OPTICALLY BASED BANKENOTE AUTHENTICATION SYSTEM HAVING BROKE DISCRIMINATION
A method and a system are disclosed for processing a banknote. The method includes providing a banknote having at least one photonically active security feature, the banknote being moved along a conveyance path; illuminating the at least one security feature with light from a stimulus source; identifying a location of the at least one security feature by detecting an emission from the security feature; directing an excitation source at the identified location; illuminating the at least security feature with light from the excitation source; and detecting a further emission from the photonically active security feature in response to the light from the excitation source. Further the process includes the step of analyzing the shape and size of each object within an image during the search phase to determine if the object has the expected physical attributes of the real feature.
Latest Spectra Systems Corporation Patents:
The present invention relates generally to optically-based methods and apparatus for identifying optically coded articles. More specifically, the present invention relates to optically-based methods and apparatus for identifying optically coded objects in the image based on size and shape to target only those objects that possess desirable or required physical attributes.
A class of industrial problems exist in which a large number of items must be separated, identified, counted and/or sorted. Present day methods cover a broad spectrum of solutions. One solution applicable to macroscopic and visually identifiable items involves a manual process wherein workers sequentially select items from among many items in a group by identifying an intrinsic characteristic of an item or by a visually-readable coding system that is incorporated into the item. Once selected, the items are directed, either manually or by use of a conveyance, to a location where items possessing a common attribute are stored or further processed. In cases where inventory control is of interest, the selected items can be counted and tabulated either manually by some direct action by a worker or automatically as the selected item passes through a counting device.
In the commercial laundry industry, for example, rental garments are returned in unsorted groups and washed. Workers select single garments, place the garments on a hanger and subsequently onto a conveyor which deposits the garments into one of several holding areas. An appropriate one of the several holding areas is chosen for an individual garment based on a manually read code applied onto the garment, usually inside the collar, which identifies some attribute common to all garments in a holding location. Typically, attributes include, for example, a day of the week, a route number, or an end user name. Similarly, in the linen supply industry, linens are delivered to a laundry in large, unsorted groups. Workers select individual linen items from a group and identify each item by a characteristic thereof, for example, color, shape and/or size. The selected and identified item is then directed to an appropriate area for washing by a specific wash formulation.
As can be appreciated, the manual labor to identify, count, sort and tabulate items (e.g., linen and/or garment items) has numerous limitations. A limitation in processing throughput is of particular interest herein. In some laundries about 100,000 or more individual items must be processed in a single 8-hour work shift. Since workers are required to perform multiple tasks on each item (e.g., identify, count and sort each item), only a limited number of items can be processed by a typical worker in an 8-hour shift. Further, the burden of manually performing multiple tasks on each item may also lead to inaccuracies in the identifying, sorting and counting processes.
In an effort to eliminate, or at least to minimize, the limitations in the manual processes outlined above, automated solutions have been sought. Conventional automated processes have been developed to improve the accuracy of and to minimize the labor required to identify, count and sort individual items. For example, bar code labels (typically interleaved 2 of 5 symbology) and Radio Frequency (RF) chips have been employed to achieve these results. These techniques, however, do have limited longevity particularly since the labels and chips are exposed to the harsh industrial laundry environment. Additionally, a solution which employs the bar coded labels suffers for it is time consuming and, at times, extremely difficult to locate a label on a large item when the label is not properly aligned with, i.e. in a field of view of, the bar code reading device. While RF chips do not suffer from the alignment problem, RF chips are troublesome due to their unproven longevity and high costs.
In U.S. Pat. No. 5,881,886, issued Mar. 16, 1999 an alternate method of identifying items is disclosed. In this alternate method, photonically active materials, such as patches, labels and threads, can be affixed to garments and linens. A suitable selection of the materials each having, for example, a distinct and uniquely identifiable narrow-band lasing emission are utilized to form optically identifiable codes. The codes permit the identification of the garments, linens and other articles. In one embodiment, two or more fibers or threads, herein after referred to as LaserThread™, exhibit detectable emissions that are incorporated into the garments, linens and other articles to optically encode information into these articles. For example, LaserThread™ may be incorporated into garment labels for uniquely identifying a rental garment, or characteristics thereof, during processing. Similarly, LaserThread™ may be sewn into borders of linens, e.g., into the hem of a table linen, for uniquely identifying linens and/or characteristics thereof. The LaserThread™ emits laser-like emissions when excited with, for example, a laser having specific wavelength, pulse energy and pulse duration. Generally, the required excitation laser has a wavelength in the red to blue region of the visible spectrum and can provide radiant energy densities on the order of, for example, about 10 millijoules per square centimeter when an about 10 nanosecond pulse is directed at the LaserThread™. Exemplary excitation sources include, for example, flashlamp-pumped, Q-switched, frequency doubled Nd:YAG lasers, diode-pumped, pumped Q-switched, frequency-doubled Nd:YAG lasers, and sources derived from other nonlinear products involving principally Nd:YAG lasers or other laser crystals.
In U.S. Pat. No. 5,448,582, a multi-phase gain medium is disclosed as having an emission phase (such as dye molecules) and a scattering phase (such as TiO2). A third, matrix phase may also be provided in some embodiments. Suitable materials for the matrix phase include solvents, glasses and polymers. The gain medium is shown to provide a laser-like spectral linewidth collapse above a certain pump pulse energy. The gain medium is disclosed to be suitable for encoding objects with multiple-wavelength codes, and to be suitable for use with a number of substrate materials, including polymers and textiles.
However, commercially available excitation sources suitable to excite photonically active materials such as, for example, LaserThread™, can be costly. Therefore, it can be appreciated that an identification system design which maximizes the efficiency of excitation pulse energy is important. It can further be appreciated that the efficiency of excitation pulse energy can be maximized by tightly controlling the location and orientation of photonically active materials incorporated within an article to be evaluated. If tight controls are maintained, then a narrow excitation beam of fixed orientation can impinge on the photonically active materials incorporated within the article to be evaluated with a predictable degree of certainty. Alternatively, if the controls of the location and orientation of the photonically active materials are relaxed, then a targeting system is needed to locate the photonically active materials incorporated into the articles such that an excitation beam can be directed to excite the materials.
As was discussed above, the ability to tightly control the orientation of photonically active materials incorporated within an article under evaluation is particularly troublesome during various processing operations. For example, a region of the article containing the material may be soiled or otherwise obstructed and, thus, the irradiation of the photonically active materials is prevented.
Additional there is a desirable capability of a targeting system that can resolve and discriminate physical attributes such as shape and size of photonically active materials embedded in various substrates. This capability is particularly advantageous in the processing of banknotes for purposes of authentication. As discussed above, photonically active material can be implemented in the form of fibers, and the fibers can be randomly distributed within a banknote substrate during the manufacturing process. Each fiber in its pristine size and shape contains the electromagnetically emitting and amplifying materials necessary for producing a characteristic laser-like emission such that only one of the plurality of fibers in a banknote needs to be interrogated to determine banknote authenticity.
A problem arises, however, when a single banknote contains simultaneously two or more populations of photonically active fibers, each with different emissions characteristics of which only one contains the characteristics associated with an authentic fiber. Such can be the case during the banknote paper making process when the paper maker adds repulped paper as a small percentage of the total pulp used to make the banknote substrate to reduce waste and cost. Waste paper from the manufacturing process, also known as broke, is subjected to severe mechanical and chemical action to cause defiberization in the repulping process. Mechanical action can include cutting, shredding and shearing forces, while chemical action can consist of strong alkali, acid and buffer solutions under elevated pressures and temperatures. The various mechanical actions on the photonically active fibers can cut and/or break the fibers to produce a wide distribution in length extending up to pristine fiber length. Electromagnetic emission for a shortened fiber may be spectrally shifted and/or broadened to an extent where the altered emission is spectrally resolvable from pristine-fiber emission. In this case the short-fiber emission would not be deemed authentic and the banknote would be falsely identified as suspect.
It is therefore advantageous to include in a targeting system a means to discriminate against broke fibers to reduce the possibility of misclassifying authentic banknotes. Accordingly, the inventor has realized that it is advantageous to employ a targeting system and an identification system with processes for separating, identifying, counting, optionally sorting and authenticating and validating the authenticity of articles.
BRIEF SUMMARY OF THE INVENTIONIn a preferred, but not limiting embodiment the articles being examined are banknotes and similar basically flat items, and these teachings are employed during the processing of banknotes, such as the validation and authenticity checking of banknotes and other items containing at least one security feature.
A method and a system are disclosed for processing a banknote. The method includes providing a banknote having at least one photonically active security feature, the banknote being moved along a conveyance path; illuminating the at least one security feature with light from a stimulus source; identifying a location of the at least one security feature by detecting an emission from the security feature; directing an excitation source at the identified location; illuminating the at least security feature with light from the excitation source; and detecting a further emission from the photonically active security feature in response to the light from the excitation source.
The step of identifying may include operating a linescan camera having scan axis that is parallel to a conveyance axis, or operating a linescan camera having scan axis that is perpendicular to the conveyance axis. The step of identifying may also include operating a single element detector to accumulate a line scan along the banknote at a same cross-axis location as a field of view of the excitation source.
An additional step for identifying may also include algorithms for processing the image captured by a linescan camera to characterize and discriminate objects in the image based on size and shape to target only those objects that possess desirable or required physical attributes.
In one embodiment the step of directing includes delaying operation of the excitation source for a period of time that is a function of at least a speed of conveyance, and a distance between a illumination points of the stimulus source and the excitation source.
The photonically active security feature can include at least one thread or planchette or other structure, such as a tape, having a substrate material and an electromagnetic radiation emitting and amplifying material for providing a laser-like emission. The structure can be embedded within or disposed on the banknote. The detected further emission may be an optical code for identifying at least one characteristic of the banknote.
In another implementation of the photonically active security feature, a plurality of fibers, each containing an electromagnetic radiation emitting and amplifying material for providing a laser-like emission, can be randomly distributed within the banknote substrate during manufacturing of the banknote paper. The detected further emission from the fibers may be used to determine banknote authenticity.
These embodiments and other aspects of this invention will be readily apparent from the detailed description below and the appended drawings, which are meant to illustrate and not to limit the invention, and in which:
The invention will be more completely understood through the following detailed description, which should be read in conjunction with the attached drawings. While detailed embodiments of the invention are disclosed herein, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the invention in virtually any appropriately detailed embodiment.
This invention can employ a laser-like emission, such as one exhibiting a spectrally and temporally collapsed emission, or a secondary emission. A secondary emission can be any optical emission from a photonically active material that results directly from the absorption of energy from an excitation source. Secondary emissions, as employed herein, may encompass both fluorescence and phosphorescence.
It should thus be realized at the outset that the teachings of this invention could be employed to identify articles that have been coded with materials not exhibiting laser-like action, such as phosphor particles, dyes (without scatterers) and semiconductor materials. One particularly suitable type of semiconductor materials are fabricated to form quantum well structures which emit light at wavelengths that can be tuned by fabrication parameters.
As such, in one aspect this invention employs an optical gain medium that is capable of exhibiting laser-like activity or other emissions from the medium when excited by a source of excitation energy. The optical gain medium can be comprised of a matrix phase, for example a polymer or substrate, that is substantially transparent at wavelengths of interest; and an electromagnetic radiation emitting and amplifying phase, for example a chromic dye or a phosphor. In some embodiments the optical gain medium also comprises a high index of refraction contrast electromagnetic radiation scattering phase, such as particles of an oxide and/or scattering centers within the matrix phase.
The teaching of this invention can employ a dye or some other material that is capable of emitting light, possibly in combination with scattering particles or sites, to exhibit electro-optic properties consistent with laser action; i.e., a laser-like emission that exhibits both a spectral linewidth collapse and a temporal collapse at an input pump energy above a threshold level.
In a further aspect, and as was indicated above, this invention employs a secondary emission that can be any optical emission from a photonically active material that results directly from the absorption of energy from an excitation source. Secondary emissions can include both fluorescent and phosphorescent emissions.
The invention can be applied to the construction of articles, for example, a garments or linens, wherein the article further includes at least one portion containing the gain medium for providing a narrow-band (e.g., about 3 nm) optical radiation emission in response to pump energy above a threshold fluence. The narrow-band optical radiation emission permits the identification (and possible sorting) of the article.
An elongated filament structure such as a thread, for example, LaserThread™, includes electromagnetic radiation emitting and amplifying material. The electromagnetic radiation emitting and amplifying material, possibly in cooperation with scatterers, provides the laser-like emission, as described above. In one embodiment of the invention, one or more elongated filament structures that are, for example, about 5-50 μm in diameter, are disposed on or within at least one region of a garment or a linen. A plurality of emission wavelengths can be provided, thereby wavelength encoding the garment or linen.
In accordance with another aspect of the present invention, a structure employing one or more optical gain medium films deposited around a core provides the laser-like emission, as described above. The structure may be of various geometries including beads, disks and spheres. The beads, disks and spheres being incorporated into an article to permit the identification and optional sorting of the article during processing operations.
In
As has been made apparent above with a number of exemplary embodiments, an optical gain medium capable of emitting a laser-like or a secondary emission may be employed to identify articles. Such articles may be, but are not limited to, linens, or garments, or various types of textiles generally.
In the presently preferred embodiment the articles can include banknotes, other types of currency, checks and bank drafts, and other similar types of articles that have a generally flat appearance when placed on a conveyance, such as a conveyor belt, for transport past or through the system in accordance with these teachings.
As is described below, it is an aspect of these teachings to provide an identification (and possible sortation) system which includes an acquisition system, a pointing system, an excitation system and a detection system. In accordance with this aspect of these teachings the identification system permits photonically active materials disposed on an article under evaluation to be located (i.e. acquired), an excitation source to be pointed at the acquired materials, an excitation emission to be directed thereon, and an optical response (laser-like emission or secondary emission) to the excitation emission from the materials to be detected. In this way, a “search, point, shoot and detect” system enables the identification of articles during processing operations.
It should be noted that having identified an article that it may be desirable to subsequently sort or segregate the identified article from other articles. In this case any suitable type of diverter, manipulator, or sorter apparatus can be coupled to the identification system for affecting further processing of identified (or of non-identified) articles. However, the practice of these teachings does not require that sorting be performed, or that identified objects be segregated in any way one from another or from other objects.
The articles 30 include at least one region 38 containing photonically active materials. As noted above, the photonically active materials permit an optical encoding of the articles 30 for purposes of, for example, identifying and optionally sorting the articles 30 during processing operations. By example, the at least one region 38 may be a label sewn, glued, or otherwise affixed or bonded, to the article 30. As can be appreciated from the various embodiments outlined above, the optical coding and identification of the articles 30 may be performed by detecting a unique laser-like or secondary emission from the at least one region 38 in response to an excitation.
Target acquisition utilizes a luminous property of photonically active material attached to the article 30 under evaluation to locate a brightest or strongest emitting area of the article 30. That is, an area 50 of the article 30 that, in response to an excitation, emits a luminous or fluorescent emission within one or more specific ranges of wavelengths.
In
Suitable examples of the stimulus source 52 may include, for example, X-ray sources, Xenon flashlamps, fluorescent lamps, incandescent lamps, LEDs, laser diodes and a widely divergent laser beam. In one embodiment, the suitable stimulus source 52 may be produced by modification of the excitation device 44.
Referring in this regard to
The normal mode of operation of the reader system is as follows. First the mirror 5 is positioned into the beam path 7. When an article is sensed in the acquisition field of view the excitation source is triggered causing a uniform illumination to envelope the target area and thus the article. The uniform illumination causes coded materials on the article to fluoresce and be sensed by the acquisition camera. The mirror 5 is removed from the beam path 7, and the pointing system is commanded to point in the direction of the brightest detected fluorescence. When the article is sensed in the target area of the pointing system the excitation source is again triggered to cause a targeted narrow beam of excitation to impinge on the coded material. After the coded emission is detected and analyzed, mirror 5 is again positioned into the beam path 7 and the cycle is ready to repeat.
In general, a suitable stimulus source 52 should be understood to be an electromagnetic radiant source whose emission is absorbed by the photonically active material and which has sufficient photonic energy to induce a detectable fluorescence in the photonically active material. By example, in an embodiment wherein the above-identified LaserThread™ are incorporated in the article 30 under evaluation, a Xenon flashlamp having an emission spectrally narrowed by a filter is a suitable stimulus source 52, since LaserThread™ can be caused to fluoresce upon absorption of visible radiation from the Xenon flashlamp. In another embodiment where the article 30 is self-emissive at a location where the photonically active material is incorporated, a stimulus source 52 is not required. Such self-emissive articles include, for example, bioluminescent and chemiluminescent articles.
The luminous or fluorescent emissions from the photonically active material, either induced or intrinsic, are detected by, for example, an imaging electronic camera system 56 of the target acquisition system 40. A field of view of the camera system 56 is preferably coincident with or smaller than the divergent beam pattern 53 of the stimulus source 52. In essence, the field of view 55 of the camera system 56 defines the field of acquisition 32 of the reader system 34.
In one embodiment, fluorescent emissions from the photonically active material pass through a filter which substantially passes the fluorescent emission but which attenuates strongly diffuse scattered or specularly reflected stimulus emissions from the article 30. By locating appropriate filters, i.e. filters that possess non-coincident passbands, within a path of the stimulus source 52 and the camera 56, the primary emissions from the stimulus source 52, after impinging the article 30, are not detected by the camera 56. Electronic signals from the imaging camera system 56 may be analyzed by a computer or dedicated image processing electronics 41 to determine the location, within the field of view 55, of the strongest emitting area 50 of the article 30. Conventional image acquisition and processing software can be used for this purpose.
It should be appreciated that in applications in which only a single fluorescent section of the article 30 can be present at a time within the field of acquisition 32, other imaging detectors such as, for example, Position Sensing Detectors can be used instead of the imaging camera system 56.
Information that specifies the location within the field of view of the strongest emitting area 50 of the article 30 is passed from the target acquisition system 40, i.e. the camera system 56 or the processing electronics 41, to a beam pointing system 42. The beam pointing system 42 processes the location information and, in response thereto, aligns or directs emissions 60 from the excitation device 44 to impinge the article 30 substantially on the strongest emitting area 50.
The pointing system 42 may include an agile beam steering device 58 that is responsive to the location information (e.g., electronic control signals) from the target acquisition system 40. It should also be appreciated that the pointing system 42 may include acousto-optic beam deflectors, rotating polygonal mirrors, lens (microlens array) translators, resonant galvanometer scanners and holographic scanners, or any combination thereof.
In one embodiment of the pointing system 42, a two-axis beam steering pointing system is comprised of two non-resonant galvanometer scanners that each have a mirror attached to the scanner shaft. One scanner causes beam deflection along one axis and redirects emissions from an excitation source onto the second scanner mirror. A rotation axis of the second scanner is orthogonally oriented with respect to the first scanner axis so that the excitation emission is redirected toward the article and is scannable in two independent axes to substantially cover the entire acquisition field of the acquisition system 40. Mirror reflection characteristics are specified to allow high throughput for the excitation system while also allowing high throughput for the secondary emission or lasing emission from the photonically active material attached to the article 30. Preferably, the mirrors possess a high energy-density damage threshold at the excitation wavelength.
The pointing system 42 also includes a diplexer 59 for combining the emissions 60 from the excitation source 44 propagation toward the article 30 with a secondary emission or a laser-like emission 62 from the photonic material, which is propagating toward the receiving device 46.
The diplexer 59 may be realized as a number of conventional devices that utilize any one of three properties of photons to permit collinear counterpropagation of a light beam. The three properties are polarization, wavelength and vector momentum. As a result, the diplexer 59 may be embodied as a polarizing beam splitter (when polarization is utilized), a dichroic mirror (when wavelength is utilized), and a free-space non-reciprocal element referred to in the art as a circulator (when vector momentum is utilized). Another suitable embodiment is a partially reflecting mirror, known also as a beam splitter, which can be employed when the losses associated with this device can be tolerated in the overall system design.
An element 66 of the receiving system 46 is a functional equivalent of the diplexer 59 but, typically, is configured as another one of the three devices described above. In one embodiment, for example, the diplexer 59 is a dichroic mirror and the element 66 is a polarizing beam splitter. In effect, the element 66 serves to add an output of a coherent or calibration source 64 to the collinear beam passed from the pointing device 42 to the receiving device 46. The addition of the output of the coherent source 64 is performed during a calibration operating mode of the reader system 34.
During the calibration operating mode, the output of the coherent source 64 is added to the collinear beam to permit the calibration of the directed position determined by the pointing system 42 to the strongest emitting area 50 detected by the acquisition device 40. In one embodiment, the coherent source 64 is comprised of, for example, a laser diode, a Helium-Neon laser or another suitable source emitting radiation detectable by the camera system 56 of the acquisition device 40.
In a preferred calibration process, a flat target is placed in the field of view 55 of the camera system 56 during a calibration operation so that a portion of light from the coherent source 64 propagating collinearly with the excitation source light 60 and the received light 62 is scattered from the flat target into the camera system 56. A data table is generated and stored in the computer or dedicated image processing electronics 41 of the acquisition system 40. Entries in the data table link a unique detected strongest emitting area 50 of the article 30 and a unique directed position of the pointing system 42. During a normal operating mode of the reader system 34, i.e. when the calibration mode and, thus, the coherent source 64 is off, the data table is used to aid the determination of an appropriate position for the pointing system 42 to direct the excitation source emission 60. That is, by comparing a position of a detected strongest emitting area 50 within the acquisition field to corresponding entries within the data table an associated directed position for the pointing system 42 is determined.
Discussing calibration now in further detail,
In one embodiment, however, where the articles are known to lie flat on the conveyor, this type of system configuration points to the desired point with the benefit of using one less scanning mirror.
A calibration procedure may thus be performed for the acquisition angle A1 to agree with the pointing angle A2 in
The calibration apparatus of
During the calibration procedure a command signal is supplied to the pointing mirrors to point the coherent source in a direction of, for example, ray R1, and the coherent source light scattered form the target area is detected by the camera 56 as ray R3. There is now a mapping of the command signal to the pointing mirrors and a detected position in the acquisition camera 56. A table is constructed so as to contain all possible combinations of command signals to the mirrors, and the corresponding detected position in the camera 56. After this calibration procedure is completed, the calibration table is used in reverse, such that now a detected position in the camera 56 can be used to define a unique command signal to the mirrors, which reproduces precisely the same field angle.
Table 1 of
As noted above, the excitation of the photonically active material, for example, LaserThread™, is provided by the excitation source 44. The specifications for suitable excitation sources 44, therefore, are determined by the requirements of the photonically active material of the articles 30 of interest. By example, the LaserThread™ are excited to lase when exposed to the output of a laser having specific characteristics of wavelength, pulse energy and pulse duration. Generally, the required excitation laser has a wavelength in the red to blue region of the visible spectrum and can provide radiant energy densities on the order of, for example, about 10 millijoules per square centimeter when an about 10 nanosecond pulse is directed at the LaserThread™. Exemplary excitation sources include, for example, flashlamp-pumped, Q-switched, frequency doubled Nd:YAG lasers, diode-pumped, Q-switched, frequency-doubled Nd:YAG lasers, and sources derived from other nonlinear devices involving principally Nd:YAG lasers or other laser crystals. To increase system tolerance to pointing errors (i.e. misdirection of the excitation source 44) and variations in article movement through the field of view 55 of the acquisition system 40, the excitation beam 60 is preferably made to be divergent such that it illuminates a spot on the article that is larger than the reader's imaging and pointing resolutions.
The photonically active material is excited by the excitation source 44 to fluoresce to provide optical coding, and the source 44 may be other than a laser source. In this case the source is selected to produce in the detector a high signal to noise ratio signal that is adequate for spectral analysis. For example, the source could comprise a spectrally filtered and substantially collimated Xenon flashlamp.
As was noted above, the pointing system 42 collects and directs the secondary or lasing emission 62 from the photonically active material into the receiving system 46 via the beamsteering device 58 and the diplexer 59. In one embodiment, the receiving system 46 includes a dispersive element for spectrally analyzing the received emission. For example, the receiving system 46 can couple received emissions into an optical fiber which is coupled to a grating spectrometer and multi-channel detector element such as, for example, a CCD array. Alternatively, the receiving system 46 includes an imaging spectrometer for spectrally analyzing emissions in one axis, and spatially imaging the emissions along an orthogonal axis. A computer or dedicated electronic processor can then analyze the spectral and/or spatial signature of the emissions to output an indication of an identity of an article under evaluation.
As can be appreciated, a finite amount of time is required to acquire a field of data from the camera system 56 and to process that data in the acquisition system 40 in order to locate a brightest fluorescent area 50 of the article 30. During this time the article 30 may be traveling through the field of acquisition 32 of the reader system 34. Unless the displacement of the article as a result of this traveling is accounted for the pointing system 42 will direct the emission from the excitation source 44 to an incorrect location, i.e. a location where the brightest fluorescent area 50 of the article 30 was previously detected. Therefore, it is within the scope of these teachings to account for the displacement of the article 30 during examination. For example, in one embodiment the acquisition system 40 is physically separated from the other components of the reader system 42 by a distance at least as large as would be necessary to account for the time to acquire and process the location of the brightest fluorescent area 50, plus any settling time needed for mechanical elements of the pointing system 42 to direct the emission 60 from the excitation source 44. As can be appreciated, this time period will vary by specific implementation factors such as, for example, the velocity of the conveyance device 36 which moves the article 30 through the field of acquisition 32.
In an exemplary embodiment, the acquisition 40 and pointing 42 systems are activated by a first sensor located to detect the article's movement through the acquisition field 32, while the excitation 44 and receiving 46 systems are activated by a second sensor. In accordance with this embodiment of the present invention, the location of the first and the second sensors are adjusted to minimize and substantially remove errors resulting from the movement of the article 30.
In one embodiment, the reader system 34 identifies a plurality of articles within a stationary acquisition field. In this embodiment, the articles which each are smaller in size than the acquisition field and may be scattered randomly in the acquisition field or, alternatively, separated in an orderly way such that adjacent articles are not in contact. An ordered separation of articles may be achieved by, for example, utilizing a segmented tray. All articles within the acquisition field can be illuminated with a single pulse from a stimulus source, for example, the stimulus source 52. The single pulse is of sufficient energy to excite fluorescence in all the articles within the acquisition field. It can be appreciated, as noted above, that the articles can also be self-fluorescent.
In this embodiment, a target acquisition algorithm identifies all detectable luminous emissions from the articles that exceed a predetermined threshold brightness value. Target locations detected by the acquisition system may then be serially passed to the pointing, excitation and receiving systems to identify and to optionally permit sorting of the articles within the acquisition field.
The pointing system directs emissions from the excitation system and the response from the photonically active material to the receiving system. However, it should be appreciated by one of skill in the art that other embodiments are also within the scope of these teachings. For example, one embodiment may have only the excitation system directed through the pointing system while the receiving system views the entire acquisition field separately to collect the response of the photonically active material, or vice versa. In another embodiment, the acquisition, the excitation and the receiving systems may each be directed through the pointing system.
Although described in the context of preferred embodiments, it should be realized that a number of modifications to these teachings may occur to one skilled in the art. By example, the teachings of this invention are not intended to be limited to the identification and optional sorting of any specific type of article. As such, those skilled in the art will recognize that the teachings of this invention can be employed in a large number of identification applications.
It may be desirable to use the reader system with a broad range of coded materials such that one excitation source wavelength is insufficient to provide adequate excitation for all of the materials. In this case, the excitation source could be adapted to include multiple wavelengths. In one embodiment, a second wavelength is generated from the first wavelength through a nonlinear optical process (for example, through Stokes shifting), and the two wavelengths are made to be collinear using one of the previously described diplexer devices. The two beams are preferably collinear so as to pass through the pointing system.
Furthermore, it may desirable to detect properties of the article other than the coded material. For example, the color of the article onto which the coded material is applied may be useful to determine. In this embodiment, other properties of the article could be determined by incorporating other suitable detectors into the receiver of the reader, in addition to the spectrometer of the preferred embodiment. The optical axis of this additional detector(s) may be brought into collinearity with the optical axis of the receiver by a diplexer element. It may be desirable to make the field of view of the additional detector(s) substantially broader than the field of view of the spectrometer so that these other properties of the article are measured at locations near the location of the coded material.
The reader device in one embodiment has capabilities of acquiring targets in a two-dimensional field of view (by an area camera) and exciting/detecting targets in a two-dimensional field of view (by a two-dimensional pointing system). However, other embodiments can be provided by considering acquiring capabilities restricted to one dimension (by a line-scan camera), or point detection (single element, e.g., a non-imaging detector), as will be described in further detail below. One may also consider a pointing system with capabilities restricted to one dimension (single axis scanner), or point excitation/spectral detection (no scanner). Various permutations are also possible. A reader system of the former type (single axis scanning) is particularly applicable when the articles have the coded material applied at a known location on the article along the dimension parallel to the direction of travel along the conveyance. In this case, the motion of the conveyor can be used to replace the scanner function. This configuration may be subject to parallax errors (as shown in
Another embodiment applies to a case where the code on the article is distributed in several separate locations, and where the separation distance is greater than the spatial resolution of the pointing system. For example, the optical code may require a plurality of wavelengths and thus a plurality of coding materials that cannot be readily collocated. In this case, the acquisition system identifies the locations on the article of each of the component materials. The reader system then sequentially points, excites, and detects the optical wavelength from each of the materials on the article, subsequently “building” the code by an appropriate combination or concatenation of the individual wavelengths detected.
The foregoing apparatus and methods involve locating a laser-like material embedded in or located upon a substrate through detection of the materials' fluorescence using the stimulus source 52, and then exciting the material to lase using the excitation source 1.
Further in accordance with these teachings, time is used to target the material for lasing purposes after it has been detected through fluorescence by the several means discussed below. The arrival of the lasing material in the field of view or acquisition of the excitation source 1 is anticipated with knowledge of the target location relative to the search detector, such as the camera system 56, and the conveyance speed of the article 30. This is an extension of the search, point and shoot approach as the scanning mechanism, such as the beam steering device 58, used for targeting is replaced by the conveyance of the article 30.
In general, the search, point and shoot approach may be employed for the decoding of lasing materials (e.g., security threads or fibers) embedded in substrates, such as banknotes.
The search, point and shoot technique may be implemented through several means, largely differing in the fluorescence detection method. Exemplary choices include the following approaches: an area detector such as the camera 56 shown in
In the first case, the entire substrate is imaged at once while under illumination by the fluorescence stimulus. An image-processing algorithm executed by the processor 41 selects the section of substrate that both contains lasing material and that is in the field of view of the excitation source 1. When the target area arrives at the excitation source 1, by measuring the time required for the substrate to move by the conveyance, the excitation source 1 is activated and the lasing emission detected. If the field of view of the excitation source 1 could be extended to include the entire cross-axis dimension of the substrate, such as through a scanning mechanism, then essentially the entire substrate could be targeted by the combination of time and the scanning mechanism, such as the beam steering device 58.
The second case can be implemented in at least two ways. Referring to
In all searching methods disclosed that do not employ a scanning mechanism in the cross-axis dimension, the area density of lasing material in the substrate is preferably high enough to ensure that at least one segment of the lasing material will be within the area of the substrate formed by the cross-axis field of view of the excitation source 1 and the width (conveyance axis dimension) of the substrate. In contrast, the use of a scanning mechanism in the cross-axis direction requires that only one segment of lasing material be present in the entire substrate. The optimum choice of detection method and use of the scanner is driven primarily by economics, the desired detection accuracy, and the desired security of the feature 30A, where the security of the feature 30A is likely to be significantly enhanced if only one security feature 30A is present in each substrate, such as one per banknote.
The security feature 30A could be one or more pieces of LaserThread™, and/or one or more planchettes having lasing capabilities, and/or a tape or other structure capable of outputting the laser-like emission when illuminated by the excitation source 1. While the presence or absence of the emission at one or more wavelengths may be indicative of a characteristic such as the authenticity or genuineness of the article being examined, such as a banknote, currency, check, bill of credit, etc., for convenience referred to herein collectively as a banknote, the presence or absence of the emission can also be used for other purposes. These other purposes include, but are not limited to, determining one or more other characteristics such as the value or denomination of the banknote and/or a place of origin of the banknote. The emissions can also be used for simply counting the banknotes. All of these various activities may be referred to generically as processing a banknote containing at least one security feature. While embodiments of the invention disclosed herein describe detection based on specific responses to excitation sources, one skilled in art should recognize that additional parameters may be incorporated, such as the temporal decay of emissions, the spectral signature of the host, and response time and change in emission under thermal excitation, without deviating from the scope of the invention.
In all searching methods disclosed that produce a 2-dimensional image of a least a section of the substrate containing a security feature, the preferred embodiment includes a means for characterizing and discriminating certain physical attributes of the security feature to target only those objects in the image that possess particular predetermined desirable or required attributes. As an example, when fibers are randomly dispersed in a substrate for purposes of creating a secure document, different populations of fibers lengths can exist in the document if the paper maker used broke during the paper making process. Only fibers of the correct length will produce an authentic laser-like emission and therefore it is advantageous to select only those fibers of the correct length for targeting to reduce misclassification of banknote authenticity.
In the first step, the analog image of a small region around and containing a candidate object is thresholded to produce a binary image where each pixel with analog amplitude above a threshold is assigned a ‘1’, and each pixel with amplitude less than the threshold is assigned a ‘0’. The threshold can either be predetermined or calculated based upon the average amplitude of the region, or other properties of the region. The second step identifies and labels all of the objects in the region. An object is a collection of one or more pixels where every pixel in the object has nearest-neighbor connectivity to another pixel in the same object. Next, a skeletonization algorithm is used to reduce each object in the region to a single pixel width; objects like fibers that have several pixels of width in the binary image are reduced to one-pixel width while preserving their length. In the final step, the number of pixels comprising the object that has the region's center pixel as a member is determined and compared to the number of pixels that are known to comprise a pristine fiber.
In other implementations of a security feature, for example planchettes and threads, it may be desirable to analyze the shape and size of each object within an image during the search phase to determine if the object has the expected physical attributes of the real feature. Using image processing algorithms at this stage, before exciting with the excitation source, reduces misclassification of authentic banknotes.
The aspects, embodiments, features, and examples of the invention are to be considered illustrative in all respects and are not intended to limit the invention, the scope of which is defined only by the claims. Other embodiments, modifications, and usages will be apparent to those skilled in the art without departing from the spirit and scope of the claimed invention.
The use of headings and sections in the application is not meant to limit the invention; each section can apply to any aspect, embodiment, or feature of the invention.
Throughout the application, where compositions are described as having, including, or comprising specific components, or where processes are described as having, including or comprising specific process steps, it is contemplated that compositions of the present teachings also consist essentially of, or consist of, the recited components, and that the processes of the present teachings also consist essentially of, or consist of, the recited process steps.
In the application, where an element or component is said to be included in and/or selected from a list of recited elements or components, it should be understood that the element or component can be anyone of the recited elements or components and can be selected from a group consisting of two or more of the recited elements or components. Further, it should be understood that elements and/or features of a composition, an apparatus, or a method described herein can be combined in a variety of ways without departing from the spirit and scope of the present teachings, whether explicit or implicit herein.
The use of the terms “include,” “includes,” “including,” “have,” “has,” or “having” should be generally understood as open-ended and non-limiting unless specifically stated otherwise.
The use of the singular herein includes the plural (and vice versa) unless specifically stated otherwise. Moreover, the singular forms “a,” “an,” and “the” include plural forms unless the context clearly dictates otherwise. In addition, where the use of the term “about” is before a quantitative value, the present teachings also include the specific quantitative value itself, unless specifically stated otherwise. As used herein, the term “about” refers to a ±10% variation from the nominal value.
It should be understood that the order of steps or order for performing certain actions is immaterial so long as the present teachings remain operable. Moreover, two or more steps or actions may be conducted simultaneously.
Where a range or list of values is provided, each intervening value between the upper and lower limits of that range or list of values is individually contemplated and is encompassed within the invention as if each value were specifically enumerated herein. In addition, smaller ranges between and including the upper and lower limits of a given range are contemplated and encompassed within the invention. The listing of exemplary values or ranges is not a disclaimer of other values or ranges between and including the upper and lower limits of a given range.
While the invention has been described with reference to illustrative embodiments, it will be understood by those skilled in the art that various other changes, omissions and/or additions may be made and substantial equivalents may be substituted for elements thereof without departing from the spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, unless specifically stated any use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.
Claims
1. A method for processing a banknote, comprising:
- providing a banknote having at least one photonically active security feature, the banknote being moved along a conveyance path;
- illuminating the at least one security feature with light from a stimulus source;
- identifying a location of the at least one security feature by detecting an emission from the security feature;
- characterizing a size or shape of the security feature and targeting said security feature if it meets a threshold size or shape;
- directing an excitation source at the targeted security feature;
- illuminating the targeted security feature with light from the excitation source; and
- detecting a further emission from the photonically active security feature in response to the light from the excitation source.
2. The method of claim 1, wherein the security feature is selected from the group consisting of: fibers, threads, planchettes and combinations thereof.
3. The method of claim 1, wherein the step of identifying includes operating a linescan camera having scan axis that is perpendicular to a conveyance axis.
4. The method of claim 1, wherein the step of identifying includes operating a single element detector to accumulate a line scan along the banknote at a same cross-axis location as a field of view of the excitation source.
5. The method of claim 1 wherein said security feature is comprised of features having a plurality of dimensional characteristics, wherein only those features having substantially the correct dimensional characteristic will create an authenticatable emission.
6. The method of claim 5, wherein said banknote is first scanned to identify a security feature having the correct dimensional characteristic.
7. The method of claim 5, wherein a binary analog image of a region of the banknote is thresholded to identify all of the security features in the region and a security feature having a requisite length is illuminated with said excitation source to authenticate the banknote.
8. The method of claim 7, wherein the photonically active security feature is comprised of at least one thread comprising a substrate material and an electromagnetic radiation emitting and amplifying material for providing a laser-like emission.
9. The method of claim 7, wherein the photonically active security feature is comprised of at least one planchette comprising a substrate material and an electromagnetic radiation emitting and amplifying material for providing a laser-like emission.
10. The method of claim 7, wherein the detected further emission is comprised of an optical code for identifying at least one characteristic of the banknote.
11. A system for processing a banknote, comprising:
- a conveyance for moving a banknote having at least one photonically active security feature along a conveyance path;
- a stimulus source for illuminating the at least one security feature with light;
- a first detector for detecting an emission from the security feature in response to light from the stimulus source to characterize a size or shape of the security feature in order to target said security feature if said security feature it meets a threshold size or shape;
- an excitation source disposed for illuminating the targeted security feature;
- means coupled to the detector for identifying a location of the at least one targeted security feature and for directing the excitation source at the identified location; and
- a second detector for detecting a further emission from the targeted photonically active security feature in response to light from the excitation source.
12. The system of claim 11, wherein the security feature is selected from the group consisting of: fibers, threads, planchettes and combinations thereof.
13. The system of claim 11, wherein the step of identifying includes operating a linescan camera having scan axis that is perpendicular to a conveyance axis.
14. The system of claim 11, wherein the first detector includes a single element detector to accumulate a line scan along the banknote at a same cross-axis location as a field of view of the excitation source.
15. The system of claim 11, wherein said security feature is comprised of features having a plurality of dimensional characteristics, wherein only those features having substantially the correct dimensional characteristic will create an authenticatable emission.
16. The system of claim 15, wherein said banknote is first scanned to identify a security feature having the correct dimensional characteristic.
17. The system of claim 15, wherein a binary analog image of a region of the banknote is thresholded to identify all of the security features in the region and a security feature having a requisite length is illuminated with said excitation source to authenticate the banknote.
18. The system of claim 17, wherein the photonically active security feature is comprised of at least one thread comprising a substrate material and an electromagnetic radiation emitting and amplifying material for providing a laser-like emission.
19. The system of claim 17, wherein the photonically active security feature is comprised of at least one planchette comprising a substrate material and an electromagnetic radiation emitting and amplifying material for providing a laser-like emission.
20. The system of claim 17, wherein the detected further emission is comprised of an optical code for identifying at least one characteristic of the banknote.
Type: Application
Filed: Aug 25, 2016
Publication Date: Mar 1, 2018
Applicant: Spectra Systems Corporation (Providence, RI)
Inventor: William Goltsos (Barrington, RI)
Application Number: 15/247,330