tab 5 is connected to the blank second current collector 211, the way that the third winding start end E3 of the separator 3 extends can avoid superposition of a thickness of the third winding start end E3 and the thickness of the second electrode tab 5 in the thickness direction T, thereby reducing the thickness of the wound-type cell and improve the energy density of the wound-type cell.

In an embodiment of the wound-type cell according to the present disclosure, referring to FIG. 2 through FIG. 6, a side of the second current collector 21 which directly faces the blank first current collector 111 is not coated with the second active material layer 22. Because the blank first current collector 111 is not coated with the first active material layer 12, if the side of the second current collector 21 which directly faces the blank first current collector 111 is coated with the second active material layer 22, it is not only helpless to the capacity (lithium-ions cannot realize the reciprocating process of intercalation and deintercalation between the blank first current collector 111 and the second current collector 21 that directly faces the blank first current collector 111) but also increases the thickness of the wound-type cell and reduces the energy density of the wound-type cell. Therefore, the side of the second current collector 21 which directly faces the blank first current collector 111 may be not coated with the second active material layer 22, and this will avoid waste in material and improve the energy density of the wound-type cell.

In an embodiment of the wound-type cell according to the present disclosure, referring to FIG. 2 through FIG. 6, a side of the first current collector 11 which directly faces the blank second current collector 211 is not coated with the first active material layer 12. Because the blank second current collector 211 is not coated with the second active material layer 22, if the side of the first current collector 11 which directly faces the blank second current collector 211 is coated with the first active material layer 12, it is not only helpless to the capacity (lithium-ion cannot realize the reciprocating process of intercalation and deintercalation between the blank second current collector 211 and the first current collector 11 which directly faces the blank second current collector 211) but also increases the thickness of the wound-type cell and reduces the energy density of the wound-type cell. Therefore, the side of the first current collector 11 which directly faces the blank second current collector 211 may be not coated with the first active material layer 12, and this will avoid waste in material and improve the energy density of the wound-type cell.

In an embodiment of the wound-type cell according to the present disclosure, referring to FIG. 2 through FIG. 6, an inner side of an arc-shaped portion C of the second current collector 21 which directly faces a first end E11 of the first winding start end E1 is not coated with the second active material layer 22. Because the first end E11 of the first winding start end E1, which directly faces the inner side of the arc-shaped portion C of the second current collector 21, is not coated with the first active material layer 12, if the inner side of the arc-shaped portion C is coated with the second active material layer 22, it is not only helpless to the capacity (lithium-ion cannot realize the reciprocating process of intercalation and deintercalation between the inner side of the arc-shaped portion C of the second current collector 21 and the first end E11 of the first winding start end E1) but also increases the thickness of the wound-type cell and reduces the energy density of the wound-type cell. Therefore, the inner side of the arc-shaped portion C may be not coated with the second active material layer 22, and this will avoid waste in material and improve the energy density of the wound-type cell.

In an embodiment of the wound-type cell according to the present disclosure, referring to FIG. 2 through FIG. 4, the first end E11 of the first winding start end E1 is beyond the second end E21 of the second winding start end E2 in the length direction L and a position of the first electrode tab 4 is beyond the second end E21 of the second winding start end E2 in the length direction L. This winding way can further reduce the usage amount of the separator 3 and in turn reduce the cost.

In an embodiment of the wound-type cell according to the present disclosure, referring to FIG. 5 and FIG. 6, the second end E21 of the second winding start end E2 is beyond the first end E11 of the first winding start end E1 in the length direction L and a position of the second electrode tab 5 is beyond the first end E11 of the first winding start end E1 in the length direction L.

In an embodiment of the wound-type cell according to the present disclosure, referring to FIG. 7, the first electrode plate 1 further has a first groove 13, a bottom of the first groove 13 is a blank first current collector 111 which is exposed and a peripheral side of the first groove 13 is the first active material layer 12; correspondingly, the second electrode plate 2 further has a second groove 23, a bottom of the second groove 23 is a blank second current collector 211 and a peripheral side of the second groove 23 is the second active material layer 22.

In an embodiment of the wound-type cell according to the present disclosure, the first electrode tab 4 and the first current collector 11 are integrally formed. For example, referring to FIG. 8, the first electrode tab 4 is formed by directly cutting the first current collector 11. More preferably, as shown in FIG. 9, the first electrode tab 4 is formed by directly cutting a portion of the first current collector 11 and bending the cut portion.

In an embodiment of the wound-type cell according to the present disclosure, the second electrode tab 5 and the second current collector 21 are integrally formed. For example, referring to FIG. 10, the second electrode tab 5 is formed by directly cutting the second current collector 21. More preferably, as shown in FIG. 11, the second electrode tab 5 is formed by directly cutting a portion of the second current collector 21 and bending the cut portion.

In an embodiment of the wound-type cell according to the present disclosure, the first electrode tab 4 is formed separately and welded to the corresponding blank first current collector 111.

In an embodiment of the wound-type cell according to the present disclosure, the second electrode tab 5 is formed separately and welded to the corresponding blank second current collector 211.

In an embodiment of the wound-type cell according to the present disclosure, the welding is laser welding, ultrasonic welding or resistance welding.

The forming mode of the first electrode tab 4 preferably uses the integrally forming mode. The forming mode of the second electrode tab 5 preferably uses the integrally forming mode.

Secondly, a winding mandrel according to a second aspect of the present disclosure will be described.

Referring to FIG. 2 through FIG. 5, a winding mandrel according to a second aspect of the present disclosure is used for the wound-type cell according to the first aspect of the present disclosure, the winding mandrel comprises a first winding mandrel S1 and a second winding mandrel S2 which are sequentially provided along the length direction L, a first end surface S11 of the first winding mandrel Si and a second end surface S21 of the second winding mandrel S2 face each other and form a clamping groove G; an end of the first end surface S11 which is away from the second winding start end E2 is beyond an end of the first end surface S11 which is close to the second winding start end E2 in the length direction L; correspondingly, an end of the second end surface S21 which is away from the second winding start end E2 is beyond an end of the second end surface S21 which is close to the second winding start end E2 in the length direction L.

In an embodiment of the wound-type cell according to the present disclosure, referring to FIG. 2 through FIG. 5, the first end surface S11 and the second end surface S21 are parallel to each other.

In an embodiment of the wound-type cell according to the present disclosure, referring to FIG. 2 through FIG. 5, an angle between the first end surface S11 and a first side surface S12 of the first winding mandrel S1 which is close to the blank second current collector 211 is between 160 degrees and 110 degrees; correspondingly, an angle between the second end surface S21 and a second side surface S22 of the second winding mandrel S2 which is close to the blank second current collector 211 is between 20 degrees and 70 degrees.

Claims

1.-11. (canceled)

12. A wound-type cell, comprising:

a first electrode plate having a first current collector and a first active material layer coated on a surface of the first current collector;
a second electrode plate having a second current collector and a second active material layer coated on a surface of the second current collector, and a second winding start end of the second electrode plate being positioned at an inner side of a first winding start end of the first electrode plate in a thickness direction;
a separator provided between the first electrode plate and the second electrode plate to separate the first electrode plate from the second electrode plate;
a first electrode tab electrically connected to the first current collector; and
a second electrode tab electrically connected to the second current collector;
wherein
a third winding start end of the separator is positioned at an outer side of the second winding start end of the second electrode plate in a length direction, extends along a direction away from a second end of the second winding start end and is not folded back.

13. The wound-type cell according to claim 12, wherein a length of the third winding start end of the separator is between 1 mm and 5 mm.

14. The wound-type cell according to claim 12, wherein the first electrode plate is a positive electrode plate; the second electrode plate is a negative electrode plate.

15. The wound-type cell according to claim 12, wherein the first electrode tab is provided as one or more in number; the second electrode tab is provided as one or more in number.

16. The wound-type cell according to claim 12, wherein

the first electrode plate has a blank first current collector which is positioned at the first winding start end and is not coated with the first active material layer;
the second electrode plate has a blank second current collector which is positioned at the second winding start end and is not coated with the second active material layer.

17. The wound-type cell according to claim 12, wherein

a side of the second current collector which directly faces the blank first current collector is not coated with the second active material layer;
a side of the first current collector which directly faces the blank second current collector is not coated with the first active material layer.

18. The wound-type cell according to claim 12, wherein an inner side of an arc-shaped portion of the second current collector which directly faces a first end of the first winding start end is not coated with the second active material layer.

19. The wound-type cell according to claim 16, wherein

the first end of the first winding start end is beyond the second end of the second winding start end in the length direction and a position of the first electrode tab is beyond the second end of the second winding start end in the length direction; or
the second end of the second winding start end is beyond the first end of the first winding start end in the length direction and a position of the second electrode tab is beyond the first end of the first winding start end in the length direction.

20. The wound-type cell according to claim 12, wherein

the first electrode plate further has a first groove, a bottom of the first groove is a blank first current collector which is exposed and a peripheral side of the first groove is the first active material layer;
the second electrode plate further has a second groove, a bottom of the second groove is a blank second current collector and a peripheral side of the second groove is the second active material layer.

21. The wound-type cell according to claim 16, wherein

the first electrode tab and the first current collector are integrally formed, or the first electrode tab is formed separately and welded to the corresponding blank first current collector;
the second electrode tab and the second current collector are integrally formed, or the second electrode tab is formed separately and welded to the corresponding blank second current collector.

22. The wound-type cell according to claim 20, wherein

the first electrode tab and the first current collector are integrally formed, or the first electrode tab is formed separately and welded to the corresponding blank first current collector;
the second electrode tab and the second current collector are integrally formed, or the second electrode tab is formed separately and welded to the corresponding blank second current collector.
Patent History
Publication number: 20170288273
Type: Application
Filed: Mar 13, 2017
Publication Date: Oct 5, 2017
Inventors: QIAO ZENG (Ningde), Jiacai CAI (Ningde), Kefei WANG (Ningde), Yu LUO (Ningde)
Application Number: 15/457,775
Classifications
International Classification: H01M 10/0587 (20060101); H01M 2/26 (20060101); H01M 10/0525 (20060101);