Multiphase Cutting
Multiphase Cutting may comprise a bulk removal pass followed by a fine removal pass to cut a gemstone. For example, multiphase cutting may perform a removal by removing approximately 90% of material during a first pass and then reset and remove the remaining 10% of material during a second pass. The second pass may use a slower feed rate and a wider oscillation, moving the gemstone across an entire range of a lap wheel. This split setup may thus produce significantly more accurate results for the accuracy of the total removal.
This disclosure relates generally to multiphase cutting.
BACKGROUNDHow a gemstone is cut may have a significant effect on its resulting quality. Once a particular cut is selected, appropriate facets may be determined. A rough stone is often then attached to a dop stick and pressed against a lap wheel until the desired facet is cut.
SUMMARYThe following presents a simplified summary of the disclosure to provide a basic understanding to the reader. This summary is not an extensive overview of the disclosure, nor does it identify key or critical elements of the claimed subject matter or define its scope. Its sole purpose is to present some concepts disclosed in a simplified form as a precursor to the more detailed description that is later presented.
The instant application discloses, among other things, multiphase cutting. In one embodiment, it may comprise phase cutting a facet on a gemstone in two or more phases. For example, a cutting pass may be broken down into two separate passes, greatly increasing accuracy of material removal and edges of facets of the stone. Multiphase cutting may comprise a bulk removal pass followed by a finer removal pass to complete the cutting. For example, a standard gem cutting process for removing 100 microns of material may comprise cutting until the 100 microns have been removed. By contrast, Multiphase Cutting may split the same 100-micron removal into an approximately 90%/10% split. For example, during a first pass, it may remove 90 microns of material. During a second pass, a finer lap wheel may be used to remove the remaining 10 microns of material. The second phase may use a slower feed rate, and may use a wider oscillation or swing, so that the stone may be moved completely in and out of the lap. This may provide consistent stone dimensions despite lap wheel irregularities. Multiphase cutting may provide more accurate results because the excess material removed from the 90 microns may be cleared, and the remaining 10 microns may produce less stress on the underlying gem. Thus, there may be less flexing or warping during the fine pass removal. This process may produce significantly more accurate results of the total 100-micron removal, for example, which may provide a better gemstone.
Many of the attendant features may be more readily appreciated as they become better understood by reference to the following detailed description considered in connection with the attached drawings.
While the detailed description above has been expressed in terms of specific examples, those skilled in the art will appreciate that many other configurations could be used. Accordingly, it will be appreciated that various equivalent modifications of the above-described embodiments may be made without departing from the spirit and scope of the invention.
Claims
1. A method of cutting a gemstone, comprising:
- removing a majority of material from a stone using a first feed rate and a first oscillation setting; and
- removing a remaining material from the stone using a second feed rate and a second oscillation setting, the second feed rate being lower than the first feed rate, and the second oscillation setting giving a larger oscillation than the first oscillation setting.
2. The method of claim 1, wherein the cutting is performed by a robot.
3. The method of claim 1, wherein the second feed rate is between one-tenth and one-fifth of the first feed rate.
Type: Application
Filed: Jun 9, 2016
Publication Date: Dec 14, 2017
Inventor: Arshak Isajanyan (San Jose, CA)
Application Number: 15/177,721