METHOD FOR OPERATING A SURGICAL INSTRUMENT
A surgical instrument is configured to compensate for battery pack and drivetrain failures. One method includes generating a firing sequence, determining whether a subset of rechargeable battery cells is damaged during the firing sequence, and stepping-up an output voltage of the battery pack to complete the firing sequence in response to a determination that a subset of the rechargeable battery cells is damaged. Another method includes generating a mechanical output to motivate a drivetrain to transmit a motion to a jaw assembly of the surgical instrument, activating a safe mode in response to an acute failure of the drivetrain, and activating a bailout mode in response to a catastrophic failure of the drivetrain. Another method includes driving a drivetrain, sensing and recording vibration information from the drivetrain, generating an output signal based on the vibration information, and determining a status of the surgical instrument based on the output signal.
The present invention relates to surgical instruments and, in various arrangements, to surgical stapling and cutting instruments and staple cartridges for use therewith that are designed to staple and cut tissue.
The features of the various aspects are set forth with particularity in the appended claims. The various aspects, however, both as to organization and methods of operation, together with advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows:
The Applicant of the present application owns the following U.S. patent applications that were filed on even date herewith and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. ______, entitled SURGICAL INSTRUMENT COMPRISING A LOCKOUT; Attorney Docket No. END7828USNP/150542;
U.S. patent application Ser. No. ______, entitled SURGICAL INSTRUMENT COMPRISING A PRIMARY FIRING LOCKOUT AND A SECONDARY FIRING LOCKOUT; Attorney Docket No. END7787USNP/150522;
U.S. patent application Ser. No. ______, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING A MAGNETIC LOCKOUT; Attorney Docket No. END7789USNP/150503;
U.S. patent application Ser. No. ______, entitled SURGICAL INSTRUMENT COMPRISING A REPLACEABLE CARTRIDGE JAW; Attorney Docket No. END7790USNP/150504; and
U.S. patent application Ser. No. ______, entitled CARTRIDGE LOCKOUT ARRANGEMENTS FOR ROTARY POWERED SURGICAL CUTTING AND STAPLING INSTRUMENTS; Attorney Docket No. END7791USNP/150505.
Applicant of the present application owns the following patent applications that were filed on Apr. 15, 2016 and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 15/130,575, entitled STAPLE FORMATION DEFECTION MECHANISMS;
U.S. patent application Ser. No. 15/130,582, entitled SURGICAL INSTRUMENT WITH DETECTION SENSORS;
U.S. patent application Ser. No. 15/130,588, entitled SURGICAL INSTRUMENT WITH IMPROVED STOP/START CONTROL DURING A FIRING MOTION;
U.S. patent application Ser. No. 15/130,595, entitled SURGICAL INSTRUMENT WITH ADJUSTABLE STOP/START CONTROL DURING A FIRING MOTION;
U.S. patent application Ser. No. 15/130,566, entitled SURGICAL INSTRUMENT WITH MULTIPLE PROGRAM RESPONSES DURING A FIRING MOTION;
U.S. patent application Ser. No. 15/130,571, entitled SURGICAL INSTRUMENT WITH MULTIPLE PROGRAM RESPONSES DURING A FIRING MOTION;
U.S. patent application Ser. No. 15/130,581, entitled MODULAR SURGICAL INSTRUMENT WITH CONFIGURABLE OPERATING MODE;
U.S. patent application Ser. No. 15/130,590, entitled SYSTEMS AND METHODS FOR CONTROLLING A SURGICAL STAPLING AND CUTTING INSTRUMENT; and
U.S. patent application Ser. No. 15/130,596, entitled SYSTEMS AND METHODS FOR CONTROLLING A SURGICAL STAPLING AND CUTTING INSTRUMENT.
The Applicant of the present application owns the following U.S. patent applications that were filed on Apr. 1, 2016 and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 15/089,325, entitled METHOD FOR OPERATING A SURGICAL STAPLING SYSTEM;
U.S. patent application Ser. No. 15/089,321, entitled MODULAR SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY;
U.S. patent application Ser. No. 15/089,326, entitled SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY INCLUDING A RE-ORIENTABLE DISPLAY FIELD;
U.S. patent application Ser. No. 15/089,263, entitled SURGICAL INSTRUMENT HANDLE ASSEMBLY WITH RECONFIGURABLE GRIP PORTION;
U.S. patent application Ser. No. 15/089,262, entitled ROTARY POWERED SURGICAL INSTRUMENT WITH MANUALLY ACTUATABLE BAILOUT SYSTEM;
U.S. patent application Ser. No. 15/089,277, entitled SURGICAL CUTTING AND STAPLING END EFFECTOR WITH ANVIL CONCENTRIC DRIVE MEMBER;
U.S. patent application Ser. No. 15/089,283, entitled CLOSURE SYSTEM ARRANGEMENTS FOR SURGICAL CUTTING AND STAPLING DEVICES WITH SEPARATE AND DISTINCT FIRING SHAFTS;
U.S. patent application Ser. No. 15/089,296, entitled INTERCHANGEABLE SURGICAL TOOL ASSEMBLY WITH A SURGICAL END EFFECTOR THAT IS SELECTIVELY ROTATABLE ABOUT A SHAFT AXIS;
U.S. patent application Ser. No. 15/089,258, entitled SURGICAL STAPLING SYSTEM COMPRISING A SHIFTABLE TRANSMISSION;
U.S. patent application Ser. No. 15/089,278, entitled SURGICAL STAPLING SYSTEM CONFIGURED TO PROVIDE SELECTIVE CUTTING OF TISSUE;
U.S. patent application Ser. No. 15/089,284, entitled SURGICAL STAPLING SYSTEM COMPRISING A CONTOURABLE SHAFT;
U.S. patent application Ser. No. 15/089,295, entitled SURGICAL STAPLING SYSTEM COMPRISING A TISSUE COMPRESSION LOCKOUT;
U.S. patent application Ser. No. 15/089,300, entitled SURGICAL STAPLING SYSTEM COMPRISING AN UNCLAMPING LOCKOUT;
U.S. patent application Ser. No. 15/089,196 entitled SURGICAL STAPLING SYSTEM COMPRISING A JAW CLOSURE LOCKOUT;
U.S. patent application Ser. No. 15/089,203, entitled SURGICAL STAPLING SYSTEM COMPRISING A JAW ATTACHMENT LOCKOUT;
U.S. patent application Ser. No. 15/089,210, entitled SURGICAL STAPLING SYSTEM COMPRISING A SPENT CARTRIDGE LOCKOUT;
U.S. patent application Ser. No. 15/089,324, entitled SURGICAL INSTRUMENT COMPRISING A SHIFTING MECHANISM;
U.S. patent application Ser. No. 15/089,335, entitled SURGICAL STAPLING INSTRUMENT COMPRISING MULTIPLE LOCKOUTS;
U.S. patent application Ser. No. 15/089,339, entitled SURGICAL STAPLING INSTRUMENT;
U.S. patent application Ser. No. 15/089,253, entitled SURGICAL STAPLING SYSTEM CONFIGURED TO APPLY ANNULAR ROWS OF STAPLES HAVING DIFFERENT HEIGHTS;
U.S. patent application Ser. No. 15/089,304, entitled SURGICAL STAPLING SYSTEM COMPRISING A GROOVED FORMING POCKET;
U.S. patent application Ser. No. 15/089,331, entitled ANVIL MODIFICATION MEMBERS FOR SURGICAL STAPLERS;
U.S. patent application Ser. No. 15/089,336, entitled STAPLE CARTRIDGES WITH ATRAUMATIC FEATURES;
U.S. patent application Ser. No. 15/089,312, entitled CIRCULAR STAPLING SYSTEM COMPRISING AN INCISABLE TISSUE SUPPORT;
U.S. patent application Ser. No. 15/089,309, entitled CIRCULAR STAPLING SYSTEM COMPRISING ROTARY FIRING SYSTEM; and
U.S. patent application Ser. No. 15/089,349, entitled CIRCULAR STAPLING SYSTEM COMPRISING LOAD CONTROL.
The Applicant of the present application also owns the U.S. patent applications identified below which were filed on Dec. 31, 2015 which are each herein incorporated by reference in their respective entirety:
U.S. patent application Ser. No. 14/984,488, entitled MECHANISMS FOR COMPENSATING FOR BATTERY PACK FAILURE IN POWERED SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 14/984,525, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS; and
U.S. patent application Ser. No. 14/984,552, entitled SURGICAL INSTRUMENTS WITH SEPARABLE MOTORS AND MOTOR CONTROL CIRCUITS.
The Applicant of the present application also owns the U.S. patent applications identified below which were filed on Feb. 9, 2016 which are each herein incorporated by reference in their respective entirety:
U.S. patent application Ser. No. 15/019,220, entitled SURGICAL INSTRUMENT WITH ARTICULATING AND AXIALLY TRANSLATABLE END EFFECTOR;
U.S. patent application Ser. No. 15/019,228, entitled SURGICAL INSTRUMENTS WITH MULTIPLE LINK ARTICULATION ARRANGEMENTS;
U.S. patent application Ser. No. 15/019,196, entitled SURGICAL INSTRUMENT ARTICULATION MECHANISM WITH SLOTTED SECONDARY CONSTRAINT;
U.S. patent application Ser. No. 15/019,206, entitled SURGICAL INSTRUMENTS WITH AN END EFFECTOR THAT IS HIGHLY ARTICULATABLE RELATIVE TO AN ELONGATE SHAFT ASSEMBLY;
U.S. patent application Ser. No. 15/019,215, entitled SURGICAL INSTRUMENTS WITH NON-SYMMETRICAL ARTICULATION ARRANGEMENTS;
U.S. patent application Ser. No. 15/019,227, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH SINGLE ARTICULATION LINK ARRANGEMENTS;
U.S. patent application Ser. No. 15/019,235, entitled SURGICAL INSTRUMENTS WITH TENSIONING ARRANGEMENTS FOR CABLE DRIVEN ARTICULATION SYSTEMS;
U.S. patent application Ser. No. 15/019,230, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH OFF-AXIS FIRING BEAM ARRANGEMENTS; and
U.S. patent application Ser. No. 15/019,245, entitled SURGICAL INSTRUMENTS WITH CLOSURE STROKE REDUCTION ARRANGEMENTS.
The Applicant of the present application also owns the U.S. patent applications identified below which were filed on Feb. 12, 2016 which are each herein incorporated by reference in their respective entirety:
U.S. patent application Ser. No. 15/043,254, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 15/043,259, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 15/043,275, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS; and
U.S. patent application Ser. No. 15/043,289, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS.
Applicant of the present application owns the following patent applications that were filed on Jun. 18, 2015 and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 14/742,925, entitled SURGICAL END EFFECTORS WITH POSITIVE JAW OPENING ARRANGEMENTS;
U.S. patent application Ser. No. 14/742,941, entitled SURGICAL END EFFECTORS WITH DUAL CAM ACTUATED JAW CLOSING FEATURES;
U.S. patent application Ser. No. 14/742,914, entitled MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 14/742,900, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH COMPOSITE FIRING BEAM STRUCTURES WITH CENTER FIRING SUPPORT MEMBER FOR ARTICULATION SUPPORT;
U.S. patent application Ser. No. 14/742,885, entitled DUAL ARTICULATION DRIVE SYSTEM ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS; and
U.S. patent application Ser. No. 14/742,876, entitled PUSH/PULL ARTICULATION DRIVE SYSTEMS FOR ARTICULATABLE SURGICAL INSTRUMENTS.
Applicant of the present application owns the following patent applications that were filed on Mar. 6, 2015 and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 14/640,746, entitled POWERED SURGICAL INSTRUMENT; U.S. patent application Ser. No. 14/640,795, entitled MULTIPLE LEVEL THRESHOLDS TO MODIFY OPERATION OF POWERED SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 14/640,832, entitled ADAPTIVE TISSUE COMPRESSION TECHNIQUES TO ADJUST CLOSURE RAILS FOR MULTIPLE TISSUE TYPES; Attorney Docket No. END7557USNP/140482;
U.S. patent application Ser. No. 14/640,935, entitled OVERLAID MULTI SENSOR RADIO FREQUENCY (RF) ELECTRODE SYSTEM TO MEASURE TISSUE COMPRESSION;
U.S. patent application Ser. No. 14/640,831, entitled MONITORING SPEED CONTROL AND PRECISION INCREMENTING OF MOTOR FOR POWERED SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 14/640,859, entitled TIME DEPENDENT EVALUATION OF SENSOR DATA TO DETERMINE STABILITY, CREEP, AND VISCOELASTIC ELEMENTS OF MEASURES;
U.S. patent application Ser. No. 14/640,817, entitled INTERACTIVE FEEDBACK SYSTEM FOR POWERED SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 14/640,844, entitled CONTROL TECHNIQUES AND SUB-PROCESSOR CONTAINED WITHIN MODULAR SHAFT WITH SELECT CONTROL PROCESSING FROM HANDLE;
U.S. patent application Ser. No. 14/640,837, entitled SMART SENSORS WITH LOCAL SIGNAL PROCESSING;
U.S. patent application Ser. No. 14/640,765, entitled SYSTEM FOR DETECTING THE MIS-INSERTION OF A STAPLE CARTRIDGE INTO A SURGICAL STAPLER;
U.S. patent application Ser. No. 14/640,799, entitled SIGNAL AND POWER COMMUNICATION SYSTEM POSITIONED ON A ROTATABLE SHAFT; and
U.S. patent application Ser. No. 14/640,780, entitled SURGICAL INSTRUMENT COMPRISING A LOCKABLE BATTERY HOUSING.
Applicant of the present application owns the following patent applications that were filed on Feb. 27, 2015, and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 14/633,576, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING AN INSPECTION STATION;
U.S. patent application Ser. No. 14/633,546, entitled SURGICAL APPARATUS CONFIGURED TO ASSESS WHETHER A PERFORMANCE PARAMETER OF THE SURGICAL APPARATUS IS WITHIN AN ACCEPTABLE PERFORMANCE BAND;
U.S. patent application Ser. No. 14/633,576, entitled SURGICAL CHARGING SYSTEM THAT CHARGES AND/OR CONDITIONS ONE OR MORE BATTERIES;
U.S. patent application Ser. No. 14/633,566, entitled CHARGING SYSTEM THAT ENABLES EMERGENCY RESOLUTIONS FOR CHARGING A BATTERY;
U.S. patent application Ser. No. 14/633,555, entitled SYSTEM FOR MONITORING WHETHER A SURGICAL INSTRUMENT NEEDS TO BE SERVICED;
U.S. patent application Ser. No. 14/633,542, entitled REINFORCED BATTERY FOR A SURGICAL INSTRUMENT;
U.S. patent application Ser. No. 14/633,548, entitled POWER ADAPTER FOR A SURGICAL INSTRUMENT;
U.S. patent application Ser. No. 14/633,526, entitled ADAPTABLE SURGICAL INSTRUMENT HANDLE;
U.S. patent application Ser. No. 14/633,541, entitled MODULAR STAPLING ASSEMBLY; and U.S. patent application Ser. No. 14/633,562, entitled SURGICAL APPARATUS CONFIGURED TO TRACK AN END-OF-LIFE PARAMETER.
Applicant of the present application owns the following patent applications that were filed on Dec. 18, 2014 and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 14/574,478, entitled SURGICAL INSTRUMENT SYSTEMS COMPRISING AN ARTICULATABLE END EFFECTOR AND MEANS FOR ADJUSTING THE FIRING STROKE OF A FIRING;
U.S. patent application Ser. No. 14/574,483, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING LOCKABLE SYSTEMS;
U.S. patent application Ser. No. 14/575,139, entitled DRIVE ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 14/575,148, entitled LOCKING ARRANGEMENTS FOR DETACHABLE SHAFT ASSEMBLIES WITH ARTICULATABLE SURGICAL END EFFECTORS;
U.S. patent application Ser. No. 14/575,130, entitled SURGICAL INSTRUMENT WITH AN ANVIL THAT IS SELECTIVELY MOVABLE ABOUT A DISCRETE NON-MOVABLE AXIS RELATIVE TO A STAPLE CARTRIDGE;
U.S. patent application Ser. No. 14/575,143, entitled SURGICAL INSTRUMENTS WITH IMPROVED CLOSURE ARRANGEMENTS;
U.S. patent application Ser. No. 14/575,117, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS;
U.S. patent application Ser. No. 14/575,154, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND IMPROVED FIRING BEAM SUPPORT ARRANGEMENTS;
U.S. patent application Ser. No. 14/574,493, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A FLEXIBLE ARTICULATION SYSTEM; and
U.S. patent application Ser. No. 14/574,500, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A LOCKABLE ARTICULATION SYSTEM.
Applicant of the present application owns the following patent applications that were filed on Mar. 1, 2013 and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 13/782,295, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH CONDUCTIVE PATHWAYS FOR SIGNAL COMMUNICATION, now U.S. Patent Application Publication No. 2014/0246471;
U.S. patent application Ser. No. 13/782,323, entitled ROTARY POWERED ARTICULATION JOINTS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246472;
U.S. patent application Ser. No. 13/782,338, entitled THUMBWHEEL SWITCH ARRANGEMENTS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0249557;
U.S. patent application Ser. No. 13/782,499, entitled ELECTROMECHANICAL SURGICAL DEVICE WITH SIGNAL RELAY ARRANGEMENT, now U.S. Patent Application Publication No. 2014/0246474;
U.S. patent application Ser. No. 13/782,460, entitled MULTIPLE PROCESSOR MOTOR CONTROL FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246478;
U.S. patent application Ser. No. 13/782,358, entitled JOYSTICK SWITCH ASSEMBLIES FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246477;
U.S. patent application Ser. No. 13/782,481, entitled SENSOR STRAIGHTENED END EFFECTOR DURING REMOVAL THROUGH TROCAR, now U.S. Patent Application Publication No. 2014/0246479;
U.S. patent application Ser. No. 13/782,518, entitled CONTROL METHODS FOR SURGICAL INSTRUMENTS WITH REMOVABLE IMPLEMENT PORTIONS, now U.S. Patent Application Publication No. 2014/0246475;
U.S. patent application Ser. No. 13/782,375, entitled ROTARY POWERED SURGICAL INSTRUMENTS WITH MULTIPLE DEGREES OF FREEDOM, now U.S. Patent Application Publication No. 2014/0246473; and
U.S. patent application Ser. No. 13/782,536, entitled SURGICAL INSTRUMENT SOFT STOP, now U.S. Patent Application Publication No. 2014/0246476.
Applicant of the present application also owns the following patent applications that were filed on Mar. 14, 2013 and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 13/803,097, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, now U.S. Patent Application Publication No. 2014/0263542;
U.S. patent application Ser. No. 13/803,193, entitled CONTROL ARRANGEMENTS FOR A DRIVE MEMBER OF A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263537;
U.S. patent application Ser. No. 13/803,053, entitled INTERCHANGEABLE SHAFT ASSEMBLIES FOR USE WITH A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263564;
U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK, now U.S. Patent Application Publication No. 2014/0263541;
U.S. patent application Ser. No. 13/803,210, entitled SENSOR ARRANGEMENTS FOR ABSOLUTE POSITIONING SYSTEM FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263538;
U.S. patent application Ser. No. 13/803,148, entitled MULTI-FUNCTION MOTOR FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263554;
U.S. patent application Ser. No. 13/803,066, entitled DRIVE SYSTEM LOCKOUT ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263565;
U.S. patent application Ser. No. 13/803,117, entitled ARTICULATION CONTROL SYSTEM FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263553;
U.S. patent application Ser. No. 13/803,130, entitled DRIVE TRAIN CONTROL ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263543; and
U.S. patent application Ser. No. 13/803,159, entitled METHOD AND SYSTEM FOR OPERATING A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0277017.
Applicant of the present application also owns the following patent application that was filed on Mar. 7, 2014 and is herein incorporated by reference in its entirety:
U.S. patent application Ser. No. 14/200,111, entitled CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263539.
Applicant of the present application also owns the following patent applications that were filed on Mar. 26, 2014 and are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 14/226,106, entitled POWER MANAGEMENT CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272582;
U.S. patent application Ser. No. 14/226,099, entitled STERILIZATION VERIFICATION CIRCUIT, now U.S. Patent Application Publication No. 2015/0272581;
U.S. patent application Ser. No. 14/226,094, entitled VERIFICATION OF NUMBER OF BATTERY EXCHANGES/PROCEDURE COUNT, now U.S. Patent Application Publication No. 2015/0272580;
U.S. patent application Ser. No. 14/226,117, entitled POWER MANAGEMENT THROUGH SLEEP OPTIONS OF SEGMENTED CIRCUIT AND WAKE UP CONTROL, now U.S. Patent Application Publication No. 2015/0272574;
U.S. patent application Ser. No. 14/226,075, entitled MODULAR POWERED SURGICAL INSTRUMENT WITH DETACHABLE SHAFT ASSEMBLIES, now U.S. Patent Application Publication No. 2015/0272579;
U.S. patent application Ser. No. 14/226,093, entitled FEEDBACK ALGORITHMS FOR MANUAL BAILOUT SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272569;
U.S. patent application Ser. No. 14/226,116, entitled SURGICAL INSTRUMENT UTILIZING SENSOR ADAPTATION, now U.S. Patent Application Publication No. 2015/0272571;
U.S. patent application Ser. No. 14/226,071, entitled SURGICAL INSTRUMENT CONTROL CIRCUIT HAVING A SAFETY PROCESSOR, now U.S. Patent Application Publication No. 2015/0272578;
U.S. patent application Ser. No. 14/226,097, entitled SURGICAL INSTRUMENT COMPRISING INTERACTIVE SYSTEMS, now U.S. Patent Application Publication No. 2015/0272570;
U.S. patent application Ser. No. 14/226,126, entitled INTERFACE SYSTEMS FOR USE WITH SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272572;
U.S. patent application Ser. No. 14/226,133, entitled MODULAR SURGICAL INSTRUMENT SYSTEM, now U.S. Patent Application Publication No. 2015/0272557;
U.S. patent application Ser. No. 14/226,081, entitled SYSTEMS AND METHODS FOR CONTROLLING A SEGMENTED CIRCUIT, now U.S. Patent Application Publication No. 2015/0277471;
U.S. patent application Ser. No. 14/226,076, entitled POWER MANAGEMENT THROUGH SEGMENTED CIRCUIT AND VARIABLE VOLTAGE PROTECTION, now U.S. Patent Application Publication No. 2015/0280424;
U.S. patent application Ser. No. 14/226,111, entitled SURGICAL STAPLING INSTRUMENT SYSTEM, now U.S. Patent Application Publication No. 2015/0272583; and
U.S. patent application Ser. No. 14/226,125, entitled SURGICAL INSTRUMENT COMPRISING A ROTATABLE SHAFT, now U.S. Patent Application Publication No. 2015/0280384.
Applicant of the present application also owns the following patent applications that were filed on Sep. 5, 2014 and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 14/479,103, entitled CIRCUITRY AND SENSORS FOR POWERED MEDICAL DEVICE, now U.S. Patent Application Publication No. 2016/0066912;
U.S. patent application Ser. No. 14/479,119, entitled ADJUNCT WITH INTEGRATED SENSORS TO QUANTIFY TISSUE COMPRESSION, now U.S. Patent Application Publication No. 2016/0066914;
U.S. patent application Ser. No. 14/478,908, entitled MONITORING DEVICE DEGRADATION BASED ON COMPONENT EVALUATION, now U.S. Patent Application Publication No. 2016/0066910;
U.S. patent application Ser. No. 14/478,895, entitled MULTIPLE SENSORS WITH ONE SENSOR AFFECTING A SECOND SENSOR'S OUTPUT OR INTERPRETATION, now U.S. Patent Application Publication No. 2016/0066909;
U.S. patent application Ser. No. 14/479,110, entitled USE OF POLARITY OF HALL MAGNET DETECTION TO DETECT MISLOADED CARTRIDGE, now U.S. Patent Application Publication No. 2016/0066915;
U.S. patent application Ser. No. 14/479,098, entitled SMART CARTRIDGE WAKE UP OPERATION AND DATA RETENTION, now U.S. Patent Application Publication No. 2016/0066911;
U.S. patent application Ser. No. 14/479,115, entitled MULTIPLE MOTOR CONTROL FOR POWERED MEDICAL DEVICE, now U.S. Patent Application Publication No. 2016/0066916; and
U.S. patent application Ser. No. 14/479,108, entitled LOCAL DISPLAY OF TISSUE PARAMETER STABILIZATION, now U.S. Patent Application Publication No. 2016/0066913.
Applicant of the present application also owns the following patent applications that were filed on Apr. 9, 2014 and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 14/248,590, entitled MOTOR DRIVEN SURGICAL INSTRUMENTS WITH LOCKABLE DUAL DRIVE SHAFTS, now U.S. Patent Application Publication No. 2014/0305987;
U.S. patent application Ser. No. 14/248,581, entitled SURGICAL INSTRUMENT COMPRISING A CLOSING DRIVE AND A FIRING DRIVE OPERATED FROM THE SAME ROTATABLE OUTPUT, now U.S. Patent Application Publication No. 2014/0305989;
U.S. patent application Ser. No. 14/248,595, entitled SURGICAL INSTRUMENT SHAFT INCLUDING SWITCHES FOR CONTROLLING THE OPERATION OF THE SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305988;
U.S. patent application Ser. No. 14/248,588, entitled POWERED LINEAR SURGICAL STAPLER, now U.S. Patent Application Publication No. 2014/0309666;
U.S. patent application Ser. No. 14/248,591, entitled TRANSMISSION ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305991;
U.S. patent application Ser. No. 14/248,584, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH ALIGNMENT FEATURES FOR ALIGNING ROTARY DRIVE SHAFTS WITH SURGICAL END EFFECTOR SHAFTS, now U.S. Patent Application Publication No. 2014/0305994;
U.S. patent application Ser. No. 14/248,587, entitled POWERED SURGICAL STAPLER, now U.S. Patent Application Publication No. 2014/0309665;
U.S. patent application Ser. No. 14/248,586, entitled DRIVE SYSTEM DECOUPLING ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305990; and
U.S. patent application Ser. No. 14/248,607, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH STATUS INDICATION ARRANGEMENTS, now U.S. Patent Application Publication No. 2014/0305992.
Applicant of the present application also owns the following patent applications that were filed on Apr. 16, 2013 and which are each herein incorporated by reference in their respective entireties:
U.S. Provisional Patent Application Ser. No. 61/812,365, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR;
U.S. Provisional Patent Application Ser. No. 61/812,376, entitled LINEAR CUTTER WITH POWER; U.S. Provisional Patent Application Ser. No. 61/812,382, entitled LINEAR CUTTER WITH MOTOR AND PISTOL GRIP;
U.S. Provisional Patent Application Ser. No. 61/812,385, entitled SURGICAL INSTRUMENT HANDLE WITH MULTIPLE ACTUATION MOTORS AND MOTOR CONTROL; and
U.S. Provisional Patent Application Ser. No. 61/812,372, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR.
Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. Well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. The reader will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the reader will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, the reader will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.
A surgical stapling system can comprise a shaft and an end effector extending from the shaft. The end effector comprises a first jaw and a second jaw. The first jaw comprises a staple cartridge. The staple cartridge is insertable into and removable from the first jaw; however, other embodiments are envisioned in which a staple cartridge is not removable from, or at least readily replaceable from, the first jaw. The second jaw comprises an anvil configured to deform staples ejected from the staple cartridge. The second jaw is pivotable relative to the first jaw about a closure axis; however, other embodiments are envisioned in which first jaw is pivotable relative to the second jaw. The surgical stapling system further comprises an articulation joint configured to permit the end effector to be rotated, or articulated, relative to the shaft. The end effector is rotatable about an articulation axis extending through the articulation joint. Other embodiments are envisioned which do not include an articulation joint.
The staple cartridge comprises a cartridge body. The cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end. In use, the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue. The anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck. Thereafter, staples removably stored in the cartridge body can be deployed into the tissue. The cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities. The staple cavities are arranged in six longitudinal rows. Three rows of staple cavities are positioned on a first side of a longitudinal slot and three rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.
The staples are supported by staple drivers in the cartridge body. The drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities. The drivers are retained in the cartridge body by a retainer which extends around the bottom of the cartridge body and includes resilient members configured to grip the cartridge body and hold the retainer to the cartridge body. The drivers are movable between their unfired positions and their fired positions by a sled. The sled is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end. The sled comprises a plurality of ramped surfaces configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.
Further to the above, the sled is moved distally by a firing member. The firing member is configured to contact the sled and push the sled toward the distal end. The longitudinal slot defined in the cartridge body is configured to receive the firing member. The anvil also includes a slot configured to receive the firing member. The firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil. The firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.
Before explaining various forms of mechanisms for compensating for drivetrain failure in powered surgical instruments in detail, it should be noted that the illustrative forms are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative forms may be implemented or incorporated in other forms, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative forms for the convenience of the reader and are not for the purpose of limitation thereof.
Further, it is understood that any one or more of the following-described forms, expressions of forms, examples, can be combined with any one or more of the other following-described forms, expressions of forms, and examples.
Various forms are directed to mechanisms for compensating for drivetrain failure in powered surgical instruments. In one form, the mechanisms for compensating for drivetrain failure in powered surgical instruments may be configured for use in open surgical procedures, but has applications in other types of surgery, such as laparoscopic, endoscopic, and robotic-assisted procedures.
Referring to
Distal and proximal half-sections 110a, 110b are divided along a plane that traverses a longitudinal axis “X” of upper housing portion 108, as seen in
In this manner, the cavity 102a of handle housing 102 is sealed along the perimeter of distal half-section 110a and proximal half-section 110b yet is configured to enable easier, more efficient assembly of circuit board 150 and a drive mechanism 160 in handle housing 102.
Intermediate housing portion 106 of handle housing 102 provides a housing in which circuit board 150 is situated. Circuit board 150 is configured to control the various operations of surgical instrument 100.
Lower housing portion 104 of surgical instrument 100 defines an aperture (not shown) formed in an upper surface thereof and which is located beneath or within intermediate housing portion 106. The aperture of lower housing portion 104 provides a passage through which wires 152 pass to electrically interconnect electrical components (a battery 156, as illustrated in
Handle housing 102 includes a gasket 103 disposed within the aperture of lower housing portion 104 (not shown) thereby plugging or sealing the aperture of lower housing portion 104 while allowing wires 152 to pass therethrough. Gasket 103 functions to establish an air-tight seal between lower housing portion 106 and intermediate housing portion 108 such that circuit board 150 and drive mechanism 160 are protected from sterilization and/or cleaning procedures.
As shown, lower housing portion 104 of handle housing 102 provides a housing in which a rechargeable battery 156, is removably situated. Battery 156 is configured to supply power to any of the electrical components of surgical instrument 100. Lower housing portion 104 defines a cavity (not shown) into which battery 156 is inserted. Lower housing portion 104 includes a door 105 pivotally connected thereto for closing cavity of lower housing portion 104 and retaining battery 156 therein.
With reference to
Upper housing portion 108 of handle housing 102 provides a housing in which drive mechanism 160 is situated. As illustrated in
The drive mechanism 160 includes a selector gearbox assembly 162 that is located immediately proximal relative to adapter 200. Proximal to the selector gearbox assembly 162 is a function selection module 163 having a first motor 164 that functions to selectively move gear elements within the selector gearbox assembly 162 into engagement with an input drive component 165 having a second motor 166.
As illustrated in
As illustrated in
When adapter 200 is mated to surgical instrument 100, each of rotatable drive connectors 118, 120, 122 of surgical instrument 100 couples with a corresponding rotatable connector sleeve 218, 220, 222 of adapter 200 as shown in
The mating of drive connectors 118, 120, 122 of surgical instrument 100 with connector sleeves 218, 220, 222 of adapter 200 allows rotational forces to be independently transmitted via each of the three respective connector interfaces. The drive connectors 118, 120, 122 of surgical instrument 100 are configured to be independently rotated by drive mechanism 160. In this regard, the function selection module 163 of drive mechanism 160 selects which drive connector or connectors 118, 120, 122 of surgical instrument 100 is to be driven by the input drive component 165 of drive mechanism 160.
Since each of drive connectors 118, 120, 122 of surgical instrument 100 has a keyed and/or substantially non-rotatable interface with respective connector sleeves 218, 220, 222 of adapter 200, when adapter 200 is coupled to surgical instrument 100, rotational force(s) are selectively transferred from drive mechanism 160 of surgical instrument 100 to adapter 200.
The selective rotation of drive connector(s) 118, 120 and/or 122 of surgical instrument 100 allows surgical instrument 100 to selectively actuate different functions of end effector 300. Selective and independent rotation of first drive connector 118 of surgical instrument 100 corresponds to the selective and independent opening and closing of tool assembly 304 of end effector 300, and driving of a stapling/cutting component of tool assembly 304 of end effector 300. Also, the selective and independent rotation of second drive connector 120 of surgical instrument 100 corresponds to the selective and independent articulation of tool assembly 304 of end effector 300 transverse to longitudinal axis “X” (see
As mentioned above and as illustrated in
As illustrated in
Control assembly 107, in cooperation with intermediate housing portion 108, supports a pair of finger-actuated control buttons 124, 126 and a pair rocker devices 128, 130 within a housing 107a. The control buttons 124, 126 are coupled to extension shafts 125, 127 respectively. In particular, control assembly 107 defines an upper aperture 124a for slidably receiving the extension shaft 125, and a lower aperture 126a for slidably receiving the extension shaft 127.
The control assembly 107 and its components (e.g., control buttons 124, 126 and rocker devices 128, 130) my be formed from low friction, self-lubricating, lubricious plastics or materials or coatings covering the moving components to reduce actuation forces, key component wear, elimination of galling, smooth consistent actuation, improved component and assembly reliability and reduced clearances for a tighter fit and feel consistency. This includes the use of plastic materials in the bushings, rocker journals, plunger bushings, spring pockets, retaining rings and slider components. Molding the components in plastic also provides net-shape or mesh-shaped components with all of these performance attributes. Plastic components eliminate corrosion and bi-metal anodic reactions under electrolytic conditions such as autoclaving, steam sterilizations and cleaning Press fits with lubricious plastics and materials also eliminate clearances with minimal strain or functional penalties on the components when compared to similar metal components.
Suitable materials for forming the components of the control assembly 107 include, but are not limited to, polyamines, polyphenylene sulfides, polyphthalamides, polyphenylsulfones, polyether ketones, polytetrafluoroethylenes, and combinations thereof. These components may be used in the presence or absence of lubricants and may also include additives for reduced wear and frictional forces.
Reference may be made to a U.S. patent application Ser. No. 13/331,047, now U.S. Pat. No. 8,968,276, the entire contents of which are incorporated by reference herein, for a detailed discussion of the construction and operation of the surgical instrument 100.
The surgical instrument 100 includes a firing assembly configured to deploy or eject a plurality of staples into tissue captured by the end effector 300. The firing assembly comprises a drive assembly 360, as illustrated in
When drive assembly 360 is advanced distally within tool assembly 304, an upper beam 365a of clamping member 365 moves within a channel defined between anvil plate 312 and anvil cover 310 and a lower beam 365b moves over the exterior surface of carrier 316 to close tool assembly 304 and fire staples therefrom.
Proximal body portion 302 of end effector 300 includes a sheath or outer tube 301 enclosing an upper housing portion 301a and a lower housing portion 301b. The housing portions 301a and 301b enclose an articulation link 366 having a hooked proximal end 366a which extends from a proximal end of end effector 300. Hooked proximal end 366a of articulation link 366 engages a coupling hook (not shown) of adapter 200 when end effector 300 is secured to distal housing 232 of adapter 200. When drive bar 258 of adapter 200 is advanced or retracted as described above, articulation link 366 of end effector 300 is advanced or retracted within end effector 300 to pivot tool assembly 304 in relation to a distal end of proximal body portion 302.
As illustrated in
The hollow drive member 374 includes a lockout mechanism 373 that prevents a firing of previously fired end effectors 300. The lockout mechanism 373 includes a locking member 371 pivotally coupled within a distal porthole 376b via a pin 377, such that locking member 371 is pivotal about pin 377 relative to drive member 374.
With reference to
In operation, the locking member 371 is initially disposed in its pre-fired position at the proximal end of the housing portions 301a and 301b with horizontal ledge 389 and 391 resting on top of projections 303a, 303b formed in the sidewalls of housing portion 301b. In this position, locking member 371 is held up and out of alignment with a projection 303c formed in the bottom surface of housing portion 301b, distal of the projection 303a, 303b, and web 385 is in longitudinal juxtaposition with shoulder 370 defined in drive beam 364. This configuration permits the anvil 306 to be opened and repositioned onto the tissue to be stapled until the surgeon is satisfied with the position without activating locking member 371 to disable the disposable end effector 300.
Upon distal movement of the drive beam 364 by the drive tube 246, locking member 371 rides off of projections 303a, 303b and is biased into engagement with housing portion 301b by the spring 393, distal of projection 303c. Locking member 371 remains in this configuration throughout firing of the apparatus.
Upon retraction of the drive beam 364, after at least a partial firing, locking member 371 passes under projections 303a, 303b and rides over projection 303c of housing portion 301b until the distal-most portion of locking member 371 is proximal to projection 303c. The spring 393 biases locking member 371 into juxtaposed alignment with projection 303c, effectively disabling the disposable end effector. If an attempt is made to reactuate the apparatus, loaded with the existing end effector 300, the locking member 371 will abut projection 303c of housing portion 301b and will inhibit distal movement of the drive beam 364.
Another aspect of the instrument 100 is shown in
The battery 156 and the motor 164 are coupled to a motor driver circuit 404 disposed on the circuit board 154 which controls the operation of the motor 164 including the flow of electrical energy from the battery 156 to the motor 164. The driver circuit 404 includes a plurality of sensors 408a, 408b, . . . 408n configured to measure operational states of the motor 164 and the battery 156. The sensors 408a-n may include voltage sensors, current sensors, temperature sensors, pressure sensors, telemetry sensors, optical sensors, and combinations thereof. The sensors 408a-408n may measure voltage, current, and other electrical properties of the electrical energy supplied by the battery 156. The sensors 408a-408n may also measure rotational speed as revolutions per minute (RPM), torque, temperature, current draw, and other operational properties of the motor 164. RPM may be determined by measuring the rotation of the motor 164. Position of various drive shafts (e.g., rotatable drive connectors 118, 120, 122 of
The driver circuit 404 is also coupled to a controller 406, which may be any suitable logic control circuit adapted to perform the calculations and/or operate according to a set of instructions. The controller 406 may include a central processing unit operably connected to a memory which may include transitory type memory (e.g., RAM) and/or non-transitory type memory (e.g., flash media, disk media, etc.). The controller 406 includes a plurality of inputs and outputs for interfacing with the driver circuit 404. In particular, the controller 406 receives measured sensor signals from the driver circuit 404 regarding operational status of the motor 164 and the battery 156 and, in turn, outputs control signals to the driver circuit 404 to control the operation of the motor 164 based on the sensor readings and specific algorithm instructions. The controller 406 is also configured to accept a plurality of user inputs from a user interface (e.g., switches, buttons, touch screen, etc. of the control assembly 107 coupled to the controller 406). A removable memory card or chip may be provided, or data can be downloaded wirelessly.
Referring to
The shaft assembly 500 has a force transmitting assembly for interconnecting the at least one drive member of the surgical instrument to at least one rotation receiving member of the end effector. The force transmitting assembly has a first end that is connectable to the at least one rotatable drive member and a second end that is connectable to the at least one rotation receiving member of the end effector. When shaft assembly 500 is mated to surgical instrument 100, each of rotatable drive members or connectors 118, 120, 122 of surgical instrument 100 couples with a corresponding rotatable connector sleeve 518, 520, 522 of shaft assembly 500 (see
The selective rotation of drive member(s) or connector(s) 118, 120 and/or 122 of surgical instrument 100 allows surgical instrument 100 to selectively actuate different functions of an end effector 400.
Referring to
Transmission housing 512 is configured to house a pair of gear train systems therein for varying a speed/force of rotation (e.g., increase or decrease) of first, second and/or third rotatable drive members or connectors 118, 120, and/or 122 of surgical instrument 100 before transmission of such rotational speed/force to the end effector 501. As seen in
Shaft drive coupling assembly 514 includes a first, a second and a third biasing member 518a, 520a and 522a disposed distally of respective first, second and third connector sleeves 518, 520, 522. Each of biasing members 518a, 520a and 522a is disposed about respective first proximal drive shaft 524a, second proximal drive shaft 526a, and third drive shaft 228. Biasing members 518a, 520a and 522a act on respective connector sleeves 518, 520 and 522 to help maintain connector sleeves 218, 220 and 222 engaged with the distal end of respective drive rotatable drive members or connectors 118, 120, 122 of surgical instrument 100 when shaft assembly 500 is connected to surgical instrument 100.
Shaft assembly 500 includes a first and a second gear train system 540, 550, respectively, disposed within transmission housing 512 and tubular body 510, and adjacent coupling assembly 514. As mentioned above, each gear train system 540, 550 is configured and adapted to vary a speed/force of rotation (e.g., increase or decrease) of first and second rotatable drive connectors 118 and 120 of surgical instrument 100 before transmission of such rotational speed/force to end effector 501.
As illustrated in
In at least one instance, the first input drive shaft spur gear 542a includes 10 teeth; first input transmission spur gear 544a includes 18 teeth; first output transmission spur gear 544b includes 13 teeth; and first output drive shaft spur gear 546b includes 15 teeth. As so configured, an input rotation of first input drive shaft 524a is converted to an output rotation of first output drive shaft 546a by a ratio of 1:2.08.
In operation, as first input drive shaft spur gear 542a is rotated, due to a rotation of first connector sleeve 558 and first input drive shaft 524a, as a result of the rotation of the first respective drive connector 118 of surgical instrument 100, first input drive shaft spur gear 542a engages first input transmission spur gear 544a causing first input transmission spur gear 544a to rotate. As first input transmission spur gear 544a rotates, first transmission shaft 544 is rotated and thus causes first output drive shaft spur gear 546b, that is keyed to first transmission shaft 544, to rotate. As first output drive shaft spur gear 546b rotates, since first output drive shaft spur gear 546b is engaged therewith, first output drive shaft spur gear 546b is also rotated. As first output drive shaft spur gear 546b rotates, since first output drive shaft spur gear 546b is keyed to first output drive shaft 546a, first output drive shaft 546a is rotated.
The shaft assembly 500, including the first gear system 540, functions to transmit operative forces from surgical instrument 100 to end effector 501 in order to operate, actuate and/or fire end effector 501.
As illustrated in
Second gear train system 550 further includes a second transmission shaft 556 rotatably supported in transmission housing 512, a second input transmission spur gear 556a keyed to second transmission shaft 556 and engaged with first output transmission spur gear 554b that is keyed to first transmission shaft 554, and a second output transmission spur gear 556b keyed to second transmission shaft 556.
Second gear train system 550 additionally includes a second output drive shaft 558a rotatably supported in transmission housing 512 and tubular body 510, and a second output drive shaft spur gear 558b keyed to second output drive shaft 558a and engaged with second output transmission spur gear 556b.
In at least one instance, the second input drive shaft spur gear 552a includes 10 teeth; first input transmission spur gear 554a includes 20 teeth; first output transmission spur gear 554b includes 10 teeth; second input transmission spur gear 556a includes 20 teeth; second output transmission spur gear 556b includes 10 teeth; and second output drive shaft spur gear 558b includes 15 teeth. As so configured, an input rotation of second input drive shaft 526a is converted to an output rotation of second output drive shaft 558a by a ratio of 1:6.
In operation, as second input drive shaft spur gear 552a is rotated, due to a rotation of second connector sleeve 560 and second input drive shaft 526a, as a result of the rotation of the second respective drive connector 120 of surgical instrument 100, second input drive shaft spur gear 552a engages first input transmission spur gear 554a causing first input transmission spur gear 554a to rotate. As first input transmission spur gear 554a rotates, first transmission shaft 554 is rotated and thus causes first output transmission spur gear 554b, that is keyed to first transmission shaft 554, to rotate. As first output transmission spur gear 554b rotates, since second input transmission spur gear 556a is engaged therewith, second input transmission spur gear 556a is also rotated. As second input transmission spur gear 556a rotates, second transmission shaft 256 is rotated and thus causes second output transmission spur gear 256b, that is keyed to second transmission shaft 556, to rotate. As second output transmission spur gear 556b rotates, since second output drive shaft spur gear 558b is engaged therewith, second output drive shaft spur gear 558b is rotated. As second output drive shaft spur gear 558b rotates, since second output drive shaft spur gear 558b is keyed to second output drive shaft 558a, second output drive shaft 558a is rotated.
The shaft assembly 500, including second gear train system 550, functions to transmit operative forces from surgical instrument 100 to end effector 501 in order rotate shaft assembly 500 and/or end effector 501 relative to surgical instrument 100.
As illustrated in
As illustrated in
Turning to
The entire disclosures of:
U.S. Patent Application Publication No. 2014/0110453, filed Oct. 23, 2012, and titled SURGICAL INSTRUMENT WITH RAPID POST EVENT DETECTION;
U.S. Patent Application Publication No. 2013/0282052, filed Jun. 19, 2013, and titled APPARATUS FOR ENDOSCOPIC PROCEDURES; and
U.S. Patent Application Publication No. 2013/0274722, filed May 10, 2013, and titled APPARATUS FOR ENDOSCOPIC PROCEDURES, are hereby incorporated by reference herein.
Referring to
Like the surgical instrument 100, the surgical instrument 1010 includes a drive mechanism 160 which is configured to drive shafts and/or gear components in order to perform the various operations of surgical instrument 1010. In at least one instance, the drive mechanism 160 includes a rotation drivetrain 1012 (See
As described above, referring primarily to
Referring to
The surgical instrument 1010 further includes a microcontroller 1020 (“controller”). In certain instances, the controller 1020 may include a microprocessor 1036 (“processor”) and one or more computer readable mediums or memory units 1038 (“memory”). In certain instances, the memory 1038 may store various program instructions, which when executed may cause the processor 1036 to perform a plurality of functions and/or calculations described herein. The power source 156 can be configured to supply power to the controller 1020, for example.
The processor 1036 can be in communication with the motor control circuit 1018. In addition, the memory 1038 may store program instructions, which when executed by the processor 1036 in response to a user input 1034, may cause the motor control circuit 1018 to motivate the motor 164 to generate at least one rotational motion to selectively move gear elements within the selector gearbox assembly 162 to selectively position one of the drivetrains 1012, 1014, and 1016 into engagement with the input drive component 165 of the second motor 166. Furthermore, the processor 1036 can be in communication with the motor control circuit 1018′. The memory 1038 may also store program instructions, which when executed by the processor 1036 in response to a user input 1034, may cause the motor control circuit 1018′ to motivate the motor 166 to generate at least one rotational motion to drive the drivetrain engaged with the input drive component 165 of the second motor 166, for example.
The controller 1020 and/or other controllers of the present disclosure may be implemented using integrated and/or discrete hardware elements, software elements, and/or a combination of both. Examples of integrated hardware elements may include processors, microprocessors, microcontrollers, integrated circuits, ASICs, PLDs, DSPs, FPGAs, logic gates, registers, semiconductor devices, chips, microchips, chip sets, microcontrollers, SoC, and/or SIP. Examples of discrete hardware elements may include circuits and/or circuit elements such as logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, and/or relays. In certain instances, the controller 1020 may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
In certain instances, the controller 1020 and/or other controllers of the present disclosure may be an LM 4F230H5QR, available from Texas Instruments, for example. In certain instances, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle SRAM, internal ROM loaded with StellarisWare® software, 2 KB EEPROM, one or more PWM modules, one or more QEI analog, one or more 12-bit ADC with 12 analog input channels, among other features that are readily available. Other microcontrollers may be readily substituted for use with the present disclosure. Accordingly, the present disclosure should not be limited in this context.
In various instances, one or more of the various steps described herein can be performed by a finite state machine comprising either a combinational logic circuit or a sequential logic circuit, where either the combinational logic circuit or the sequential logic circuit is coupled to at least one memory circuit. The at least one memory circuit stores a current state of the finite state machine. The combinational or sequential logic circuit is configured to cause the finite state machine to the steps. The sequential logic circuit may be synchronous or asynchronous. In other instances, one or more of the various steps described herein can be performed by a circuit that includes a combination of the processor 1036 and the finite state machine, for example.
Referring again to
Referring to
Referring to
In the event of an acute drivetrain failure, the active drivetrain may still be operated to complete a surgical step or to reset the surgical instrument 1010; however, certain precautionary and/or safety steps can be taken, as described below in greater detail, to avoid or minimize additional damage to the active drivetrain and/or other components of the surgical instrument 1010. Alternatively, in the event of a catastrophic failure, the active drivetrain is rendered inoperable, and certain bailout steps are taken to ensure, among other things, a safe detachment of the surgical instrument 1010 from the tissue being treated.
Referring again to
Referring to
Likewise, if the closure drivetrain 1014 is being actively driven by the motor 166 during a closure motion to capture tissue by the end effector 300, a detection of an acute drivetrain failure by the module 1040 may cause the processor 1036 to communicate to the motor drive circuit 1018′ instructions to cause the mechanical output of motor 166 to be reduced. A reduction in the mechanical output of the motor 166 reduces the speed of the active drivetrain 1014 which ensures safe completion of the closure motion and/or resetting of the active drivetrain 1014 to an original or starting position. Also, if the rotation drivetrain 1012 is being actively driven by the motor 166, a detection of an acute drivetrain failure by the module 1040 may cause the processor 1036 to communicate to the motor drive circuit 1018′ instructions to cause the mechanical output of motor 166 to be reduced. A reduction in the mechanical output of the motor 166 reduces the speed of the active drivetrain 1012 which ensures safe completion of the rotation and/or resetting of the active drivetrain 1012 to an original or starting position.
Referring to
The motor input voltage (Vm) pulses may each comprise a time period (t2). In at least one instance, a ratio of a time period (t2) to a time period (t1) can be any value selected from a range of about 1/100 to about 1, for example. In at least one instance, a ratio of a time period (t2) to a time period (t1) can be any value selected from a range of about 1/20 to about 1/80, for example. In at least one instance, a ratio of a time period (t2) to a time period (t1) can be any value selected from a range of about 1/30 to about 1/60, for example. Other values of the ratio of a time period (t2) to a time period (t1) are contemplated by the present disclosure.
Referring to
Referring again to
The memory 1038 may include a sensor bypass database of a subset of sensors that are to be deactivated or ignored in the event of an acute drivetrain failure. In at least one instance, the processor 1036 may utilize the sensor bypass database to implement the sensor bypass step in the event of an acute drivetrain failure.
The safe mode 1022 may also include a step 1029 of alerting a user of the surgical instrument 1010 that an acute drivetrain failure has been detected, and that the surgical instrument 1010 will continue to run in the safe mode 1022 which may limit or reduce the functions available to the user, for example. The processor 1036 may employ a feedback system 1035 to issue such alerts to the user of the surgical instrument 1010. The feedback system 1035 may include one or more feedback elements 1034 and/or one or more user input elements 1037, for example. In certain instances, the feedback system 1035 may comprise one or more visual feedback elements including display screens, backlights, and/or LEDs, for example. In certain instances, the feedback system 1035 may comprise one or more audio feedback systems such as speakers and/or buzzers, for example. In certain instances, the feedback system 1035 may comprise one or more haptic feedback systems, for example. In certain instances, the feedback system 1035 may comprise combinations of visual, audio, and/or haptic feedback systems, for example.
Referring to
After disabling the motor 166, the processor 1036 can solicit an approval from the user to proceed in the safe mode 1022 via one or more of the feedback elements 1037. The operator's decision can be communicated to the processor 1036 via the user input 1034. If the operator chooses to proceed in the safe mode 1022, the processor 1036 can reactivate the damaged drivetrain, by reactivating power transmission to the motor 166, and proceed in the safe mode 1022. Alternatively, if the operator chooses not to proceed in the safe mode 1022, the processor 1036 may activate the bailout mode 1024.
Referring again to
In at least one instance, a wireless mode of communication can be employed to initiate the service request. The wireless mode of communication can include one or more of Dedicated Short Range Communication (DSRC), Bluetooth, WiFi, ZigBee, Radio Frequency Identification (RFID) and Near Field Communication (NFC).
The service request communication may also include any saved data in connection with the detected drivetrain failure such as, for example, the time and date of the failure, the type of the active drivetrain, and/or the surgical step during which the failure occurred. Furthermore, the feedback system 1035 may include one or more visual feedback elements such as, for example, the screen 1046 which can be employed to provide an interactive walkthrough of serviceability options and/or rebuild steps, for example.
Referring again to
In the event a catastrophic drivetrain failure rather than an acute drivetrain failure is detected, a bailout mode 1024 can be activated. The memory 1038 may include program instructions, which when executed by the processor 1036, may cause the processor 1036 to respond to an acute drivetrain failure by activating the bailout mode 1024. In at least one instance, as illustrated in
In the event of a catastrophic failure of an active closure drivetrain 1014, the processor 1036 may suspend the closure drivetrain 1014 by stopping the motor 166. In addition, the processor 1036 may employ one or more of the feedback elements 1037 to provide instructions to the user of the surgical instrument 1010 to mechanically complete the closure motion and/or reset the closure drivetrain 1014.
Referring to
Referring again to
The memory 1038 may include a sensor bypass database of a subset of sensors that are to be deactivated or ignored in the event of a catastrophic drivetrain failure. In at least one instance, the processor 1036 may utilize the sensor bypass database to implement the sensor bypass step in the event of a catastrophic drivetrain failure. The bailout mode 1024 may also include a service request step 1042 for initiating a service request in the event of a catastrophic failure of an active drivetrain.
Referring to
As illustrated in
Referring to
Referring to
In at least one instance, the method 2009 further comprises determining whether the firing sequence can be completed. In the event it is determined that the firing sequence cannot be completed, the method 2009 further comprises alerting the user of the surgical instrument 2010 and/or resetting the firing sequence. The step of resetting the firing sequence may include, among other things, retracting the drive assembly 360 to an original or starting position. In the event it is determined that the firing sequence can be completed, the method 2009 further comprises alerting the user of the surgical instrument 2010 to continue the firing sequence. In addition the method 2009 may further comprise increasing and/or prioritizing a power output of the power pack 2012 to facilitate completion of the firing sequence. Upon completion of the firing sequence, the method 9 may further comprise a step of deactivating the surgical instrument 2010.
The safety and/or operational measures of the method 2009 can be employed in addressing a situation where the firing sequence has been started but is only partially completed due to a failure of the power pack 2012. This situation generally yields a tissue region that is only partially stapled and/or resected. The method 2009 permits completion of the stapling and/or resection of the tissue region in the event the failure of the power pack 2012 is a partial failure.
Referring to
Further to the above, the electronic control circuit 2016 includes a microcontroller 2028 (“controller”) that is operably coupled to sensors 2015, as illustrated in
The controller 2028 and/or other controllers of the present disclosure may be implemented using integrated and/or discrete hardware elements, software elements, and/or a combination of both. Examples of integrated hardware elements may include processors, microprocessors, microcontrollers, integrated circuits, ASICs, PLDs, DSPs, FPGAs, logic gates, registers, semiconductor devices, chips, microchips, chip sets, microcontrollers, SoC, and/or SIP. Examples of discrete hardware elements may include circuits and/or circuit elements such as logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, and/or relays. In certain instances, the controller 2028 may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
In certain instances, the controller 2028 and/or other controllers of the present disclosure may be an LM 4F230H5QR, available from Texas Instruments, for example. In certain instances, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle SRAM, internal ROM loaded with StellarisWare® software, 2 KB EEPROM, one or more PWM modules, one or more QEI analog, one or more 12-bit ADC with 12 analog input channels, among other features that are readily available. Other microcontrollers may be readily substituted for use with the present disclosure. Accordingly, the present disclosure should not be limited in this context.
In various instances, one or more of the various steps described herein can be performed by a finite state machine comprising either a combinational logic circuit or a sequential logic circuit, where either the combinational logic circuit or the sequential logic circuit is coupled to at least one memory circuit. The at least one memory circuit stores a current state of the finite state machine. The combinational or sequential logic circuit is configured to cause the finite state machine to the steps. The sequential logic circuit may be synchronous or asynchronous. In other instances, one or more of the various steps described herein can be performed by a circuit that includes a combination of the processor 2030 and the finite state machine, for example.
Referring to
In at least one instance, as illustrated in
In at least one instance, the processor 2030 is configured to respond to a determination that one or more of the battery cells 2014 are compromised by storing or recording a damaged status of the power pack 2012 in the memory 2032. A damaged status of the power pack 2012 can also be stored in a memory 2054 of a main controller 2029 within the surgical instrument 2040. The processor 2030 of the controller 2028 of the power pack 2012 can be in communication with the processor 2052 of the main controller 2029 to report to the main controller 2029 the damaged status of the power pack 2012. In response to a determination that one or more of the battery cells 2014 are compromised, the processor 2052 of the main controller 2029 can be configured to reset the firing sequence by causing the drive assembly 360 to return to an original or starting position, for example. Alternatively, in certain instances, the processor 2052 can be configured to reroute power from non-essential systems of the surgical instrument 2040 to ensure completion of the firing sequence in the event of a determination that one or more of the battery cells 2014 are compromised during the firing sequence. Examples of non-essential systems may include backlit liquid crystal displays (LCDs) and/or Light-emitting diode (LED) indicators. After completion of the firing sequence, the processor 2052 of the main controller 2029 can be configured to cause the surgical instrument 2040 to be deactivated until the damaged power pack 2012 is replaced with an undamaged power pack, for example.
Referring to
Referring to
Referring to
Referring to
The processor 2030 is configured to receive the external and internal temperature readings of the temperature sensors 2024′ and 2024, respectively. In addition, the processor 30 is configured to apply an algorithm, which can be stored in the memory 2032, to quantitatively compare the received external and internal temperature readings. In the event an internal temperature reading, or an average of a plurality of internal temperature readings, exceeds a simultaneously taken external temperature reading, or an average of a plurality of external temperature readings, by a predetermined temperature threshold (Tt), which can be stored in the memory 2032, the processor 2030 may conclude that one or more of the battery cells 2014 are compromised or damaged. In response, the processor 2030 can be configured to activate one or more of the safety and/or operational measures described above.
In certain instances, the internal temperature sensors 2024 and the external temperature sensors 2024′ of the surgical instrument 2040 can be arranged in a Wheatstone bridge circuit 2048, as illustrated in
In the aspect illustrated in
Referring to
As described in greater delay below, the surgical instrument 3010 is configured to detect a damaged motor cartridge 3012 and, in certain instances, instruct an operator of the surgical instrument 3010 to replace the damaged motor cartridge 3012 with an undamaged motor cartridge 3012. The ability to replace a motor cartridge 3012 is quite useful at least because it allows for an improved repair capability since a damaged motor cartridge 3012 can be readily replaced with an undamaged motor cartridge 3012. In absence of the ability to replace a damaged motor cartridge 3012, the surgical instrument 3010 may be rendered inoperable even though the majority of the components of the surgical instrument 3010 are in good operating condition. The ability to replace a motor cartridge 3012 is also useful in allowing modularity in new product designs, and simplifying installation of hardware upgrades as part of life cycle improvements. For example, a first generation motor cartridge can be readily replaced with an upgraded second generation motor cartridge. Motor cartridges can also be swapped between surgical instruments that employ the same type of motor cartridge, for example.
The motor cartridge 3012 comprises a housing 3014 which includes high current components of the surgical instrument 3010 such as, for example, at least one motor 3016 and at least one motor circuit board 3018. Since high current components of the surgical instrument 3010 are more susceptible to damage than low current components such as a main control circuit board 3019 and various feedback systems, it is desirable to be able to readily replace the high current components by replacing the motor cartridge 3012.
As illustrated in
In the aspect illustrated in
The motor 3016 may be any electrical motor configured to actuate one or more drives (e.g., rotatable drive connector 3024 of
Referring to
The controller 3020 and/or other controllers of the present disclosure may be implemented using integrated and/or discrete hardware elements, software elements, and/or a combination of both. Examples of integrated hardware elements may include processors, microprocessors, microcontrollers, integrated circuits, ASICs, PLDs, DSPs, FPGAs, logic gates, registers, semiconductor devices, chips, microchips, chip sets, microcontrollers, SoC, and/or SIP. Examples of discrete hardware elements may include circuits and/or circuit elements such as logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, and/or relays. In certain instances, the controller 3020 may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
In certain instances, the controller 3020 and/or other controllers of the present disclosure may be an LM 4F230H5QR, available from Texas Instruments, for example. In certain instances, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle SRAM, internal ROM loaded with StellarisWare® software, 2 KB EEPROM, one or more PWM modules, one or more QEI analog, one or more 12-bit ADC with 12 analog input channels, among other features that are readily available. Other microcontrollers may be readily substituted for use with the present disclosure. Accordingly, the present disclosure should not be limited in this context.
In various instances, one or more of the various steps described herein can be performed by a finite state machine comprising either a combinational logic circuit or a sequential logic circuit, where either the combinational logic circuit or the sequential logic circuit is coupled to at least one memory circuit. The at least one memory circuit stores a current state of the finite state machine. The combinational or sequential logic circuit is configured to cause the finite state machine to the steps. The sequential logic circuit may be synchronous or asynchronous. In other instances, one or more of the various steps described herein can be performed by a circuit that includes a combination of the processor 3036 and the finite state machine, for example.
Upon receipt of the activation signal, the processor 3036 may signal 3074 the motor control circuit board 3018 to activate the motor 3016. The health of the motor cartridge 3012 can be continuously monitored 3076 while the actuator 3042 is actuated. Under normal operating conditions, as illustrated in
The predetermined value or range can be stored in the memory 3038, for example. In the event a predetermined range is stored in the memory 3038, the processor 3036 may access the memory 3038 to compare a current reading, or an average of a plurality of current readings, of the current sensor 3040 to the predetermined range. If the current reading is greater than or equal to a maximum value of the predetermined range, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected 3088. Also, if the current reading is less than or equal a minimum value of the predetermined range, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected 3088.
Likewise, in the event a stored value is stored in the memory 3038, the processor 3036 may access the memory 3038 to compare a current reading, or an average of a plurality of current readings, of the current sensor 3040 to the predetermined value. If the current reading is greater than or equal to the predetermined value, for example, or less than or equal to the predetermined value, for example, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected 3088.
In at least one instance, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected if the current draw of the motor cartridge 3012, while the actuator 4302 is activated, is less than or equal to 10% of the predetermined value. In at least one instance, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected if the current draw of the motor cartridge 3012, while the actuator 3042 is activated, is less than or equal to 20% of the predetermined value. In at least one instance, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected if the current draw of the motor cartridge 3012, while the actuator 3042 is actuated, is greater than or equal to 150% of the predetermined value. In at least one instance, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected if the current draw of the motor cartridge 3012, while the actuator 3042 is actuated, is greater than or equal to 200% of the predetermined value.
As indicated above, the processor 3036 can be configured to respond to a detected malfunction of the motor cartridge 3012 by activating (79 and 89) one or more safety and/or operational measures. For example, the processor 3036 may employ one or more feedback elements 3044 to issue an alert to an operator of the surgical instrument 3010. In certain instances, the feedback elements 3044 may comprise one or more visual feedback systems such as display screens, backlights, and/or LEDs, for example. In certain instances, the feedback elements 3044 may comprise one or more audio feedback systems such as speakers and/or buzzers, for example. In certain instances, the feedback elements 3044 may comprise one or more haptic feedback systems, for example. In certain instances, the feedback elements 3044 may comprise combinations of visual, audio, and/or haptic feedback systems, for example.
Further to the above, the processor 3036 may employ a feedback screen 3046 (
In at least one instance, the processor 3036 may disable the surgical instrument 3010 until the damaged motor cartridge 3012 is replaced with an undamaged motor cartridge. Tor example, the memory 3038 may include program instructions, which when executed by the processor 3036 in response to a detected malfunction of the motor cartridge 3012, may cause the processor 3036 to ignore input from the actuator 3042 until the damaged motor cartridge 3012 is replaced. A motor cartridge replacement feedback element 3058 can be employed to alert the processor 3036 when the motor cartridge 3012 is replaced, as described in greater detail below.
Referring primarily to
Referring again to
Referring to
As illustrated in
When the processor 3036 detects an error in the decision-making step 52, the processor 3036 may respond by stopping and/or disabling the motor 3016, for example. In addition, in certain instances, the processor 3036 may also store a damaged status of the motor cartridge 3012 in the memory 3038 after detecting the motor cartridge error, as illustrated in
Further to the above, referring still to
Referring still to
In certain instances, when the processor 3036 does not detect a motor cartridge error in the decision-making step 3052 but detects that the motor access door 3013 is removed in the decision-making step 3054, the processor 3036 may respond by stopping and/or disabling the motor 3016, as described above. In addition, the processor 3036 may also provide the user with instructions to reinstall the motor access door 3013. In certain instances, when the processor 3036 detects that the motor access door 3013 is reinstalled, while no motor cartridge error is detected, the processor 3036 can be configured to reconnect the power to the motor 3016 and allow the user to continue with clinical algorithms, as illustrated in
Further to the above, when the processor 3036 detects a motor cartridge error and further detects removal of the motor access door 3013, the processor 3036 can signal the user to replace the motor cartridge 3012 by providing the user with a visual, audio, and/or tactile feedback, for example. In certain instances, the processor 3036 can signal the user of the surgical instrument 3010 to replace the motor cartridge 3012 by flashing a backlight of the feedback screen 3046. In any event, the processor 3036 may provide the user with instructions to replace the motor cartridge 3012, as illustrated in
Referring again to
Further to the above, referring still to
In at least one instance, the motor cartridge replacement feedback element 3058 includes a pressure sensor positioned at the interface 3021 between the surgical instrument 3010 and the motor cartridge 3012. The processor 3036 can be configured to employ the pressure sensor of the motor cartridge replacement feedback element 3058 to detect when the motor cartridge 3012 has been removed and/or replaced. In at least one instance, the processor 3036 can be configured to employ the pressure sensor of the motor cartridge replacement feedback element 3058 to detect a threshold-setting pressure reading when the motor cartridge 3012 is installed with the surgical instrument 3010. The threshold-setting pressure reading can be used to set a predetermined threshold which can be stored in the memory 3038. Alternatively, the predetermined threshold can be calculated and stored in the memory 3036 independent of any readings obtained by the pressure sensor.
Further to the above, the processor 3036 can be configured to conclude that an installed motor cartridge 3012 has been removed when one or more pressure readings detected by the pressure sensor of the motor cartridge replacement feedback element 3058 are less than or equal to the predetermined threshold. The processor 3036 can also be configured to conclude that a replacement motor cartridge 3012 has been installed when subsequent pressure readings detected by the pressure sensor of the motor cartridge replacement feedback element 3058 become greater than or equal to the predetermined threshold, for example.
Further to the above, still referring to
In various instances, the motor access door 3013 can be replaced with a motor access member or a motor securement member configured to secure the motor cartridge 3012 to the handle housing 102. Alternatively, the motor access door 3013 can be removed completely or integrated into the housing 3014 of the motor cartridge 3012 such that the motor cartridge 3012 can be readily removed or separated from the surgical instrument 3010 by pulling or retracting the motor cartridge 3012 away from the handle housing 102, for example. In at least one instance, in the absence of a motor access door, an outer wall 3059 (
As illustrated in
Like the module 3050, the module 3060 also includes one or more decision-making steps such as, for example, the decision-making step 3052 with regard to the detection of one or more errors requiring replacement of the motor cartridge 3012. When the processor 3036 detects an error in the decision-making step 3052, the processor 3036 may respond by stopping and/or disabling the motor 3016, for example. In addition, in certain instances, the processor 3036 also may store a damaged status of the motor cartridge 3012 in the memory 3038 after detecting the motor cartridge error, as illustrated in
Further to the above, when the processor 3036 detects a motor cartridge error, the processor 3036 can signal the user to replace the motor cartridge 3012 by providing the user with a visual, audio, and/or tactile feedback, for example. In certain instances, the processor 3036 can signal the user of the surgical instrument 3010 to replace the motor cartridge 3012 by flashing a backlight of the feedback screen 3046. In any event, the processor 36 may provide the user with instructions to replace the motor cartridge 3012, as illustrated in
Referring to
Like the surgical instrument 100, the surgical instrument 4010 includes a drive mechanism 160 which is configured to drive shafts and/or gear components in order to perform the various operations of surgical instrument 4010. In at least one instance, the drive mechanism 160 includes a rotation drivetrain 4012 (See
As described above, referring primarily to
Referring to
The surgical instrument 4010 further includes a microcontroller 4020 (“controller”). In certain instances, the controller 4020 may include a microprocessor 4036 (“processor”) and one or more computer readable mediums or memory units 4038 (“memory”). In certain instances, the memory 4038 may store various program instructions, which when executed may cause the processor 4036 to perform a plurality of functions and/or calculations described herein. The power source 156 can be configured to supply power to the controller 4020, for example.
The processor 4036 can be in communication with the motor control circuit 4018. In addition, the memory 4038 may store program instructions, which when executed by the processor 4036 in response to a user input 4034, may cause the motor control circuit 4018 to motivate the motor 164 to generate at least one rotational motion to selectively move gear elements within the selector gearbox assembly 162 to selectively position one of the drivetrains 4012, 4014, and 4016 into engagement with the input drive component 165 of the second motor 166. Furthermore, the processor 4036 can be in communication with the motor control circuit 4018′. The memory 4038 may also store program instructions, which when executed by the processor 4036 in response to a user input 4034, may cause the motor control circuit 4018′ to motivate the motor 166 to generate at least one rotational motion to drive the drivetrain engaged with the input drive component 165 of the second motor 166, for example.
The controller 4020 and/or other controllers of the present disclosure may be implemented using integrated and/or discrete hardware elements, software elements, and/or a combination of both. Examples of integrated hardware elements may include processors, microprocessors, microcontrollers, integrated circuits, ASICs, PLDs, DSPs, FPGAs, logic gates, registers, semiconductor devices, chips, microchips, chip sets, microcontrollers, SoC, and/or SIP. Examples of discrete hardware elements may include circuits and/or circuit elements such as logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, and/or relays. In certain instances, the controller 4020 may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
In certain instances, the controller 4020 and/or other controllers of the present disclosure may be an LM 4F230H5QR, available from Texas Instruments, for example. In certain instances, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle SRAM, internal ROM loaded with StellarisWare® software, 2 KB EEPROM, one or more PWM modules, one or more QEI analog, one or more 12-bit ADC with 12 analog input channels, among other features that are readily available. Other microcontrollers may be readily substituted for use with the present disclosure. Accordingly, the present disclosure should not be limited in this context.
In various instances, one or more of the various steps described herein can be performed by a finite state machine comprising either a combinational logic circuit or a sequential logic circuit, where either the combinational logic circuit or the sequential logic circuit is coupled to at least one memory circuit. The at least one memory circuit stores a current state of the finite state machine. The combinational or sequential logic circuit is configured to cause the finite state machine to the steps. The sequential logic circuit may be synchronous or asynchronous. In other instances, one or more of the various steps described herein can be performed by a circuit that includes a combination of the processor 4036 and the finite state machine, for example.
In various instances, it can be advantageous to be able to assess the state of the functionality of a surgical instrument to ensure its proper function. It is possible, for example, for the drive mechanism, as explained above, which is configured to include various motors, drivetrain, and/or gear components in order to perform the various operations of the surgical instrument 4010, to wear out over time. This can occur through normal use, and in some instances the drive mechanism can wear out faster due to abuse conditions. In certain instances, a surgical instrument 4010 can be configured to perform self-assessments to determine the state, e.g. health, of the drive mechanism and it various components.
For example, the self-assessment can be used to determine when the surgical instrument 4010 is capable of performing its function before a re-sterilization or when some of the components should be replaced and/or repaired. Assessment of the drive mechanism and its components, including but not limited to the rotation drivetrain 4012, the closure drivetrain 4014, and/or the firing drivetrain 4016, can be accomplished in a variety of ways. The magnitude of deviation from a predicted performance can be used to determine the likelihood of a sensed failure and the severity of such failure. Several metrics can be used including: Periodic analysis of repeatably predictable events, Peaks or drops that exceed an expected threshold, and width of the failure.
In various instances, a signature waveform of a properly functioning drive mechanism or one or more of its components can be employed to assess the state of the drive mechanism or the one or more of its components. One or more vibration sensors can be arranged with respect to a properly functioning drive mechanism or one or more of its components to record various vibrations that occur during operation of the properly functioning drive mechanism or the one or more of its components. The recorded vibrations can be employed to create the signature waveform. Future waveforms can be compared against the signature waveform to assess the state of the drive mechanism and its components.
In at least one aspect, the principles of acoustics can be employed to assess the state of the drive mechanism and its components. As used herein, the term acoustics refers generally to all mechanical waves in gases, liquids, and solids including vibration, sound, ultrasound (sound waves with frequencies higher than the upper audible limit of human hearing), and infrasound (low-frequency sound, lower in frequency than 20 Hz [hertz] or cycles per second, hence lower than the “normal” limit of human hearing). Accordingly, acoustic emissions from the drive mechanism and its components may be detected with acoustic sensors including vibration, sound, ultrasound, and infrasound sensors. In one aspect, the vibratory frequency signature of a drive mechanism 160 can be analyzed to determine the state of one or more of the drivetrains 4012, 4014, and/or 4016. One or more vibration sensors can be coupled to one or more of the drivetrains 4012, 4014, and/or 4016 in order to record the acoustic output of the drivetrains when in use.
Referring again to
The module 4040 may include one or more sensors 4042 can be employed by the module 4040 to detect drivetrain failures of the surgical instrument 4010. In at least one instance, as illustrated in
Various types of filters and transforms can be used on the output of a sensor 4042 to generate a waveform that represents the operational state of a drivetrain, for example, of the surgical instrument 4010. As illustrated in
In one aspect, as illustrated in
While various frequencies can be used, the exemplary frequencies of the filters shown in
In at least one instance, an output of a sensor 4042 can be recorded when a motor is running during a known function having repeatable movement. For example, the output can be recorded when the motor 166 is running to retract or reset a drivetrain such as, for example the firing drivetrain 4016 to an original or starting position. The recorded output of the sensor 4042 can be used to develop a signature waveform of that movement. In one example, the recorded output of the sensor 4402 is run through a fast Fourier transform to develop the signature waveform.
Further to the above, the amplitude of key regions of the resulting signature waveform can be compared to predetermined values stored in the memory 4038, for example. In at least one instance, the memory 4038 may include program instructions which, when executed by the processor 4036, may cause the processor 4036 to compare the amplitudes of the key regions to the predetermined values stored in the memory 4038. When the amplitudes exceed those stored values, the processor 4036 determines that one or more components of the surgical instrument 4010 is no longer functioning properly and/or that the surgical instrument 4010 has reached the end of its usable life.
In at least one instance, stored values of key regions of a frequency response of a properly functioning drivetrain, as shown in
There can be various stages of operation of the surgical instrument 4010 as the components are moved to effect a function at an end effector of the surgical instrument 4010 such as, for example capturing tissue, firing staples into the captured tissue, and/or cutting the captured tissue. The vibrations generated by the drive mechanism 160 of the surgical instrument 4010 can vary depending on the stage of operation of the surgical instrument 4010. Certain vibrations can be uniquely associated with certain stages of operation of the surgical instrument 4010. Accordingly, taking into consideration the stage or zone of operation of the surgical instrument 4010 allows for selectively analyzing the vibrations that are associated with that stage or zone of operation while ignoring other vibrations that are not relevant to that stage or zone of operation. Various sensors such as, for example, position sensors can be employed by the processor 4036 to determine the stage of operation of the surgical instrument 4010.
In one example, various stages of operation of the instrument 4010 are represented in the graph of
In at least one instance, any vibrations captured below the threshold line 4052 can be disregarded or not considered. In at least one instance, the ratio of the minimum threshold 4052 to a maximum FTF during a firing sequence or stroke of the surgical instrument 4010 is any value selected from a range of about 0.001 to about 0.30, for example. In at least one instance, the ratio is any value selected from a range of about 0.01 to about 0.20, for example. In at least one instance, the ratio is any value selected from a range of about 0.01 to about 0.10, for example.
In addition, any vibrations captured within the block 4048 and block 4050 can also be disregarded or not considered as long as the events within those blocks are not a catastrophic event. In the event of a catastrophic failure, a drive mechanism 160 is rendered inoperable, and certain bailout steps are taken to ensure, among other things, a safe detachment of the surgical instrument 4010 from the tissue being treated. Alternatively, In the event of an acute drivetrain failure, the drivetrain may still be operated to complete a surgical step or to reset the surgical instrument 4010; however, certain precautionary and/or safety steps can be taken to avoid or minimize additional damage to the drivetrain and/or other components of the surgical instrument 4010.
Referring again to
A limited increase in noise could indicate increased wear or a non-catastrophic failure of parts of the gears, for example. A significant increase in the magnitude of the noise in chronic fashion could indicate continuing erosion of the transmission but could be used to predict the life of the instrument 4010 and it performance degradation allowing the completion of certain jobs, for example. An acute dramatic increase in magnitude or number of peaks could indicate a substantial or catastrophic failure causing the instrument to initiate more immediate and final reaction options, for example.
In at least one instance, the memory 4038 includes program instructions which, when executed by the processor 4036, causes the processor 4036 to employ one or more sensors 4042 positioned near one or more components of the drive mechanism 160 of the surgical instrument 4010 to selectively capture or record vibrations generated by the one or more components of the drive mechanism 160 during a predetermined section of the firing sequence. In at least one instance, the sensors 4042 are activated by the processor 4036 at a starting point of the predetermined section and deactivated at an end point of the predetermined section of the firing sequence or stroke so that the sensors 4042 may only capture or record vibrations generated by during the predetermined section.
The predetermined section may have a starting point after the firing sequence is begun and an end point before the firing sequence is completed. Said another way, the processor 4036 is configured to cause the sensors 4042 to only record vibrations at a central section of the firing sequence. As illustrated in
Thus, these limits can be used to assess potential damage to the surgical instrument 4010. Using the captured vibrations from the various drivetrains of the surgical instrument 4010, the vibrations can be processed using the processor 4036 shown in
In another aspect, the magnitude of the noise produced by the surgical instrument 4010 can be compared to predefined system harmonics to assess potential damage to the surgical instrument 4010, and the severity of that damage. As shown in
For example, as shown in
Further to the above, in at least one instance, the processor 4036 is configured to conclude that a catastrophic drivetrain failure had occurred when any one frequency is equal to or exceeds the critical limit 4058. Alternatively, the processor 4036 may be configured to conclude that a catastrophic drivetrain failure had occurred only when a plurality of frequencies is equal to or exceeds the critical limit 4058, for example. Alternatively, the processor 4036 may be configured to conclude that a catastrophic drivetrain failure had occurred only when all frequencies, as captured during the processing of the signal through the filters, are equal to or exceed the critical limit 4058, for example.
Further to the above, in at least one instance, the processor 4036 is configured to conclude that an acute drivetrain failure had occurred when any one frequency is equal to or exceeds the marginal limit 4056 but is below the critical limit 4058, as illustrated in
Referring to
Referring again to
In another aspect, a frequency comparison of a cumulative magnitude of noise with respect to a predetermined minimum and/or maximum threshold is used to assess potential damage to the surgical instrument 4010. In at least one instance, a minimum threshold defines an acceptable limit 4054. A cumulative magnitude of noise that is below the minimum threshold is construed by the processor 4036 as an acceptable limit 4054. In addition, a maximum threshold can be employed to define a critical limit 4058. A cumulative magnitude of noise that is above the minimum threshold is construed by the processor 4036 as a critical limit 4058. A marginal limit 4056 can be defined by the minimum and maximum thresholds. In one example, a cumulative magnitude of noise that is above the minimum threshold but below the maximum threshold is construed by the processor 4036 as a marginal limit 4056.
In the example illustrated in
In at least one instance, the Voltage amplitude values at the center frequencies A, A′, A″, and A′″ are summed to generate the cumulative magnitude of noise, as represented by voltage amplitude, that is then employed to assess whether a failure had occurred, and when so, the severity of that failure. In another instance, the Voltage amplitude values at the center frequencies A, A′, A″, and A′″ and any voltage amplitude within the predetermined bandwidths a1, a2, a3, and a4 are summed to generate the cumulative magnitude of noise, as represented by voltage amplitude, that is then employed to assess whether a failure had occurred, and when so, the severity of that failure. In another instance, the Voltage amplitude values at the center frequencies A, A′, A″, and A′″ and any voltage amplitude values greater than the baseline threshold value 4060 and within the predetermined bandwidths a1, a2, a3, and a4 are summed to generate the cumulative magnitude of noise, as represented by voltage amplitude, that is then employed to assess whether a failure had occurred, and when so, the severity of that failure.
In various instances, a comparison between a present noise signal and a previously recorded noise signal, which may be stored in the memory 4038, can be employed by the processor 4036 to determine a damage/function status of the surgical instrument 4010. A noise signal that is recorded by the sensor 4042 during a normal operation of the surgical instrument 4010 can be filtered and processed by the processor 4036 to generate normal processed signal that is stored in the memory 4038. Any new noise signal recorded by the sensor 4042 can be filtered and processed in the same manner as the normal noise signal to generate a present processed signal which can be compared to normal processed signal stored in the memory 4038.
A deviation between the present processed signature and the normal processed signal beyond a predetermined threshold can be construed as potential damage to the surgical instrument 4010. The normal processed signal can be set the first time the instrument is used, for example. Alternatively, a present processed signal becomes the normal processed signal against the next present processed signal.
The voltage amplitudes of the normal and present processed signals are represented by solid vertical lines. The normal processed signal is in the solid lines while the present processed signal is in the dashed lines represents a present/current processed signal, as described above. There is a baseline threshold value 4060 that is used to allow for a predictable amount of noise to be disregarded, similar to the baseline threshold 4060 of
In at least one instance, one or more voltage amplitudes are compared to corresponding voltage amplitudes in a previously recorded noise pattern to assess any damage of the surgical instrument 4010. The difference between a present voltage amplitude and a previously-stored voltage amplitude can be compared against one or more predetermined thresholds, which can be stored in the memory 4038, to select an output of an acceptable, marginal, or critical status.
In at least one instance, the differences between the present voltage amplitudes and the previously stored voltage amplitudes are summed and compared to one or more predetermined thresholds stored in the memory 4038, for example, to select an output of an acceptable, marginal, or critical status. Magnitude of deviance could be compared range to range to indicate shear change in a local event.
In various instances, one or more algorisms, which may be stored in the memory 4038, can be employed by the processor 4036 to determine a damage/function status of the surgical instrument 4010 based on the processed signal of the output of the sensor 4042. Different noise signals that are recorded by the sensor 4042 can be construed to represent different damage/function statuses of the surgical instrument 4010. During normal operation, a normal or expected noise signal is recorded by the sensor 4042. When an abnormal noise signal is recorded by the sensor 4042, it can be further evaluated by the processor 4036, using one or more of the algorisms stored in the memory 4038, to determine a damage/function status of the surgical instrument 4010. The abnormal signal may comprise unique characteristics that can be used to assess the nature of the damage to the surgical instrument 4010. For example, the unique characteristics of the abnormal signal may be indicative of damage to a particular component of the surgical instrument 4010, which can be readily replaced.
In certain instances, one or more algorisms are configured to assess normal wear in one or more components of the surgical instrument 4010 based on the processed signal of the output of the sensor 4042. Normal wear can be detected by identifying a noise signal indicative of potential debris, for example. When the debris, as measured by its recorded noise signs, reaches or exceeds a predetermined threshold stored in the memory 4038, for example, the processor 4036 can be configured to issue an alert that surgical instrument 4010 is nearing the end of its life or requires maintenance, for example.
Furthermore, one or more algorisms can be configured to determine potential damage to one or more gear mechanisms such as, for example, a planet gear mechanism within the drive mechanism 160 based on the processed signal of the output of a sensor 4042. During normal operation, the planet gear may produce a normal noise signal as recorded by the sensor 4042. When the planet gear is damaged due to a broken tooth, for example, an abnormal noise signal is recorded by the sensor 4042. The abnormal signal may comprise unique characteristics indicative of a damaged planet gear, for example.
Like
In the example illustrated in
Also, in the example illustrated in
Also, in the example illustrated in
Certain surgical stapling and cutting end effectors described herein include an elongate channel configured to removably receive a staple cartridge that has surgical staples stored therein. The staple cartridge includes ejectors, or drivers, movably supported within a cartridge body of the staple cartridge which are each configured to support one or more staples thereon. The staple supporting drivers are arranged in longitudinal rows within the cartridge body located on each side of a longitudinally-extending slot defined in the cartridge body. The slot is configured to movably accommodate a firing member that may have a tissue cutting edge thereon that serves to cut the tissue that has been clamped between the anvil and the staple cartridge. The drivers are urged upwardly in the cartridge body, i.e., toward a deck of the cartridge body, when they are contacted by a sled that is configured to be driven longitudinally through the cartridge body by the firing member. The sled is movably supported in the cartridge and includes a plurality of angled or wedge-shaped cams that correspond to lines of staple drivers within the cartridge body. In an unfired or “fresh” staple cartridge, the sled is positioned in a starting position that is proximal to the first, or proximal-most, staple drivers in each line. The sled is advanced distally by the firing member during a firing stroke to eject the staples from the cartridge body. Once the staple cartridge has been at least partially fired, i.e., ejected from the cartridge body, the firing member is retracted back to a beginning or unfired position and the sled remains at a distal end of the now-spent staple cartridge. Once the firing member has been returned to the beginning or unfired position, the spent staple cartridge may be removed from the channel of the end effector.
Further to the above, a surgical instrument system 19010 is illustrated in
Such cutting and stapling end effectors are mounted to a distal end of an elongate shaft assembly that operably supports various drive shafts and components configured to apply various control motions to the end effector. In various instances, a shaft assembly may include an articulation joint or can be otherwise configured to facilitate the articulation of the end effector relative to a portion of the elongate shaft when articulation motions are applied to the end effector. The shaft assembly is coupled to a housing that supports various drive systems that operably interface with various components in the elongate shaft assembly. In certain arrangements, the housing may comprise a handheld housing or handle. In other arrangements, the housing may comprise a portion of a robotic or automated surgical system. The various drive systems of the housing may be configured to apply axial drive motions, rotary drive motions, and/or combinations of axial and rotary drive motions to the elongate shaft assembly. In handheld arrangements, the axial motions may be generated by one or more manually-actuated handcranks and/or generated by one more electric motors. The robotic system may employ electric motors and/or other automated drive arrangements that are configured to generate and apply the necessary control motions to the elongate shaft assembly and, in some cases, ultimately to the firing member in the end effector.
For surgical end effectors that require rotary control motions, the elongate shaft assembly may include a “proximal” rotary drive shaft portion that is rotated by a corresponding motor or other source of rotary motion that is supported in the housing. The proximal rotary drive shaft is configured to apply the rotary control motion to an end effector drive shaft that is supported in the end effector. In such arrangements, the firing member interfaces with the end effector drive shaft such that the firing member may be longitudinally advanced through the end effector and then returned to the unfired position.
When using surgical instruments that are configured to cut and staple tissue, measures should be taken to ensure that an unspent surgical staple cartridge has been properly installed in the end effector of the surgical instrument prior to actuating the firing drive system of the surgical instrument. If a clinician were to inadvertently actuate a tissue cutting member of the firing drive system without first having installed an unspent staple cartridge in the end effector, for instance, the tissue cutting member may sever the tissue without stapling it Similar problems could also arise if the clinician were to unwittingly install a partially-spent staple cartridge into the end effector. A partially-spent staple cartridge can be created when a staple cartridge is used in a prior procedure, or a prior step in a procedure, and then removed from the end effector before all of the staples have been ejected therefrom. If such a partially-spent cartridge were to be re-used in the surgical instrument, the tissue cutting member may create an incision in the tissue that is longer than the staple lines that are applied to the tissue. Thus, when using surgical end effectors that are configured to cut and staple tissue, it is desirable for the surgical end effector to be configured to prevent the actuation of the tissue cutting member unless an unspent “fresh” staple cartridge has been properly installed in the end effector.
As can be seen in
The channel of the surgical end effector 20000 is configured to operably and removably support a surgical staple cartridge therein that includes a sled 20050. The sled 20050 is movable from a starting position located in the proximal end of the staple cartridge to an ending position within the cartridge. The sled 20050 includes a central sled body 20052 that has a collection of cam wedges 20054 formed therein. In the illustrated example, the sled 20050 includes four cam wedges 20054 with two cam wedges 20054 being located on each side of the central sled body 20052. Each cam wedge 20054 would correspond to a line of staple supporting drivers located in the cartridge body. As the sled 20050 is driven distally through the cartridge body, the cam wedges 20054 would sequentially drive the staple drivers in the corresponding line upward within the cartridge body to thereby drive the staples into forming contact with the underside of the anvil.
In the illustrated example, the sled 20050 includes retention cavity 20056 that is formed in the central sled body 20052 that is configured to retainingly engage the distally extending retainer tab 20044 on the travel nut 20040 when the travel nut is in the first position and the sled 20050 is in the starting (pre-fired) position. See
Turning next to
As can be seen in
In the illustrated example, a firing assembly engagement notch 20216 is provided in the sled body 20212 that is configured to engage a corresponding engagement notch 20137 in the upper body portion 20136 of the firing assembly 20130. As the firing assembly engagement notch 20216 of the sled 20210 initially engages the engagement notch 20137 in the upper body portion 20136 of the firing assembly 20130, the sled 20120 biases or deflects the firing assembly 20130 and end effector rotary drive shaft 20120 downward into the channel 20110 (represented by arrows “D” in
In the illustrated embodiment, a locking notch 20412 is provided in the ledge 20404. The locking notch 20412 is sized to receive at least a portion of the locking lug 20304 therein when the firing assembly 20300 is in a first or beginning position prior to firing. A lock spring or biasing member 20414 is provided on the ledge 20406 and is configured to engage and bias the actuator lug 20306 in the locking direction “L”. Such rotation of the actuator lug 20306 causes the locking lug 20304 to enter into the locking notch 20412. When in that position, the firing assembly 20300 cannot be advanced distally when the rotary end effector drive shaft is rotated in a firing direction.
Still referring to
To facilitate assembly of the various anvil components, the anvil assembly 20700 includes an anvil cap 20740 that may be attached to the anvil frame 20712 by welding, snap features, etc. In addition, the anvil assembly 20700 includes a pair of anvil plates or staple forming plates 20742 that may contain various patterns of staple forming pockets on the bottom surfaces thereof that correspond to the staple arrangements in the surgical staple cartridge 20600 that is supported in the elongate channel 20510. The staple forming plates 20742 may be made of a metal or similar material and be welded to or otherwise attached to the anvil frame 20712. In other arrangements, a single anvil plate that has a slot therein to accommodate a firing member may also be employed. Such anvil plate or combination of plates may serve to improve the overall stiffness of the anvil assembly. The anvil plate(s) may be flat and have the staple forming pockets “coined” therein, for example.
As can be seen in
Rotation of the anvil drive shaft 20710 in a first rotary direction will result in the axial movement of the firing member 20800 from a first position to a second position. Similarly, rotation of the anvil drive shaft 20710 in a second rotary direction will result in the axial retraction of the firing member 20800 from the second position back to the first position. The anvil drive shaft 20710 ultimately obtains rotary motion from a proximal drive shaft (not shown) that operably interfaces with a distal power shaft 20830. In the illustrated arrangement, the distal power shaft 20830 has a distal drive gear 20832 that is configured for meshing engagement with the driven firing gear 20726 on the anvil drive shaft 20710 when the anvil assembly 20710 is in the closed position. The anvil drive shaft 20710 is said to be “separate and distinct” from the distal power shaft 20830. That is, at least in the illustrated arrangement for example, the anvil drive shaft 20710 is not coaxially aligned with the distal power shaft 20830 and does not form a part of the distal power shaft 20830. In addition, the anvil drive shaft 20710 is movable relative to the distal power shaft 20830, for example, when the anvil assembly 20700 is moved between open and closed positions. The proximal drive shaft may ultimately be rotated by a motor supported in a housing that is attached to a shaft assembly coupled to the surgical end effector 20500. The housing may comprise a handheld assembly or a portion of a robotically controlled system.
In the illustrated arrangement, the anvil assembly 20700 is closed by distally advancing a closure tube 20900. As can be seen in
Turning to
In still other arrangements, the detection of the sled in the correct location within an unspent staple cartridge that has been properly seated in the channel of a surgical cutting and stapling end effector may be determined electrically. For example, this may be accomplished with contacts on the sled that complete a circuit when the sled is in a starting position in a cartridge that has been properly seated in the channel. Upon firing, the circuit is opened and further firing is not permitted until the circuit is closed again.
As mentioned above, stapling assemblies for first grasping, clamping, stapling, and/or cutting tissue are well known in the art. Previous stapling assemblies, such as those disclosed in U.S. Pat. No. 5,865,361, for example, have comprised a loading unit that is operably connected to a handle assembly. The disclosure of U.S. Pat. No. 5,865,361, entitled SURGICAL STAPLING APPARATUS, which issued on Feb. 2, 1999, is incorporated by reference in its entirety. While the handle assemblies of these previous stapling assemblies were configured for multiple uses, the loading units were configured for a single use. After each loading unit was spent, or at least partially spent, the loading unit was removed from the handle assembly and then replaced with a new, or unspent, loading unit if desired. The configuration of these previous loading units did not permit a cartridge portion of the loading unit to be replaced so that a spent loading unit could be used once again.
U.S. Patent Application Publication No. 2012/0286021 discloses an alternative stapling assembly comprising a first jaw including an anvil and a second jaw including a staple cartridge. The entire disclosure of U.S. Patent Application Publication No. 2012/0286021, entitled REPLACEABLE STAPLE CARTRIDGE, which published on Nov. 15, 2012, is incorporated by reference herein. Unlike the previous loading units, the second jaw of these stapling assemblies can be completely removed from the loading unit and then replaced with another second jaw, presumably after the previous second jaw has been spent. Notably, the entire second jaw of these stapling assemblies is replaced—not just a portion of the second jaw as disclosed in U.S. Pat. No. 6,988,649, entitled SURGICAL STAPLING INSTRUMENT HAVING A SPENT CARTRIDGE LOCKOUT, which issued on Jan. 24, 2006, the entire disclosure of which is incorporated by reference herein.
The stapling assembly disclosed in U.S. Patent Application Publication No. 2012/0286021, however, is defective. For instance, the stapling assembly disclosed in U.S. Patent Application Publication No. 2012/0286021 includes a cutting member which can be advanced distally eventhough a second jaw is not attached to the stapling assembly. As a result, the cutting member may be unintentionally exposed to the tissue of a patient. Various improvements to these stapling assemblies, among others, are discussed further below.
Turning now to
The handle 21010 comprises an actuator, or trigger, 21014 which is rotatable toward a pistol grip 21012 of the handle 21010 to drive a firing bar of the loading unit 21030 distally. During a first stroke of the trigger 21014, the firing bar engages the cartridge jaw 21050 and moves the cartridge jaw 21050 into its closed position. During one or more subsequent strokes of the trigger 21014, the firing bar is advanced through the cartridge jaw 21050. The cartridge jaw 21050 comprises a plurality of staples removably stored therein which are ejected from the cartridge jaw 21050 as the firing bar is advanced distally through the cartridge jaw 21050. More particularly, as discussed in greater detail elsewhere herein, the firing bar enters into the cartridge jaw 21050 and pushes a sled stored in the cartridge jaw 21060 distally which, in turn, drives the staples out of the cartridge jaw 21050.
Referring primarily to
An alternative surgical instrument system 21100 is illustrated in
Further to the above, the staple cartridge jaw 21050 is removably attached to the anvil jaw 21040 of the loading unit 21030. Referring primarily to
The staple cartridge jaw 21050 further comprises clips 21056 configured to engage and grasp the attachment projections 21042. Each clip 21056 is positioned within a slot 21055 defined in the cartridge jaw 21050. When the cartridge jaw 21050 is attached to the loading unit 21030, the clips 21056 flex around the attachment projections 21042. When the cartridge jaw 21050 is fully attached to the loading unit 21030, the clips 21056 resiliently snap or return toward their unflexed configuration and hold the attachment projections 21042 in the recesses 21052.
Further to the above, the cartridge jaw 21050 is properly attached to the loading unit 21030 when the clips 21056 are engaged with the attachment projections 21042 and the attachment projections 21042 are fully seated in the recesses 21052. That said, the loading unit 21030 does not include a sensing system configured to detect whether or not the cartridge jaw 21050 is properly attached to the loading unit 21030. Turning now to
The loading unit 21130 comprises an electrical circuit that is completed, or closed, when the staple cartridge jaw 21150 is properly attached to the loading unit 21130. The electrical circuit is in communication with a microprocessor, or controller, of the surgical instrument system. The controller is in the handle of the surgical instrument system; however, the controller can be in any suitable part of the surgical instrument system, such as the loading unit 21130, for example. Alternatively, the controller can be in a housing of a surgical instrument assembly that is attached to a robotic surgical system and/or in the robotic surgical system itself. In any event, the controller is in communication with an electric motor which drives the staple firing system of the surgical instrument system.
When the controller detects that a staple cartridge is not properly attached to the loading unit 21130, further to the above, the controller can prevent the electric motor from driving the staple firing system through a staple firing stroke. In at least one such instance, the controller can open a switch between a power source, such as a battery, for example, and the electric motor to prevent electrical power from being supplied to the electric motor. When the controller detects that a staple cartridge 21150 is properly attached to the loading unit 21130, the controller can permit the electric motor to receive power from the battery and drive the staple firing system through a staple firing stroke when actuated by the user of the surgical instrument system. In at least one such instance, the controller can close the switch between the battery and the electric motor, for example.
The electrical circuit of the loading unit 21130 comprises conductors 21147 (
Further to the above, the controller can determine that a staple cartridge jaw 21150 is improperly attached to the loading unit 21130 if only one of the contacts 21159 is engaged with its respective contact 21146. In such instances, the electrical circuit would be in an open condition and, as a result, the microprocessor would treat an improperly assembled staple cartridge jaw 21150 as a missing cartridge jaw 21150 and prevent the electric motor from being actuated to perform the staple firing stroke. In various instances, the surgical instrument system can include an indicator light and/or feedback system that communicates to the user of the surgical instrument system that the staple cartridge jaw detection circuit has not been closed. In response thereto, the user can investigate the condition and properly seat the staple cartridge jaw 21150 to close the detection circuit.
As illustrated in
In addition to or in lieu of the above, the sled 21170 can comprise a conductive portion which electrically connects the lateral jaw contacts 21159 and/or the electrically conductive clips 21056 when the sled 21170 is in its unfired position. In at least one instance, the sled 21170 comprises a conductor and/or trace extending from one lateral side of the sled 21170 to the other. When the sled 21170 is advanced distally, the conductive portion of the sled 21170 is no longer in electrical communication with the contacts 21159 and/or clips 21056 and the jaw detection circuit is opened. To the extent that the jaw assembly also comprises the conductor 21157, the conductor 21157 can be cut or broken to open the jaw detection circuit as described above. In various instances, the sled 21170 can be displaced from the jaw detection circuit at the same time that the conductor 21157 is cut or broken, for example. In any event, the conductive sled 21170 can provide a spent cartridge lockout.
In various alternative embodiments, the electrical circuit lockout of the loading unit is not transected when the firing member is advanced distally. Turning now to
The compliant contacts 21257 are configured to engage an anvil jaw 21240 of the loading unit 21230 when the staple cartridge jaw 21250 is assembled to the loading unit 21250. More specifically, the compliant contacts 21257 engage a conductive pathway 21247 defined in the anvil jaw 21240 which electrically connects the compliant contacts 21257 and, at such point, the electrical circuit has been closed. The compliant contacts 21257 remain constantly engaged with the conductive pathway 21247, i.e., when the cartridge jaw 21250 is in an open position, when the cartridge jaw 21250 is in a closed position, and when the cartridge jaw 21250 is moved between its open and closed positions. When the firing member is advanced distally, the firing member passes through a gap defined between the contacts 21257 and, as a result, the electrical jaw detection circuit is not transected. Such an arrangement can provide a missing cartridge jaw lockout and/or an improperly attached cartridge jaw lockout.
Further to the above, the compliant contacts 21257 can comprise springs configured to bias the staple cartridge jaw 21250 into an open position. When the staple cartridge jaw 21250 is moved into its closed position, the compliant contacts 21257 are compressed between the staple cartridge jaw 21250 and the anvil 21240. The compliant contacts 21257, along with the other portions of the electrical jaw detection circuit, are electrically insulated from the metal, or conductive, portions of the stapling assembly so as to maintain the integrity of the jaw detection circuit and prevent the jaw detection circuit from shorting out.
In addition to or in lieu of an electrical or electronic lockout such as the lockout described above, for example, a loading unit can include a mechanical lockout that prevents the firing system from performing a staple firing stroke if a staple cartridge jaw is not properly attached to the loading unit. Turning now to
Although the lockout members 21172 can block the distal advancement of the firing member 21160, as discussed above, the firing member 21160 may be able to push through and slide between the lockout members 21172 in certain instances. As an improvement, one or both of the lockout members 21172 can comprise a latch or hook extending inwardly toward the firing member 21160. When the lockout members 21172 are biased inwardly after the sled 21170 has been advanced distally, the latches or hooks can engage apertures defined in the firing member 21160 when the firing member 21160 is retracted back into its unfired position. Once the latches or hooks are positioned in the firing member apertures, they can prevent the firing member 21160 from being advanced distally through the already spent cartridge. At such point, the staple cartridge would have to be replaced to unlock the firing member 21160.
As described above, an attachable staple cartridge jaw can be moved between open and closed positions to clamp tissue therebetween. Other embodiments are envisioned in which the staple cartridge jaw is removably attachable to a stapling instrument but the anvil jaw is movable between open and closed positions. Turning now to
The stapling assembly 21530 further comprises a mechanical lockout 21572. The lockout 21572 is mounted to a frame of the stapling assembly 21530 at a frame pivot 21232. The lockout 21572 extends distally and is supported by a frame pin 21533. The lockout 21572 comprises a metal wire; however, the lockout 21572 can be comprised of any suitable material. The lockout 21572 further comprises an elongated recess track 21576 defined therein which is configured to receive a lockout pin 21166 extending from the firing member 21160. Referring primarily to
When the staple cartridge jaw 21550 is attached to the stapling assembly 21530, as illustrated in
Turning now to
The stapling assembly 21330 further comprises a mechanical lockout 21372. The lockout 21372 is mounted to a frame of the stapling assembly 21330 at a frame pivot 21232. The lockout 21372 extends distally and is constrained by a frame pin 21333. The lockout 21372 comprises a metal wire; however, the lockout 21372 can be comprised of any suitable material. The lockout 21372 further comprises an elongate recess track 21376 defined therein which is configured to receive the lockout pin 21166 extending from the firing member 21160. Referring primarily to
When the staple cartridge jaw 21550 is attached to the stapling assembly 21530, as illustrated in
Referring to
During a surgical procedure, several loading units can be used with a handle of a surgical stapling system. In at least one instance, a first loading unit can be used which is configured to apply a 30 mm staple line, a second loading unit can be used which is configured to apply a 45 mm staple line, and a third loading unit can be used which is configured to apply a 60 mm staple line, for example. In the event that each of these loading units comprises a replaceable cartridge jaw, it is possible that the wrong staple cartridge jaw can be attached to a loading unit. For instance, a clinician may attempt to attach a 60 mm staple cartridge jaw to a loading unit configured to apply a 30 mm staple line. As a result, it is possible that some of the staples ejected from the 60 mm staple cartridge jaw may not be deformed by the anvil and/or that the tissue incision line may be longer than the staple lines. The stapling assemblies and/or loading units disclosed herein can include means for preventing the wrong staple cartridge jaw from being attached thereto, as discussed in greater detail below.
Referring to
In the instances described above, the attachment projections of a loading unit, the recesses of a staple cartridge jaw, and the spring clips holding the staple cartridge jaw to the loading unit have the same configuration on both sides of the stapling assembly. In other instances, the attachment projection, the recess, and/or the spring clip on one side of the stapling assembly is different than the attachment projection, the recess, and/or the spring clip on the other side of the stapling assembly. For example, a large attachment projection, recess, and spring clip are disposed on one side of the stapling assembly while a smaller attachment projection, recess, and spring clip are disposed on the other side. Such arrangements can increase the permutations available to prevent an incorrect staple cartridge jaw from being attached to a loading unit.
In the instances described above, the attachment projections of a loading unit, the recesses of a staple cartridge jaw, and the spring clips are aligned with respect to a common lateral axis. In other instances, the attachment projection, the recess, and/or the spring clip on one side of the stapling assembly are not aligned with the attachment projection, the recess, and/or the spring clip on the other side. Stated another way, one side is offset from the other. Such arrangements can also increase the permutations available to prevent an incorrect staple cartridge jaw from being attached to a loading unit.
Further to the above, it is contemplated that a kit of loading units can be provided wherein each loading unit of the kit can be configured such that only a cartridge jaw intended to be used with the loading unit can be properly attached to the loading unit.
Turning now to
Further to the above, the proximal shoulder of a staple cartridge jaw can comprise a sharp or abrupt corner. In at least one such instance, the proximal shoulder does not comprise a chamfer or lead-in, for example.
In various instances, a proximal shoulder of a staple cartridge jaw can be configured to block the distal advancement of a staple firing member if the tissue clamped between the staple cartridge jaw and an opposing anvil jaw is too thick. In such instances, the staple cartridge jaw would not close completely and the proximal shoulder of the staple cartridge jaw would be positioned in front of the staple firing member. Such an arrangement would comprise a tissue thickness lockout; however, such an arrangement could also serve as a tissue clamping lockout in the event that the staple cartridge jaw had not yet been moved into its clamped position.
In addition to or in lieu of the above, an electronic or software lockout of a surgical instrument system can be utilized to prevent a firing drive from performing a staple firing stroke in the event that an incorrect staple cartridge jaw is attached to the surgical instrument system. In various instances, as discussed above, a portion of a jaw detection circuit can extend through a staple cartridge jaw and, in at least one instance, a controller of the surgical instrument system can be configured to evaluate the portion of the jaw detection circuit extending through the staple cartridge jaw to determine whether the staple cartridge attached to the surgical instrument system jaw is an appropriate staple cartridge jaw for use with the surgical instrument system. In at least one instance, the clips 21056 of a first staple cartridge jaw have detectably different electrical properties, such as resistance or impedance, for example, than the clips 21056 of a second staple cartridge jaw.
Referring again to
It is desirable to employ lockout systems with surgical stapling instruments having replaceable staple cartridge assemblies. For example, in the event that a user forgets to install a staple cartridge into an instrument without such a lockout system, the firing member of the surgical instrument could be used to cut the tissue of a patient without stapling it. Such circumstances are undesirable. In yet another example, in the event that a user installs a spent, or partially-spent, staple cartridge into an instrument and without a lockout system, the firing member of the surgical instrument would, similarly, cut but not staple, or just partially staple, the tissue of a patient. Such circumstances are also undesirable. As a result, surgical instruments which can automatically lock out the firing member to prevent the firing member from being advanced within an end effector are desirable.
Turning now to
The surgical instrument system 25100 further comprises a lockout member 25140. The lockout member 25140 is configured to prevent the firing member 25110 from being advanced through the staple firing stroke when a cartridge is not present in the surgical instrument system 25100 or a spent, or partially spent, cartridge is present in the surgical instrument system 25100. The lockout member 25140 comprises a proximal portion 25141 pivotably mounted to a spine pin 25101 of a frame portion of the system 25100. The lockout member 25140 further comprises a lock face, or shoulder, 25142 configured to catch the firing member 25110, and a deflectable portion 25143. The lockout member 25140 is movable, or deflectable, between a locked position (
When the lockout member 25140 is in its locked position as illustrated in
As can be seen in
As mentioned above, the sled 25121 does not return with the firing member 25110 when the firing member 25110 is retracted after the firing stroke. When the firing member 25110 is retracted, the firing member pin 25113 deflects, or bends, the deflectable portion 25143 to its unlocked position permitting the pin 25113 to pass the lock face 25142 and return to a home position. Once the pin 25113 is retracted past the lock face 25142, the lockout member 25140 springs back, or returns, to its locked position to prevent a repeat firing with a spent staple cartridge installed within the system 25100. The firing member 25110 can be retracted even further such that the jaws of the system 25100 can then be unclamped from the stapled tissue.
Referring now to
The surgical instrument system 25200 further comprises a lockout member 25240. The lockout member 25240 is configured to prevent the firing member 25210 from being advanced through its staple firing stroke when a cartridge is not present within the system 25200 or a spent, or partially spent, cartridge is present within the system 25200. The lockout member 25240 comprises a first, or proximal, portion 25241 rotatably mounted to a first spine pin 25201 of the system 25200. The spine pin 25201 may extend from a shaft frame, or spine, of the system 25200, for example. The lockout member 25240 further comprises a second portion 25242, a third, or catch, portion 25243, and a fourth, or distal, portion 25245. The lockout member 25240 is movable between a locked position (
When the lockout member 25240 is in its locked position as illustrated in
The sled 25221 comprises a magnet 25226 oriented with one of its poles “P1” facing the distal portion 25245 of the lockout member 25240 and another pole “P2” facing away from the distal portion 25245 of the lockout member 25240. The distal portion 25245 of the lockout member 25240 comprises a magnet 25246 disposed thereon. The magnet 25246 is orientated with a pole “P1” facing the like pole “P1” of the sled magnet 25226 and another pole “P2” facing away from the sled magnet 25226. The pole P1 of the magnet 25226 and the pole P1 of the magnet 25246 repel each other. This relationship creates a levitational effect when the sled 25221 is in its proximal unfired position (
When the firing member 25210 is retracted after its firing stroke, the pin 25213 is configured to contact an angled face of the distal portion 25245 to push the distal portion 25245 and, thus, the lockout member 25240 toward its unlocked position permitting the pin 25213 to pass the lock face 25244 when returning to a home position. Once the pin 25213 passes the lock face 25244, the lockout member 25240 springs back, or returns, to its locked position to prevent to prevent the firing stroke from being repeated with a spent, or partially spent, staple cartridge installed within the system 25100.
Similar to the system 25100 illustrated in
Another surgical instrument system 25300 is depicted in
The surgical instrument system 25300 further comprises a lockout member 25340. The lockout member 25340 is configured to prevent the firing member 25310 from being advanced through a staple firing stroke when a cartridge is not present within the system 25300 or a spent, or partially spent, cartridge is present within the system 25300. The lockout member 25340 is similar to the lockout members 25140, 25240 in many respects. Referring to
The staple cartridge assembly 25320 comprises a sled 25330 and plurality of drivers 25328 configured to eject a staple upon being driven by the ramps 25330A, 25330B, 25330C, and 25330D of the sled 25330 during a staple firing stroke. The staple cartridge assembly 25320 further comprises a control member movable between an unspent position and a spent position by the sled 25330 when the sled 25330 is advanced distally during its staple firing stroke. The control member is in its unspent position when a staple cartridge 25320 is loaded into the surgical instrument system 25300 and is configured to move the lockout member 25340 from its locked position to its unlocked position when the unspent staple cartridge assembly 25320 is loaded into the surgical instrument system 25300. A first configuration of a proximal driver 25325 is illustrated in
A similar proximal driver configuration is depicted in
Once the lockout member 25340 has been released to its locked position (
The control members 25325, 25325′ are driven by the sled 25330 and can be referred to as drivers; however, they do not drive staples. In this way, the control members 25325, 25325′ comprise “false” drivers. That said, it is contemplated that the proximal most staple driver of a staple cartridge assembly could be used as a control member.
Another surgical instrument system is depicted in
To move the lockout member 25440 to its unlocked position so that a firing member can be advanced through the staple cartridge assembly 25410 during a staple firing stroke, an electromagnet 25421 is employed. The electromagnet 25421 is disposed on the spine portion 25401 of the system 25400 but may be disposed at any suitable location within the system 25400. Conductors are positioned within the system 25400 along the spine portion 25401, for example, to power the electromagnet 25421. The lockout circuit system 25420 which encompasses the electromagnet 25421 and its power source extends through the staple cartridge assembly 25410. As discussed below, when the circuit 25420 is complete, or closed, the electromagnet 25421 is powered. When the circuit is not complete, or open, the electromagnet 25421 is not powered. As also discussed below, the presence of a spent, or partially-spent, cartridge in the system 25400 is a scenario where the circuit 25420 is open. The absence of a cartridge in the system 25400 is another scenario where the circuit 25420 is open.
The lockout circuit system 25420 comprises conductors 25422 extending from the electromagnet 25421 to a pair of electrical contacts 25423 positioned within the system 25400. The electrical contacts 25423 are positioned within a jaw of the system 25400 such as a channel portion which receives the staple cartridge assembly 25410, for example. The staple cartridge assembly 25410 further comprises conductor legs 25425 configured to engage the contacts 25423 when the staple cartridge assembly 25410 is fully seated in the channel portion of the jaw. The conductor legs 25425 are part of an electrical trace 25424 defined within the staple cartridge assembly 25410. The conductor legs 25425 are disposed on a proximal face 25412 of the cartridge assembly 25410. Also disposed on the proximal face 25412 is a severable portion 25426 of the electrical trace 25424 which extends across a slot 25411 of the staple cartridge assembly 25410. A cutting edge of a firing member is configured to sever, or incise, the severable portion 25426 during a staple firing stroke of the firing member.
When a cartridge assembly is installed and is unspent, further to the above, the severable portion 25426 is not severed and the lockout circuit 25420 is complete, or closed. When the lockout circuit 25420 is complete (
When the spent staple cartridge assembly 25410 is removed from the surgical instrument system 25400, the lockout circuit 25420 remains in an open state and the electromagnet 25421 remains unpowered. When an unspent staple cartridge assembly 25410 is fully seated in the system 25400, the lockout circuit 25420 is once again closed and the electromagnet 25421 is repowered to unlock the lockout member 25430. Notably, if a staple cartridge assembly 25410 is not fully seated in the system 25400, the legs 25425 will not be engaged with the contacts 25423 and the lockout circuit 25420 will remain in an open, unpowered state.
Another surgical instrument system 25500 is depicted in
The lockout circuit 25520 comprises a pair of conductors 25521 in electrical communication with a surgical instrument handle, for example, and a pair of electrical contacts 25522 positioned within a jaw portion of the surgical instrument system 25500 configured to support the staple cartridge 25501. The electrical contacts 25522 are positioned such that corresponding pads, or contacts, 25523 disposed on a proximal face 25512 of the sled 25510 contact the electrical contacts 25522 when the staple cartridge 25501 is fully seated in the system 25500 and the sled 25510 is in its unfired position (
A firing member lockout arrangement of a system 25600 is depicted in
The lockout 25620 comprises a solenoid 25621 and a mechanical linkage comprising a first link 25623 and a second link 25624. The links 25623, 25624 are attached at a pivot 25622. The solenoid 25621 is positioned within the spine 25601 such that the solenoid 25621 can apply a force to the linkage near the pivot 25622. The lockout 25620 is illustrated in its biased, locked position in
In various instances, multiple windows are provided in the firing member 25610. Another window, such as the window 25614, may comprise another proximal surface. The window 25614 may act as an intermediate lockout to lock the firing member 25610 in the midst of an operation. An event such as knife binding, for example, may trigger the solenoid 25621 to release the lockout 25620 into its locked position to prevent further actuation of the firing member 25610. In various instances, distal surfaces of the windows in the firing member 25610 may be configured such that when the firing member 25610 is retracted proximally, the cam plate 25625 may glide over the distal surfaces to prevent the locking of the firing member 25610 as the firing member 25610 is moved proximally. In other instances, locking the firing member 25610 as it moves proximally may be desirable.
In some instances, a lockout can be configured to permit movement in one direction but prevent movement in another direction. For example, slight retraction of the firing member 25610 may be desirable when the distal movement of the firing member 25610 has been locked out. When retracted proximally in such instances, the tissue in the area that caused the firing member 25610 to bind up may naturally decompress and, after a defined time period of waiting for the tissue to decompress, the solenoid 25621 may be activated to move the lockout 25620 into its unlocked position (
Various embodiments are disclosed herein which comprise a lockout configured to prevent a firing member from being advanced distally in certain instances. In many instances, the lockout is more than adequate to block the distal advancement of the firing member. In some instances, it may be desirable to have more than one lockout configured to block the distal advancement of the firing member. In such instances, a primary lockout and a secondary lockout can block the distal advancement of the firing member. As described in greater detail below, the secondary lockout can be actuated as a result of the primary lockout being actuated. For example, the primary lockout can block the distal advancement of the firing member because a staple cartridge jaw is missing from the loading unit, the staple cartridge jaw is improperly attached to the loading unit, and/or the staple cartridge jaw has previously been at least partially fired and, when the distal displacement of the firing member is impeded by the primary lockout, the secondary lockout can be actuated to assist the primary lockout in blocking the distal advancement of the firing member.
Turning now to
The lockout 21780 comprises lock arms 21782 pivotably mounted to the proximal firing member 21760 at a pivot 21784. The lock arms 21782 are configured to abut drive surfaces 21768 defined on the proximal end of the firing member 21762 and push the firing member 21762 distally. In at least one instance, the drive surfaces 21768 form a conical surface, for example. The lockout 21780 further comprises a biasing member, or spring, 21785 configured to bias the lockout arms 21782 inwardly toward an unlocked configuration, as illustrated in
Further to the above, the spring 21785 is resiliently stretched when the lock arms 21782 are displaced outwardly. The stiffness of the spring 21785 is selected such that the spring 21785 can hold the lock arms 21782 in their unlocked configuration against the drive surfaces 21768 when the force transmitted from the proximal firing member 21760 to the distal firing member 21762 is below the threshold force yet permit the lock arms 21782 to displace outwardly when the force transmitted from the proximal firing member 21760 to the distal firing member 21762 exceeds the threshold force. The force transmitted between the proximal firing member 21760 and the distal firing member 21762 is below the threshold force when the firing system is firing the staples from a staple cartridge and above the threshold force when the distal firing member 21760 is blocked by a missing cartridge and/or spent cartridge lockout, for example. In such instances, the lockout 21780 is deployed in response to another lockout blocking the advancement of the staple firing system. Stated another way, the lockout 21780 can comprise a secondary lockout which co-operates with a primary lockout to block the advancement of the staple firing system.
In various instances, further to the above, the lockout 21780 can provide overload protection to the staple firing system. For instance, the staple firing system can become jammed during a firing stroke and the lockout 21780 can deploy to stop the staple firing stroke. In such instances, the lockout 21780 can transfer the firing force, or at least a portion of the firing force, to the shaft 21730 instead of the staple cartridge. As a result, the lockout 21780 can prevent the firing system and/or staple cartridge from being damaged, or at least further damaged. In such instances, the lockout 21780 is deployed in response to a condition of the stapling assembly other than a predefined lockout. Referring again to
When the force being transmitted from the proximal firing member 21760 to the distal firing member 21762 drops below the force threshold, the spring 21785 can resiliently return the lock arms 21782 to their unlocked configuration and into engagement with the drive surfaces 21768 of the distal firing member 21762. At such point, the firing stroke can be completed if the condition that caused the second lockout 21780 to actuate has abated. Otherwise, the proximal firing member 21760 can be retracted.
Turning now to
Referring primarily to
Referring primarily to
Referring again to
The threshold force of the lockouts described above can be actuated if the staple firing system is accelerated too quickly. Stated another way, an acceleration spike in a staple firing system can cause a force spike which exceeds a threshold force of the lockout which causes the lockout to stop the staple firing system. Such instances can arise when a firing trigger mechanically coupled to the staple firing system is squeezed too quickly and or a power supply is suddenly applied to an electric motor of the staple firing system, for example. In at least one instance, an acceleration spike can occur when the power applied to the electrical motor is improperly modulated and/or when a software fault has occurred in the motor controller, for example. Such acceleration spikes and force spikes are typically transient and the firing stroke can be completed once the force being transmitted through the staple firing system drops back below the threshold force.
Turning now to
Turning now to
In addition to or in lieu of the above, a stapling assembly can comprise means for regulating the speed of a staple firing system which can, in various instances, reduce or smooth acceleration spikes generated within the staple firing system. Turning now to
Further to the above, the bumper 22081 is positioned within the shaft 22030 such that the ridge 22082 contacts the bumper 22081 just before the firing member 22060 reaches a missing cartridge and/or spent cartridge lockout. In such instances, the dampening system 22080 can reduce the speed of the firing member 22060 before the firing member 22060 reaches a lockout and, as a result, reduce the possibility that the firing member 22060 crashes through, or unintentionally defeats, the lockout.
Turning now to
Turning now to
Further to the above, the diameter and/or length of the vent 22363 can be selected to limit the speed of the firing member 22360 in a desired manner. Moreover, the seals 22382 are sealingly engaged with the shaft 22330 when the firing member 22360 is advanced distally and retracted proximally and, as a result, the piston arrangement 22380 applies a drag force to the firing member 22360 when the firing member 22360 is advanced distally and retracted proximally. In at least one embodiment, a valve, such as a one-way valve, for example, can be positioned and arranged relative to the vent 22363. The valve can provide an orifice having a smaller diameter when the firing member 22360 is being advanced distally and an orifice having a larger diameter when the firing member 22360 is retracted proximally. In such instances, the vent can apply a larger drag force to the firing member 22360 when the firing member 22360 is being advanced distally as compared to when the firing member 22360 is being retracted proximally for a given speed. As a result, the valve can provide different directional speed limits.
Turning now to
In view of the above, the coil 22280, when energized, can act as a brake and, in certain instances, stop, or at least assist in stopping, the longitudinal movement of the firing member 22360 at the end of the staple firing stroke, for example. In certain instances, the voltage polarity applied to the coil 22280 can be reversed to reverse the flow of current through the coil 22280 during the retraction stroke of the firing member 22360. In such instances, the coil 22280 can apply a braking force to the firing member 22360 as the firing member 22360 is retracted away from the coil 22280. Although only one coil 22280 is illustrated in
In at least one embodiment, referring again to
As discussed above, the firing member of a staple firing system can be driven by an electric motor. A motor controller, that may include a processor, and which can be implemented as a microcontroller, can be utilized to control the voltage supplied to the electric motor and, as a result, control the speed of the staple firing member. In certain instances, the motor controller can utilize pulse width modulation (PWM) and/or frequency modulation (FM), for example, to control the speed of the electric motor. In other instances, the motor controller may not modulate the power supplied to the electric motor. In either event, a stapling assembly can comprise a sensor system in communication with the motor controller which is configured to detect whether or not an unspent staple cartridge, or an unspent staple cartridge jaw, has been attached to the stapling assembly. In the event that the sensor system detects that an unspent staple cartridge is attached to the stapling assembly, the motor controller can recognize a signal from the sensor system indicating the presence of an unspent staple cartridge and operate the electric motor of the staple firing system when the user of the stapling assembly actuates the staple firing system. In the event that the sensor system does not detect an unspent staple cartridge attached to the stapling assembly, the motor controller receives a signal from the sensor system indicating that an unspent cartridge is not attached to the stapling assembly and prevents the electric motor from operating the staple firing system. Such an arrangement can comprise an electronic or software lockout.
In addition to or in lieu of the above, a stapling system can comprise a sensor system configured to track the displacement of a staple firing member. Referring to
Further to the above, the sensor system comprises a sensor circuit including, among other things, a voltage source 22403, for example, in communication with the sensors 22401′ and 22401 which supplies power to the sensors 22401′ and 22401. The sensor circuit further comprises a first switch 22405′ in communication with the first sensor 22401′ and a second switch 22405 in communication with the second sensor 22401. In at least one instance, the switches 22401′ and 22401 each comprise a transistor, such as a FET, for example. The outputs of the sensors 22401′, 22401 are connected to the central (gate) terminal of the switches 22405′, 22405, respectively. Prior to the firing stroke of the staple firing member 22460, the output voltages from the sensors 22401′, 22401 are high so that the first switch 22405′ and the second switch 22405 are in closed conditions.
When the magnetic element 22461 passes by the first sensor 22401′, the voltage output of the first sensor 22401′ is sufficient to change the first switch between a closed condition and an open condition. Similarly, the voltage output of the second sensor 22401 is sufficient to change the second switch 22405 between a closed condition and an open condition when the magnetic element 22461 passes by the second sensor 22401. When both of the switches 22405′ and 22405 are in an open condition, a ground potential is applied to an operational amplifier circuit 22406. The operational amplifier circuit 22406 is in signal communication with an input channel of a microcontroller 22490 of the motor controller and, when a ground potential is applied to the operational amplifier circuit 22406, the microcontroller 22490 receives a ground signal from the circuit 22406.
When the microcontroller 22490 receives a ground signal from the circuit 22406, the microcontroller 22490 can determine that the staple firing stroke has been completed and that the staple cartridge positioned in the stapling assembly 22400 has been completely spent. Other embodiments are envisioned in which the sensor system is configured to detect a partial firing stroke of the staple firing member 22460 and supply a signal to the microcontroller 22490 that indicates that the staple cartridge has been at least partially spent. In either event, the motor controller can be configured to prevent the firing member 22460 from performing another firing stroke until the staple cartridge has been replaced with an unspent cartridge. In at least one instance, further to the above, the sensor system comprises a sensor configured to detect whether the spent cartridge has been detached from the stapling assembly and/or whether an unspent cartridge has been assembled to the stapling assembly.
Further to the above, the sensor system can be configured to detect whether the firing member 22460 has been retracted along a retraction path 22462. In at least one instance, the magnetic element 22461 can be detected by the sensor 22401 as the magnetic element 22461 is retracted along the path 22462 and change the second switch 22405 back into a closed condition. Similarly, the magnetic element 22461 can be detected by the sensor 22401′ as the magnetic element 22461 is retracted along the path 22463 and change the first switch 22405′ back into a closed condition. By closing the switches 22405 and 22405′, the voltage polarity from the battery 22403 is applied to the circuit 22406 and, as a result, the microprocessor 22490 receives a Vcc signal from the circuit 22406 on its input channel. In various instances, the motor controller can be configured to prevent the electric motor from being operated to perform another staple firing stroke until the firing member 22460 has been fully retracted.
A stapling assembly 25700 comprising a staple cartridge 25730, a firing member 25760, and a lockout 25780 is illustrated in
Further to the above, the lockout 25780 comprises lock arms 25782. Each lock arm 25782 comprises a cantilever beam including a first end mounted to a shaft of the stapling assembly 25700 and a movable second end configured to engage the firing member 25760. The firing member 25760 comprises lock apertures 25762 defined therein which are configured to receive the second ends of the lock arms 25782. When the sled 25770 is in its proximal, unfired position (
As a result of the above, the lockout 25780 comprises a missing cartridge lockout and a spent cartridge lockout. Alternative embodiments are envisioned in which the staple cartridge 25730 is not removable from the stapling assembly 25700. In such embodiments, the lockout 25780 would comprise a spent cartridge lockout.
Referring to
Referring again to
In various instances, referring again to
As described above, the staple firing stroke of the staple cartridge 25830 opens the lockout circuit. In alternative embodiments, the staple firing stroke of a staple cartridge can close a lockout circuit. In such embodiments, the controller of the stapling assembly can interpret that the closing of the lockout circuit means that the staple cartridge has been at least partially fired and that the staple firing system should not be operated a second, or additional, time without the staple cartridge being replaced with an unspent staple cartridge.
In addition to or in lieu of the above, a stapling assembly can include a detection circuit configured to detect when the distal-most staple driver 25880 and staple have been fired. In at least one such instance, the distal-most staple driver 25880 can have the contact arrangement described above, and/or any other suitable arrangement, which changes the condition of the detection circuit. The controller of the stapling assembly can interpret that the change in condition of the detection circuit means that the staple cartridge has been completely fired and that the staple firing system should be retracted, for instance.
Turning now to
The stapling assembly 25900 further comprises a lockout circuit 25980 configured to detect when the staple cartridge jaw is in its closed position. The lockout circuit 25980 comprises conductors 25984 extending through the shaft 25910 and an electrode pad 25982 positioned in the anvil jaw 25920. The conductors 25984 place the electrode pad 25982 in communication with a controller of the stapling assembly 25900 and, in various instances, the controller can apply a voltage potential across the conductors 25984 to create a monitoring current within the lockout circuit 25980. As described in greater detail below, the controller is configured to evaluate the impedance and/or resistivity of the lockout circuit 25980 and monitor for changes in the impedance and/or resistivity of the lockout circuit 25980 via the monitoring current.
Further to the above, referring primarily to
Referring again to
Alternatively, referring again to
Referring to
Further to the above, the shaft 25910 and the articulation joint 25940 include routing channels defined therein configured to receive the conductors 25984 of the lockout circuit 25980. For instance, the shaft 25910 comprises channels 25915 defined in the outer housing 25911 of the shaft 25910. In at least one such instance, a first conductor 25984 extends through a first channel 25915 and a second conductor 25984 extends through a second channel 25915. Moreover, each anti-buckling plate 25984 comprises a channel 25945 defined therein configured to receive a conductor 25984. The channels 25945 are aligned, or at least substantially aligned, with the channels 25915.
Referring to
In various instances, further to the above, the controller of a stapling assembly can be configured to monitor the pushing force being applied to the firing member 25960. In at least one instance, the staple firing system comprises an electric motor configured to drive the firing member 25960 and, in such instances, the current drawn by the electric motor during the staple firing stroke can be monitored as a proxy for the pushing force being applied to the firing member 25960. In fact, a chart comparing the current drawn by the electric motor over the staple firing stroke may look very similar to the force profile 26260 illustrated in
In various instances, further to the above, a stapling assembly can be configured for use with staple cartridges having different lengths and/or different quantities of staples stored therein. For example, the stapling assembly can be usable with a first staple cartridge configured to apply an approximately 45 mm staple line and a second staple cartridge configured to apply an approximately 60 mm staple line. The first staple cartridge comprises a first quantity of staples removably stored therein and the second staple cartridge comprises a second quantity of staples removably stored therein which is more than the first quantity. When the first staple cartridge is being used with the stapling assembly, the controller is configured to stop the staple firing stroke after the controller identifies a first number of force spikes and, similarly, the controller is configured to stop the staple firing stroke after the controller identifies a second number of force spikes when the second staple cartridge is being used with the stapling assembly. Stated another way, the controller can be configured to evaluate the force profile of the first cartridge, such as force profile 26260, for example, and the force profile of the second cartridge, such as force profile 26260′, for example. Moreover, the controller can be configured to monitor the force profiles of any suitable number of staple cartridges.
Further to the above, the staple cartridges that can be used with a stapling assembly can comprise unique identifiers that can assist the controller of the stapling assembly in identifying the type of staple cartridge that is attached to the stapling assembly. In at least one instance, the staple cartridges have unique RFID tags which can communicate with the controller of the stapling assembly, for example. In certain instances, the staple cartridges have bar codes thereon which can be scanned before they are used with the stapling assembly, for example. Once the controller identifies the type of staple cartridge attached to the stapling assembly, the controller can determine the appropriate length of the staple firing stroke. In at least one instance, information regarding the appropriate firing stroke length for a staple cartridge can be stored in a memory device, for example, in communication with a microprocessor of the controller.
In addition to or in lieu of the above, a staple cartridge, such as the staple cartridge 26230, for example, can be configured to create detectable force spikes in the pushing force and/or current spikes being drawn by the electric motor at the end of the staple firing stroke. Referring to
While various details have been set forth in the foregoing description, it will be appreciated that the various aspects of the mechanisms for compensating for drivetrain failure in powered surgical instruments may be practiced without these specific details. For example, for conciseness and clarity selected aspects have been shown in block diagram form rather than in detail. Some portions of the detailed descriptions provided herein may be presented in terms of instructions that operate on data that is stored in a computer memory. Such descriptions and representations are used by those skilled in the art to describe and convey the substance of their work to others skilled in the art. In general, an algorithm refers to a self-consistent sequence of steps leading to a desired result, where a “step” refers to a manipulation of physical quantities which may, though need not necessarily, take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It is common usage to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise as apparent from the foregoing discussion, it is appreciated that, throughout the foregoing description, discussions using terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
It is worthy to note that any reference to “one aspect” or “an aspect,” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect” or “in an aspect” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
Although various aspects have been described herein, many modifications, variations, substitutions, changes, and equivalents to those aspects may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed aspects. The following claims are intended to cover all such modification and variations.
Some or all of the aspects described herein may generally comprise technologies for mechanisms for compensating for drivetrain failure in powered surgical instruments, or otherwise according to technologies described herein. In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
The foregoing detailed description has set forth various aspects of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one aspect, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. Those skilled in the art will recognize, however, that some aspects of the aspects disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative aspect of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception logic, etc.), etc.).
Many of the surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In various instances, the surgical instrument systems described herein can be motivated by a manually-operated trigger, for example. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. Moreover, any of the end effectors and/or tool assemblies disclosed herein can be utilized with a robotic surgical instrument system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, for example, discloses several examples of a robotic surgical instrument system in greater detail. The entire disclosure of U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535 is incorporated by reference herein.
The entire disclosures of:
European Patent Application No. EP 795298, entitled LINEAR STAPLER WITH IMPROVED FIRING STROKE, which was filed on Mar. 12, 1997;
U.S. Pat. No. 5,605,272, entitled TRIGGER MECHANISM FOR SURGICAL INSTRUMENTS, which issued on Feb. 25, 1997;
U.S. Pat. No. 5,697,543, entitled LINEAR STAPLER WITH IMPROVED FIRING STROKE, which issued on Dec. 16, 1997;
U.S. Patent Application Publication No. 2005/0246881, entitled METHOD FOR MAKING A SURGICAL STAPLER, which published on Nov. 10, 2005;
U.S. Patent Application Publication No. 2007/0208359, entitled METHOD FOR STAPLING TISSUE, which published on Sep. 6, 2007;
U.S. Pat. No. 4,527,724, entitled DISPOSABLE LINEAR SURGICAL STAPLING INSTRUMENT, which issued on Jul. 9, 1985;
U.S. Pat. No. 5,137,198, entitled FAST CLOSURE DEVICE FOR LINEAR SURGICAL STAPLING INSTRUMENT, which issued on Aug. 11, 1992;
U.S. Pat. No. 5,405,073, entitled FLEXIBLE SUPPORT SHAFT ASSEMBLY, which issued on Apr. 11, 1995;
U.S. Pat. No. 8,360,297, entitled SURGICAL CUTTING AND STAPLING INSTRUMENT WITH SELF ADJUSTING ANVIL, which issued on Jan. 29, 2013;
U.S. patent application Ser. No. 14/813,242, entitled SURGICAL INSTRUMENT COMPRISING SYSTEMS FOR ASSURING THE PROPER SEQUENTIAL OPERATION OF THE SURGICAL INSTRUMENT, which was filed on Jul. 30, 2015;
U.S. patent application Ser. No. 14/813,259, entitled SURGICAL INSTRUMENT COMPRISING SEPARATE TISSUE SECURING AND TISSUE CUTTING SYSTEMS, which was filed on Jul. 30, 2015;
U.S. patent application Ser. No. 14/813,266, entitled SURGICAL INSTRUMENT COMPRISING SYSTEMS FOR PERMITTING THE OPTIONAL TRANSECTION OF TISSUE, which was filed on Jul. 30, 2015;
U.S. patent application Ser. No. 14/813,274, entitled SURGICAL INSTRUMENT COMPRISING A SYSTEM FOR BYPASSING AN OPERATIONAL STEP OF THE SURGICAL INSTRUMENT; which was filed on Jul. 30, 2015;
U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995;
U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006;
U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008;
U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS, which issued on Dec. 16, 2008;
U.S. Pat. No. 7,670,334, entitled SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR, which issued on Mar. 2, 2010;
U.S. Pat. No. 7,753,245, entitled SURGICAL STAPLING INSTRUMENTS, which issued on Jul. 13, 2010; U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013;
U.S. patent application Ser. No. 11/343,803, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES; now U.S. Pat. No. 7,845,537;
U.S. patent application Ser. No. 12/031,573, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING RF ELECTRODES, filed Feb. 14, 2008;
U.S. patent application Ser. No. 12/031,873, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, filed Feb. 15, 2008, now U.S. Pat. No. 7,980,443;
U.S. patent application Ser. No. 12/235,782, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, now U.S. Pat. No. 8,210,411;
U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Pat. No. 8,608,045;
U.S. patent application Ser. No. 12/647,100, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY, filed Dec. 24, 2009; now U.S. Pat. No. 8,220,688;
U.S. patent application Ser. No. 12/893,461, entitled STAPLE CARTRIDGE, filed Sep. 29, 2012, now U.S. Pat. No. 8,733,613;
U.S. patent application Ser. No. 13/036,647, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 28, 2011, now U.S. Pat. No. 8,561,870;
U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535;
U.S. patent application Ser. No. 13/524,049, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed on Jun. 15, 2012; now U.S. Pat. No. 9,101,358;
U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Patent Application Publication No. 2014/0263551;
U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Patent Application Publication No. 2014/0263552;
U.S. Patent Application Publication No. 2007/0175955, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM, filed Jan. 31, 2006; and
U.S. Patent Application Publication No. 2010/0264194, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, filed Apr. 22, 2010, now U.S. Pat. No. 8,308,040, are hereby incorporated by reference herein.
The surgical instrument systems described herein have been described in connection with the deployment and deformation of staples; however, the embodiments described herein are not so limited. Various embodiments are envisioned which deploy fasteners other than staples, such as clamps or tacks, for example. Moreover, various embodiments are envisioned which utilize any suitable means for sealing tissue. For instance, an end effector in accordance with various embodiments can comprise electrodes configured to heat and seal the tissue. Also, for instance, an end effector in accordance with certain embodiments can apply vibrational energy to seal the tissue.
All of the above-mentioned U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications, non-patent publications referred to in this specification and/or listed in any Application Data Sheet, or any other disclosure material are incorporated herein by reference, to the extent not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components.
Some aspects may be described using the expression “coupled” and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
In some instances, one or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
While particular aspects of the subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
In certain cases, use of a system or method may occur in a territory even if components are located outside the territory. For example, in a distributed computing context, use of a distributed computing system may occur in a territory even though parts of the system may be located outside of the territory (e.g., relay, server, processor, signal-bearing medium, transmitting computer, receiving computer, etc. located outside the territory).
A sale of a system or method may likewise occur in a territory even if components of the system or method are located and/or used outside the territory. Further, implementation of at least part of a system for performing a method in one territory does not preclude use of the system in another territory.
Although various aspects have been described herein, many modifications, variations, substitutions, changes, and equivalents to those aspects may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed aspects. The following claims are intended to cover all such modification and variations.
Claims
1. A method of compensating for a battery pack failure in a powered surgical instrument, the method comprising:
- generating, by an electric motor, a rotational motion to motivate a firing assembly to deploy staples into a captured tissue during a firing sequence;
- determining, by a control circuit, whether a subset of rechargeable battery cells is damaged during the firing sequence based on a measurement performed by a battery-cell health indicator; and
- stepping-up, by the control circuit coupled to a voltage converter, an output voltage of the battery pack to complete the firing sequence in response to a determination that a subset of the rechargeable battery cells is damaged.
2. The method of claim 1, further comprising storing, by the control circuit coupled to a memory, a damaged status of the power pack in the memory in response to a determination that a subset of the rechargeable battery cells is damaged.
3. The method of claim 2, further comprising clearing, by the control circuit, the damaged status after the damaged subset of the rechargeable battery cells is replaced with undamaged battery cells.
4. The method of claim 1, further comprising deactivating, by the control circuit, the surgical instrument after completion of the firing sequence in response to a determination that a subset of the rechargeable battery cells is damaged.
5. A method of compensating for drivetrain failure in a powered surgical instrument, the method comprising:
- generating, by an electric motor, a mechanical output to motivate a drivetrain to transmit a motion to a jaw assembly of the surgical instrument;
- activating, by a control circuit, a safe mode in response to an acute failure of the drivetrain; and
- activating, by the control circuit, a bailout mode in response to a catastrophic failure of the drivetrain.
6. The method of claim 5, further comprising modulating, by the control circuit, the mechanical output of the electric motor in response to the acute failure.
7. The method of claim 6, wherein modulating the mechanical output of the electric motor comprises slowing the mechanical output.
8. The method of claim 5, further comprising generating, by a power source, a motor input voltage.
9. The method of claim 8, further comprising modulating, by the control circuit, the motor input voltage in response to the acute failure.
10. The method of claim 9, wherein modulating the motor input voltage comprises delivering the motor input voltage in pulses.
11. The method of claim 9, wherein modulating the motor input voltage comprises reducing the motor input voltage.
12. The method of claim 5, further comprising disabling, by the control circuit, the electric motor in response to the catastrophic failure.
13. The method of claim 8, further comprising, employing, by the control circuit, a feedback element to provide bailout instructions in response to the catastrophic failure.
14. A method of compensating for drivetrain failure in a powered surgical instrument, the method comprising:
- driving, by an electric motor, a drivetrain comprising gear components to perform operations of the surgical instrument;
- sensing, by a vibration sensor positioned relative to the drivetrain, vibration information from the drivetrain;
- recording, by a processor coupled to a memory, the vibration information sensed by the vibration sensor;
- generating, by the vibration sensor, an output signal based on the vibration information; and
- determining a status of the surgical instrument based on the output signal.
15. The method of claim 14, further comprising:
- filtering, by a filter, the output signal of the vibration sensor; and
- generating, by the filter, a filtered signal based on the received output signal.
16. The method of apparatus of claim 14, further comprising generating, by the processor, a processed signal based on the filtered signal.
17. The method claim 16, further comprising comparing, by the processor, a predetermined threshold value to a corresponding value of the processed signal.
18. The method of claim 17, further comprising detecting, by the processor, a malfunction of the surgical instrument when the predetermined threshold value is equal to or less than the corresponding value of the processed signal.
19. The method of claim 16, further comprising generating the predetermined threshold value from a test output signal of the vibration sensor or a previously processed signal.
20. The method of claim 19, further comprising:
- sensing, by the vibration sensor, test vibration information during a testing procedure of the surgical instrument; and
- recording, by the memory, a test output signal based on the test vibration information sensed by the vibration sensor.
Type: Application
Filed: Apr 18, 2016
Publication Date: Oct 19, 2017
Inventors: Frederick E. Shelton, IV (Hillsboro, OH), Mark D. Overmyer (Cincinnati, OH), David C. Yates (Cincinnati, OH), Jason L. Harris (Lebanon, OH)
Application Number: 15/131,963