RETRACTABLE TUBE FOR CPAP
A retractable tube for use in a respiratory apparatus for delivering a pressurized flow of breathable gas to a patient has an internal diameter of about 30 mm or less, a weight of about 500 g/m or less, and an unextended length of about 2 m or less. The retractable tube includes a portion that is extensible in a range of about 40%-400% of its unextended length in response to force applied to the tube, and the extensible portion is configured to return the tube to its unextended length in the absence of force, or reduced force, applied to the tube.
This application is a continuation of U.S. application Ser. No. 12/211,896, filed Sep. 17, 2008, currently pending, which claims priority to U.S. Applications 60/973,902, filed Sep. 20, 2007, 60/987,825, filed Nov. 14, 2007, and 61/031,407, filed Feb. 26, 2008, the entire contents of each of which is incorporated herein by reference.
FIELD OF THE INVENTIONThe present invention relates to a retractable tube for use in Continuous Positive Airway Pressure (CPAP) therapy used to treat, for example, Sleep Disordered Breathing (SDB), such as Obstructive Sleep Apnea (OSA).
BACKGROUND OF THE INVENTIONThe application of Continuous Positive Airway Pressure (CPAP) for therapy of Obstructive Sleep Apnea (OSA) was first taught by Sullivan in U.S. Pat. No. 4,944,310. In CPAP treatment of OSA, pressurized air or other breathable gas is provided to the entrance of a patients' airways at a pressure elevated above atmospheric pressure, for example in the range of 4 to 30 cm H2O to “splint” open the patients' airways and prevent obstructive apneas. Apparatus to deliver CPAP therapy typically comprise a blower, or flow generator, an air delivery conduit, hose or tube, and a patient interface, for example a mask.
In order to deliver effective therapy, a substantially leak proof seal should be maintained between the patient interface and the face of the patient. Undesirable forces applied to the mask, for example, tube drag or the weight of the mask, or components attached to the mask, tend to disrupt the seal formed between the patient interface and the patient.
Various solutions have been proposed for reducing the undesirable forces that may be applied to a mask, including tube drag. Some of these solutions include a rotating or swiveling elbow to connect the air delivery hose and the patient interface. The rotating or swiveling elbow allows some form of rotation before the tube pulls on the patient interface and disrupts the seal. Some prior art swivel and elbow arrangements use tight tolerances, which might result in friction in the movement of the swivel elbow, thus reducing the mobility and flexibility of the elbow swivel joint.
Another solution which has been proposed to reduce the application of undesirable forces on the patient interface is a headgear to provide stability to the patient interface and maintain the seal during the application of the forces, including tube drag. The headgear assembly may be designed such that the stabilizing straps are provided at an angle with respect to the patient interface and the face of the patient to counteract the undesirable forces, including tube drag. In one known mask assembly, the headgear includes a cap portion with four straps. In use, the cap portion engages the back of the patient's head and two lower straps extend between the cap portion and a nasal mask while the two upper straps extend between the cap portion and a forehead support. Such headgear assemblies may be uncomfortable for the patient and difficult to adjust to obtain a substantially leak proof seal.
Another solution for offsetting tube drag and other undesirable forces on the patient interface include clips that connect the air delivery conduit or hose to the patient's clothing, such as the patient's pyjamas. Clips have also been used to connect the air delivery conduit or hose to a stationary object, such as the patient's bed, to remove or reduce tube drag affecting the mask seal.
It has also been proposed to provide a short tube between the air delivery conduit or hose to provide extra flexibility and rotation to the air delivery conduit or hose before the tube pulls on the mask.
SUMMARY OF THE INVENTIONOne aspect of the invention relates to a retractable tube for use in a CPAP apparatus that reduces, or eliminates, the application of tube drag forces on the patient interface.
Another aspect of the invention relates to a retractable tube for use in a CPAP apparatus that reduces tangling of the air delivery hose or conduit.
Still another aspect of the invention relates to a retractable tube for use in a CPAP apparatus that reduces the weight and/or bulk of the retractable tube.
Yet another aspect of the invention relates to a retractable tube for use in a CPAP apparatus that is formed of biocompatible material and can be cleaned and disinfected numerous times.
A further aspect of the invention relates to a retractable tube for use in a CPAP apparatus that permits a headgear to maintain a seal between the patient interface and the patient's face using less straps and/or straps of reduced elastic force.
According to a sample embodiment of the invention, a retractable tube for use in a respiratory apparatus for delivering a pressurized flow of breathable gas to a patient tube has an internal diameter of about 30 mm or less, a weight of about 500 g/m or less, and an unextended length of about 2 m or less. The retractable tube comprises a portion that is extensible in a range of about 1:1-1:4 in response to force applied to the tube, and the extensible portion is configured to return the tube to its unextended length in the absence of force, or reduced force, applied to the tube.
According to another sample embodiment of the invention, a retractable tube for use in a respiratory apparatus for delivering a pressurized flow of breathable gas to a patient has an internal diameter of about 30 mm or less, a weight of about 500 g/m or less, and an unextended length of about 2 m or less. The retractable tube comprises a portion that is extensible in a range of about 1:1-1:2 in response to force applied to the tube, and the extensible portion is configured to return the tube to its unextended length in the absence of force, or reduced force, applied to the tube. The retractable tube has a spring constant of about 25 N/m or less.
According to a further sample embodiment of the invention, a method of delivering a flow of pressurized breathable gas from a flow generator configured to generate the pressurized flow of breathable gas to a patient interface configured to engage a patient's face and deliver the pressurized flow of breathable gas to the patient's airways comprises connecting the flow generator and the patient interface using a retractable hose.
According to an even further sample embodiment of the invention, a respiratory apparatus for delivering a flow of pressurized breathable gas to a patient comprises a flow generator configured to generate the pressurized flow of breathable gas; a patient interface configured to engage the patient's face and deliver the pressurized flow of breathable gas to the patient's airways; and a retractable tube to connect the flow generator and the patient interface.
According to still another sample embodiment of the invention, a mask system comprises a patient interface; and a retractable tube provided to the patient interface.
According to yet another sample embodiment of the invention, a mask system for a patient comprises a patient interface; a tube provided to the patient interface; and means for maintaining a low profile of the tube according to positioning of the patient.
According to a further sample embodiment of the invention, a retractable tube comprises a plurality of ring-shaped elements; and an elastic member connected to each of the ring-shaped elements.
Other aspects, features, and advantages of the inventions will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, which are a part of this disclosure and which illustrate, by way of example, principles of the inventions.
The accompanying drawings facilitate an understanding of the various embodiments of this invention. In such drawings:
The following description is provided in relation to several embodiments which may share common characteristics and features. It is to be understood that one or more features of any one embodiment may be combinable with one or more features of the other embodiments. In addition, any single feature or combination of features in any of the embodiments may constitute additional embodiments.
In this specification, the word “comprising” is to be understood in its “open” sense, that is, in the sense of “including”, and thus not limited to its “closed” sense, that is the sense of “consisting only of”. A corresponding meaning is to be attributed to the corresponding words “comprise”, “comprised” and “comprises” where they appear.
The term “air” will be taken to include breathable gases, for example air with supplemental oxygen. It is also acknowledged that the blowers described herein may be designed to pump fluids other than air.
First Retractable Tube Embodiment
Referring to
Second Retractable Tube Embodiment
According to another sample embodiment of the invention shown in
It should be appreciated that the tube may also be integrally formed to include a non-retractable section and a retractable section. Such a tube would have an adjustable length, but fixed minimum and maximum lengths. An example of such a configuration would be similar to a flexible drinking straw.
It should also be appreciated that the retractable tube 6 may be connected in series to other retractable tubes. Other such retractable may vary in flexibility so as to tailor the flexibility of the tubing system. Other such retractable tubes may also vary in length to the first retractable tube.
Retractable Tube, Connector and Strap
As shown in
Referring to
First Strap and Connector Embodiment
Referring to
Second Strap and Connector Embodiment
According to another sample embodiment shown in
Third Retractable Tube Embodiment
Referring to
As shown in
The pitch 36b of the spring 36 may affect the maximum elongation of the retractable tube spring 36 and the retractable tube 6. Generally speaking, the larger the pitch 36b, the larger the maximum elongation of the retractable tube 6 may be. The pitch 36b of the spring 36 may be, for example, between about 2 mm-9 mm, for example about 3 mm-6 mm, for example about 4.8 mm. It should be appreciated that the pitch 36b of the spring 36 may vary along the length of the spring 36 to provide sections of the retractable tube 6 with different elongations.
As shown in
The spring 36 may not be attached to the tube 6, but may be positioned around the exterior of the hose 6, or positioned within the tube 6. In other words, the tube 6 may comprise a single cover material and the spring 36 may be provided on the outside of the cover material in an exposed state, or may be provided on the inside of the cover material and exposed to the flow of pressurized breathable gas. The spring 36 may extend substantially the full length of the retractable tube 6, i.e. from one end 37 to the other end 38. It should be appreciated that the spring 36 may be provided along less than substantially the entire length of the retractable tube, or that multiple springs may be provided intermediate the ends, or multiple springs may be provided along substantially the entire length of the retractable tube 6. The ends 37, 38 of the retractable tube 6 may be configured to connection to a swivel elbow assembly of a mask, an outlet of a flow generator, or an inlet or outlet of a humidifier. In general, the ends 37, 38 of the retractable tube 6 may be configured for connection to any component of a CPAP apparatus, or component usable with a CPAP apparatus.
The cover material, or materials, may be bowed outwardly and/or inwardly between coils of the spring 36 to provide the cover material(s) with room to move out of the way when the retractable tube 6 retracts and the coils of the spring 36 move closer together.
The cover materials 32, 34 may be formed of biocompatible materials that are capable of being used in the air path of the CPAP apparatus. The biocompatible material used to form the cover materials should be able to be disinfected to be used multiple times and for multiple patients. The cover materials 32, 34 may be plastic or silicone or thermoplastic urethane (TPU) or combinations thereof, and in the case of exposure to the air path, the cover materials may be formed of biocompatible materials that are capable of being used in the air path of the CPAP apparatus.
The spring 36 may be formed of metal or plastic, and in the case of exposure to the air path, the spring may be formed of biocompatible material(s) capable of being used in the air path of the CPAP apparatus.
As the tube 6 may be used as a pressure tube in a CPAP apparatus, the spring 36 is configured to have a bias that exerts a retracting force on the cover materials 32, 34. The spring 36 may be configured so that the spring continues to apply the retracting force even when the tube 6 is in its fully retracted state. Spring 36 thus may be a coiled spring that still provides retracting force even when fully retracted. From the natural retracted state, the spring 36 is stretched before the cover materials 32, 34 are placed onto it. When the spring 36 is released, the tube naturally takes on its fully retracted, or neutral, state.
The material used for the retractable tube 6 may affect it spring characteristics. For example, the material used for spring 36 may have a tensile modulus of about 150-250 MPa, for example about 160-240 MPa, as another example about 160-220 MPa, as a further example about 180-200 MPa, as a still further example about 180 MPa, and as an even further example about 188 MPa. The spring 36 may be formed of, for example, polyester elastomer, such as HYTREL® 5556 or 5526 from DuPont.
The spring 36 and the connector, or cuff, 10 may be made from the same material to improve manufacturing efficiency, for example, by thermally forming the spring and connector/cuff.
Fourth Retractable Tube Embodiment
Referring to
Fifth Retractable Tube Embodiment
As shown in
The extensible cord 50 may be connected to the strap 12 by a winding mechanism 52. The winding mechanism 52 may be a spring biased winding mechanism, e.g. similar to a seat belt retractor mechanism, that is configured to wind the cord 50 around a spool or reel contained in the winding mechanism 52. When the patient's head moves, for example as shown in
According to another sample embodiment of the invention shown in
Providing the retractable tube in connection with the swivel elbow of the patient interface reduces, or eliminates, the force of tube drag applied to the patient interface which reduces, or eliminates, a major component of force applied to the patient interface. This allows the design of the CPAP apparatus to focus on supporting the weight of the patient interface to maintain a substantially leak proof seal. The requirements for supporting the weight of the patient interface to maintain a substantially leak proof seal are much less than the forces contributed by tube drag. In addition, the design of the CPAP apparatus may balance the force from the retractable tube against the tension of the headgear necessary to maintain a substantially leak proof seal.
Referring to
As shown in
The retractable tube may have a length of up to about 2 m. For example, the retractable tube of
Stretch ratio is the change in the size of the pitch 36b from the relaxed, or neutral state (
The retractable tube should have a spring constant of about 25 N/m or less, for example, about 7 N/m. The retractable tube may have an internal diameter up to about 30 mm, for example between about 10-20 mm, for example about 12 mm, or as another example about 8 mm It should be appreciated that the internal diameter of the retractable tube may be determined on the pressure of the flow of breathable gas. For example, the retractable tube may be provided with an internal diameter of about 13.3 mm to deliver a flow of pressurized breathable gas at 12 cm H2O. The weight of the retractable tube may be up to about 500 g/m, for example about 100 g/m or less, or as another example about 50 g/m or less.
The use of the retractable tube reduces the forces applied to the patient interface by tube drag and allows the headgear to use fewer, or no, straps which improves patient comfort. The use of fewer straps for the headgear also improves the stability of the patient interface as fewer straps are available to destabilize the mask.
The retractable tube also reduces tangling of the tube during use and may reduce the size, weight and bulk of the CPAP apparatus by providing a flexible and extensible path for the flow of pressurized breathable gas that may be shorter, smaller, and/or lighter than currently used tubes or hoses. The retractable tube is highly bendable and this is readily apparent by comparison with the tubes of prior art masks.
Referring to
A test was performed to measure tube deflection responsive to an applied force. Each tube was set up in a cantilever arrangement as shown in
Table 1 shows that the retractable tube according to the sample embodiment is about three times more bendable than the ResMed's Swift™ tube and Sleepnet's IQ® tube and about ten times more bendable than the Respironic's Optilife™ short tube. For comparison, the results are charted in
The sample embodiment of the retractable tube of sample number 4 has a moderate stretch ratio compared to prior art masks as is evident from Table 2 below.
A stretch ratio of the retractable tube should be in a range of about 1:1-1:4, for example 1:2, or 2:3. The retractable tube may thus be able to increase in length from about 40-100% (+/−20%) to accommodate movement of the patient, for example head movement. For example, the retractable tube may be configured to permit the patient's head to tilt all the way from a fully nodding position (i.e. chin touching chest) to a fully tilted position (i.e. head fully back). The retractable tube may also be configured, for example, to permit the patient's head to turn fully from side-to-side (i.e. left to right).
The retractable tube according to the sample embodiment of sample number 4 has a relatively low spring constant compared to the other prior art tubes discussed in Table 1. The spring constants of the tubes were measured using an Instron® machine, schematically illustrated in
Although the sample embodiments have been shown and described as including a mask covering the patient's mouth and nose, it should be appreciated that any patient interface may be used, including a mask that covers only the patient's nose, nasal prongs or pillows, an interface comprising cannulae, or an interface that includes a cushion that covers the patient's mouth and includes nasal prongs or pillows connected to the cushion. The patient interface may also comprise a frame and a foam provided to the frame. The patient interface may also comprise the frame and a foam with a cannula seal or nasal prongs provided to the frame.
While the invention has been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. Also, the various embodiments described above may be implemented in conjunction with other embodiments, e.g., aspects of one embodiment may be combined with aspects of another embodiment to realize yet other embodiments. Further, each independent feature or component of any given assembly may constitute an additional embodiment. Furthermore, each individual component of any given assembly, one or more portions of an individual component of any given assembly, and various combinations of components from one or more embodiments may include one or more ornamental design features. In addition, while the invention has particular application to patients who suffer from OSA, it is to be appreciated that patients who suffer from other illnesses (e.g., congestive heart failure, diabetes, morbid obesity, stroke, barriatric surgery, etc.) can derive benefit from the above teachings. Moreover, the above teachings have applicability with patients and non-patients alike in non-medical applications.
Claims
1-20. (canceled)
21. A Continuous Positive Airway Pressure (CPAP) system configured to deliver positively pressurized breathable gas to a patient's airways, the CPAP system comprising:
- a patient interface configured to sealingly engage the patient's face;
- a retractable air delivery tube configured to deliver the breathable gas to the patient interface, the retractable air delivery tube comprising a helical spring with a plurality of coils that bias the retractable air delivery tube to an unextended length that does not exceed 1 m in length, the retractable air delivery tube being extensible by about 40-100% of the unextended length, having an internal diameter between 10 mm and 20 mm, having a weight per unit length of 100 g/m or less and bowing outwardly between the coils of the helical spring;
- a swivel elbow assembly connecting the patient interface to the retractable air delivery tube; and
- headgear connected to the patient interface and configured to support the patient interface on the patient's head, the headgear being limited to a pair of side portions that are connectable to the patient interface and a rear portion connecting the side portions and being configured to engage a rear side of the patient's head.
22. The CPAP system of claim 21, wherein a bendability of the retractable air delivery tube is such that when the retractable air delivery tube is set up in cantilever arrangement with a supported end and an unsupported portion and an 8.3 g weight is attached to a free end of the unsupported portion, the unsupported portion of the retractable air delivery tube bends at least 78 degrees from a longitudinal axis of the supported end.
23. The CPAP system of claim 21, wherein the retractable air delivery tube bows outwardly between the coils of the helical spring when the retractable air delivery tube is fully extended.
24. The CPAP system of claim 21 further comprising a cuff at an end of the retractable air delivery tube that is opposite the swivel elbow assembly, the cuff being configured to connect to a humidifier or a flow generator.
25. The CPAP system of claim 21, wherein the helical spring is provided along the entire length of the retractable air delivery tube.
26. The CPAP system of claim 21, wherein the helical spring is integrally formed with the retractable air delivery tube.
27. The CPAP system of claim 21, wherein the helical spring is made of plastic.
28. The CPAP system of claim 21, wherein the patient interface comprises nasal prongs or nasal pillows.
29. The CPAP system of claim 21 further comprising a flow generator connected to the retractable air delivery tube, the flow generator being configured to pressurize the breathable gas.
30. The CPAP system of claim 21 further comprising a humidifier connected to the retractable air delivery tube and a flow generator connected to the humidifier, wherein the flow generator is configured to pressurize the breathable gas and the humidifier is configured to humidify the breathable gas.
31. The CPAP system of claim 21, wherein the retractable air delivery tube is configured to reduce or eliminate the application of a tube drag force on the patient interface.
32. The CPAP system of claim 21 further comprising a cuff at an end of the retractable air delivery tube that is opposite the swivel elbow assembly, the cuff being configured to connect to a humidifier or a flow generator,
- wherein a bendability of the retractable air delivery tube is such that when the retractable air delivery tube is set up in cantilever arrangement with a supported end and an unsupported portion and an 8.3 g weight is attached to a free end of the unsupported portion, the unsupported portion of the retractable air delivery tube bends at least 78 degrees from a longitudinal axis of the supported end,
- wherein the retractable air delivery tube bows outwardly between the coils of the helical spring when the retractable air delivery tube is fully extended,
- wherein the helical spring is provided along the entire length of the retractable air delivery tube,
- wherein the helical spring is integrally formed with the retractable air delivery tube,
- wherein the helical spring is made of plastic, and
- wherein the patient interface comprises nasal prongs or nasal pillows.
33. A Continuous Positive Airway Pressure (CPAP) system configured to deliver positively pressurized breathable gas to a patient's airways, the CPAP system comprising:
- a patient interface configured to sealingly engage the patient's face;
- a retractable air delivery tube configured to deliver the breathable gas to the patient interface, the retractable air delivery tube comprising a helical spring with a plurality of coils that bias the retractable air delivery tube to a neutral length that does not exceed 1 m in length, the retractable air delivery tube being extensible by about 40-100% of the neutral length, having an internal diameter between 10 mm and 20 mm, having a weight per unit length of 100 g/m or less and bowing outwardly between the coils of the helical spring;
- a swivel elbow assembly connecting the patient interface to the retractable air delivery tube; and
- headgear connected to the patient interface and configured to support the patient interface on the patient's head, the headgear being limited to side portions that are connectable to the patient interface and are configured to engage the patient's cheeks, wherein the side portions of the headgear split into two branches,
- wherein the retractable air delivery tube is at the neutral length when there is an absence of external compressing and extending forces acting on the retractable air delivery tube.
34. The CPAP system of claim 33, wherein a bendability of the retractable air delivery tube is such that when the retractable air delivery tube is set up in cantilever arrangement with a supported end and an unsupported portion and an 8.3 g weight is attached to a free end of the unsupported portion, the unsupported portion of the retractable air delivery tube bends at least 78 degrees from a longitudinal axis of the supported end.
35. The CPAP system of claim 33, wherein the retractable air delivery tube bows outwardly between the coils of the helical spring when the retractable air delivery tube is fully extended.
36. The CPAP system of claim 33 further comprising a cuff at an end of the retractable air delivery tube that is opposite the swivel elbow assembly, the cuff being configured to connect to a humidifier or a flow generator.
37. The CPAP system of claim 33, wherein the helical spring extends the entire length of the retractable air delivery tube.
38. The CPAP system of claim 33, wherein the helical spring is integrally formed with the retractable air delivery tube.
39. The CPAP system of claim 33, wherein the helical spring is made of plastic.
40. The CPAP system of claim 33, wherein the patient interface comprises nasal prongs or nasal pillows.
41. The CPAP system of claim 33 further comprising a flow generator connected to the retractable air delivery tube, the flow generator being configured to pressurize the breathable gas.
42. The CPAP system of claim 33 further comprising a humidifier connected to the retractable air delivery tube and a flow generator connected to the humidifier, wherein the flow generator is configured to pressurize the breathable gas and the humidifier is configured to humidify the breathable gas.
43. The CPAP system of claim 33, wherein the retractable air delivery tube is configured to reduce or eliminate the application of a tube drag force on the patient interface.
44. The CPAP system of claim 33 further comprising a cuff at an end of the retractable air delivery tube that is opposite the swivel elbow assembly, the cuff being configured to connect to a humidifier or a flow generator,
- wherein a bendability of the retractable air delivery tube is such that when the retractable air delivery tube is set up in cantilever arrangement with a supported end and an unsupported portion and an 8.3 g weight it attached to a free end of the unsupported portion, the unsupported portion of the retractable air delivery tube bends at least 78 degrees from a longitudinal axis of the supported end,
- wherein the retractable air delivery tube bows outwardly between the coils of the helical spring when the retractable air delivery tube is fully extended,
- wherein the helical spring is provided along the entire length of the retractable air delivery tube,
- wherein the helical spring is integrally formed with the retractable air delivery tube,
- wherein the helical spring is made of plastic, and
- wherein the patient interface comprises nasal prongs or nasal pillows.
Type: Application
Filed: Dec 4, 2017
Publication Date: Apr 5, 2018
Inventors: Michiel Kooij (Sydney), Gerard Michael Rummery (Woodford), Robert Edward Henry (Sydney)
Application Number: 15/830,673