LOCATION BASED SERVICES IN A DISTRIBUTED COMMUNICATION SYSTEM, AND RELATED COMPONENTS AND METHODS
Distributed communication systems provide location information to mobile terminals that may not be able to receive otherwise global positioning system (GPS) information from GPS satellites. Providing location information to clients inside a building or other location may make location based services, such as emergency (E911) services, possible based on the location information. The distributed communications system may be provided location information about its components through a number of techniques. Once the distributed communications system has the location information, such location information may be passed to clients.
This application is a continuation of U.S. application Ser. No. 13/866,685 filed on Apr. 19, 2013, which claims the benefit of priority to U.S. Provisional Application No. 61/637,458, filed on Apr. 24, 2012, the contents of which are relied upon and incorporated herein by reference in their entireties.
BACKGROUND Field of the DisclosureThe technology of the disclosure relates to ways to facilitate the provision of location based information to wireless client devices in a distributed communication system.
Technical BackgroundWireless communication is rapidly growing, with increasing demands for high-speed mobile data communication. So-called “wireless fidelity” or “WiFi” systems and wireless local area networks (WLANs) are being deployed in many different types of areas (e.g., coffee shops, airports, libraries, etc.). Distributed communications or antenna systems communicate with wireless devices called “clients,” “client devices,” or “wireless client devices,” which must reside within the wireless range or “cell coverage area” to communicate with an access point device. Distributed antenna systems are particularly useful when deployed inside buildings or other indoor environments where client devices may not otherwise be able to receive radio frequency (RF) signals from a source.
One approach to deploying a distributed communications system involves the use of RF antenna coverage areas, or “antenna coverage areas.” Antenna coverage areas can have a relatively short range from a few meters up to twenty meters. Combining a number of access point devices creates an array of antenna coverage areas. Because the antenna coverage areas each cover small areas, there are typically only a few users per antenna coverage area. This minimizes the amount of bandwidth shared among users.
One type of distributed communications system for creating antenna coverage areas, called “Radio-over-Fiber” or “RoF,” utilizes RF signals sent over optical fibers. Such systems can include a head-end station optically coupled to multiple remote antenna units that each provide antenna coverage areas. The remote antenna units each include RF transceivers coupled to an antenna to transmit RF signals wirelessly, wherein the remote antenna units are coupled to the head-end station via optical fiber links. The RF transceivers in the remote antenna units are transparent to the RF signals, and convert incoming optical RF signals from the optical fiber link to electrical RF signals via optical-to-electrical (O/E) converters, which are then passed to the RF transceiver. The transceiver converts the electrical RF signals to electromagnetic signals via antennas coupled to the RF transceiver provided in the remote antenna units. The antennas also receive electromagnetic signals from clients in the antenna coverage area and convert them to electrical RF signals (i.e., electrical RF signals in wire). The remote antenna units then convert the electrical RF signals via electrical-to-optical (E/O) converters. The optical RF signals are then sent to the head-end station via the optical fiber link.
It may be desired to provide such optical fiber-based distributed communications systems indoors, such as inside a building or other facility, to provide indoor wireless communication for clients. Other services may be negatively affected or not possible due to the indoor environment. For example, it may be desired or required to provide localization services for a client, such as emergency 911 (E911) services as an example. If the client is located indoors, techniques such as global positioning services (GPS) may not be effective at providing or determining the location of the client. Further, triangulation and/or trilateration techniques from the outside network may not be able to determine the location of the client.
SUMMARY OF THE DETAILED DESCRIPTIONEmbodiments disclosed herein include location services for distributed communication systems. Related components, systems, and methods are also disclosed herein. For example, the systems disclosed herein can provide location information to mobile terminals that may not otherwise be able to receive global positioning system (GPS) information from the GPS satellites, such as when the mobile terminal does not receive GPS signals from the GPS satellites. Providing location information to clients inside a building or other location may make location based services, such as emergency (E911) services, possible based on the location information. The distributed communications system may be provided location information about its components through a number of techniques. The distributed communications system may then pass that information to clients.
In this regard, in one embodiment, a distributed communications apparatus comprises at least one downlink input configured to receive downlink communications signals and at least one interface configured to receive and provide the downlink communications signals to a remote unit using a first protocol. The remote unit is configured to provide location indicia using a second protocol to a client device within an antenna coverage area associated with the remote unit, wherein the second protocol is selected from the group consisting of radio-frequency identification (RFID), BLUETOOTH, Zigbee, and Dash7. Note that the RFID technology may incorporate near field communication (NFC) technology.
In another embodiment, a method for providing location information to a client comprises at at least one downlink input, receiving downlink communications signals; at at least one interface, receiving and providing the downlink communications signals to a remote unit using a first protocol; and at the remote unit, providing location indicia using a second protocol to a client device within an antenna coverage area associated with the remote unit, wherein the second protocol is selected from the group consisting of RFID, BLUETOOTH, Zigbee, and Dash7.
In another embodiment, a distributed communications apparatus comprises at least one downlink input configured to receive downlink communications signals and at least one interface configured to receive and provide the downlink communications signals to a remote unit. The remote unit is configured to communicate with one or more client devices and provide location information indicating a current location of the client device. The apparatus further comprises a control system configured to receive data relating to location information relating to a location of the remote unit, wherein the location data is derived from the group consisting of: a building plan, an RF survey, and a walk through interaction.
In another embodiment, a method for providing location information comprises providing a central unit and one or more remote units in the distributed communications apparatus; providing a control system in the distributed communications apparatus; and receiving data relating to location information relating to a location of the one or more remote units, wherein the location data is derived from the group consisting of: a building plan, an RF survey, and a walk through interaction.
In another embodiment, a computer-readable medium comprising software with instructions is provided. The instructions allow the computing device to: receive location information relating to a distributed communications apparatus, wherein the location information is derived is derived from the group consisting of: a building plan, an RF survey, and a walk through interaction; assign locations to components within the distributed communications apparatus based on the location information; and provide the location information to a client device through a remote unit within the distributed communications apparatus.
In another embodiment, a distributed communications apparatus comprises at least one downlink input configured to receive downlink communications signals and at least one interface configured to receive and provide the downlink communications signals to a remote unit. The remote unit is configured to communicate with one or more client devices and receive from the client devices location information indicating a current location of the client device; and a control system is configured to use the location information from the client devices and calculate a location of the remote unit.
In another embodiment, a method for providing location information to a distributed communications apparatus comprises providing a central unit and one or more remote units in the distributed communications apparatus; providing a control system in the distributed communications apparatus; receiving location data from one or more client devices; and calculating a location for one or more components of the distributed communications apparatus based at least in part on the location data from the one or more client devices.
In another embodiment, a client device for assisting in calculating location information for a distributed communications apparatus is provided. The client device comprises a user interface through which the user may interact with a control system of the client device to perform computing operations; a location determination service configured to provide location information to the control system; and the control system operatively coupled to the user interface. The control system is configured to communicate with the distributed communications apparatus and provide the location information from the client device to the distributed communications apparatus.
In another embodiment, a computer-readable medium comprising software with instructions is provided. The instructions allow a computing device to receive location data from one or more client devices; calculate a location for one or more components of the distributed communications apparatus based at least in part on the location data from the one or more client devices; and store the location information in a database associated with the distributed communications apparatus.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be apparent from that description or recognized by practicing the embodiments as described herein.
The foregoing description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.
Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.
Embodiments disclosed herein include location services for distributed communication systems. Related components, systems, and methods are also disclosed herein. For example, the systems disclosed herein can provide location information to mobile terminals that may not be able to receive otherwise global positioning system (GPS) information from the GPS satellites, such as, for example, when the mobile terminal does not receive GPS signals from the GPS satellites. Providing location information to clients inside a building or other location may make location based services, such as emergency (E911) services, for example, possible based on the location information. The distributed communications system may be provided location information about its components through a number of techniques. Once the distributed communications system has the location information, such location information may be passed to clients.
Before discussing the exemplary components, systems, and methods of providing localization services in a distributed communications system, which starts at
In this regard,
With continuing reference to
To communicate the electrical RF signals over the downlink optical fiber 16D to the RAU 14, to in turn be communicated to the client device 24 in the antenna coverage area 20 formed by the RAU 14, the HEU 12 includes an electrical-to-optical (E/O) converter 28. The E/O converter 28 converts the downlink electrical RF signals 18D to downlink optical RF signals 22D to be communicated over the downlink optical fiber 16D. The RAU 14 includes an optical-to-electrical (O/E) converter 30 to convert received downlink optical RF signals 22D back to electrical signals to be communicated wirelessly through an antenna 32 of the RAU 14 to client devices 24 located in the antenna coverage area 20.
The antenna 32 is also configured to receive wireless RF communications from client devices 24 in the antenna coverage area 20. In this regard, the antenna 32 receives wireless RF communications from client devices 24 and communicates electrical RF signals representing the wireless RF communications to an E/O converter 34 in the RAU 14. The E/O converter 34 converts the electrical RF signals into uplink optical RF signals 22U to be communicated over the uplink optical fiber 16U. An 0/E converter 36 provided in the HEU 12 converts the uplink optical RF signals 22U into uplink electrical RF signals, which can then be communicated as uplink electrical RF signals 18U back to a network or other source. The client device 24 could be in range of any antenna coverage area 20 formed by a RAU 14.
With reference to
With continuing reference to
To provide further exemplary illustration of how an optical fiber-based distributed communications system can be deployed indoors,
The building infrastructure 60 includes a first (ground) floor 62, a second floor 64, and a third floor 66. The floors 62, 64, 66 are serviced by the HEU 12 through a main distribution frame 68, to provide antenna coverage areas 70 in the building infrastructure 60. Only the ceilings of the floors 62, 64, 66 are shown in
The main cable 72 enables multiple optical fiber cables 76 to be distributed throughout the building infrastructure 60 (e.g., fixed to the ceilings or other support surfaces of each floor 62, 64, 66) to provide the antenna coverage areas 70 for the first, second, and third floors 62, 64, and 66. In an example embodiment, the HEU 12 is located within the building infrastructure 60 (e.g., in a closet or control room), while in another embodiment the HEU 12 may be located outside of the building infrastructure 60 at a remote location. A base transceiver station (BTS) 78, which may be provided by a second party such as a cellular service provider, is connected to the HEU 12, and can be co-located or located remotely from the HEU 12. A BTS is any station or source that provides an input signal to the HEU 12 and can receive a return signal from the HEU 12. In a typical cellular system, for example, a plurality of BTSs is deployed at a plurality of remote locations to provide wireless telephone coverage. Each BTS serves a corresponding cell and when a mobile terminal enters the cell, the BTS communicates with the mobile terminal. Each BTS can include at least one radio transceiver for enabling communication with one or more subscriber units operating within the associated cell.
In an exemplary embodiment, the present disclosure allows elements within a distributed communications system 10 to provide location information to the client device 24. Equipped with such location information, the client device 24 can provide that location information when securing E911 services or when other applications on the client device 24 need such location information.
For E911 and most other location based services, the client device 24 provides its location information to the provider of the location based services. As noted above, one of the issues associated with providing location information is ascertaining the location of the client device 24. This issue is exacerbated when the client device 24 is indoors because satellite signals suffer from absorption in building materials. If the client device 24 could receive location information from a distributed communications system, the client device 24 could use that information in conjunction with location based services. In many instances, the location based services do not need an extremely fine resolution (e.g., less than one meter) of the location of the client device 24. That is, a reasonably coarse location determination (e.g., within ten to twenty meters) may be sufficient for most location based services. If the RAU 14 (or other access point element associated with the system 10) knows its location and can send that location to the client device 24, then the client device 24 can treat the location of the RAU 14 (or other access point element) as the location of the client device 24. However, satellite signals are not reliable indoors, so it may be difficult for the RAU 14 to learn its location.
A first exemplary embodiment of the present disclosure provides a system and techniques through which the distributed communications system 10 may provide the location information to the client device 24. This embodiment is discussed with reference to
With reference to
The HEU 12 may be coupled to RAU 14 through an optical fiber 16. Likewise, the HEU 12 may be communicatively coupled to one or more BTS 78 and the internet 92. The RAU 14 may include a microprocessor and memory (not shown explicitly) in which location information such as geo-coordinates of the RAU 14 may be stored. The RAU 14 further includes a first antenna 32A which communicates with the client device 24 using the first protocol and a second antenna 32 which communicates with the client device 24 using the second protocol. In an alternate embodiment, a single antenna 32 is used for both protocols. As another alternate embodiment, the location information may be stored elsewhere, such as in the HEU 12 or even remotely such as in a database service such as Google Maps, or other central reference source or files such as iBwave site survey.
With continuing reference to
Similarly,
Note that the distributed communications systems 90A, 90B may include a location controller or other control system, which may be variously positioned in the distributed communications systems 90A, 90B. For example, in distributed communications system 90A, the location controller 98A may be positioned in or co-located with the HEU 12A. In contrast to the controller 98A, in distributed communications system 90B, the location controller can be distributed amongst the RAU 14B(1)-14B(N) as illustrated by location controllers 98(1)-98(N).
While
In this regard,
The installer then mounts the RAUs 14 of the distributed communications system 10 and the other components of the distributed communications system 10 according to the building plan (block 106). The installer may then enter the RAU identifier, any RF settings, and the geo-location into a database (block 108). This database may be in the controller 98A or 98(1)-98(N) or other location as desired. The RAUs 14 are then communicatively coupled to the database (block 110) and can retrieve location information therein as needed, requested, or desired for transmission to the client device 24. Such transmission may be on demand, continuously, or other arrangement and may use a secondary protocol as set forth above.
A second technique to provide the distributed communications system 10 with location information is provided in
The survey tool 134 measures RF signal strength and “fingerprint” of locations within the building 60. These RF profiles for the respective RAUs 14(1)-14(N) are measured and stored (block 126). In a first embodiment, the survey tool 134 communicates with the one of the RAUs 14(1)-14(N) and through the distributed communications system 10 to the database 136 in which the information relating to the RF profile is stored. In a second embodiment, the survey tool 134 communicates directly with the database 136. In either embodiment, the geolocations are obtained and stored with the distributed communications system 10 (block 128). The geolocations of a given RF profile may be ascertained by the survey tool 134 (e.g., using an accelerometer, compass, laser distance finder, or comparable elements to ascribe a location to a particular RF profile). The geolocations are linked to a particular RAU 14 and RF profile (block 130). The linkage may be done by the survey tool 134 using the appropriate software or within the database 136.
A third technique 140 for learning geolocations of the RAUs 14(1)-14(N) of the distributed communications system 10 is provided in flowchart form with reference to
The HEU 12, the RAU 14, the client device 24, and other elements disclosed herein can include a computer system 200. In this regard,
The exemplary computer system 200 in this embodiment includes a processing device or processor 204, a main memory 216 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM), etc.), and a static memory 208 (e.g., flash memory, static random access memory (SRAM), etc.), which may communicate with each other via the data bus 210. Alternatively, the processing device 204 may be connected to the main memory 216 and/or static memory 208 directly or via some other connectivity means. The processing device 204 may be a controller, and the main memory 216 or static memory 208 may be any type of memory.
The processing device 204 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processing device 204 may be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or processors implementing a combination of instruction sets. The processing device 204 is configured to execute processing logic in instructions for performing the operations discussed herein.
The computer system 200 may further include a network interface device 212. The computer system 200 also may or may not include an input 214 to receive input and selections to be communicated to the computer system 200 when executing instructions. The computer system 200 also may include an output 217, including but not limited to a visual display, an alphanumeric input device (e.g., a keyboard), and/or a cursor control device (e.g., a mouse).
The computer system 200 may or may not include a data storage device that includes instructions 218 stored in a computer-readable medium 220. The instructions 218 may also reside, completely or at least partially, within the main memory 216 and/or within the processing device 204 during execution thereof by the computer system 200, the main memory 216 and the processing device 204 also constituting computer-readable medium. The instructions 211 may further be transmitted or received over a network 222 via the network interface device 212.
While the computer-readable medium 220 is shown in an exemplary embodiment to be a single medium, the term “computer-readable medium” shall include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the instructions. The term “computer-readable medium” shall also include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the processing device and that cause the processing device to perform any one or more of the methodologies of the embodiments disclosed herein. The term “computer-readable medium” shall thus include solid-state memories, optical and magnetic medium, and carrier wave signals.
The embodiments disclosed herein include various steps which may be performed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor programmed with the instructions to perform the steps. Alternatively, the steps may be performed by a combination of hardware and software.
The embodiments disclosed herein may be provided as a computer program product, or software, that may include a machine-readable medium (or computer-readable medium) having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the embodiments disclosed herein. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes a machine-readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage medium, optical storage medium, flash memory devices, etc.), a machine-readable transmission medium (electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.)), etc.
Unless specifically stated otherwise as apparent from the previous discussion, terms such as “processing,” “computing,” “determining,” “displaying,” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission, or display devices.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. A variety of programming languages may be used to implement the teachings of the embodiments as described herein.
The various illustrative logical blocks, modules, circuits, and algorithms described in connection with the embodiments disclosed herein may be implemented as electronic hardware, instructions stored in memory or in another computer-readable medium and executed by a processor or other processing device, or combinations of both. The components of the DAS systems described herein may be employed in any circuit, hardware component, integrated circuit (IC), or IC chip, as examples. Memory disclosed herein may be any type and size of memory and may be configured to store any type of information desired. To clearly illustrate this interchangeability, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality.
The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A controller may be a processor. A processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The embodiments disclosed herein may be embodied in hardware and in instructions that are stored in hardware, and may reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of computer-readable medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor, which may reside in an ASIC. The ASIC may reside in a remote station. In the alternative, the processor and the storage medium may reside as discrete components in a remote station, base station, or server.
The operational steps described herein are described to provide examples and discussion, and may be performed in numerous different sequences other than the illustrated sequences. Operations described in a single operational step may actually be performed in a number of different steps, and one or more operational steps discussed in the exemplary embodiments may be combined. The operational steps illustrated in the flow chart diagrams may be subject to numerous different modifications as will be readily apparent to one of skill in the art. Information may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, bits, symbols, and chips may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Further, as used herein, the terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoated, colored, buffered, ribbonized and/or have other organizing or protective structure in a cable such as one or more tubes, strength members, jackets or the like. The optical fibers disclosed herein can be single mode or multi-mode optical fibers.
The antenna arrangements disclosed herein may include any type of antenna desired, including dipole, monopole, and slot antennas. The distributed antenna systems that employ the antenna arrangements could include any type or number of communications mediums, including but not limited to electrical conductors, optical fiber, and air (i.e., wireless transmission). The DAS systems may distribute and the antenna arrangements disclosed herein may be configured to transmit and receive any type of communications signals, including but not limited to RF communications signals and digital data communications signals, examples of which are described in U.S. patent application Ser. No. 12/892,424, incorporated herein by reference in its entirety. Multiplexing, such as WDM and/or FDM, may be employed in any of the DASs described herein, such as according to the examples in U.S. patent application Ser. No. 12/892,424.
The description and claims are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations of the embodiments provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Claims
1. A distributed communications apparatus, comprising:
- at least one downlink input configured to receive downlink communications signals;
- at least one interface configured to receive and provide the downlink communications signals to a remote unit;
- the remote unit configured to communicate with one or more client devices and provide location information indicating a current location of the one or more client devices; and
- a control system configured to receive data relating to location information relating to a location of the remote unit, wherein the location data is derived from the group consisting of: a building plan, an RF survey, and a walk through interaction.
2. The distributed communications apparatus of claim 1, further comprising a central unit configured to provide the at least one downlink input.
3. The distributed communications apparatus of claim 1, wherein the remote unit comprises a remote antenna unit, apparatus further comprising a communications path between the at least one interface and the remote unit.
4. The distributed communications apparatus of claim 3, wherein the communications path comprises an optical fiber.
5. The distributed communications apparatus of claim 3, wherein the remote unit antenna is further configured to communicate with a survey tool and pass the RF survey to the control system from the survey tool.
6. The distributed communications apparatus of claim 3, further comprising a database associated with the control system, wherein the database is configured to store the location information.
7. A method for providing location information to a distributed communications apparatus, the method comprising:
- providing a central unit and one or more remote units in the distributed communications apparatus;
- providing a control system in the distributed communications apparatus; and
- receiving data relating to location information relating to a location of the one or more remote units, wherein the location data is derived from the group consisting of: a building plan, an RF survey, and a walk through interaction.
8. The method of claim 7, further comprising providing the location data to a client device through the one or more remote units.
9. The method of claim 8, further comprising providing downlink communications signals through at least one downlink input.
10. The method of claim 9, further comprising providing an optical fiber communications path between at least one interface and the one or more remote units.
11. The method of claim 10, further comprising receiving an RF survey from a survey tool wherein the RF survey provides an RF fingerprint for various locations served by the distributed communications apparatus.
12. The method of claim 10, further comprising receiving an upload of the building plan.
13. A distributed communications apparatus, comprising:
- at least one downlink input configured to receive downlink communications signals;
- at least one interface configured to receive and provide the downlink communications signals to a remote unit;
- the remote unit configured to communicate with one or more client devices and receive from the one or more client devices location information indicating a current location of the client device; and
- a control system configured to use the location information from the one or more client devices and calculate a location of the remote unit.
14. The distributed communications apparatus of claim 13, further comprising a central unit configured to provide the at least one downlink input, wherein the remote unit comprises a remote antenna unit.
15. The distributed communications apparatus of claim 13, further comprising a communications path between the at least one interface and the remote unit, wherein the communications path comprises an optical fiber.
16. The distributed communications apparatus of claim 15, further comprising a database associated with the control system, wherein the database is stored in memory collocated with the control system.
17. The distributed communications apparatus of claim 15, wherein the control system configured to calculate a location of the remote unit is configured to use information from a plurality of client devices in calculating the location of the remote unit, wherein the control system is configured to weight information from the plurality of client devices according to a predefined criterion.
18. A method for providing location information to a distributed communications apparatus, the method comprising:
- providing a central unit and one or more remote units in the distributed communications apparatus;
- providing a control system in the distributed communications apparatus;
- receiving location data from one or more client devices; and
- calculating a location for one or more components of the distributed communications apparatus based at least in part on the location data from the one or more client devices.
19. The method of claim 18, further comprising:
- subsequently providing the location data to a client device through the one or more remote units; and
- providing downlink communications signals through at least one downlink input.
20. The method of claim 19, wherein providing one or more remote units comprises providing one or more remote antenna units, the method further comprising providing a communications path between at least one interface and the one or more remote units.
21. The method of claim 20, wherein providing the communications path comprises providing an optical fiber configured to operate as a communications path, the method comprising storing the location in a database associated with the control system.
22. The method of claim 21, further wherein calculating the location of the one or more remote units comprises using information from a plurality of client devices in calculating the location of the one or more remote antenna units.
Type: Application
Filed: Jul 14, 2017
Publication Date: Nov 2, 2017
Inventor: Gerald Bernhart Schmidt (Corning, NY)
Application Number: 15/649,982