VARIABLE COMPRESSION SURGICAL FASTENER CARTRIDGE
A surgical fastener cartridge is provided and includes a cartridge body having a tissue contacting surface that includes a plurality of fastener retention slots. A plurality of surgical fasteners is operatively disposed in the plurality of fastener retention slots. A plurality of pushers is operably associated with the plurality of surgical fasteners. Each pusher is configured for ejecting an associated surgical fastener towards a depression in an anvil. An actuation sled is housed within the cartridge body and includes a plurality of cam wedges. The plurality of cam wedges configured to sequentially contact the plurality of pushers such that a surgical fastener that is ejected closer to a cut line produces a greater compression force to stapled tissue than a surgical fastener ejected further from the cut line.
This application is a continuation of U.S. application Ser. No. 13/915,730 filed Jun. 12, 2013, which is a continuation of U.S. application Ser. No. 12/410,850 filed Mar. 25, 2009, now U.S. Pat. No. 8,464,922, which claims benefit of Provisional application No. 61/051,890 filed May 9, 2008, and the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.
BACKGROUND 1. Technical FieldThe present disclosure relates to surgical fastener applying apparatus. More particularly, the present disclosure relates to a surgical fastener cartridge that includes a plurality of surgical fasteners and a mechanism for forming the surgical fasteners so as to apply different compressive forces to tissue depending on the location of the tissue with respect to the cartridge, and methods of manufacturing and using the same.
2. Background of the Related ArtCommercially available surgical fastening apparatus are well known in the art, some of which are specifically adapted for use in various surgical procedures including, but not limited to, end-to-end anastomosis, circular end-to-end anastomosis, open gastrointestinal anastomosis, endoscopic gastrointestinal anastomosis, and transverse anastomosis. U.S. Pat. Nos. 5,915,616; 6,202,914; 5,865,361; and 5,964,394 each describe one or more suitable apparatus which may be employed while performing one of these procedures.
In general, a surgical fastening apparatus will include an anvil that is approximated relative to a fastener cartridge during use. The anvil includes depressions that are aligned with, and/or are in registration with slots defined in the cartridge, through which the fasteners will emerge. To effectuate formation, the fasteners emerge from the cartridge and are driven against the anvil. The fastener cartridge typically has one or more rows of fasteners disposed alongside a channel that is configured to accommodate a knife, or other such cutting element, such that tissue can be simultaneously cut and joined together. Depending upon the particular surgical fastening apparatus, the rows of fasteners may be arranged in a linear or non-linear, e.g. circular, semi-circular, or otherwise arcuate configuration.
Various types of surgical fasteners are well known in the art, including but not limited to unitary fasteners and two-part fasteners. Unitary fasteners have a pre-formed configuration and a formed configuration. Unitary fasteners generally include a pair of legs adapted to penetrate tissue and connected by a backspan from which they extend. In use, subsequent to formation, certain types of the unitary fasteners have a “B” shaped configuration. Typically, the two-part fastener includes legs that are barbed and connected by a backspan which are engaged and locked into a separate retainer piece that is usually located in the anvil. In use, the two-part fastener is pressed into the tissue so that the barbs penetrate the tissue and emerge from the other side where they are then locked into the retainer piece. The retainers prevent the two-part fastener from dislodging from the tissue. The two-part fasteners are not intended to be unlocked or removable. They are generally made of a bioabsorbable material.
A common concern in each of these procedures is hemostasis, or the rate at which bleeding of the target tissue is stopped. It is commonly known that by increasing the amount of pressure applied to a wound, the flow of blood can be limited, thereby decreasing the time necessary to achieve hemostasis. To this end, conventional surgical fastening apparatus generally apply two or more rows of fasteners about the cut-line to compress the surrounding tissue in an effort to stop any bleeding and to join the cut tissue together. Each of the fasteners will generally apply a compressive force to the tissue sufficient to effectuate hemostasis, however, if too much pressure is applied, this can result in a needless reduction in blood flow to the tissue surrounding the cut-line. Accordingly, the joining of tissue together in this manner may result in an elevated level of necrosis, a slower rate of healing, and/or a greater convalescence.
Consequently, it would be advantageous to provide a surgical fastening apparatus capable of limiting the flow of blood in the tissue immediately adjacent the cut tissue to effectuate hemostasis and wound closure, while maximizing blood flow in the surrounding tissue to facilitate healing. Additionally, when tissue is clamped and compressed between the anvil and cartridge, some of the fluid of the tissue is squeezed out so the tissue is compressed further at the portions of the cartridge adjacent the cut-line and anvil than at the lateral edges it may also be desirable to cut and staple across tissue that varies in thickness. It would therefore be advantageous to provide staples which could better accommodate these resulting different tissue thicknesses.
SUMMARYThe present disclosure provides a surgical fastener cartridge. The surgical fastener cartridge includes a cartridge body having a tissue contacting surface that includes a plurality of fastener retention slots. In certain embodiments, the tissue contacting surface includes a channel configured to accommodate longitudinal movement of a cutting element. A plurality of surgical fasteners is operatively disposed in the plurality of fastener retention slots. A plurality of pushers is operably associated with the plurality of surgical fasteners. In an embodiment, each pusher is configured for ejecting an associated surgical fastener towards a depression in an anvil. An actuation sled is housed within the cartridge body and includes a plurality of cam wedges disposed on opposing sides of a central support associated with the actuation sled.
The plurality of cam wedges is configured to sequentially contact the plurality of pushers such that a surgical fastener that is ejected closer to a cut line produces a greater compression force to stapled tissue than a surgical fastener ejected further from the cut line such that a desired hemostatic effect is achieved. In certain embodiments, the surgical fastener cartridge has a sled with a first cam wedge having a proximal end and a second cam wedge having a proximal end, the proximal end of the first cam wedge including a notched area configured to deflect the proximal end of the first cam wedge during the formation of the surgical fasteners
In embodiments, the actuation sled is adapted to operatively connect to a drive assembly associated with a surgical fastening apparatus such that the actuation sled is longitudinally movable within the cartridge body.
In certain embodiments, a central support of the sled is configured to engage an abutment surface of the cutting element.
In embodiments, the plurality of cam wedges on opposing sides of the central support includes inner, middle, and outer cam wedges. The inner cam wedges may include proximal ends that are relatively rigid and the middle and outer cam wedges each include proximal ends that are relatively flexible. In embodiments, the middle and outer cam wedges each define a respective gap distance “G1” and “G2”. In embodiments, each of the gap distances “G1”, “G2” separate respective deflectable portions of middle and outer cam wedges, wherein the respective deflectable portions are configured to deflect toward a base of the actuation sled when the plurality of surgical fastener contacts a corresponding surgical fastener forming depression associated with an anvil of the surgical fastening apparatus. In embodiments, the gap distance “G1” of the middle cam wedge may be less than the gap distance “G2” of the outer cam wedge. The deflectable portions may be configured to contact a respective non-deflectable portion of the middle and outer cam wedges.
In certain embodiments, each of the proximal ends of middle and outer cam wedges include a notched area configured to alter the amount of deflection of the middle and outer cam wedges.
Various embodiments of the present disclosure are described hereinbelow with references to the drawings, wherein:
Various exemplary embodiments of the presently disclosed surgical fastener cartridge, and method of manufacturing the same, will now be described in detail with reference to the drawings wherein like references numerals identify similar or identical elements. In the drawings and in the description which follows, the term “proximal” will refer to the end of the surgical fastener cartridge that is closer to the operator during use, while the term “distal” will refer to the end of the fastener cartridge that is further from the operator, as is traditional and conventional in the art. In addition, the term “surgical fastener” should be understood to include any structure formed of a biocompatible material that is suitable for the intended purpose of joining tissue together, including but not being limited to surgical staples, clips, and the like.
The present disclosure provides a surgical fastener cartridge adapted to house a plurality of surgical fasteners and a mechanism for forming the surgical fasteners so as to apply different compressive forces to tissue depending on the location of the tissue with respect to the cartridge. Varying the degree of compression force can affect hemostasis of the tissue. To this end, in certain embodiments, the surgical fasteners are formed such that certain surgical fasteners produce a greater compression force to the tissue than other surgical fasteners deployed by the same cartridge.
With reference to
While surgical fastener applying apparatus 1000 is depicted as an apparatus suitable for use in laparoscopic procedures for performing surgical anastomotic fastening of tissue, those skilled in the art will appreciate that cartridge 100 may be adapted for use with any surgical instrument suitable for the intended purposes described herein. For example, cartridge 100 may be adapted for use with an end-to-end anastomosis device 2000, as seen in
For the purposes of brevity, the structural and operational features of cartridge 100 will be described in terms of use with the surgical fastener applying apparatus 1000.
With reference to
With reference to
The axial drive assembly 601 includes an elongated drive beam 608 including a distal working head 610 and a proximal engagement section 612. In an embodiment, drive beam 608 is constructed from multiple stacked sheets of material. Engagement section 612 includes a pair of resilient engagement fingers 612a and 612b which mountingly engage a pair of corresponding retention slots formed in a drive member 614. Drive member 614 includes a proximal porthole 616 configured to receive a stem at a distal end of a control rod (not shown) operably associated with the surgical fastener applying apparatus 1000. The control rod extends coaxially through the elongated body 1004 of surgical fastener applying apparatus 1000. The movable handle 1002 controls the linear movement of an actuation shaft (not shown) which is mounted within barrel portion 1016. More particularly, in embodiments the actuation shaft has a toothed rack defined thereon, and movable handle 1002 has a ratcheting pawl mounted thereto for incrementally engaging and advancing the actuation shaft. The pawl may be mounted on a pivot pin and a coiled torsion spring that biases the pawl into engagement with the toothed rack. In operation, when movable handle 1002 is pulled proximally, the pawl rotates counterclockwise and engages the teeth of the actuation shaft, thereby allowing movable handle 1002 to drive the shaft distally. An abutment surface 620 on the working head 610 is configured to engage a central support wedge 645 of actuation sled 600. Axial drive assembly 601, among other things, transmits the longitudinal drive forces exerted by the control rod disposed in elongated shaft 1004 to the actuation sled 600. For a more detailed description of the operative features of the axial drive assembly 601, movable handle 1002, actuation shaft, and control rod, reference is made to commonly owned U.S. Pat. No. 7,258,262, the contents of which are hereby incorporated by reference in its entirety.
The actuation sled 600 has an initial, proximal-most position. The working head 610 (of the axial drive assembly 601) is disposed in abutment with and proximal to the sled 600.
The working head 610 has an upper flange 604 that engages the anvil member 1014 and a lower flange 606 that engages a channel 101 that supports the cartridge 100. The operative tool 1006 is first actuated to clamp onto tissue. Proximal movement of the movable handle 1002 advances the control rod distally. The control rod advances the axial drive assembly 601 so that the upper and lower flanges, 604 and 606, respectively, of the working head 610 engage the anvil member 1014 and channel 101, respectively, to approximate the anvil member 1014 and cartridge 100 with one another. With tissue clamped between anvil member 1014 and cartridge 100, the fasteners are fired from the apparatus into the tissue. The fasteners are fired by operating the handle 1002 again to further advance the knife 602 of working head 610.
Accordingly, as illustrated in
With reference now to
The legs 132 and the backspan 134 may define a cross-section having any suitable geometric configuration, including but not limited to rectangular, oval, square, triangular, and trapezoidal. The legs 132 and the backspan 134 may exhibit the same geometrical configuration such that the cross-sectional configuration of the surgical fastener 130 is substantially uniform, as shown in
Backspan 134 and/or legs 132 may be formed by any suitable means known in the art including but not limited to welding, braising, coining, casting, overmolding and so on. Additionally, backspan 134 and/or legs 132 may be treated by way of annealing, cold working, heat treating, and so on. This may provide increased burst strength to the surgical fastener. Moreover, backspan may include different configurations of blocking and/or retainer material, tube, sleeve, collar, and/or grommet.
As seen in
Each of the legs 132 terminates in a penetrating end 136 that is configured to penetrate tissue (tissue segments “T1”, “T2” for example) and/or other suitable material (blocking and/or retainer material for example). The penetrating ends 136 of legs 132 can be tapered to facilitate the penetration of tissue segments “T1”, “T2”, or alternatively, the penetrating ends 136 may not include a taper. In various embodiments, penetrating ends 136 may define a conical or flat surface, as described in co-pending U.S. patent application Ser. No. 11/444,761, filed Apr. 13, 2003, the entire contents of which are incorporated by reference herein. In embodiments, one or both of legs 132 may be barbed. Having legs 132 configured in such a manner may facilitate maintaining the surgical fastener 130 in a fixed position within the tissue and/or blocking material.
Turning now to
To this end, legs 132 cooperate with backspan 134 to maintain adjacent tissue segments or layers “T1”, “T2” in approximation and apply a compressive force “F” thereto. The compressive force “F” applies pressure to the tissue segments “T1”, “T2”, thereby restricting the flow of blood through the tissue surrounding the surgical fastener 130 and facilitating hemostasis. The amount of pressure that is applied to the tissue segments “T1”, “T2” is limited such that the flow of blood through the tissue is not completely restricted. When formed, the surgical fastener 130 is generally “B” shaped with an overall height “HF” (measured from the outermost surface of the backspan 134 to the outermost curve of the legs 132) and a tissue compression space 140.
With reference to
Essentially, the rigidity of the cam wedge 644 varies between a central region (i.e., more rigid) and an outer region (i.e., more flexible). Alternatively, reverse or other combinations and/or arrangements are contemplated. For example, in embodiments in which a channel 122 and knife bar 601 are not provided, one or more cam wedges 644 may be relatively flexible as compared to others. The cartridge may have one or more rows 128 of slots 126, wherein each of the one or more rows 128 includes a corresponding cam wedge 644.
In the embodiment shown, cam wedges 644 on each side of the central support 645 include inner, middle, and outer cam wedges, 646, 648, and 650, respectively. Each of the cam wedges 646, 648, and 650 may include a camming surface that is sloped, slanted or inclined with respect to a base of the sled 600. The camming surface of each of the cam wedges 646, 648, and 650 may include one or more inclines having one or more degrees of inclination. In the embodiments illustrated in
Those skilled in the art will appreciate that several variations of the above described sled configurations may be employed to achieve the same or similar result. For example, instead of having middle and outer cam wedges 648, 650 that employ a notched area, middle and/or outer cam wedges 648, 650, may simply be made from material that is configured to flex or “give” when surgical fastener 130 contacts the anvil pockets 90. Here, the flexibility of middle and/or outer cam wedges 648. 650 will provide the required deflection.
As noted, the cam wedges 644 closer to central support 645 (e.g., cam wedges 646), and thus closest to the cut-line or channel 122, are relatively rigid and as a result are intended not to deflect. In operation, when cam wedges 644 contact and drive pushers 150, the corresponding surgical fasteners 130 forms a tight “B” shape when it is urged against the anvil plate 90, thereby restricting the flow of blood through the tissue surrounding the surgical fastener 130 and facilitating hemostasis. As also noted, the cam wedges 644 further from the central support 645 (e.g., cam wedges 648 and 650), and thus further from the cut-line or channel 122, are somewhat flexible and as a result are intended to deflect. In operation, when cam wedges 648, 650 contact and drive pushers 150, the driving forces and deflectability of portions 658, 660 are selected such that the corresponding surgical fasteners 130 form a less tight “B shape when the surgical fastener 130 is urged against the anvil, thereby allowing some blood to flow through the tissue surrounding the surgical fastener 130 and facilitating healing.
With reference to
Surgical fastener 130C has a diameter “D1”. When the surgical fastener 130C is formed (phantomly shown in
Surgical fastener 130B has a diameter “D1”. When the surgical fastener 130B is formed (phantomly shown in
Surgical fastener 130A has a diameter “D1”. When the surgical fastener 130A is formed (phantomly shown in
In one particular embodiment, the outer rows 128C, intermediate rows 128B, and inner rows 128A are comprised solely of surgical fasteners 130C, 130B, and 130A, respectively such that the flow of blood through the tissue immediately surrounding the cut-line or channel is substantially, if not completely, restricted by the inner row 128A of surgical fasteners 130A, whereas the flow of blood through the tissue surrounding the intermediate and outer rows 128B, 128C is less restricted by surgical fasteners 130B, 130C, respectively. Accordingly, the flow of blood is minimized in the tissue immediately adjacent the cut-line and is increased gradually as the lateral distance from the cut-line is also increased. It should be appreciated that the diameters of the fasteners could be varied to accommodate tissue of different thicknesses and to control tissue compression by the fasteners. In addition, the formed configuration of the fasteners can be varied to vary the tissue compression applied by the fasteners. For example, the backspan of fastener 130A may be dimpled or crimped to decrease the compression space of the formed fastener.
As discussed above in connection with
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, the surgical fasteners described herein above may be formed from a variety of surgically acceptable materials including various metals and absorbable and non-absorbable plastics. Additionally, any of the aforementioned surgical fasteners may be treated, chemically or otherwise, prior to being loaded into cartridge 100.
It is also contemplated that the backspan 134 of the surgical fastener 130 may include one or more pockets (not explicitly shown) that are positioned to engage the legs 132 during formation of the surgical fastener 130 and configured to redirect the legs 132 such that they are coiled toward the backspan 134, as discussed in commonly owned U.S. patent application Ser. No. 11/444,664, filed Jun. 1, 2006, the entire contents of which are incorporated by reference herein.
It is contemplated that in addition to varying the gap distances “G” of the cam wedges 644, the thickness of the backspan 134 and the legs 132 may also be varied such that the surgical fastener 130 closer to the cut line provides a greater compression force to stapled tissue occupied therein than the surgical fastener 130 further from the cut line. For example, in the embodiment of
Additionally, while the inner, middle, and outer rows 128A, 128B, and 128C, respectively, are shown as including the surgical fasteners 130A, 130B, 130C, respectively, the present disclosure contemplates the inclusion of the surgical fasteners 130A, 130B, and 130C, in other rows or arrangement of any of the surgical fasteners 130A, 130B, and 130C, disclosed herein, either exclusively, such that only a single type of surgical fastener, e.g., surgical fastener 130, is present in a particular row, or in combination, such that a variety of surgical fasteners, e.g., surgical fasteners 130A, 130B, and 130C, are present. Here, one or more of the above-referenced surgical fasteners, such as, for example, those surgical fasteners depicted in
The surgical fastener applying apparatus according to certain embodiments of the present disclosure includes a plurality of cam bars for interacting with the pushers to deploy the surgical fasteners. For example, the apparatus disclosed in U.S. Pat. No. 5,318,221, the disclosure of which is hereby incorporated by reference herein, in its entirety, has a cam bar adapter that holds a plurality of cam bars and a knife. A channel is advanced through operation of the handle of the apparatus, which drives the cam bars and knife forward. A clamp tube that surrounds the proximal end of the anvil is advanced to clamp the anvil and cartridge together. In another example, the apparatus disclosed in U.S. Pat. No. 5,782,396, the disclosure of which is hereby incorporated by reference herein, in its entirety, has an actuation sled. An elongated drive beam is advanced distally through operation of the handle of the apparatus, driving the actuation sled forward. The distal end of the drive beam engages the anvil and the channel that supports the cartridge as the drive beam travels distally, to deploy the staples and clamp the anvil and cartridge together. The surgical fastener applying apparatus shown in U.S. Pat. No. 7,070,083 employs a pusher bar incorporating a plurality of pushers that are advanced substantially simultaneously to deploy the fasteners against an anvil. One or more of the pushers may incorporate a deflectable portion, in certain embodiments of the present disclosure.
The surgical fastening cartridge 100 may also be employed with a surgical fastener applying apparatus 4000 (
It is contemplated that an actuation sled for a surgical stapling apparatus comprises at least one cam wedge having an angled cam surface arranged for interacting with a staple pusher supporting a surgical staple, the at least one cam wedge having a deflectable portion configured to deflect in response to a driving force exerted on the actuation sled for forming the surgical staple against an anvil. It is also contemplated that an actuation sled for a surgical stapling apparatus comprises a first cam wedge having a first angled cam surface arranged for interacting with a first staple pusher supporting a first surgical staple, and a second cam wedge having a second angled cam surface arranged for interacting with a second staple pusher supporting a second surgical staple, the first cam wedge having a deflectable portion having a first deflection in response to a driving force exerted on the actuation sled for forming the first surgical staple against an anvil. In certain embodiments, the second cam wedge has a deflectable portion having a second deflection in response to the driving force exerted on the actuation sled for forming the second surgical staple against the anvil. Alternatively, the second cam wedge may be substantially non-deflectable.
A surgical stapling apparatus having a staple cartridge is contemplated, the apparatus including an actuation sled with a first cam wedge having an angled cam surface arranged for interacting with a first staple pusher supporting a first surgical staple, and a second cam wedge having an angled cam surface arranged for interacting with a second staple pusher supporting a second surgical staple, the staple cartridge defining a channel for accommodating the passage of a knife blade, the first cam wedge being disposed adjacent the channel an in-between the channel and the second cam wedge, the second cam wedge having a deflectable portion configured to deflect in response to a driving force exerted on the actuation sled for forming the second surgical staple against an anvil.
Although the illustrative embodiments of the present disclosure have been described herein with reference to the accompanying drawings, the above description, disclosure, and figures should not be construed as limiting, but merely as exemplary of various embodiments.
Claims
1. A surgical fastener applying apparatus comprising:
- a fastener assembly including an anvil section and a cartridge section, the cartridge section and the anvil section movable from an unclamped position to a clamped position to clamp tissue therebetween, the cartridge section having a plurality of retention slots;
- a plurality of first surgical fasteners and a plurality of second surgical fasteners, each surgical fastener disposed within a corresponding retention slot, the plurality of first surgical fasteners having a first backspan with a first thickness and the plurality of second surgical fasteners having a second backspan with a second thickness, wherein the first thickness is different than the second thickness.
2. The surgical fastener applying apparatus according to claim 1, wherein the first thickness applies a first compressive force to tissue upon formation of the plurality of first surgical fasteners and the second thickness applies a second compressive force to tissue upon formation of the plurality of second surgical fasteners.
3. The surgical fastener applying apparatus according to claim 1, wherein the first backspan is enlarged with respect to the second backspan, the first backspan being an integral element in which fastener legs of the plurality of first surgical fasteners are embedded.
4. The surgical fastener applying apparatus according to claim 1, wherein the first backspan is a separate backspan material attached to the plurality of first surgical fasteners.
5. The surgical fastener applying apparatus according to claim 1, wherein the first backspan includes a cylindrical collar encircling a backspan portion of the first backspan.
6. The surgical fastener applying apparatus according to claim 1, further comprising an actuation sled capable of moving distally through the cartridge section, the actuation sled including at least one cam wedge.
7. The surgical fastener applying apparatus according to claim 6, wherein as the actuation sled travels through the cartridge distally, the at least one cam wedge drives the pushers in order to deploy the surgical fasteners and drive them against the anvil section.
8. The surgical fastener applying apparatus according to claim 1, wherein the cartridge section includes a longitudinal slot configured to allow longitudinal movement of a knife bar therethrough.
9. The surgical fastener applying apparatus according to claim 8, wherein the cartridge section includes a first inner row of retention slots and a first outer row of retention slots on a first side of the longitudinal slot, and a second inner row of retention slots and a second outer row of retention slots on a second side of the longitudinal slot, wherein each retention slot is aligned with a corresponding pusher and fastener.
10. The surgical fastener applying apparatus according to claim 9, wherein the surgical fasteners in the first inner row and the second inner row are the plurality of first surgical fasteners and the surgical fasteners in the first outer row and the second outer row are the plurality of second surgical fasteners, the first thickness of the first backspan being greater than the second thickness of the second backspan.
11. The surgical fastener applying apparatus according to claim 9, wherein the actuation sled includes a first inner cam wedge, a second inner cam wedge, a first outer cam wedge, and a second outer cam wedge, wherein the first inner wedge contacts the pushers in the first inner row of retention slots, the second inner cam wedge contacts the pushers in the second inner row of retention slots, the first outer cam wedge contacts the pushers in the first outer row of retention slots, and the second outer cam wedge contacts the pushers in the second outer row of retention slots.
Type: Application
Filed: Dec 11, 2017
Publication Date: Apr 19, 2018
Inventor: Stanislaw Marczyk (Stratford, CT)
Application Number: 15/837,212