SURGICAL DRILL AND METHOD OF CONTROLLING THE AUTOMATIC STOP THEREOF
A surgical drill includes a drill bit, a driving device connected and electrically coupled to the drill bit, and a smart module electrically coupled to the driving device. In a bone drilling work, the smart module monitors an electrical signal of the driving device, and if the electrical signal shows a step drop, the smart module will send a stop command to the driving device to stop the operation of the driving device.
The present invention relates to the field of medical instruments, and more particularly to a surgical drill and a method of controlling the automatic stop of the surgical drill solar panel module.
BACKGROUND OF THE INVENTIONSurgical bone drills are mainly divided into manual drills and electrical drills. In the manual bone drill, the rotating speed, the drilling depth, and the start and end of the drill are controlled manually by a surgeon. The surgeon operates the bone drill based on experience and hand feel. At the moment of drilling through bone tissues, the bone drilling resistance drops significantly and the surgeon's hand may sense such drop significantly, but the surgeon is unable to stop the drilling operation instantaneously. Therefore, blood vessels, nerves, or fascia may be drilled and damaged easily, and the patient safety may be jeopardized.
On the other hand, the electrical bone drill steadily receives electromechanical torque from a mechanical structure to achieve an automatic rotating effect of a drill bit, so that the electrical bone drill has the advantages of reducing the force or load required for the surgeon's drilling operation and shortening the bone drilling time, but it still has the disadvantage that the surgeon is unable to feel the drop of bone drilling resistance through both hands and stop the bone drilling operation timely. If the surgeon cannot stop drilling bone tissues timely, the high-speed drill bit may damage blood vessels, nerves, muscles or fascia more seriously than the manual bone drill.
SUMMARY OF THE INVENTIONTherefore, it is a primary objective of the present invention to overcome the aforementioned drawbacks of the conventional electrical bone drill by providing a surgical drill capable of stopping its operation instantaneously while the surgical drill is drilling bone tissues as well as calculating the bone drilling depth of the surgical drill automatically.
To achieve the aforementioned and other objectives, the present invention provides a surgical drill, comprising: a drill bit, a driving device coupled to the drill bit, and a smart module electrically coupled to the driving device; when the surgical drill performs a bone drilling work, the smart module receives an instantaneous electrical signal of the driving device, and compares the instantaneous electrical signal with a reference electrical signal, and if the instantaneous electrical signal has a step drop with respect to the reference electrical signal, the smart module will send a stop command to the driving device to stop the operation of the driving device.
To achieve the aforementioned and other objectives, the present invention provides a method of controlling the automatic stop of a surgical drill, and the method is executed by a smart module electrically coupled to a driving device of the surgical drill. The method comprises the following steps:
Receive a plurality of instantaneous electrical signals of the driving device per second when the surgical drill executes a bone drilling work.
Set a plurality of consecutive seconds as a unit time, and use an average of all instantaneous electrical signals in the unit time as a reference electrical signal.
Compare the instantaneous electrical signal with the reference electrical signal.
When the instantaneous electrical signal has a step drop with respect to the reference electrical signal, stop the operation of the driving device and a stop command is sent to the driving device.
To achieve the aforementioned and other objectives, the present invention provides a method of controlling the automatic stop of a surgical drill and measuring a bone drilling depth, and the method is executed by a smart module electrically coupled to a driving device of the surgical drill and a non-contact distance measuring device electrically coupled to the smart module. The method comprises the following steps:
Receive a plurality of instantaneous electrical signals of the driving device per second when the surgical drill executes a bone drilling work.
Set a plurality of consecutive seconds as a unit time, and use an average of all instantaneous electrical signals in the unit time as a reference electrical signal.
Compare the instantaneous electrical signal with the reference electrical signal.
Send a stop command to the driving device to stop the operation of the driving device, when the instantaneous electrical signal has a step drop with respect to the reference electrical signal.
Send a first distance measuring command to the non-contact distance measuring device by the smart module when the surgical drill is started, and obtain a first distance (D1) from a light source emitting point to an outer side of a cortical layer by the non-contact distance measuring device, and receive the first distance by the smart module. Send a second distance measuring command to the non-contact distance measuring device by the smart module when the surgical drill is controlled to stop its operation by the smart module, and obtain a second distance (D2) from a light source emitting point to an outer side of the cortical layer, and receive the second distance (D2) by the smart module. Execute the operation of [D1−D2] by the smart module to obtain a bone drilling depth value, and displaying the bone drilling depth value on a display screen of the bone drilling depth measuring device.
The present invention has the following effects:
The surgical drill may be stopped immediately and automatically at the moment of drilling bone tissues by a drill bit. The automatic stop of the operation of the surgical drill alerts the surgeon that he has already drilled through the cortical layer already. The automatic stop also provides the safety effect of protecting the tissues, blood vessels, muscles, nerves and fascia behind the cortical layer and prevents them from being damaged by the surgical bone drill that drills through the cortical layer.
The smart module of the present invention is compatible with surgical drill of any model and specification without the need of changing the structure of the surgical drill or adding additional components or modules. The smart module of the present invention has the automatic stop function regardless of the model and specification of the surgical drill.
The smart module of the present invention allows the surgical drill to have the automatic stop function, while maintaining the external structure of the surgical drill without requiring extra components, and facilitates the overall disinfection of the surgical drill for aseptic packaging.
The surgical drill with the smart module in accordance with the present invention adopts the non-contact distance measuring device to achieve the function of calculating the bone drilling depth automatically while maintaining the external structure of the surgical drill without requiring any additional component and facilitates the overall disinfection of the surgical drill for aseptic packaging.
The objective of the invention, its structure, innovative features, and performance will become apparent in the following detailed description of the preferred embodiments with reference to the accompanying drawings.
With reference to
In a surgical drilling work, the smart module 20 continues monitoring and obtaining an instantaneous electrical signal, wherein the electrical signal is represented by one including, but not limited to, a voltage. The smart module 20 compares the instantaneous electrical signal with a reference electrical signal, and if the instantaneous electrical signal has a step drop with respect to the reference electrical signal, the smart module 20 will send a stop command to the driving device 11 to stop the operation of the driving device 11.
The reference electrical signal may be an absolute electrical signal or a sampling electrical signal. The absolute electrical signal is a built-in default value in the smart module 20. The sampling electrical signal is an average of all instantaneous electrical signals in a unit time during the surgical drilling work. The unit time includes a plurality of consecutive seconds, wherein the unit time may be fixed or rolling with the working time of the surgical drill. Assumed that consecutive four seconds are used as a unit time, and the fixed unit time constantly uses the [Nth to N+3th] seconds of the bone drilling work as the sampling time, wherein the sampling time remains constant. The unit time with the ascending unit time uses the 1st to 4th seconds, the second to 5th seconds, the third to 6th seconds (so on and so forth) as the sampling time of the bone drilling work, wherein the sampling time varies and ascends (or rolls) with the time of the bone drilling work.
With reference to
With reference to
In
Claims
1. A surgical drill comprising: a drill bit, a driving device coupled to the drill bit, and a smart module electrically coupled to the driving device, wherein when the surgical drill performs a bone drilling work, the smart module receives an instantaneous electrical signal from the driving device, and compares the instantaneous electrical signal with a reference electrical signal, and if the instantaneous electrical signal has a step drop with respect to the reference electrical signal, the smart module sends a stop command to the driving device to stop operation of the driving device.
2. The surgical drill according to claim 1, wherein the instantaneous electrical signal is represented by a voltage.
3. The surgical drill according to claim 1, wherein the reference electrical signal is a preset electrical signal of the smart module.
4. The surgical drill according to claim 1, wherein the reference electrical signal is a sampling electrical signal.
5. The surgical drill according to claim 4, wherein the sampling electrical signal is an average of all instantaneous electrical signals in a unit time during the bone drilling work.
6. The surgical drill according to claim 5, wherein the unit time is a plurality of consecutive seconds, or a fixed time.
7. The surgical drill according to claim 5, wherein the unit time includes a plurality of consecutive seconds, and the unit time rolls with working time of the surgical drill.
8. The surgical drill according to claim 5, wherein the instantaneous electrical signal is compared with the reference electrical signal that is happened closest to the unit time.
9. The surgical drill according to claim 1, further comprising a measuring device for obtaining a bone drilling depth, wherein the measuring device is a non-contact distance measuring device electrically coupled to the smart module.
10. The surgical drill according to claim 9, wherein the measuring device is selected from the group consisting of a lightwave distance measuring module, an infrared distance measuring module, and a laser distance measuring module.
11. The surgical drill according to claim 10, wherein the bone drilling depth obtained by the measuring device is displayed on a display screen of the measuring device.
12. A method of controlling automatic stop of a surgical drill, executed by a smart module electrically coupled to a driving device of the surgical drill, the method comprising the steps of:
- receiving a plurality of instantaneous electrical signals of the driving device per second when the surgical drill executes a bone drilling work;
- setting a plurality of consecutive seconds as a unit time, and setting an average of all instantaneous electrical signals in the unit time as a reference electrical signal;
- comparing the instantaneous electrical signal with the reference electrical signal; and
- when the instantaneous electrical signal has a step drop with respect to the reference electrical signal, sending a stop command to the driving device to stop operation of the driving device.
13. The method according to claim 12, wherein the unit time is a fixed time.
14. The method according to claim 12, wherein the unit time rolls with working time of the surgical drill.
15. The method according to claim 12, wherein the instantaneous electrical signal is compared with reference electrical signal that is happened closest to the unit time.
16. A method of controlling automatic stop of a surgical drill and measuring a bone drilling depth, executed by a smart module electrically coupled to a driving device of the surgical drill and a non-contact distance measuring device electrically coupled to the smart module, the method comprising the steps of:
- receiving a plurality of instantaneous electrical signals of the driving device per second when the surgical drill executes a bone drilling work;
- setting a plurality of consecutive seconds as a unit time, and setting an average of all instantaneous electrical signals in the unit time as a reference electrical signal;
- comparing the instantaneous electrical signal with the reference electrical signal;
- sending a stop command to the driving device to stop operation of the driving device, when the instantaneous electrical signal has a step drop with respect to the reference electrical signal;
- when the surgical drill is started, the smart module sending a first distance measuring command to the non-contact distance measuring device to obtain a first distance (D1) from a light source emitting point to an outer side of a cortical layer and send the first distance to the smart module;
- when the stop command is sent to stop operation of the driving device, the smart module sending a second distance measuring command to the non-contact distance measuring device to obtain a second distance (D2) from a light source emitting point to an outer side of the cortical layer and send the second distance (D2) to the smart module; and
- executing the operation of [D1−D2] by the smart module to obtain a bone drilling depth value, and displaying the bone drilling depth value on a display screen of the bone drilling depth measuring device.
Type: Application
Filed: Jun 3, 2016
Publication Date: Dec 7, 2017
Inventor: Ming-Fu Chiang (Taipei)
Application Number: 15/173,593