ROTATING SAMPLE POSITIONING APPARATUS
A positioning system for a sample analysis device is disclosed. The positioning system comprises (1) a carousel comprising a platform and a sample loading tray mounted on the platform, and (2) a stage comprising a positioning system for positioning the carousel under the optical path of an imaging system. The sample loading tray is configured for holding a cartridge comprising one or more lateral flow cells (LFCs).
This Application claims priority of U.S. Provisional Application No. 62/069,112, filed on Oct. 27, 2014, which is incorporated herein in its entirety by reference.
FIELDThe present application relates generally to sample analysis systems and, in particular, to a lateral flow cell positioning system for use in a sample-to-answer analysis system for detection of biological materials in a sample.
BACKGROUNDMolecular testing is a test designed to detect and identify biological materials, such as DNA, RNA and/or proteins, in a test sample. Molecular testing is beginning to emerge as a gold standard due to its speed, sensitivity and specificity. For example, molecular assays were found to be 75% more sensitive than conventional cultures when identifying enteroviruses in cerebrospinal fluid and are now considered the gold standard for this diagnostic (Leland et al., Clin. Microbiol Rev. 2007, 20:49-78)
Molecular assays for clinical use are typically limited to identification of less than six genetic sequences (e.g., real-time PCR assays). Microarrays, which are patterns of molecular probes attached to a solid support, are one way to increase the number of sequences that can be uniquely identified. The microarray analysis workflow often includes an expensive scanner for extracting fluorescence intensity information from the microarray elements. Microarray imaging may show improved signal-to-noise ratios when water is removed from the microarray elements (i.e, when the microarray is dried). Therefore, there is a need for developing simpler, more efficient and more cost effective methods and devices for performing molecular tests using microarray technology.
SUMMARYIn one aspect, a Lateral Flow Cell (LFC) positioning system for a sample analysis device includes (1) a carousel comprising a platform and a sample loading tray mounted on the platform, and (2) a stage comprising a positioning system for positioning said carousel, wherein the sample loading tray is configured for holding a cartridge comprising one or more LFCs. In some embodiments, the carousel is movable relative to the stage. In other embodiments, the carousel is rotatable relative to the stage.
In other embodiments, the carousel further comprises a clamp comprising a top bar, a bottom bar and at least one supporting rod connecting the top bar and the bottom bar. The platform and the sample loading tray are disposed between the top bar and the bottom bar of the clamp. The clamp is movable relative to the platform and is capable of securing a cartridge in the sample loading tray when the clamp is moved to a locked position.
In certain preferred embodiments, the stage includes a motor-driven rotor connected to the carousel to facilitate its rotation. Rotation of the carousel translates to a cartridge containing LFCs with typical rotational velociities in the range upwards of 200 rpm (e.g., 200-5000 rpm). This centrifugal force drives the water droplets within the reaction chambers toward an absorbent, leaving the reaction chamber in a dry state. Thus, microarray elements, including bound and/or amplified probes are retained in a dry state. Following the drying procedure, the rotational velocity of the carousel decreases and enters an indexing mode for imaging. During this mode, each of the reaction chambers indexes into position under a microarray imaging camera. An image is acquired, processed and analyzed. Then, the test result is reported.
Another aspect relates to an integrated sample analysis system. The system includes a sample purification device comprising a monolith that binds specifically to nucleic acids; a sample analysis device comprising a reaction chamber comprising a hydrophilic interior surface configured to hold a microarray comprising a plurality of nucleic acid-based probes; a temperature control module comprising heating and cooling elements to enable thermal exchange between said heating and cooling elements and the internal volume of said reaction chamber; an imaging device positioned to capture an image of said microarray in said reaction chamber; and an LPC positioning module as described herein.
Further aspects include methods for rotating and/or positioning the carousel of the present invention and to methods for detecting and analyzing probes bound to the microarrays in the LFCs of the present invention.
For the purposes of this disclosure, unless otherwise indicated, identical reference numerals used in different figures refer to the same component.
The following detailed description is presented to enable any person skilled in the art to make and use the invention. For purposes of explanation, specific nomenclature is set forth to provide a thorough understanding of the present application. However, it will be apparent to one skilled in the art that these specific details are not inquired to practice the invention. Description of specific embodiments and applications is provided only as representative examples. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.
This description is intended to be read in connection with the accompanying drawings, which are considered part of the entire written description of this invention. The drawing figures are not necessarily to scale and certain features of the invention may be shown exaggerated in scale or in somewhat schematic form in the interest of clarity and conciseness. In the description, relative terms such as “front,” “back” “up,” “down,” “top” and “bottom,” as well as derivatives thereof, should be construed to refer to the orientation as then described or as shown in the drawing figure under discussion. These relative terms are for convenience of description and normally are not intended to require a particular orientation. Terms concerning attachments, coupling and the like, such as “connected” and “attached,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
As used herein, the term “sample” includes biological samples such as cell samples, bacterial samples, virus samples, samples of other microorganisms, samples obtained from a mammalian subject, preferably a human subject, such as tissue samples, cell culture samples, stool samples, and biological fluid samples (e.g., blood, plasma, serum, saliva, urine, cerebral or spinal fluid, lymph liquid and nipple aspirate), environmental samples, such as air samples, water samples, dust samples and soil samples.
The term “monolith,” “monolith adsorbent” or “monolithic adsorbent material,” as used in the embodiments described herein, refers to a porous, three-dimensional adsorbent material having a continuous interconnected pore structure in a single piece. A monolith is prepared, for example, by casting, sintering or polymerizing precursors into a mold of a desired shape. The term “monolith” is meant to be distinguished from two or more filters that are placed next to each other or pressed against each other. The term “monolith adsorbent” or “monolithic adsorbent material” is meant to be distinguished from a collection of individual adsorbent particles packed into a bed formation or embedded into a porous matrix, in which the end product comprises individual adsorbent particles. The term “monolith adsorbent” or “monolithic adsorbent material” is also meant to be distinguished from a collection of adsorbent fibers or fibers coated with an adsorbent, such as filter papers or filter papers coated with an adsorbent.
The term “specifically bind to” or “specific binding,” as used in the embodiments described herein, refers to the binding of the adsorbent to an analyte (e.g., nucleic acids) with a specificity that is sufficient to differentiate the analyte from other components (e.g., proteins) or contaminants in a sample. In one embodiment, the term “specific binding” refers to the binding of the adsorbent to an analyte in a sample with a binding affinity that is at least 10-fold higher than the binding affinity between the adsorbent and other components in the sample. A person of ordinary skill in the art understands that stringency of the binding of the analyte to the monolith and elution from the monolith can be controlled by binding and elution buffer formulations. For example, elution stringencies for nucleic acids can be controlled by salt concentrations using KCl or NaCl. Nucleic acids, with their higher negative charge, are more resistant to elution than proteins. Temperature, pH, and mild detergent are other treatments that could be used for selective binding and elution. Thermal consistency of the binding and elution may be maintained with a heat block, water bath, infrared heating, and/or heated air directed at or in the solution. The manipulation of the binding buffer is preferable since the impact of the modified elution buffer on the downstream analyzer would need to be evaluated.
The term “nucleic acid,” as used in the embodiments described herein, refers to individual nucleic acids and polymeric chains of nucleic acids, including DNA and RNA, whether naturally occurring or artificially synthesized (including analogs thereof), or modifications thereof, especially those modifications known to occur in nature, having any length. Examples of nucleic acid lengths that are in accord with the present invention include, without limitation, lengths suitable for PCR products (e.g., about 50 to 700 base pairs (bp)) and human genomic DNA (e.g., on an order from about kilobase pairs (Kb) to gigabase pairs (Gb)). Thus, it will be appreciated that the term “nucleic acid” encompasses single nucleotides as well as stretches of nucleotides, nucleosides,, natural or artificial, and combinations thereof, in small fragments, e.g., expressed sequence tags or genetic fragments, as well as larger chains as exemplified by genomic material including individual genes and even whole chromosomes. The term “nucleic acid” also encompasses peptide nucleic acid (PNA) and locked nucleic acid (LNA) oligomers.
The term “hydrophilic surface” as used herein, refers to a surface that would form a contact angle of 45° or smaller with a drop of pure water resting on such a surface. The term “hydrophobic surface” as used herein, refers to a surface that would form a contact angle greater than 45° with a drop of pure water resting on such a surface. Contact angles can be measured using a contact angle goniometer.
Sample-To-Answer Sample Analysis System 100A principal aspect of the instant application relates to an LFC positioning module 130 for a sample-to-answer sample analysis system 100.
The sample processing module 110 prepares a sample for analysis. Such preparation typically involves purification or isolation of the molecules of interest, such as DNA, RNA or protein, from the original sample using a sample purification device. The isolated molecules of interest are then transferred into the reaction chamber of an LFC. In some embodiments, the reaction chamber contains microarray for detection of the molecules of interest and a hydrophliic interior surface to facilitate the complete filling of the reaction chamber with an aqueous liquid.
In some embodiments, the sample purification device includes a monolith that binds specifically to nucleic acids. In certain embodiments, the sample purification device is a pipette tip containing a filter that binds specifically to the molecules of interest. Exemplary filters are further described in U.S. Pat. No. 7,785,869 and U.S. Pat. No. 8,574,923, both of which are incorporated by reference in their entirety.
In some other embodiments, the sample processing module 110 further comprises a cell lysis chamber having a plurailty of cell lysis beads and a magnetic stirrer. Cell lysis is achieved by rotating the magnetic stirrer inside the cell lysis chamber in the presence of the cell lysis beads. The rotation of the magnetic stirrer is created by an alternating magnetic field induced by the rotation of north and south poles of a magnet, which is external to the tube. In some embodiments, the magnet is a cylinder shaped magnet. The magnet rotates about an axis A and causes a magnet stir element in the chamber to rotate in the same direction along an axis B that is parallel to axis A. The rotating magnetic stir element collides with beads, which lyse cells in the process. The magnet may be positioned alongside, above, below or diagonally from the chamber. In some embodiments, a cylinder shaped magnet is rotating about an axis that is parallel to a surface that the cell lysis chamber is placed on. The cell lysis beads can be any particle-like or bead-like material that has a hardness greater than the hardness of the cells to be lysed. The cell lysis beads may be made of plastic, glass, ceramics, or any other non-magnetic materials, such as non-magnetic metal beads. In certain embodiments, the cell lysis beads are rotationally symmetric to one axis (e.g., spherical, rounded, oval, elliptic, egg-shaped, and droplet-shaped particles). In other embodiments, the cell lysis beads have polyhedron shapes. In other embodiments, the cell lysis beads are irregular shaped particles. In yet other embodiments, the cell lysis beads are particles with protrusions. The magnetic stirrer can be a bar-shaped, cross-shaped, V-shaped, triangular, rectangular, rod or disk-shaped stir element, among others. In some embodiments, the magnetic stirring element has a rectangular shape. In some embodiments, the magnetic stirrer has a two-pronged tuning fork shape. In some embodiments, the magnetic stirrer has a V-like shape. In some embodiments, the magnetic stirrer has a trapezoidal shape. In certain embodiments, the longest dimension of the stir element is slightly smaller than the diameter of the container (e.g. about 75-95% of the diameter of the container). In certain embodiments, the magnetic stirrer is coated with a chemically inert material, such as polymer, glass, or ceramic (e.g., porcelain). In certain embodiments, the polymer is a biocompatible polymer such as PTFE and parylene. A more detailed description of the magnetic lysis method is described in application Ser. No. 12/886,201, which is hereby incorporate by reference.
Temperature Control Module 120The temperature control module 120 controls the temperture of the reaction chamber during amplication and/or binding reactions. In certain embodiments, the temperature control module comprises a heating and cooling device with a flexible temperature control surface, as described in U.S. Pat. Nos. 7,955,840 and 7,955,841, both of which are hereby incorporated by reference in their entirety. In other embodiments, the temperatare control module 120 employs a heating and cooling device with a hard, flat temperature control surface as described in U.S. patent application Ser. No. 14/743,389, filed Jun. 18, 2015, the teachings of which are expressly incorporated by reference herein.
In some embodiments, the temperature control module 120 includes a thermoelectric device. One or more thermoelectric devices can be integrated into the module. In other embodiments, the temperature control module 120 further comprises a temperature sensor. Examples of temperature sensors are resistance thermal devices (RTDs), thermocouples, thermopiles, and thermistors.
In some embodiments, the thermoelectric device is a Peltier device made of ceramic materials. Examples of ceramic materials include: alumina, beryllium oxide, and aluminum nitride.
In other embodiments, the thermoelectric device is a thin film semiconductor (e.g., bismuth telluride). In other embodiments, the thermoelectric de vice is a thermoelectric couple made of p and n type semiconductors. Examples of p and n type semiconductors are bismuth antimony, bismuth telluride, lead telluride, and silicon germanium.
In some embodiments, the thermoelectric device has a heat sink coupled to one side and a heat spreader coupled to the other side. Examples of heat sinks and heat spreaders are copper, aluminum, nickel, heat pipes, and/or vapor chambers. During operation, the heat spreader makes intimate contact with an exterior surface of the reaction chamber and controls the temperature inside the reaction chamber. In some embodiments, the heat sink and/or heat spreader are coupled to the thermoelectric device with thermally-conductive epoxy, thermally-conductive adhesives, liquid metal (e.g., gallium) or solder (e.g., indium). In some embodiments, the temperature control module 120 further comprises a fan under the heat sink. In one embodiment the heat spreader is flat. In some of these embodiments the heat spreader is rectangular with dimensions that range from 3 mm×3 mm to 20 mm×20 mm. The thickness of the heat spreader is preferably 0.05 to 5 mm, and more preferably 0.1 to 0.5 mm, and even more preferably 0.15 to 0.3 mm.
LFC Positioning Module 130The LFC positioning module 130 positions the LFC for detection of signals in the microarray by the detection module 140. In one aspect, the LFC positioning module includes (1) a carousel comprising a platform and a sample loading tray mounted on the platform, and (2) a stage comprising a positioning system for positioning the carousel. The sample loading tray is configured for holding a cartridge comprising one or more LFCs. In some embodiments, the carousel is movable relative to the stage. In some embodiments, the LFC positioning module 130 is configured to allow heating and cooling of LFCs in tbe sample loading tray by the temperature control module 120, and real time monitoring of a reaction in the reaction chamber of a LFC by the detection module 140. In other embodiments, the carousel is rotatahle e relative to the stage. In other embodiments, the carousel is capable of spinning to remove liquid from a reaction chamber of an LFC.
In other embodiments, the carousel further comprises a clamp having a top bar, a bottom bar and at least one supporting rod connecting the top bar and the bottom bar. The platform and the sample loading tray are disposed between the top bar and the bottom bar of the clamp. The clamp is movable relative to the platform and is capable of immobilizing a cartridge in the sample loading tray when the clamp is moved to a locked position.
In other embodiments, the positioning module 130 contains a built-in heating and cooling device that is capable of heating and cooling the LFC(s) in the cartridge. In other embodiments, the carousel is movable to a reaction position to bring the cartridge into contact with a heating and cooling device to facilitate reactions in the reaction chamber of an LFC within the cartridge. In some embodiments, the heating and cooling device is configured to allow real-time monitoring of a reaction within the reaction chamber of the LFC by the detection module 140.
In certain embodiments, the stage includes a motor-driven rotor connected to the carousel to facilitate its rotation. Rotation of the carousel sets in rotational motion a cartridge containing an LFC. This centrifugal force drives the water droplets within reaction chambers toward an absorbent, leaving the reaction chamber in a dry state. Thus, microarray elements, including bound and/or amplified probes are retained in a dry state. Following the drying procedure, the rotational velocity of the carousel decreases and enters an indexing mode for imaging. During this mode, each of the reaction chambers indexes into position under a microarray imaging camera. An image is acquired, processed and analyzed. Then, the test result is reported.
In an embodiment shown in
In some embodiments, a motor-driven rotor (not shown) is disposed within the stage 142 for rotating the carousel 144 holding the disposable cartridge 146. The rotor rotates the carousel 144 and cartridge 146 at rotational velocities producing centrifugal forces sufficient to drive water droplets from reaction chambers in the LFCs 148 toward an absorbent 62 in a waste chamber 60 therein (
Upon completion of the drying process, the rotational velocity of the carousel 144/cartridge 146 decreases, whereupon the drying/positioning module enters an indexing mode for imaging. During this mode, each of the microarrays is indexed into position under a microarray imaging camera in the detection module 140. Specifically, the carousel 144 is indexed into position so that a desired microarray enters the field of view for imaging. Images of biomolecule binding results are acquired, processed, analyzed and reported.
In some embodiments, including
Also shown in
In some embodiments, the positioning device for microarray imaging embodiment shown in
In some embodiments the array imaging system further comprises an excitation energy source. The excitation energy source is focused on the microarray being imaged by the imaging device. In some further embodiments, the excitation energy source is tunable for the wavelengths emitted. In other further embodiments, the excitation energy source emits multiple wavelengths simultaneously. In some embodiments, the excitation energy strikes the array at an oblique angle. In some embodiments, the array imaging system is enclosed in a light-tight enclosure. In some embodiments, the array imaging system is sized to fit on the top of a lab bench along with a computer for data analysis.
In some embodiments, the sample cartridge comprises a microarray immobilized to a glass slide. In other embodiments, the sample cartridge comprises a microarray immobilized to a polymer-based slide. In some embodiments, the microarray is printed onto the glass or polymer-based slide. In some embodiments, multiple microarrays are immobilized to or printed onto the glass or polymer-based slide. In other embodiments, each microarray is enclosed within an LFC.
In some embodiments, the cartridge 146 contains a single LFC 148.
The microarray 40 can be a polynucleotide array or a protein/peptide Array. In one embodiment, the microarray 40 is formed by printing gel spots as described in e.g., U.S. Pat. Nos. 5,741,700, 5,770,721, 5,981,734, 6,656,725 and U.S. patent application Ser. Nos. 10/068,474, 11/425,667 and 11/550,730, all of which are hereby incorporated by reference in their entirety.
The reaction chamber 10 has a plurality of interior surfaces including a bottom surface on which the microarray 40 is formed and a top surface that faces the bottom surface and is generally parallel to the bottom surface. In some embodiments, at least one of the plurality of interior surfaces is a hydrophilic surface that facilitate the complete filling of the reaction chamber 10. In one embodiment, the top surface of the reaction chamber 10 is a hydrophilic surface. Exemplary flow cell devices and embodiments are described in U.S. Pat. Nos. 8,680,025 and 8,680,026, which are expressly incorporated by reference in their entirety.
In other embodiments, the cartridge 146 contains LFCs 148. The cartridge 146 may contain one or more LFCs 148. In some embodiments, the cartridge 146 contains a unitary multi-microarray strip containing between 2 to 16 LFCs, between 4 to 12 LFCs or between 6-10 LFCs. In certain embodiments, the LFCs are shaped like wedges.
The detection module 140 detects the presence of the molecules of interest in the reaction chamber. In some embodiments, the molecules of interest comprise the reaction product of an amplification reaction, such as a polymerase chain reaction (PCR). In certain embodiments, the detection module 140 comprises an optical subsystem designed to capture images of the microarray in the reaction chamber. In certain embodiments, the optical subsystem is specifically designed for low-level fluorescence detection on microarrays. The optical subsystem uses confocal or quasi-confocal laser scanners that acquire the microarray image pixel by pixel in the process of interrogating the object plane with a tightly focused laser beam. The laser scanners offer the advantages of spatially uniform sensitivity, wide dynamic range, and efficient rejection of the out-of-focus stray light. In some embodiments, the detection module 140 is capable of real time monitoring of the amplification reaction in the reaction chamber of a LFC. In certain embodiments, the detection module 140 comprises an optical subsystem with a laser light source.
In another embodiment, the optical subsystem uses imaging devices with flood illumination, in which all of the microarray elements (features) are illuminated simultaneously, and a multi-element light detector, such as a CCD camera, acquires the image of microarray either all at once or in a sequence of a few partial frames that are subsequently stitched together. Compared to laser scanners, CCD-based imaging devices have simpler designs and lower cost. CCD-based imaging systems are an attractive option for both stand-alone and built-in readers in cost-sensitive applications relying on microarrays of moderate complexity (i.e., having a few hundred or fewer array elements). Commercial instruments typically use cooled CCD cameras and employ expensive custom-designed objective lenses with an enhanced light-collection capability that helps to balance, to some extent, the low efficiency of the excitation scheme.
In another embodiment, the optical subsystem contains an imaging device that uses a non-cooled CCD camera. Although non-cooled cameras typically have a noticeably higher dark current as compared to the cooled models, the optical subsystem could provide the required sensitivity without using exposures is excess of a few seconds by (1) increasing the excitation intensity, or (2) employing an objective lens with high light collection efficiency; or (3) using the above two approaches in combination. The light source can be a conventional light source, such as a metal halide or mercury bulb, a laser-based system, or a high-intensity LED.
In another embodiment, the optical subsystem has a fluorescence-independent imaging (FII) mode as a supplementary imaging mode of microarray reader operation. The FII mode allows imaging the array elements regardless of their fluorescence level.
The practical implementation of FII is technically challenging in both microarray scanners and imagers using flood illumination. The problem is especially difficult when the microarrays to be imaged are the mainstream planar arrays, because the layer of biomolecular probes immobilized on the microarray substrate is too thin to produce a noticeable change in the intensity of light used for probing the slide surface.
In one embodiment, the present invention uses dark field illumination in reflected light for imaging gel arrays printed on opaque (black) plastic substrates. In another embodiment, the present invention uses oblique illumination in transmitted light for imaging gel arrays printed on transparent (glass) slides. In both cases, the light source used for FII could be any light source emitting within the transmission band of the imager's emission filter.
EXAMPLES Example 1 Analysis of ArraysIn order to test the sample handling and imaging of the microarray imaging positioning device disclosed herein, a series of test arrays were printed. Briefly, the following steps were used for printing the test microarrays: (1) an oligonucleotide mixture was prepared and dried down on a CentriVap. (2) A copolymer solution comprising monomer, cross-linker, glycerol and buffer was prepared. (3) The dried oligonucleotide was dissolved in the copolymer solution. (4) The oligonucleotide-copolymer solution was placed ito a source plate, and (5) the source plate was used for array printing/polymerization/washing.
The sample filter 220 is placed in the close proximity of the second opening 216 so that samples are filtered immediately after being taken into the housing 210 through the second opening 216. In one embodiment, the sample filter 220 is contiguous with the second opening 216. In another embodiment, the sample filter 220 is separated from the second opening 216 by a distance of 1-20 mm. In some embodiments, the monolith sample filter is a glass frit with an average pore size of 20-200 micron. In another embodiment, the sample filter 220 is a monolith filter with two sections having different porosities: a first section at the proximity of the second opening 216 and a second section that is separated from the second opening 216 by the first section 221. In one embodiment, the first section has an average pore size of 40-200 micron, preferably 40-60 micron, and the second section has an average pore size of 1-40 micron, preferably 1-20 micron.
Example 3 Heating and Cooling DeviceIn some embodiments, the thermoelectric device has a heat sink coupled to one side and a heat spreader coupled to the other side. Exemplary heat sinks and heat spreaders include copper, aluminum, nickel, heat pipes, and/or vapor chambers. During operation, the heat spreader makes intimate contact with an exterior surface of the reaction chamber and controls the temperature inside the reaction chamber. In some embodiments, the heating-and-cooling module further comprises a fan under the heat sink. In one embodiment the heat spreader is flat. In some of these embodiments the heat spreader is rectangular with dimensions that range from 3 mm×3 mm to 20 mm×20 mm. The thickness of the heat spreader is preferably 0.05 to 5 mm, and more preferably 0.1 to 0.5 mm, and even more preferably 0.15 to 0.3 mm.
In some embodiments, the heating and cooling device 300 further comprises a temperature sensor. Exemplary temperature sensors include resistance thermal devices (RTDs), thermocouples, thermopiles, and thermistors.
In some embodiments, the LFCs 148 are located on top of the heat spreader (
In other embodiments, the LFCs 148 are located below the heat spreader 310. The heat spreader 310 is adapted to descend onto the reaction chamber 10 of the LFC 148 (
In other embodiments two or more heat spreaders interface with each reaction chamber. An example of this is that one heat spreader interfaces with the top of the reaction chamber while another heat spreader interfaces with the bottom of the reaction chamber.
Example 4 Optical Subsystem with Oblique Angle IlluminationAs shown in
The above description is for the purpose of teaching the person of ordinary skill in the art how to practice the present invention, and it is not intended to detail all those obvious modifications and variations of it which will become apparent to the skilled worker upon reading the description. It is intended, however, that all such obvious modifications and variations be included within the scope of the present invention, which is defined by the following claims. The claims are intended to cover the components and steps in any sequence which is effective to meet the objectives there intended, unless the context specifically indicates the contrary.
Claims
1. A positioning system for a sample analysis device, comprising:
- a carousel comprising a platform and a sample loading tray mounted on the platform wherein the sample loading tray is configured for holding a cartridge comprising one or more lateral flow cells (LFCs); and
- a stage comprising a positioning system for positioning said carousel,
- wherein the carousel is movable relative to the stage.
2. The positioning system of claim 1, wherein the carousel is rotatable relative to the stage.
3. The positioning system of claim 1, wherein the carousel further comprises a clamp comprising a top bar, a bottom bar and at least one supporting rod connecting the top bar and the bottom bar, wherein the platform and the sample loading tray are disposed between the top bar and the bottom bar of the clamp.
4. The positioning system of claim 3, wherein the clamp is movable relative to the platform and is capable of securing a cartridge in the sample loading tray when the clamp is moved to a lock position.
5. The system of claim 4, further comprising a magnet attached to the bottom side of the carousel, which facilitates movement of the clamp.
6. The positioning system of claim 1, wherein the carousel further comprises a handle configured to manually rotate the carousel.
7. The system of claim 1, further comprising a motor-driven rotor connectively linked to the carousel to facilitate rotation thereof.
8. The system of claim 1, wherein the stage a positioning system for X, Y and Z axis positioning, and angular adjustment of the carousel.
9. The system of claim 1, further comprises a heating and cooling device that is capable of heating and cooling the LFCs in the cartridge.
10. The system of claim 1, wherein the heating and cooling device is configured to allow real-time monitoring of a biochemical amplification reaction within a reaction chamber of an LFC of the cartridge by an imaging device.
11. The system of claim 1, wherein the carousel is moveable to a reaction position to bring the cartridge into contact with a heating and cooling device to facilitate reactions in a reaction chamber of an LFC within the cartridge.
12. A positioning system for a microarray imaging device, comprising:
- a carousel comprising a platform and a sample loading tray mounted on the platform wherein the sample loading tray is configured for holding a cartridge comprising one or more microarrays; and
- a stage comprising a positioning system for X, Y and Z axis positioning of said carousel,
- wherein the carousel is rotatable relative to the stage.
13. The positioning system of claim 12, wherein the carousel further comprises a pair of clamps, each comprising a top bar, a bottom bar and at least one supporting rod connecting the top bar and the bottom bar, wherein the platform and the sample loading tray are disposed between the top bar and the bottom bar of the clamp.
14. The positioning system of claim 13, wherein each clamp is independently movable relative to the platform and is capable of securing a cartridge in the sample loading tray when the clamp is moved to a lock position.
15. The positioning system of claim 13, wherein the bottom bar comprises a magnet which engages the bottom side of the carousel when the clamp is in an open position.
16. The positioning system of claim 12, wherein the carousel further comprises a handle configured to manually rotate the carousel.
17. The system of claim 12, wherein positioning system of the stage further allows for angular adjustment of the stage.
18. A microarray imaging system, comprising:
- a positioning system for a microarray imagery positioning device, comprising: a carousel comprising a platform and a sample loading tray mounted on the platform wherein the sample loading tray is configured for holding a cartridge comprising one or more microarrays; and a stage comprising a positioning system for X, Y and Z axis positioning of said carousel; and
- an imaging device for imaging a microarray.
19. The microarray imaging system of claim 18, further comprising an excitation energy source.
20. The microarray imaging system of claim 19, wherein the wavelength of the excitation energy source is tunable.
Type: Application
Filed: Aug 2, 2017
Publication Date: Nov 23, 2017
Inventors: Christopher COONEY (Ellicott City, MD), Alexander PEROV (Germantown, MD), AriaI BUENO (Frederick, MD), Charles DAITCH (Clarksville, MD)
Application Number: 15/667,406