IMAGING DEVICE ASSEMBLY
An imaging device assembly that includes a first imaging module frame, a second imaging module frame, and at least one first attachment member including a base positioned within an interior of the first imaging module frame and at least one protrusion extending from the base through a first wall portion of the first imaging module frame to be exposed external to the first imaging module frame, wherein the at least one protrusion is releasably connected to a top portion of the second imaging module frame.
Latest Hewlett Packard Patents:
This patent application is a Continuation of application Ser. No. 13/100,741, filed May 4, 2011, which is hereby incorporated by reference.
BACKGROUNDConventional imaging devices include printers, scanners, copiers, or facsimile machines, as well as various combinations of these devices. In one example, a multifunction or all-in-one device includes at least a printer module, a scanner module, and a copier module with some components contributing to the functions of more than one of the respective modules. While in some instances, such all-in-one devices incorporate several imaging functions within a single container, in other instances, the all-in-one devices provides several imaging functions by physically attaching different containers together with each container providing functions generally independent of the other containers. In these latter arrangements, it is quite common for time-consuming manipulations to be used during the assembly process in order to physically attach the different containers together. Moreover, while such conventional arrangements have attachment mechanisms with adequate strength, the rigorous manner in which some consumers handle these all-in-one devices bodes for more robust attachment mechanisms between the different containers.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments of the present disclosure which may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments of the present disclosure can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims.
Embodiments of the present disclosure are directed to an imaging device assembly in which two imaging modules are securely fastened to one another. In one embodiment, a first imaging module is positioned vertically above a second imaging module and a first attachment member includes a base portion located within an interior of the first imaging module. However, flanges of the first attachment member extend through a bottom portion of the first imaging module to protrude outwardly and releasably interlock with a second attachment member located at a top portion of the second imaging module. In this way, the bottom portion of the first imaging module becomes sandwiched between the base portion of the first attachment member and the second attachment member. With this arrangement, the first imaging module becomes secured relative to second imaging module while significantly strengthening the bottom portion of first imaging module in the assembled imaging device.
These embodiments, and additional embodiments, are illustrated and described in association with
An imaging device 10 is schematically illustrated in
In one example, an imaging device 10 includes a scanner 12 and a printer 14 without a copier module 16 or a fax module 18 while in another example, the imaging device 10 includes a printer 14 and a copier 16 without a scanner 12 or fax module 18. It will be understood that the present disclosure is not strictly limited to the specific assemblies noted above, as different combinations of the imaging modules can form an assembly of the imaging device 10. In some embodiments, imaging device 10 further includes a web server 20 and a controller 24.
In other embodiments, the first imaging module 102 comprises an imaging component other than a scanner and/or the second imaging module 104 comprises an imaging component other than a printer.
In some embodiments, imaging device assembly 100 includes a transition portion 106 sandwiched between the first imaging module 102 and the second imaging module 104. In one aspect, the transition portion 106 houses an attachment mechanism (shown in broken lines 108) configured to secure the first imaging module 102 vertically above and relative to the second imaging module 104. In other embodiments, attachment mechanism 108 is configured and positioned to secure the first imaging module 102 relative to the second imaging module 104 when they are not in a vertically stacked relationship, such as in a side-by-side relationship.
In one aspect, a pair of first attachment members 130A, 130B is secured on top portion 124 while extending generally parallel to each other in a spaced apart relationship. In one embodiment, a longitudinal axis of each attachment member 130A, 130B extends from front portion 122 to back portion 125 of second imaging module 104. The attachment members 130A, 130B will be further described later in association with
In one embodiment, as shown in
In one embodiment, bottom portion 146 includes a pair of elongate reinforcement structures 150A, 150B that raised from interior surface 143 of container 141 with the reinforcement structures 150A, 150B extending generally parallel, and spaced apart, relative to each other. In one aspect, the reinforcement structures 150A, 150B extend from back wall 142 to a front wall (not shown) to be aligned with attachment members 130A, 130B associated with second imaging module 104 shown in
As further shown in
In one embodiment, during installation of first attachment members 154 the top portion 148 of container 141 is not present such that container 141 defines an open top to allow access to interior 140 of container 141 for installing first attachment members 154. Top portion 148 is secured on container 141 at some point in time after installation of first attachment members 154 and/or of other components of first imaging module 102. In other embodiments, top portion 148 is present during installation of first attachment members 154 and aperture 111 provides access to interior 140 of container 141 for installing first attachment members 154 such that aperture 111 defines an open top for container 141 of first imaging module 102.
Further details regarding the structure of the attachment members 154 are illustrated in association with
In another aspect, attachment member 154 includes at least one second flange 162 that extends outwardly from, and generally perpendicular to, spine portion 156. The second flanges 154 extend in a plane that is generally perpendicular to a plane through which first flange 160 extends. In the embodiment shown in
In one embodiment, a wing or tab 164 extends from an edge of the second flange 162 and is generally perpendicular to respective flanges 162. The tab 164 is configured to facilitate securing the second flange 162 relative to an attachment member 130A, 130B associated with second imaging module 104, as further described in association with
In some embodiments, attachment member 154 includes one or more pairs of holes 168 located in spine portion 156 and which are located to receive fasteners to secure the attachment member 154 relative to bottom portion 146 of container 141 (
In one embodiment, each attachment member 154 is made of an electrically conductive material, such a metal material, while at least the bottom portion 146 of container 141 of first imaging module 102 is made of a non-conductive material, such as a non-metallic material. In some embodiments, attachment member 154 is made of a metal material while the entire container 141 is made of a non-metallic material. In one embodiment, at the least the top portion 124 of container 129 of second imaging module 104 is made of a non-conductive material such as a non-metallic material while in other embodiments, the entire container 129 of second imaging module 104 is made of a non-conductive material, such as a non-metallic material.
Upon securing first attachment member 154 relative to bottom 146 of container 141 with spine portion 156 of first attachment member 154 located within an interior 140 of container 141 (as shown in
In one embodiment, pins 148 and bottom portion 146 of container 141 are formed via molding as a single, monolithic structure. However, in other embodiments, pins 148 are separate members that are attached to the bottom portion 146 of container 141. In other embodiments, reinforcement structures 150A, 150B are independent elements (e.g. not molded as part of bottom portion 146 of container 141) that are attached to bottom portion 146 within interior 140 of container 140. In these latter embodiments, bottom side of reinforcement structures 150A, 150B defines pins 148 and the bottom portion 146 of container 141 defines holes through which pins 148 protrude to become exposed at exterior surface 147 of bottom portion 146 of container 141.
With first imaging module 102 equipped with first attachment member 154, as shown in
With further reference to
In another aspect, side wall 176 and top wall 174 of second attachment members 130A, 130B define at least one hole 180 sized, shaped, and positioned along a length of second attachment members 130A, 130B to slidably receive a reciprocating second flange 162 of attachment member 154 (
In this arrangement, a plastic-to-metal slidable interface is established between non-metallic bottom portion 146 of container 141 and top wall 174 of metallic second attachment members 130A, 130B. Next, the first imaging module 102 is slidably advanced (as represented by directional arrow B) relative to a stationary second imaging module 104, which in turn causes, second flanges 162 of first attachment members 154 to become further interlocked with holes 180 of second attachment members 130A, 130B. This plastic-to-metal interface substantially reduces friction when the first imaging module 102 is slidably advanced relative to second imaging module 104, as compared to conventional metal-to-metal interfaces.
In another aspect, in this arrangement the bottom portion 146 of container 141 of first imaging module 102 becomes sandwiched between the spine portion 156 of first attachment member 154 and the top wall 174 of the second attachment member 104. The interaction and relationship of the first attachment member 102, bottom portion 146 of first imaging module 102, second attachment member 104, and top portion 124 of second imaging module 104 is further schematically illustrated in
As shown in
As further shown in
The arrangement shown in
In addition, as schematically illustrated in the diagram 200 shown in
In one aspect, as further shown in
Because first attachment member 154 is placed within interior 140 of container 141 of first imaging module 102, first imaging module 102 can remain upright during installation of the first attachment member 154. This arrangement stands in contrast to conventional attachment mechanisms which would otherwise rely on first turning a first imaging module upside down to install the attachment mechanism before flipping the first imaging module back to its generally upright position for future assembly steps.
Accordingly, one embodiment of the present disclosure includes a method of manufacturing an imaging device, such as a multifunction printer or all-in-one imaging device. In one embodiment, the method is performed using the structures and components of imaging device assembly that were previously described in association with
In one aspect, the method includes providing a scanner comprising an open container that includes a bottom portion defining at least one hole. The bottom wall portion defines an interior surface within the scanner frame and an external surface on an opposite side of the bottom portion. As part of the method, the open scanner container is maintained in a generally upright position while securing a base portion of a first attachment member on the interior surface of the bottom portion and while inserting at least one protrusion of the first attachment member through the at least one hole of the bottom portion of the open scanner container. The method further includes moving the bottom portion of the open scanner container in sliding contact against a second metallic member on a top portion of a printer container while simultaneously releasably connecting the at least one protrusion of the first attachment member relative to the second attachment member to secure the scanner container above and relative to the printer container. In this way, the scanner container becomes securely fastened to the printer container while simultaneously easing the assembly of the imaging device and strengthening the connection between the first and second imaging modules.
In some embodiments, the same method of manufacturing is applied except that the scanner container is replaced with another imaging module container (e.g. fax, copier, etc.) and/or the printer container is replaced with another imaging module container (e.g., fax, copier, etc.).
In other embodiments of the method of manufacturing, the scanner container is replaced with a printer container such that the two containers being joined together perform generally the same function. Of course, this principle can be applied when both containers provide other functions, such as an arrangement in which the top container provides a copy function and the bottom container also provides a copy function.
While
Embodiments of the present disclosure provide for a more efficient and robust assembly of different imaging modules that form a single imaging device assembly.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this present disclosure be limited only by the claims and the equivalents thereof.
Claims
1. A first imaging module frame comprising:
- a container including a first wall; and
- a first attachment member comprising: a base portion positioned within the container and extending generally against a first surface of the first wall; and at least one protrusion extending from the base portion, within the container, through the first wall to be exposed external to an opposite second surface of the first wall, wherein the at least one protrusion is releasably connectable relative to a first wall portion of a second imaging module frame.
2. The first imaging module frame of claim 1, wherein via the at least one protrusion, the first imaging module frame is directly connectable to the second imaging module.
3. The first imaging module frame of claim 1, wherein the first imaging module comprises at least one of a scanner frame and a printer frame.
4. The first imaging module frame of claim 1, wherein the container is to contain at least circuitry and comprises an interior defined by the plurality of walls.
5. The first imaging module frame of claim 1, comprising:
- an elongate reinforcement structure positioned within the interior of the container of the first imaging module frame, with the elongate reinforcement structure located between the base portion of the at least one first attachment member and the first wall of the first imaging module frame, wherein the elongate reinforcement structure has a length at least substantially the same as a length of the base portion of the at least one first attachment member.
6. The first imaging module frame of claim 5, wherein the elongate reinforcement structure is made of a non-metallic material and the first attachment member is at least partially made of a metallic material.
7. The first imaging module frame multifunction imaging device of claim 6, wherein the elongate reinforcement structure comprises a raised portion formed as part of the first wall of the first imaging module frame.
8. The first imaging module frame of claim 7, wherein the elongate reinforcement structure includes a plurality of ribs defining a top portion of the elongate reinforcement structure.
9. The first imaging module frame of claim 1, wherein container comprises a front wall and a back wall, with the first wall extending between the front wall and the back wall and the first wall defining a bottom wall, and
- wherein the base portion of the first attachment member comprises an elongate element extending between the front wall and the back wall of the first imaging module frame with the elongate element having a length that substantially matches a length of the bottom wall extending between the back wall and the front wall of the first imaging module frame.
10. The first imaging module frame of claim 1, wherein the first attachment member comprises a pair of first attachment members that are generally parallel to, and spaced apart from, each other, wherein the pair of first attachment members are located at an intermediate position between spaced apart side walls of the first imaging module frame.
11. The first imaging module frame of claim 1, wherein the first wall comprises a non-metal external surface to define a nonmetal-to-metal slidable interface relative to a metal portion associated with the first wall portion of the second imaging module frame.
12. The first imaging module frame of claim 11, wherein the metal portion comprises at least a portion of at least one second attachment member positioned on an exterior of the first wall portion of the second imaging module frame.
13. A multifunction imaging device comprising:
- a scanner frame including a plurality of walls, including a bottom wall, defining an interior; and
- a printer frame including a plurality of walls, including a top wall, defining an interior, wherein the top wall generally faces the bottom wall of the scanner frame,
- a first attachment member to connect the scanner frame to the printer frame and including: a base portion within the interior of the scanner frame and extending generally against the bottom wall of the scanner frame; and at least one protrusion extending from the base portion, within the interior of the scanner frame, through the bottom wall of the scanner frame to be exposed external to the bottom wall of the scanner frame, wherein the at least one protrusion is releasably connected relative to the top wall of the printer frame.
14. The multifunction imaging device of claim 13, wherein at least a portion of the bottom wall of the scanner frame comprises a non-metallic external surface to define a nonmetal-to-metal slidable interface relative to a metal portion associated with at least a portion of the top wall of the printer frame.
15. The multifunction imaging device of claim 13, wherein the scanner frame comprises:
- an elongate reinforcement structure positioned within the interior of the container of the scanner frame and located between the base portion of the first attachment member and the bottom wall of the scanner frame, wherein the elongate reinforcement structure has a length at least substantially the same as a length of the base portion of the at least one first attachment member.
16. The multifunction imaging device of claim 15, wherein the elongate reinforcement structure is made of a non-metallic material and the first attachment member is at least partially made of a metallic material.
17. The multifunction imaging device of claim 16, wherein the elongate reinforcement structure comprises a raised portion formed as part of the bottom wall of the first imaging module frame.
18. The attachment member of claim 13, wherein both the scanner frame and the printer frame are made of a non-conductive material, and wherein at least the at least one protrusion is formed of a conductive material to provide an electrical ground path from within an interior of the container of the first imaging module frame to an exterior of the second imaging module frame.
19. An attachment member for a first imaging module frame comprising:
- a base portion positionable within a container of the first imaging module frame to extend generally against a first surface of a bottom wall of the container; and
- at least one protrusion extending from the base portion to be positionable to extend from within the container, through the bottom wall to be exposed external to an opposite second surface of the bottom wall of the container, wherein the at least one protrusion is slidable releasably connectable relative to a top wall of a second imaging module frame.
20. The attachment member of claim 19, wherein the first attachment member comprises a pair of first attachment members that are generally parallel to, and spaced apart from, each other, wherein the pair of first attachment members are located at an intermediate position between spaced apart side walls of the first imaging module frame.
Type: Application
Filed: Aug 16, 2017
Publication Date: Nov 30, 2017
Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. (Fort Collins, CO)
Inventors: Paul K Mui (Boise, ID), Eric Andersen (Boise, ID), Jennifer Clark (Boise, ID), Scott A Putz (Boise, ID)
Application Number: 15/678,489