AGRICULTURAL IMPLEMENT AND RAMP ATTACHMENT SYSTEM
An agricultural implement for mounting on a U-shaped foundation frame supported on wheels for travel over a ground surface where the foundation frame includes first and second laterally spaced mounting beams fixed to and extending from a base. The implement is configured to perform an agricultural operation, to rest on the ground surface when in an idle position, and to attach to the foundation frame when in an operating position. The implement comprises a rigid implement portion configured to be attached to the first and second mounting beams at first and second beam locations remote from the base such that the first and second mounting beams are prevented from moving laterally with respect to each other.
This application claims priority to CA Patent Application No. 2,927,582 filed Apr. 19, 2016 and CA Patent Application No. 2,955,638 filed Jan. 23, 2017, the entire contents of each of which are hereby incorporated by reference.
This disclosure relates to the field of agricultural implements and in particular an implement configured to perform a wide variety of agricultural operations and to be attached to a foundation frame supported on wheels.
BACKGROUNDImplements such as are used in agriculture and various industries such as road construction and maintenance include a wide variety of sizes and configurations. Implements such as combines, swathers, sprayers, road graders, earth movers, and the like are commonly self-propelled, with the engine, drive system, and operators station incorporated into the implement itself. Implements such as air seeders, cultivators, discs, grain carts, mowers, and the like are more commonly towed behind a tractor. Some implements are configured to be mounted directly on a tractor instead of being towed behind, such as snowplows mounted on the front end of a tractor, mowers mounted under a middle portion of the tractor, and a wide variety of implements mounted to the arms of a three point hitch system commonly incorporated on the rear end of tractors.
Canadian Patent Application Number 2,921,130 of the present inventor Beaujot discloses an implement operating apparatus comprising a drive frame supported on drive wheels for travel on a ground surface. A motor is mounted on the drive frame and rotates the drive wheels as well as providing power for controls and various implements that are attached to the drive frame. The drive frame includes a base beam and right and left substantially parallel side mounting beams extending from corresponding right and left ends of the base beam.
SUMMARY OF THE INVENTIONThe present disclosure provides an agricultural implement apparatus that overcomes problems in the prior art.
In a first embodiment the present disclosure provides an agricultural implement for mounting on a U-shaped foundation frame supported on wheels for travel over a ground surface where the foundation frame includes first and second laterally spaced mounting beams fixed to and extending from a base. The implement is configured to perform an agricultural operation, to rest on the ground surface when in an idle position, and to attach to the foundation frame when in an operating position. The implement comprises a rigid implement portion configured to be attached to the first and second mounting beams at first and second beam locations remote from the base such that the first and second mounting beams are prevented from moving laterally with respect to each other.
In a second embodiment the present disclosure provides an agricultural implement apparatus for mounting on a U-shaped foundation frame supported on wheels for travel over a ground surface where the foundation frame includes a base beam and first and second substantially parallel and laterally spaced mounting beams fixed to and extending in a like direction from corresponding first and second ends of the base beam. The apparatus comprises an operating implement configured to perform an agricultural operation and including a rigid structural member. A support assembly is configured to support the operating implement in an idle position on the ground surface. The rigid structural member is configured to be attached to the first and second side beams at corresponding first and second beam locations remote from the base beam such that the first and second mounting beams are substantially prevented from moving laterally with respect to each other.
In a third embodiment the present disclosure provides an implement operating system comprising a foundation frame; a plurality of wheels supporting the foundation frame for travel on a ground surface; an implement configured to rest on the ground surface when in an idle position; a ramp member attached to one of the foundation frame and the implement, the ramp member including an upward sloping bearing surface; and a support member attached to the other of the foundation frame and the implement. The implement and the foundation frame are configured such that when the foundation frame is maneuvered to an implement loading position with respect to the implement in the idle position, the implement is connectable to the foundation frame and movable to an operating position supported by the foundation frame where the selected implement is connectable to an implement control system operative to control implement functions, and where the steering and drive controls are operative to move and steer the foundation frame and selected implement along the travel path. When the foundation frame is in the implement loading position the support member is aligned with the ramp member and the implement is moved to the operating position by moving the foundation frame and implement toward each other such that the support member bears against the bearing surface of the ramp member and exerts an upward force on the implement and as the foundation frame and implement move toward each other the support member moves along the bearing surface of the ramp member such that the implement moves upward to the operating position.
In a fourth embodiment the present disclosure provides a system for loading granular material into a fill opening of a bin. The system comprises a conveyor mounted on wheels for movement along a ground surface, the conveyor including an upper conveyor discharge and a lower conveyor intake. A conveyor control system is operative to move and steer the conveyor and to selectively raise and lower the conveyor intake and the conveyor discharge. A location system is connected to the conveyor control system and operative to guide the conveyor to a bin loading position where the conveyor discharge is oriented to discharge into the bin fill opening and the conveyor intake is oriented to receive granular material from an incoming transport vehicle.
The disclosed implement apparatus provides structural rigidity to a foundation frame which includes mounting beams extending from a base to form a U-shape enclosing an open implement area. With no connection between the first and second mounting beams except at the base beam, there is a clear space between the mounting beams which facilitates loading of implements that extend above the mounting beams however since the mounting beams are connected to each other only at their ends fixed to the base beam, forces exerted on the opposite outer ends thereof can put severe stresses on the connection to the base beam. Attaching the rigid structural member to outer portions of the mounting beams prevents lateral movement of one beam with respect to the such that lateral forces on the outer end of one beam are resisted by both beams.
The present disclosure further provides an agricultural implement comprising corresponding beam and implement attachment mechanisms which provides a secure mounting of the implement to the foundation frame, as well as providing a rigid implement connected to each beam such that lateral movement of one mounting beam with respect to the other is prevented. The implement also provides a simple and effective implement moving mechanism to raise the implement from the idle position supported on the ground to the operating position supported on the foundation frame.
A system is also provided to move and guide a conveyor to a bin loading position where the conveyor discharge is oriented to discharge into the bin fill opening and the conveyor intake is oriented to receive granular material from an incoming transport vehicle.
While the invention is claimed in the concluding portions hereof, preferred embodiments are provided in the accompanying detailed description which may be best understood in conjunction with the accompanying diagrams where like parts in each of the several diagrams are labeled with like numbers, and where:
The apparatus 1 includes first and second beam attachment mechanisms 13A, 13B adapted to be mounted on the corresponding first and second mounting beams 9A, 9B at beam locations remote from the base beam 11. The various beam attachment mechanisms 13 described can be attached to the beams 9 by welding or with plates and bolts and the like suitably configured.
The apparatus 1 includes an operating implement 15 configured to perform an agricultural operation. The illustrated implement 15 is a grain tank configured to receive and dispense granular material such as harvested crops, and when mounted on the foundation frame 3, to transport the granular material.
In the illustrated apparatus 1 the first and second mounting beams 9A, 9B are laterally spaced and substantially parallel and extend in a like direction from corresponding first and second ends 11A, 11B of the base beam 11. The apparatus 1 includes a rigid implement portion that is configured to be attached to the mounting beams 9 by the beam attachment mechanisms 13 such that the first and second mounting beams 9A, 9B are prevented from moving laterally with respect to each other.
In the illustrated apparatus 1 the rigid implement portion is provided by a rigid structural member 17, here the frame forming part of the operating implement 15, that is configured to be attached to the first and second beam attachment mechanisms 13A, 13B mounted on the corresponding first and second mounting beams 9A, 9B at fixed beam locations remote from the base beam 11 such that the mounting beams 9 are substantially locked in a position that is fixed with respect to each other and with respect to the rigid structural member 17. In the illustrated apparatus 1 first and second implement attachment mechanisms 19A, 19B are mounted on the rigid structural member 19 at locations corresponding to the beam locations where the first and second beam attachment mechanisms 13, 13B have been attached.
When the foundation frame 3 is in the loading position with respect to the implement 15 as schematically illustrated in
The apparatus 1 includes a support assembly, illustrated as hydraulic jacks 21 configured to support the operating implement 15 in an idle position on the ground surface 7 as shown in
In the illustrated apparatus 1 the jack handles 23 are manipulated to move the implement 15 downward such that the first implement attachment mechanism 19A bears against the first beam attachment mechanism 13a and the second implement attachment mechanism 19B bears against the second beam attachment mechanism 13B as shown in
It is contemplated as well that in some configurations of the implement, the implement moving mechanism will move the implement upward so that the first implement attachment mechanism bears upward against the first beam attachment mechanism and the second implement attachment mechanism bears upward against the second beam attachment mechanism, and the two are connected together.
In the illustrated apparatus 1 the beam attachment mechanisms 13 and the implement attachment mechanisms 19 can be conveniently provided by cooperating latch mechanisms 25 as schematically illustrated in
Correct alignment of the rigid structural member 17, and thus the implement 15, with the foundation frame 3 is facilitated since the conical projection 27A can enter an edge of the conical recess 27B and will be forced into alignment as the conical projection 27A moves fully into the conical recess 27B.
Further a lock recess 31 can be provided in the conical projection 27A configured to receive a lock member 33 that is biased by a spring 35 or the like when the conical projection 27A and recess 27B are fully engaged. A latch release 29 is mounted on the open side of the rigid structural member 17.
The illustrated latch members 25 prevent lateral movement of one beam 9 with respect to the other however up and down movement of one mounting beam 9 with respect to the other is not significantly reduced.
The implement apparatus 1 can be configured to perform a variety of agricultural operations.
The disclosed implement apparatus 1 adds structural rigidity to a foundation frame which includes mounting beams 9 extending from a base, such as a base beam 11. With no connection between the first and second mounting beams 9A, 9B except at the base beam 11, there is a clear space between the mounting beams 9 which facilitates loading of implements that extend above the mounting beams 9, such as the grain tank 15 however since the mounting beams 9 are connected to each other only at their ends fixed to the base beam 11 forces exerted on the opposite outer ends thereof can put severe stresses on the connection to the base beam 11. By attaching the rigid structural member 17 to outer portions of the mounting beams 9, lateral movement of one beam with respect to the other is prevented and so lateral forces on the outer end of one beam 9 are resisted by both beams 9A. 9B.
It is contemplated that in the operations contemplated up and down movement of one mounting beam 9 with respect to the other will not subject the connection of the mounting beams 9 to the base beam to excessive forces.
The raising system further comprises first and second support members 79A, 79B attached to sides of the implement 67 and are configured to move up the sloping inclined portions 77 of the corresponding first and second ramp members 69A, 69B as the implement 67 moves toward the operating position. When the implement 67 is moved all the way to the operating position of
The illustrated support members 79 each comprise a support wheel 81 configured to roll along the corresponding ramp member 69, and a support surface 83 adjacent to and above a bottom edge of the support wheel 81 as schematically illustrated in
An extendable connection actuator 85 is attached to the foundation frame 3 and is releasably attachable to the implement 67 by a pin 87 engaging a hook 89 on the implement 67. As the actuator 85 extends the pin 87 rides over the top of the hook 89 and then falls down behind the hook 89. Retracting the actuator 85, typically a hydraulic cylinder, then pulls the implement 67 toward the foundation frame 3 such that the support members 79 move up the ramp members 69 and the implement 67 moves to the operating position. Extending the actuator 85 will push the support members 79 away from the foundation frame 3 such that the support wheels 81 again roll up onto the ramp members 69 and down to move the implement 67 to the idle position. The actuator 85 can also be configured as a constantly pressurized hydraulic cylinder so that same exerts a substantially constant force on the hook 89 in the retracting direction R to keep the implement 67 in the operating position.
The implement 67 is supported in the idle position by legs 91. In the operating position the legs 91 are sufficiently far above the ground 7 that they will not interfere with implement operations. Further ramp members 69 can be attached to the foundation frame 3 at convenient locations, each with a corresponding support member 79 mounted on the implement 67. In the illustrated foundation frame 3, third and fourth ramp members 69C, 69D are attached to the base beam 11, and wherein the implement 67 comprises a corresponding third and fourth support members 79C, 79D configured to move up the inclined portion of the ramp members 69C, 69D as the implement 67 moves toward the operating position.
Thus it can be seen that a plurality of ramp members 69, 69′ and a corresponding number of support members 79, 79′ can be mounted on either or both of the foundation frame 3, 3′ and implement 67, 67′ as required by the configuration of various implements. To facilitate proper alignment of the implement and foundation frame,
Thus the system 201 utilizes a combination of the ramp members 69 shown in
Further to facilitate alignment,
A system for loading granular material into a fill opening of a bin 82 is schematically illustrated in
The illustrated location system is further operative to guide the conveyor 78 to a bin unloading position illustrated in
The location system can comprise a global positioning satellite receiver 70 mounted on the conveyor 78 and operative to determine a conveyor discharge location of the conveyor discharge 78A and a conveyor intake location of the conveyor intake 78B, and wherein a bin fill location of the bin fill opening 84 and a bin discharge location of the bin discharge opening 86 are programmed into the location system.
Alternatively as schematically illustrated in
The foregoing is considered as illustrative only of the principles of the invention. Further, since numerous changes and modifications will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all such suitable changes or modifications in structure or operation which may be resorted to are intended to fall within the scope of the claimed invention.
Claims
1. An agricultural implement for mounting on a U-shaped foundation frame supported on wheels for travel over a ground surface where the foundation frame includes first and second laterally spaced mounting beams fixed to and extending from a base, wherein the implement is configured to perform an agricultural operation, to rest on the ground surface when in an idle position, and to attach to the foundation frame when in an operating position, and wherein the implement comprises a rigid implement portion configured to be attached to the first and second mounting beams at first and second beam locations remote from the base such that the first and second mounting beams are prevented from moving laterally with respect to each other.
2. The implement of claim 1 comprising first and second beam attachment mechanisms adapted to be mounted to the corresponding first and second mounting beams at the corresponding first and second beam locations, and first and second implement attachment mechanisms mounted on the rigid implement portion at locations corresponding to the first and second beam attachment mechanisms.
3. The implement of claim 2 comprising an implement support assembly configured to support the implement on the ground surface when in the idle position, and wherein the implement support assembly comprises an implement moving mechanism operative, when the foundation frame is in a loading position, to move the implement vertically such that the first implement attachment mechanism bears against the first beam attachment mechanism and the second implement attachment mechanism bears against the second beam attachment mechanism, and such that a weight of the implement is transferred from the ground surface to the foundation frame.
4. The implement of claim 3 wherein the beam attachment mechanisms and the implement attachment mechanisms comprise plates defining mounting holes, and wherein the implement is attached to the first and second mounting beams by bolts through the holes in the plates.
5. The implement of claim 3 wherein the beam attachment mechanisms and the implement attachment mechanisms comprise cooperating latch mechanisms and wherein the rigid implement portion is attached to the first and second mounting beams when the first implement attachment mechanism bears against the first beam attachment mechanism to engage a first latch mechanism and the second implement attachment mechanism bears against the second beam attachment mechanism to engage a second latch mechanism.
6. The implement of claim 3 wherein the implement moving mechanism moves the implement downward so that the first implement attachment mechanism bears downward against the first beam attachment mechanism and the second implement attachment mechanism bears downward against the second beam attachment mechanism.
7. The implement of claim 6 wherein implement moving mechanism is operative to raise the support assembly off the ground surface when the weight of the implement is wholly transferred from the ground surface to the foundation frame.
8. The implement of claim 3 configured such that when the foundation frame is in the loading position at least a portion of the implement is between and above the first and second mounting beams.
9. The implement of claim 1 wherein the agricultural operation the implement configured to perform is one of seeding a crop, cultivating a field surface, spraying liquid chemicals on a crop, and transporting harvested crop.
10. An agricultural implement apparatus for mounting on a U-shaped foundation frame supported on wheels for travel over a ground surface where the foundation frame includes a base beam and first and second substantially parallel and laterally spaced mounting beams fixed to and extending in a like direction from corresponding first and second ends of the base beam, the apparatus comprising:
- an operating implement configured to perform an agricultural operation and including a rigid structural member;
- a support assembly configured to support the operating implement in an idle position on the ground surface;
- wherein the rigid structural member is configured to be attached to the first and second side beams at corresponding first and second beam locations remote from the base beam such that the first and second mounting beams are substantially prevented from moving laterally with respect to each other.
11. The apparatus of claim 10 comprising first and second beam attachment mechanisms adapted to be mounted on the corresponding first and second mounting beams at fixed beam locations and first and second implement attachment mechanisms mounted on the rigid structural member at locations corresponding to the first and second beam attachment mechanisms.
12. The apparatus of claim 11 comprising an implement moving mechanism operative, when the foundation frame is in a loading position, to move the implement vertically from the idle position such that the first implement attachment mechanism bears against the first beam attachment mechanism and the second implement attachment mechanism bears against the second beam attachment mechanism and such that a weight of the implement is transferred from the ground surface to the foundation frame.
13. The apparatus of claim 12 wherein the beam attachment mechanisms and the implement attachment mechanisms comprise plates defining mounting holes, and wherein the implement is attached to the first and second mounting beams by bolts through the holes in the plates.
14. The apparatus of claim 12 wherein the beam attachment mechanisms and the implement attachment mechanisms comprise cooperating latch mechanisms and wherein the implement is attached to the first and second mounting beams when the first implement attachment mechanism bears against the first beam attachment mechanism to engage a first latch mechanism and the second implement attachment mechanism bears against the second beam attachment mechanism to engage a second latch mechanism.
15. The apparatus of claim 12 wherein the implement moving mechanism moves the implement downward so that the first implement attachment mechanism bears downward against the first beam attachment mechanism and the second implement attachment mechanism bears downward against the second beam attachment mechanism.
16. The apparatus of claim 15 wherein the implement moving mechanism is operative to raise the support assembly off the ground surface when the weight of the implement is wholly transferred from the ground surface to the foundation frame.
17. The apparatus of claim 10 configured such that when the foundation frame is in the loading position at least a portion of the implement is between and above the first and second mounting beams.
18. The apparatus of claim 10 wherein the agricultural operation the implement is configured to perform is one of seeding a crop, cultivating a field surface, spraying liquid chemicals on a crop, and transporting harvested crop material.
19. An implement operating system comprising:
- a foundation frame;
- a plurality of wheels supporting the foundation frame for travel on a ground surface;
- an implement configured to rest on the ground surface when in an idle position;
- a ramp member attached to one of the foundation frame and the implement, the ramp member including an upward sloping bearing surface;
- a support member attached to the other of the foundation frame and the implement;
- wherein the implement and the foundation frame are configured such that when the foundation frame is maneuvered to an implement loading position with respect to the implement in the idle position, the implement is connectable to the foundation frame and movable to an operating position supported by the foundation frame where the selected implement is connectable to an implement control system operative to control implement functions, and where the steering and drive controls are operative to move and steer the foundation frame and selected implement along the travel path;
- wherein when the foundation frame is in the implement loading position the support member is aligned with the ramp member and the implement is moved to the operating position by moving the foundation frame and implement toward each other such that the support member bears against the bearing surface of the ramp member and exerts an upward force on the implement and as the foundation frame and implement move toward each other the support member moves along the bearing surface of the ramp member such that the implement moves upward to the operating position.
20. The system of claim 19 wherein:
- the ramp member is attached to the implement and comprises a substantially horizontal flat portion extending from an implement end thereof to a midpoint thereof, and an inclined portion sloping upward from the midpoint, and wherein a bottom surface of the sloping inclined portion provides the bearing surface of the ramp member;
- the support member is attached to the foundation frame; and
- the support member bears against the bottom surface of the inclined portion of the ramp member.
21. The system of claim 20 comprising:
- first and second support members attached to corresponding first and second sides of the foundation frame;
- corresponding first and second parallel ramp members attached to the implement;
- wherein when the foundation frame is in the implement loading position with respect to the implement, the inclined portion of each ramp member slopes upward toward the foundation frame;
- wherein as the foundation frame and implement move toward each other the first and second support members bear against the bottom surfaces of the inclined portions of the corresponding first and second ramp members as the implement moves toward the operating position.
22. The system of claim 21 wherein:
- the ramp member is attached to the foundation frame and comprises a substantially horizontal flat portion extending from a frame end thereof to a midpoint thereof, and an inclined portion sloping downward from the midpoint, and wherein a top surface of the sloping inclined portion provides the bearing surface of the ramp member;
- the support member is attached to the implement; and
- the support member bears against a top surface of the inclined portion of the ramp member.
23. The system of claim 22 comprising:
- first and second parallel ramp members attached to corresponding first and second sides of the foundation frame;
- corresponding first and second support members attached to the implement;
- wherein when the foundation frame is in the implement loading position with respect to the implement, the inclined portion of each ramp member slopes downward toward the implement;
- wherein as the foundation frame and implement move toward each other the first and second support members bear against the top surfaces of the inclined portions of the corresponding first and second ramp members as the implement moves toward the operating position.
24. The system of claim 22 comprising a third ramp member attached to the foundation frame parallel to the first and second ramp members, and a corresponding third support member attached to the implement and configured to bear against the top surface of the inclined portion of the third ramp member as the implement moves toward the operating position.
25. The system of claim 20 wherein each support member comprises a support wheel configured to bear against and roll along the bearing surface of the corresponding ramp member, and a support surface adjacent to the support wheel configured such that as the support wheel rolls along the bearing surface of the corresponding ramp member the support surface is removed from the corresponding ramp member.
26. The system of claim 25 wherein as the implement moves into the operating position, each support wheel rolls onto the flat portion of the corresponding ramp member and when the implement is in the operating position, each support wheel is beyond the flat portion of the corresponding ramp member, and each support surface bears against the flat portion of the corresponding ramp member to support the implement in the operating position.
27. The system of claim 19 comprising an extendable connection actuator attached to the foundation frame and releasably attachable to the selected implement and operative to exert a force on the foundation frame and selected implement to move the selected implement to the operating position.
28. The system of claim 19 comprising a circular guide aperture defined in one of the foundation frame and the selected implement, and a conical guide member extending from the other of the foundation frame and the selected implement, wherein the guide member and the guide aperture are configured such that as the selected implement moves toward the operating position, the guide member enters the guide aperture, and when the selected implement is in the operating position the guide member substantially fills the guide aperture.
29. A system for loading granular material into a fill opening of a bin, the system comprising:
- a conveyor mounted on wheels for movement along a ground surface, the conveyor including an upper conveyor discharge and a lower conveyor intake;
- a conveyor control system operative to move and steer the conveyor and to selectively raise and lower the conveyor intake and the conveyor discharge;
- a location system connected to the conveyor control system and operative to guide the conveyor to a bin loading position where the conveyor discharge is oriented to discharge into the bin fill opening and the conveyor intake is oriented to receive granular material from an incoming transport vehicle.
30. The system of claim 29 wherein the location system is further operative to guide the conveyor to a bin unloading position where the conveyor intake is oriented to receive granular material from a bin discharge opening and the conveyor discharge is oriented to discharge granular material into an outgoing transport vehicle.
31. The system of claim 30 wherein the location system comprises a global positioning satellite receiver mounted on the conveyor and operative to determine a conveyor discharge location of the conveyor discharge and a conveyor intake location of the conveyor intake, and wherein a bin fill location of the bin fill opening and a bin discharge location of the bin discharge opening are programmed into the location system.
32. The system of claim 31 wherein bin fill and discharge locations of a plurality of bins are programmed into the location system and the location system is operative to guide the conveyor to the bin loading and unloading positions with respect to each bin.
33. The system of claim 30 wherein the location system comprises a bin fill homing device mounted adjacent to the bin fill opening and a bin discharge homing device mounted adjacent to the bin discharge opening, and a conveyor discharge homing device mounted adjacent to the conveyor discharge and a conveyor intake homing device mounted adjacent to the conveyor intake.
Type: Application
Filed: Apr 18, 2017
Publication Date: Oct 19, 2017
Inventor: Norbert BEAUJOT (Saskatchewan)
Application Number: 15/490,027