LOCK OUT MEMBER WITH DIFFERENT CROSS SECTIONS
An apparatus is presented comprising a lock out member configured to be implemented into a medical device, in particular a dispense interface, attachable to a second medical device, in particular a main body, wherein said lock out member is configured to prevent a second attachment of said medical device to said second medical device, wherein said lock out member has at least a first area with a first cross-sectional area, wherein said lock out member has at least a second area having a second cross-sectional area smaller than the first cross-sectional area, such that an electric resistance is defined between opposite ends of the lockout member and wherein said lock out member, at least in the second area, is made of a conductive material.
The present application is a continuation of U.S. patent application Ser. No. 14/113,861, filed Oct. 25, 2013, which is a U.S. National Phase Application pursuant to 35 U.S.C. §371 of International Application No. PCT/EP2012/058258 filed May 4, 2012, which claims priority to European Patent Application No. 11165120.4 filed May 6, 2011. The entire disclosure contents of these applications are herewith incorporated by reference into the present application.
FIELD OF DISCLOSUREThe present patent application relates to medical devices of delivering at least two drug agents from separate reservoirs. Such drug agents may comprise a first and a second medicament. The medical device includes a dose setting mechanism for delivering the drug automatically or manually by the user.
The drug agents may be contained in two or more multiple dose reservoirs, containers or packages, each containing independent (single drug compound) or pre-mixed (co-formulated multiple drug compounds) drug agents.
BACKGROUNDCertain disease states require treatment using one or more different medicaments. Some drug compounds need to be delivered in a specific relationship with each other in order to deliver the optimum therapeutic dose. The present patent application is of particular benefit where combination therapy is desirable, but not possible in a single formulation for reasons such as, but not limited to, stability, compromised therapeutic performance and toxicology.
For example, in some cases it might be beneficial to treat a diabetic with a long acting insulin (also may be referred to as the first or primary medicament) along with a glucagon-like peptide-1 such as GLP-1 or GLP-1 analog (also may be referred to as the second drug or secondary medicament).
Accordingly, there exists a need to provide devices for the delivery of two or more medicaments in a single injection or delivery step that is simple for the user to perform without complicated physical manipulations of the drug delivery device. The proposed drug delivery device provides separate storage containers or cartridge retainers for two or more active drug agents. These active drug agents are then only combined and/or delivered to the patient during a single delivery procedure. These active agents may be administered together in a combined dose or alternatively, these active agents may be combined in a sequential manner, one after the other.
SUMMARYThe drug delivery device also allows for the opportunity of varying the quantity of the medicaments. For example, one fluid quantity can be varied by changing the properties of the injection device (e.g., setting a user variable dose or changing the device's “fixed” dose). The second medicament quantity can be changed by manufacturing a variety of secondary drug containing packages with each variant containing a different volume and/or concentration of the second active agent.
The drug delivery device may have a single dispense interface. This interface may be configured for fluid communication with the primary reservoir and with a secondary reservoir of medicament containing at least one drug agent. The drug dispense interface can be a type of outlet that allows the two or more medicaments to exit the system and be delivered to the patient.
The combination of compounds as discrete units or as a mixed unit can be delivered to the body via a double-ended needle assembly. This would provide a combination drug injection system that, from a user's perspective, would be achieved in a manner that closely matches the currently available injection devices that use standard needle assemblies. One possible delivery procedure may involve the following steps:
-
- 1. Attach a dispense interface to a distal end of the electro-mechanical injection device. The dispense interface comprises a first and a second proximal needle. The first and second needles pierce a first reservoir containing a primary compound and a second reservoir containing a secondary compound, respectively.
- 2. Attach a dose dispenser, such as a double-ended needle assembly, to a distal end of the dispense interface. In this manner, a proximal end of the needle assembly is in fluidic communication with both the primary compound and secondary compound.
- 3. Dial up/set a desired dose of the primary compound from the injection device, for example, via a graphical user interface (GUI).
- 4. After the user sets the dose of the primary compound, the micro-processor controlled control unit may determine or compute a dose of the secondary compound and preferably may determine or compute this second dose based on a previously stored therapeutic dose profile. It is this computed combination of medicaments that will then be injected by the user. The therapeutic dose profile may be user selectable.
- 5. Optionally, after the second dose has been computed, the device may be placed in an armed condition. In such an optional armed condition, this may be achieved by pressing and/or holding an “OK” button on a control panel. This condition may provide for greater than a predefined period of time before the device can be used to dispense the combined dose.
- 6. Then, the user will insert or apply the distal end of the dose dispenser (e.g., a double ended needle assembly) into the desired injection site. The dose of the combination of the primary compound and the secondary compound (and potentially a third medicament) is administered by activating an injection user interface (e.g., an injection button).
Both medicaments may be delivered via one injection needle or dose dispenser and in one injection step. This offers a convenient benefit to the user in terms of reduced user steps compared to administering two separate injections.
The dispense interface can also include a lock out mechanism. Such a lock out mechanism can prevent the dispense interface from being reattached to the drug delivery device once the interface has been initially removed from the device. Such a feature may help reduce the possibility of contamination as well as prevent possible blunting of the dispense interface needle injections ends. These features are described in greater detail below. A lock out mechanism can be implemented via a so called lock out member, which is activated when the cartridge holder is attached to the dispense interface. After removing the dispense interface from the cartridge holder the lock out member prohibits a further use of the dispense interface.
Apart from expiring because of possible dates of expiry, the quality or effectiveness of medicaments may also be affected by influences of the environment, which can not be foretold.
Thus the invention faces the technical problem of further improving the safety and ensuring the quality of medicaments ejected from medical devices in an economic way without the need of additional space in the medical device.
This technical problem is solved by an apparatus, comprising a lock out member configured to be implemented into a medical device, in particular a dispense interface, attachable to a second medical device, in particular a main body, wherein said lock out member is configured to prevent a second attachment of said medical device to said second medical device, wherein said lock out member has at least a first area with a first cross-sectional area, wherein said lock out member has at least a second area having a second cross-sectional area smaller than the first cross-sectional area, such that an electric resistance is defined between opposite ends of the lockout member and wherein said lock out member, at least in the at least one second area, is made of a conductive material.
This way an already implemented part in the medical device can be used for the improvement of the safety and the possible assurance of the quality of medicaments ejected from medical devices. For example, by measuring the resistance between the opposite ends of the lockout member, the temperature can be determined on the basis of the measured resistance. This way, it is possible to get information about the temperature by measuring the resistance of the lock out member. To be able to measure a significant difference in the resistance of the lock out member, it is necessary, that the resistance changes measurably while the temperature goes below or above a safe temperature interval for a medicament. Such a safe temperature interval may be from 0 to 25° C.
By measuring the resistance, it is also possible to identify the lock out member. For example, it may be determined whether a correct lock out member, which can be situated in a dispense interface, is connected by determining whether the resistance of the lockout member is within a certain range of values.
The measuring of the resistance can be performed in various ways. A direct or an alternating current can be used for this. The resistance can be measured in a direct method, for example. But it is as well possible to measure the resistance with an indirect method. As an indirect method one can use an RC-Oscillator, whereas the resistance between the opposite ends of the lockout member provides the at least a part of the resistance for the RC oscillator. The direct measurement of the resistance can be replaced by the measurement of a frequency of the RC oscillator.
By determining the temperature from the resistance between the opposite ends of the lockout member at lest a part of the lockout member can this way be used as a resistance thermometer. A resistance thermometer is understood as any sort of substantially conductive material, the resistance of which changes significantly enough with temperature to be measured.
The first areas are preferably the whole lock out member without the at least one second area. All the first areas have preferably a larger cross-sectional area than the second areas. By providing at least a second area having a reduced cross-sectional area, the influence of this area is dominating the overall resistance of the lock out member. The reduced cross section must be that small, that a resistance change can be measured in the relevant temperature ranges. Preferably there are two second areas with a smaller cross-sectional area compared to the at least one first area. These two second areas might be shaped identically.
Here a lock out member is understood as any member, which is able to prevent a second use of a medical device, in which the lock out member is implemented, after the medical device, such as a dispense interface, is detached from a second device, such as a main body for example. A lock out member can in particular be a lock out spring. This can be any type of elastic object, which can store mechanical energy. Such springs can be design as coils spring, flat springs, cantilever springs or springs with an even more complex design.
In a preferred embodiment the apparatus further comprises means configured to be conductively attached to a device, capable of measuring the resistance of at least said second area of said lock out member. Such means could be any kind of connection interface comprising a conductive material, like simple projections, which conductively attach to a connected main body. The main body may comprise a micro-processor control unit, which can then measure the resistance of the lock out member by well know means in the state of the art. A conductive connection, for example by wires, between the lock out member and the micro-processor control unit can be established for this purpose by means well known in the art.
A medical device may further comprise an electronic circuit for measuring the resistance of the lock out member, for example by contacts that contact the lockout member.
It is further preferred, when said second cross section is at most 30%, in particular at most 20%, preferably at most 10%, of said first cross section. This way a resistance thermometer can be easily provided by a significant reduction in the second area of the lock out member. Surprisingly the functionality of the lock out mechanism is not negatively influenced by the reduction of the cross-sectional area of the second area.
The reduction of the surface can be easily provided by cut outs of the lock out member. This might be one large cut out, or preferably multiple small cut outs in form of holes. Those cut outs are preferably provided in the area of substantially stress-free or non-bent parts of the lock out member. This way the stability of the lock out member is not significantly reduced.
In a preferred embodiment the lock out member is substantially made of metal. This way the functionality of the spring is easily provided and at the same time the first and second areas are conductive and a resistance measurement can be easily performed. Moreover the equalisation of the temperatures of the second areas and the medicaments can be improved.
Not only the resistance measurement of the second areas can be done by a micro-processor control unit, which can then measure the resistance of the lock out member by well know means in the state of the art. But also the determination of a temperature value according to the measured resistance can be done by the micro-processor control unit implemented in the main body of the medical device. This way no further devices for the measurement are needed.
The conductive material of the at least one second area can either comprise a Negative Temperature Coefficient Thermistor or a Positive Temperature Coefficient Thermistor. The resistance of a Negative Temperature Coefficient Thermistor decreases with increasing temperature, while the resistance of a Positive Temperature Coefficient Thermistor increases with increasing temperature. Such thermistors use for example semi-conductive metal oxides or silicon. This way a temperature range of about −100 to over 100° C. can easily be measureable by the resistance measurement. The dependence of the resistance is stronger than that of standard metals.
According to another embodiment said lock out member is configured to be implemented into said medical device by form fit, force fit and/or material bonding. This may be realised by snap locks, threads, glue or similar connection arrangements.
By implementing said lock out member into a housing made of a nonconductive material, such as plastic, it can be easily guaranteed to measure the resistance of the lock out member only, without influencing the resistance measurement by further resistances in contact with the lock out member.
It is further preferred, when said lock out member is configured to be implemented close to at least one cartridge containing a liquid of said medical device. Since the temperature of the liquid is actually of interest, a reasonable value of the temperature of the liquid can be easily determined by positioning the lock out member close to the liquid or to the cartridges containing the liquid respectively.
In a further embodiment said lock out member is configured to be implemented in contact with at least one cartridge containing a liquid of said medical device. By designing and positioning the lock out member in such a way that at least one cartridge can be in contact with the lock out member, while the main body containing the cartridge is attached to the medical device containing the lock out member, a further improvement of the estimation of the actual temperature of the liquid can be made.
Preferably said lock out member is configured to be implemented into a dispense interface. No modifications of the main body, for example, need to be done. The dispense interface provides an easy solution to use its lock out member to measure the temperature. It is possible to design the medical device in such a way, that the dispense interface must be attached to the main body in order to use the medical device. This way it can be assured to be able to measure the temperature, when the medical device is about to be used.
The technical problem is further solved by a method comprising the steps of measuring the electric resistance of at least a second area of a lock out member, wherein said lock out member has at least a first area with a first cross-sectional area, wherein said second area has a second cross-sectional area smaller than the first cross-sectional area and wherein said lock out member, at least in the second area, is made of a conductive material and determining said electric resistance of at least said second area of said lock out member.
This way an easy to implement method is provided, without the use of any additional devices, such as thermometers, and nevertheless being able to for example measure the temperature or detect the type of the lockout member, thus improving the assurance that the temperature did not go below or above a temperature interval, which would deteriorate the quality of medicaments, or that the correct devices (for example dispense interface with lockout member and medical device) are attached.
According to a further embodiment of the method a temperature is determined based at least in part on the determined resistance. By determining the temperature, the assurance that the temperature did not go below or above a temperature interval is improved, which would otherwise deteriorate the quality of medicaments.
According to a further embodiment of the method the resistance is measured at predefined points in times. This way, a power consuming resistance measurement does not need to be done constantly. Those predefined points in time to perform a resistance and thus a temperature measurement, might be saved in the micro-processor control unit or might also be editable by a user.
Preferably the resistance is measured using a direct or indirect method. Direct or alternating current can be used for this. A sufficient and easy measurement of the resistance can be performed by using a direct current provided by an internal battery, for example. The resistance can be measured in a direct method known from the state of the art, for example. But it is as well possible to measure the resistance with an indirect method. As an indirect method one can use an RC-Oscillator, whereas the resistance between the opposite ends of the lockout member provides the at least a part of the resistance for the RC oscillator. The direct measurement of the resistance can be replaced by the measurement of a frequency of the RC oscillator.
In a further embodiment of the method the resistance is measured before a medical device, to which the lock out member is attached, is used. A resistance and thus temperature measurement only need to be done, when the medical device is actually used. The power consumption can this way be further reduced. In case the temperature is outside of a predefined temperature interval, the user can be informed, for example.
The user can further be informed or the use of said medical device can be prohibited, if the measured temperature is and/or was outside of a predefined temperature interval. By doing so, the safety can be further improved. In case the temperature was once outside a predefined allowed temperature interval, the use of the medical device and thus the ejection of a medicament can be completely prevented, for example.
If the determined resistance is used to identify the lock out member, the assurance that the correct devices are attached to each other can be improved. The lock out member can be implemented in a dispense interface, for example, and before it can be used by a user, it can be checked whether the dispense interface is compatible with or allowed to be used with the medical device, to which the dispense interface is attached.
These as well as other advantages of various aspects of the present invention will become apparent to those of ordinary skill in the art by reading the following detailed description, with appropriate reference to the accompanying drawings, in which:
The drug delivery device illustrated in
The main body 14 contains a micro-processor control unit, an electro-mechanical drive train, and at least two medicament reservoirs. When the end cap or cover 18 is removed from the device 10 (as illustrated in
A control panel region 60 is provided near the proximal end of the main body 14. Preferably, this control panel region 60 comprises a digital display 80 along with a plurality of human interface elements that can be manipulated by a user to set and inject a combined dose. In this arrangement, the control panel region comprises a first dose setting button 62, a second dose setting button 64 and a third button 66 designated with the symbol “OK.” In addition, along the most proximal end of the main body, an injection button 74 is also provided (not visible in the perspective view of
The cartridge holder 40 can be removably attached to the main body 14 and may contain at least two cartridge retainers 50 and 52. Each retainer is configured so as to contain one medicament reservoir, such as a glass cartridge. Preferably, each cartridge contains a different medicament.
In addition, at the distal end of the cartridge holder 40, the drug delivery device illustrated in
Once the device is turned on, the digital display 80 shown in
As shown in
As mentioned above when discussing
In
The needle assembly 400 illustrated in
Similarly, a second or proximal piercing end 406 of the needle assembly 400 protrudes from an opposite side of the circular disc so that it is concentrically surrounded by the sleeve 403. In one needle assembly arrangement, the second or proximal piercing end 406 may be shorter than the sleeve 403 so that this sleeve to some extent protects the pointed end of the back sleeve. The needle cover cap 420 illustrated in
Referring now to
-
- a. a main outer body 210,
- b. an first inner body 220,
- c. a second inner body 230,
- d. a first piercing needle 240,
- e. a second piercing needle 250,
- f. a valve seal 260, and
- g. a septum 270.
The main outer body 210 comprises a main body proximal end 212 and a main body distal end 214. At the proximal end 212 of the outer body 210, a connecting member is configured so as to allow the dispense interface 200 to be attached to the distal end of the cartridge holder 40. Preferably, the connecting member is configured so as to allow the dispense interface 200 to be removably connected the cartridge holder 40. In one preferred interface arrangement, the proximal end of the interface 200 is configured with an upwardly extending wall 218 having at least one recess. For example, as may be seen from
Preferably, the first and the second recesses 217, 219 are positioned within this main outer body wall so as to cooperate with an outwardly protruding member located near the distal end of the cartridge housing 40 of the drug delivery device 10. For example, this outwardly protruding member 48 of the cartridge housing may be seen in
The main outer body 210 and the distal end of the cartridge holder 40 act to form an axially engaging snap lock or snap fit arrangement that could be axially slid onto the distal end of the cartridge housing. In one alternative arrangement, the dispense interface 200 may be provided with a coding feature so as to prevent inadvertent dispense interface cross use. That is, the inner body of the hub could be geometrically configured so as to prevent an inadvertent cross use of one or more dispense interfaces.
A mounting hub is provided at a distal end of the main outer body 210 of the dispense interface 200. Such a mounting hub can be configured to be releasably connected to a needle assembly. As just one example, this connecting means 216 may comprise an outer thread that engages an inner thread provided along an inner wall surface of a needle hub of a needle assembly, such as the needle assembly 400 illustrated in
The dispense interface 200 further comprises a first inner body 220. Certain details of this inner body are illustrated in
In addition, as can be seen in
Preferably, this dispense interface 200 further comprises a valve arrangement. Such a valve arrangement could be constructed so as to prevent cross contamination of the first and second medicaments contained in the first and second reservoirs, respectively. A preferred valve arrangement may also be configured so as to prevent back flow and cross contamination of the first and second medicaments.
In one preferred system, dispense interface 200 includes a valve arrangement in the form of a valve seal 260. Such a valve seal 260 may be provided within a cavity 231 defined by the second inner body 230, so as to form a holding chamber 280. Preferably, cavity 231 resides along an upper surface of the second inner body 230. This valve seal comprises an upper surface that defines both a first fluid groove 264 and second fluid groove 266. For example,
Together, the first and second grooves 264, 266 converge towards the non-return valves 262 and 268 respectively, to then provide for an output fluid path or a holding chamber 280. This holding chamber 280 is defined by an inner chamber defined by a distal end of the second inner body both the first and the second non return valves 262, 268 along with a pierceable septum 270. As illustrated, this pierceable septum 270 is positioned between a distal end portion of the second inner body 230 and an inner surface defined by the needle hub of the main outer body 210.
The holding chamber 280 terminates at an outlet port of the interface 200. This outlet port 290 is preferably centrally located in the needle hub of the interface 200 and assists in maintaining the pierceable seal 270 in a stationary position. As such, when a double ended needle assembly is attached to the needle hub of the interface (such as the double ended needle illustrated in
The hub interface 200 further comprises a second inner body 230. As can be seen from
Axially sliding the main outer body 210 over the distal end of the drug delivery device attaches the dispense interface 200 to the multi-use device. In this manner, a fluid communication may be created between the first needle 240 and the second needle 250 with the primary medicament of the first cartridge and the secondary medicament of the second cartridge, respectively.
When the interface 200 is first mounted over the distal end of the cartridge holder 40, the proximal piercing end 244 of the first piercing needle 240 pierces the septum of the first cartridge 90 and thereby resides in fluid communication with the primary medicament 92 of the first cartridge 90. A distal end of the first piercing needle 240 will also be in fluid communication with a first fluid path groove 264 defined by the valve seal 260.
Similarly, the proximal piercing end 254 of the second piercing needle 250 pierces the septum of the second cartridge 100 and thereby resides in fluid communication with the secondary medicament 102 of the second cartridge 100. A distal end of this second piercing needle 250 will also be in fluid communication with a second fluid path groove 266 defined by the valve seal 260.
As illustrated in
In one preferred arrangement, the dispense interface is configured so that it attaches to the main body in only one orientation, that is it is fitted only one way round. As such as illustrated in
Near its proximal end 2610, the lock out member 2600 comprises a first spring arm 2630 and a second spring arm 2640. For example, the first spring arm 2630 extends proximally from a first pivot point 2632 of the spring 2600. Similarly, the second spring arm 2640 extends proximally from a second pivot point 2642 of the spring 2600. In the initial spring position illustrated in
The drug delivery device may comprise an electronic circuit for measuring the resistance of the lock out member 2600, for example by contacts that contact the spring arms 2630 and 2640 when the dispense interface 200 is attached to the device 10. By measuring the resistance, the lock out member 2600 may be identified. For example, it may be determined whether a correct lock out member and/or dispense interface is connected by determining whether the resistance of the lockout member 2600 is within a certain range of values.
By providing two second areas 300, 302 the resistance of these areas is measured in series in this case. Since the temperature at the two second areas are very likely the same, this one temperature can still be determined easily by one skilled in the art. By providing two second areas 300, 302 the effect of the temperature on the resistance can be increased in a simple way. By providing the second areas 300, 302 symmetrically in the lock out member 2600, the lock out member 2600 is still stressed uniformly and symmetrically, even with the cut outs.
Of course, different numbers of cut outs in a second area and different numbers of second areas may be provided in a lock out member.
Such cut outs might be produced by first manufacturing the lock out member 2600 as illustrated in
The term “drug” or “medicament”, as used herein, means a pharmaceutical formulation containing at least one pharmaceutically active compound,
-
- wherein in one embodiment the pharmaceutically active compound has a molecular weight up to 1500 Da and/or is a peptide, a proteine, a polysaccharide, a vaccine, a DNA, a RNA, an enzyme, an antibody or a fragment thereof, a hormone or an oligonucleotide, or a mixture of the above-mentioned pharmaceutically active compound,
- wherein in a further embodiment the pharmaceutically active compound is useful for the treatment and/or prophylaxis of diabetes mellitus or complications associated with diabetes mellitus such as diabetic retinopathy, thromboembolism disorders such as deep vein or pulmonary thromboembolism, acute coronary syndrome (ACS), angina, myocardial infarction, cancer, macular degeneration, inflammation, hay fever, atherosclerosis and/or rheumatoid arthritis,
- wherein in a further embodiment the pharmaceutically active compound comprises at least one peptide for the treatment and/or prophylaxis of diabetes mellitus or complications associated with diabetes mellitus such as diabetic retinopathy,
- wherein in a further embodiment the pharmaceutically active compound comprises at least one human insulin or a human insulin analogue or derivative, glucagon-like peptide (GLP-1) or an analogue or derivative thereof, or exedin-3 or exedin-4 or an analogue or derivative of exedin-3 or exedin-4.
Insulin analogues are for example Gly(A21), Arg(B31), Arg(B32) human insulin; Lys(B3), Glu(B29) human insulin; Lys(B28), Pro(B29) human insulin; Asp(B28) human insulin; human insulin, wherein proline in position B28 is replaced by Asp, Lys, Leu, Val or Ala and wherein in position B29 Lys may be replaced by Pro; Ala(B26) human insulin; Des(B28-B30) human insulin; Des(B27) human insulin and Des(B30) human insulin.
Insulin derivates are for example B29-N-myristoyl-des(B30) human insulin; B29-N-palmitoyl-des(B30) human insulin; B29-N-myristoyl human insulin; B29-N-palmitoyl human insulin; B28-N-myristoyl LysB28ProB29 human insulin; B28-N-palmitoyl-LysB28ProB29 human insulin; B30-N-myristoyl-ThrB29LysB30 human insulin; B30-N-palmitoyl-ThrB29LysB30 human insulin; B29-N-(N-palmitoyl-Y-glutamyl)-des(B30) human insulin; B29-N-(N-lithocholyl-Y-glutamyl)-des(B30) human insulin; B29-N-(ω-carboxyheptadecanoyl)-des(B30) human insulin and B29-N-(ω-carboxyhepta-decanoyl) human insulin.
Exendin-4 for example means Exendin-4(1-39), a peptide of the sequence H His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala-Arg-Leu-Phe-Ile-Glu-Trp- Leu-Lys-Asn-Gly-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH2.
Exendin-4 derivatives are for example selected from the following list of compounds:
-
- H-(Lys)4-des Pro36, des Pro37 Exendin-4(1-39)-NH2,
- H-(Lys)5-des Pro36, des Pro37 Exendin-4(1-39)-NH2,
- des Pro36 [Asp28] Exendin-4(1-39),
- des Pro36 [IsoAsp28] Exendin-4(1-39),
- des Pro36 [Met(O)14, Asp28] Exendin-4(1-39),
- des Pro36 [Met(O)14, IsoAsp28] Exendin-4(1-39),
- des Pro36 [Trp(O2)25, Asp28] Exendin-4(1-39),
- des Pro36 [Trp(O2)25, IsoAsp28] Exendin-4(1-39),
- des Pro36 [Met(O)14 Trp(O2)25, Asp28] Exendin-4(1-39),
- des Pro36 [Met(O)14 Trp(O2)25, IsoAsp28] Exendin-4(1-39); or
- des Pro36 [Asp28] Exendin-4(1-39),
- des Pro36 [IsoAsp28] Exendin-4(1-39),
- des Pro36 [Met(O)14, Asp28] Exendin-4(1-39),
- des Pro36 [Met(O)14, IsoAsp28] Exendin-4(1-39),
- des Pro36 [Trp(O2)25, Asp28] Exendin-4(1-39),
- des Pro36 [Trp(O2)25, IsoAsp28] Exendin-4(1-39),
- des Pro36 [Met(O)14 Trp(O2)25, Asp28] Exendin-4(1-39),
- des Pro36 [Met(O)14 Trp(O2)25, IsoAsp28] Exendin-4(1-39),
wherein the group -Lys6-NH2 may be bound to the C-terminus of the Exendin-4 derivative;
or an Exendin-4 derivative of the sequence - H-(Lys)6-des Pro36 [Asp28] Exendin-4(1-39)-Lys6-NH2,
- des Asp28 Pro36, Pro37, Pro38Exendin-4(1-39)-NH2,
- H-(Lys)6-des Pro36, Pro38 [Asp28] Exendin-4(1-39)-NH2,
- H-Asn-(Glu)5des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-NH2,
- des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-(Lys)6-NH2,
- H-(Lys)6-des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-(Lys)6-NH2,
- H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-(Lys)6-NH2,
- H-(Lys)6-des Pro36 [Trp(O2)25, Asp28] Exendin-4(1-39)-Lys6-NH2,
- H-des Asp28 Pro36, Pro37, Pro38 [Trp(O2)25] Exendin-4(1-39)-NH2,
- H-(Lys)6-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-NH2,
- H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-NH2,
- des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
- H-(Lys)6-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
- H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
- H-(Lys)6-des Pro36 [Met(O)14, Asp28] Exendin-4(1-39)-Lys6-NH2,
- des Met(O)14 Asp28 Pro36, Pro37, Pro38 Exendin-4(1-39)-NH2,
- H-(Lys)6-desPro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-NH2,
- H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-NH2,
- des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
- H-(Lys)6-des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
- H-Asn-(Glu)5 des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
- H-Lys6-des Pro36 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-Lys6-NH2,
- H-des Asp28 Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25] Exendin-4(1-39)-NH2,
- H-(Lys)6-des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-NH2,
- H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-NH2,
- des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
- H-(Lys)6-des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(S1-39)-(Lys)6-NH2,
- H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2;
or a pharmaceutically acceptable salt or solvate of any one of the afore-mentioned Exedin-4 derivative.
Hormones are for example hypophysis hormones or hypothalamus hormones or regulatory active peptides and their antagonists as listed in Rote Liste, ed. 2008, Chapter 50, such as Gonadotropine (Follitropin, Lutropin, Choriongonadotropin, Menotropin), Somatropine (Somatropin), Desmopressin, Terlipressin, Gonadorelin, Triptorelin, Leuprorelin, Buserelin, Nafarelin, Goserelin.
A polysaccharide is for example a glucosaminoglycane, a hyaluronic acid, a heparin, a low molecular weight heparin or an ultra low molecular weight heparin or a derivative thereof, or a sulphated, e.g. a poly-sulphated form of the above-mentioned polysaccharides, and/or a pharmaceutically acceptable salt thereof. An example of a pharmaceutically acceptable salt of a poly-sulphated low molecular weight heparin is enoxaparin sodium.
Antibodies are globular plasma proteins (−150 kDa) that are also known as immunoglobulins which share a basic structure. As they have sugar chains added to amino acid residues, they are glycoproteins. The basic functional unit of each antibody is an immunoglobulin (Ig) monomer (containing only one Ig unit); secreted antibodies can also be dimeric with two Ig units as with IgA, tetrameric with four Ig units like teleost fish IgM, or pentameric with five Ig units, like mammalian IgM.
The Ig monomer is a “Y”-shaped molecule that consists of four polypeptide chains; two identical heavy chains and two identical light chains connected by disulfide bonds between cysteine residues. Each heavy chain is about 440 amino acids long; each light chain is about 220 amino acids long. Heavy and light chains each contain intrachain disulfide bonds which stabilize their folding. Each chain is composed of structural domains called Ig domains. These domains contain about 70-110 amino acids and are classified into different categories (for example, variable or V, and constant or C) according to their size and function. They have a characteristic immunoglobulin fold in which two β sheets create a “sandwich” shape, held together by interactions between conserved cysteines and other charged amino acids.
There are five types of mammalian Ig heavy chain denoted by α, δ, ε, γ, and μ. The type of heavy chain present defines the isotype of antibody; these chains are found in IgA, IgD, IgE, IgG, and IgM antibodies, respectively.
Distinct heavy chains differ in size and composition; α and γ contain approximately 450 amino acids and 6 approximately 500 amino acids, while μ and ε have approximately 550 amino acids. Each heavy chain has two regions, the constant region (CH) and the variable region (VH). In one species, the constant region is essentially identical in all antibodies of the same isotype, but differs in antibodies of different isotypes. Heavy chains γ, α and δ have a constant region composed of three tandem Ig domains, and a hinge region for added flexibility; heavy chains μ and ε have a constant region composed of four immunoglobulin domains. The variable region of the heavy chain differs in antibodies produced by different B cells, but is the same for all antibodies produced by a single B cell or B cell clone. The variable region of each heavy chain is approximately 110 amino acids long and is composed of a single Ig domain.
In mammals, there are two types of immunoglobulin light chain denoted by λ and κ. A light chain has two successive domains: one constant domain (CL) and one variable domain (VL). The approximate length of a light chain is 211 to 217 amino acids. Each antibody contains two light chains that are always identical; only one type of light chain, κ or λ, is present per antibody in mammals.
Although the general structure of all antibodies is very similar, the unique property of a given antibody is determined by the variable (V) regions, as detailed above. More specifically, variable loops, three each the light (VL) and three on the heavy (VH) chain, are responsible for binding to the antigen, i.e. for its antigen specificity. These loops are referred to as the Complementarity Determining Regions (CDRs). Because CDRs from both VH and VL domains contribute to the antigen-binding site, it is the combination of the heavy and the light chains, and not either alone, that determines the final antigen specificity.
An “antibody fragment” contains at least one antigen binding fragment as defined above, and exhibits essentially the same function and specificity as the complete antibody of which the fragment is derived from. Limited proteolytic digestion with papain cleaves the Ig prototype into three fragments. Two identical amino terminal fragments, each containing one entire L chain and about half an H chain, are the antigen binding fragments (Fab). The third fragment, similar in size but containing the carboxyl terminal half of both heavy chains with their interchain disulfide bond, is the crystalizable fragment (Fc). The Fc contains carbohydrates, complement-binding, and FcR-binding sites. Limited pepsin digestion yields a single F(ab′)2 fragment containing both Fab pieces and the hinge region, including the H-H interchain disulfide bond. F(ab′)2 is divalent for antigen binding. The disulfide bond of F(ab′)2 may be cleaved in order to obtain Fab′. Moreover, the variable regions of the heavy and light chains can be fused together to form a single chain variable fragment (scFv).
Pharmaceutically acceptable salts are for example acid addition salts and basic salts. Acid addition salts are e.g. HCl or HBr salts. Basic salts are e.g. salts having a cation selected from alkali or alkaline, e.g. Na+, or K+, or Ca2+, or an ammonium ion N+(R1)(R2)(R3)(R4), wherein R1 to R4 independently of each other mean: hydrogen, an optionally substituted C1 C6-alkyl group, an optionally substituted C2-C6-alkenyl group, an optionally substituted C6-C10-aryl group, or an optionally substituted C6-C10-heteroaryl group. Further examples of pharmaceutically acceptable salts are described in “Remington's Pharmaceutical Sciences” 17. ed. Alfonso R. Gennaro (Ed.), Mark Publishing Company, Easton, Pa., U.S.A., 1985 and in Encyclopedia of Pharmaceutical Technology.
Pharmaceutically acceptable solvates are for example hydrates.
Claims
1. An apparatus, comprising:
- a lock out member configured to be implemented into a medical device, the proximal end of the medical device attachable to the distal end of a second medical device,
- wherein said lock out member has at least one first area with a first cross-sectional area and
- wherein said lock out member has at least one second area having a second cross-sectional area smaller than the first cross-sectional area, such that an electric resistance is defined between opposite ends of the lockout member, and
- wherein said lock out member, at least in the at least one second area, is made of a conductive material, and wherein each of the at least one second area comprises one or more cut-outs or perforations.
2. The apparatus according to claim 1, wherein said apparatus further comprises means configured to be conductively attached to a device, capable of measuring the resistance of at least said second area of said lock out spring.
3. The apparatus according to claim 1, wherein the second medical device refers to a main body.
4. The apparatus according to claim 1, wherein the medical device refers to a dispense interface.
5. The apparatus according to claim 1, wherein said second cross-sectional area is at most 30% of said first-cross sectional area.
6. The apparatus according to claim 5, wherein said second cross-sectional area is 20% of said first-cross sectional area.
7. The apparatus according to claim 5, wherein said second cross-sectional area is 10% of said first-cross sectional area.
8. The apparatus according to claim 1, wherein said lock out spring is substantially made of metal.
9. The apparatus according to claim 1, wherein said conductive material comprises a Negative Temperature Coefficient Thermistor or a Positive Temperature Coefficient Thermistor.
10. The apparatus according to claim 1, wherein said lock out spring is configured to be implemented into said medical device by form fit, force fit and/or material bonding.
11. The apparatus according to claim 1, wherein said lock out spring is configured to be implemented close to at least one cartridge containing a liquid of said medical device.
12. The apparatus according to claim 1, wherein said lock out spring is configured to be implemented in contact with at least one cartridge containing a liquid of said medical device.
13. The apparatus according to claim 1, wherein said lock out spring is configured to be implemented into a dispense interface.
14. A method for connecting an apparatus for drug delivery comprising the steps of
- measuring the electric resistance of at least a second area of a lock out spring of an apparatus as claimed in claim 1, and
- determining said electric resistance of at least said second area of said lock out spring.
15. The method according to claim 14, wherein a temperature is determined based at least in part on the determined resistance.
16. The method according to claim 14, wherein the resistance is measured using a direct or indirect method.
17. The method according to claim 14, wherein the resistance is measured before a medical device, to which an element is attached, is used.
18. The method according to claim 15, wherein a user is informed or the use of said medical device is prohibited, if the measured temperature is and/or was outside of a predefined interval.
19. The method according to claim 14, wherein the determined resistance is used to identify the lock out spring.
Type: Application
Filed: Aug 30, 2017
Publication Date: Dec 21, 2017
Inventor: Christian Nessel (Frankfurt am Main)
Application Number: 15/690,612