GASKET WITH ELECTRICAL ISOLATING COATINGS
An electrically isolating gasket is disclosed wherein a coating layer is disposed on at least one surface, and in some embodiments, on all surfaces, of the disc-shaped core gasket component of the electrically isolating gasket. The core gasket component can be made of a metallic material and may include one or more grooves in each axial surface of the core gasket component. When the core gasket component includes such grooves, the coating can be applied to all surfaces of the grooves as well as all other surfaces of the core gasket component so that the coating encapsulates the core gasket component. The coating layer can be, for example, polyimide, polyamide, ceramic, and aluminum oxide.
The present application claims priority to U.S. Provisional Patent Application No. 62/404,673, filed Oct. 5, 2016, the entirety of which is hereby incorporated by reference.
BACKGROUNDProviding gaskets with electrically isolating properties is desired in a variety of different industries and applications. However, many limitations exist with respect to previously known gaskets having electrical isolating properties.
For example, in some cases, the electrical isolation properties of these gaskets are not high enough for a given application or industry. This may be because the material used to provide electrically isolating properties is not a high dielectric material.
In some instances, gaskets with electrically isolating properties are limited to lower temperature applications because they are not capable of withstanding exposure to high temperatures. In one example, gaskets with electrical isolating properties use glass reinforced epoxy (GRE). However, GRE has a maximum glass transition temperature in the range of from 250 to 350° F. When gaskets with GRE are exposed to temperatures above this range, the GRE becomes soft and rubber-like, and the GRE subsequently lacks the strength to properly support the sealing elements, thus leading to gasket failure. Additionally, GRE is typically adhered to a core of a gasket through the use of adhesive. This adhesive may fail at elevated temperatures and pressures, which can result in delamination.
Many gaskets incorporating materials having electrically isolating properties have larger thicknesses due to the material that is added to the core of the gasket in order to impart electrically isolating properties. Many common isolation materials have a dielectric strength value of between 400 and 800 volts/mil. Accordingly, a thick gasket is necessary to develop enough voltage resistance for common applications. These higher-thickness gaskets result in limitations on where the gaskets can be used.
Other problems associated with previously known gaskets having electrically isolating properties include structure complexity, limited dimensional stability, and limited chemical resistance. Thus, a need exists for an improved gasket having electrically isolating properties.
SUMMARYDescribed herein are various embodiments of a gasket having electrically isolating properties. In some embodiments, the gasket includes a core gasket component having a coating or film of dielectric material provided on at least one surface of the core gasket component. In some embodiments, the coating or film comprises polyimide, ceramic, or aluminum oxide. In some embodiments, the coating or film is formed on all surfaces of the core gasket component, including on the surfaces of any grooves and/or protrusions formed in/on the axial surfaces of the core gasket component. A core gasket component fully encapsulated by the coating or film is also described herein.
With reference to
The core gasket component 110 can generally have a disc shape such that the gasket 100 is suitable for placement between, e.g., flanges of adjacent pipe segments. The dimensions of the core gasket component 110 (e.g., outer diameter, inner diameter, thickness between axial surfaces, etc.) are generally not limited and may be selected based on the specific application in which the gasket is to be used.
The material of the core gasket component 110 is generally not limited provided the core gasket component 110 is suitable for use in a gasket, including meeting or exceeding the properties required for the specific application in which the gasket 100 is used. The material of the core gasket component 110 will typically be an electrically conductive material since an object of the present application is to provide an electrically isolating coating to the core. In some embodiments, the material of the core gasket component 110 is a metal. In some embodiments, the material of the core gasket component 110 is stainless steel.
As noted above, the core gasket component 110 may include one or more grooves formed in one or more axial surface of the core gasket component 110. In some embodiments, the grooves are circular grooves aligned concentrically with the core gasket component 110, though other configurations can be used. In some embodiments, the grooves formed in one axial surface are identical to the grooves formed in the opposing axial surface, though other, non-symmetric configurations are also possible. In
While grooves are specifically mentioned above and throughout this document, the core gasket component 110 may include raised features in place of or in addition to grooves. Raised features can be used to, for example, lock a seal in place or serves as stress concentrators.
With reference now to
While not shown in any of
The specific number of grooves 115 provided in the core gasket component 110 is not limited. Furthermore, the cross-sectional shape, depth, width, and placement (e.g., radial distance away from the inner diameter) of each groove is generally not limited. As shown in
In some embodiments, the grooves 115 formed in the core gasket component 110 are used as sealing grooves. These sealing grooves are configured such that one or more sealing elements can be disposed within the sealing grooves 115. Any type of sealing element can be disposed in the sealing grooves 115, including for example E-rings, C-rings, O-rings, and spiral wound-type seals. In some embodiments, and as shown in
In some embodiments, the grooves 115 are shaped and dimensioned such that only a single sealing element fits within the groove. For example, the radially outer groove 115 can be shaped and dimensioned such that an E-ring disposed therein occupies the entirety of the groove 115 and leaves no additional space for other components, such as a compression limiter. The groove 115 can be shaped and dimensioned in this manner because in the embodiments described herein, the gasket retainer (i.e., core gasket component 110) itself may act as the compression limiter, thereby eliminating the need for a separate compression limiter component being incorporated into the gasket 100.
The gasket 100 further includes a dielectric coating 120. As noted above, the dielectric coating 120 is applied to at least one surface of the core gasket component 110, either partially (such as is shown in
In some embodiments, the dielectric coating 120 formed on the one or more surfaces of the core gasket component 110 is formed with a uniform thickness, including when the dielectric coating 120 is provided on all surfaces of the core gasket component 110. The thickness of the dielectric coating is generally not limited. In some embodiments, the thickness of the dielectric coating is in the range of less than 6 mm. In some embodiments, the thickness of the coating is 0.381 mm or less, such as 0.127 mm or less.
In some embodiments, the thickness of the dielectric coating 120 may vary, such as in a scenario where the thickness of the coating on the groove surfaces (or on raised feature surfaces) is less than the thickness of the coating on other surfaces (axial or radial) of the core gasket component 110. Alternatively, the thickness of dielectric coating on groove and/or raised feature surfaces can be greater than on the other surfaces of the core gasket component 110. The thickness of the dielectric coating can also vary from groove to groove.
In some embodiments, the dielectric coating 120 is polyimide, polyamide, ceramic, or aluminum oxide, with polyimide being a preferred material.
In some embodiments, the gasket 100, including any coating material, is free of glass reinforced epoxy (GRE).
The coating 120 may be applied to the core gasket component 110 using any known technique for applying a coating to a base substrate. In some embodiments, the coating 120 is applied to the core gasket component 110 in a liquid form and then cured to form a solidified coating. In some embodiments, the curing is carried out in a continuous manner, which improves the throughput of the manufacturing process and makes the process more economically feasible. In some embodiments, the continuous curing process is carried out using a continuous infrared process or by continuously passing the core gasket component having liquid coating disposed therein through a convection oven. In some embodiments, the coating 120 is applied directly to the core gasket component 110 without the need for an intermediate adhesive or bonding layer.
The dielectric coating 120 being applied to all surfaces of the core gasket component 110 provides a gasket 100 that is electrically isolated from both any seals used with the gasket as well as from metallic flange surfaces that the gasket may be disposed between.
In some embodiments, the gasket described herein may further include an inner diameter seal, such as the inner diameter seal described in U.S. Published Application No. 2015/0276105. Other inner diameter seals may also be used.
The gasket described herein may be thinner, seal better, improve electrical isolation, and/or provide a more robust and reliable platform for fire-safe gaskets than previously known gasket materials. The gasket material described herein also advantageously eliminates any need for glass reinforced epoxy (GRE) in the gasket material. The gasket material described herein also provides stabilized material thickness and tolerance controls. The gasket material described herein expands the operating temperatures and electrical resistance of the product and allows for entry into new spaces of development, such as steam and nuclear service. The gasket described herein also expands pressure capabilities.
The gasket described herein further provides high dielectric strength, permeation resistance, tight tolerance capabilities, impact resistance, strong environmental protection, improved chemical resistance, and a simplified structure (i.e., less components to the overall gasket).
Problems that may be solved and/or advantages that may be achieved by the gasket described herein include, but are not limited to: improving electrical isolation properties of the dielectric components of the gasket through the use of high dielectric material; reducing external corrosion through complete encapsulation of the gasket retainer; increasing temperature ranges, allowing for use in wider variety of applications where current offerings of isolating gaskets include GRE; eliminating observed problem of failure of adhesive between GRE and retainer material commonly seen at elevated temperatures and pressures; decreasing gasket thickness and thereby allowing for use in a wider variety of applications through the use of thinner dielectric materials, which allows for ease in installation; decreasing the number of gasket components and thereby reducing complexity by eliminating, e.g., a backup ring compression limiting device as what is currently seen in similar isolating gasket configuration; increasing dimensional stability through use of materials that have controlled tolerances; increasing the ability to hold tight tolerances throughout the manufacturing process; improving sealing performance through the elimination of permeation in current gasket facing material as well as providing a more dimensionally stable gasket sealing surface; reducing exposed metal and electrical conduction points by being fully encapsulated in a dielectric material; providing a variety of coatings that can be applied for gasket use in a wider variety of applications; providing the ability to vary coating thickness to accommodate different applications and flange faces; eliminating GRE from the gasket; providing coatings that allow for better sealing in the event of exposure to media that is not compatible with GRE; controlling gasket colorations to thereby allow for different colors to signify different coatings; allowing for use of varied metallic retainers; metallic retainer coated with dielectric barrier will continue to act as compression limiter in the event of fire preventing leakage due to loss of stress of the gasket or possible expansion and over compression of the seal; non-permeable coating mitigates explosive decompression in systems where drastic pressure changes can occur; and; ability to utilize conductive sealing elements such as explosive decompression resistant O-rings.
The technology described herein is disclosed in the context of a gasket. However, the same principles can be applied to other types of pipe isolation components. For example, the features described herein, including coating a pipe isolation component partially or fully with a dielectric material such as a polyimide, could be applied to the flanges of a monolithic isolation joint, such as the ElectrosStop® Monolithic Isolation Joint manufactured by GPT of Wheat Ridge, Colo.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Claims
1. An electrically isolating gasket comprising:
- a metallic core gasket component, the core gasket component having a disc shape and including one or more grooves formed in an axial face of the metallic core gasket component; and
- a coating formed on one or more surfaces of the metallic core gasket component, the coating comprising a dielectric material;
- wherein the coating is provided on at least one surface of the one or more grooves.
2. The electrically isolating gasket of claim 1, wherein the core gasket component is made from stainless steel.
3. The electrically isolating gasket of claim 1, wherein the coating material is selected from the group consisting of polyimide, polyamide, ceramic, and aluminum oxide.
4. The electrically isolating gasket of claim 3, wherein the coating material is polyimide.
5. The electrically isolating gasket of claim 1, wherein all surfaces of the one or more grooves are coated by the coating.
6. The electrically isolating gasket of claim 1, wherein all surfaces of the core gasket component are coated by the coating.
7. The electrically isolating gasket of claim 6, wherein the coating has a uniform thickness.
8. The electrically isolating gasket of claim 7, wherein the thickness is less than 6 mm.
9. The electrically isolating gasket of claim 7, wherein the thickness is less than 0.381 mm.
10. The electrically isolating gasket of claim 7, wherein the thickness is less than 0.127 mm.
11. The electrically isolating gasket of claim 1, wherein the core gasket component includes a radially outer groove and a radially inner groove in a first axial surface of the core gasket component, and a radially outer groove and a radially inner groove in the second axial surface of the core gasket component, wherein the grooves in the first axial surface are concentrically aligned and the grooves in the second axial surface are concentrically aligned.
12. The electrically isolating gasket of claim 11, wherein the diameter of the radially outer groove in the first axial surface is equal to the diameter of the radially outer groove in the second axial surface, and the diameter of the radially inner groove in the first axial surface is equal to the diameter of the radially inner groove in the second axial surface.
13. The electrically isolating gasket of claim 12, wherein a sealing mechanism is disposed in each of the radially outer groove in the first axial surface and the radially outer groove of in the second axial surface.
14. The electrically isolating gasket of claim 13, wherein the radially outer groove in the first axial surface and the radially outer groove in the second axial surface are each sized and dimensioned such that the sealing mechanism disposed therein occupies all of the groove.
15. The electrically isolating gasket of claim 13, wherein the sealing mechanism is selected from one of an E-ring, a C-ring, an O-ring and a spiral wound-type seal.
16. The electrically isolating gasket of claim 11, wherein a lip seal is disposed in each of the radially inner grooves in the first axial surface and the radially inner groove of the second axial surface.
17. The electrically isolating gasket of claim 6, wherein the thickness of the coating on the surfaces of the grooves is less than the thickness of the coating on the other surfaces of the core gasket component.
18. The electrically isolating gasket of claim 1, wherein the electrically isolating gasket is a glass reinforced epoxy-free electrically isolating gasket.
19. A method of manufacturing an electrically isolating gasket comprising:
- coating every surface of a disc-shaped core gasket component with a liquid coating; and
- continuously curing the liquid coating to hard the liquid coating and secure the coating to the disc-shaped gasket component.
20. The method of manufacturing an electrically isolating gasket of claim 18, wherein continuously curing the liquid coating comprising continuously exposing the liquid coating to infrared radiation.
Type: Application
Filed: Oct 5, 2017
Publication Date: Apr 5, 2018
Inventors: Ian Brown (Denver, CO), Ryan Buttimer (Golden, CO), T. Scott Tanner (Rochester, NY)
Application Number: 15/726,080